
Multiple Page Size Support in the Linux Kernel

Simon Winwood

z x

Ye�m Shuf

z {

Hubertus Franke

z

z

IBM T.J. Watson Resear
h Center

x

S
hool of Computer S
ien
e and Engineering

{

Computer S
ien
e Department

P.O. Box 218 University of New South Wales Prin
eton University

Yorktown Heights, NY 10598, USA Sydney 2052, Australia Prin
eton, NJ 08544, USA

fswinwoo, ye�m, frankehg�us.ibm.
om sjw�
se.unsw.edu.au yshuf�
s.prin
eton.edu

Abstra
t

The Linux kernel
urrently supports a single user

spa
e page size, usually the minimum di
tated by

the ar
hite
ture. This paper des
ribes the ongoing

modi�
ations to the Linux kernel to allow appli
a-

tions to vary the size of pages used to map their

address spa
es and to reap the performan
e bene-

�ts asso
iated with the use of large pages.

The results from our implementation of multiple

page size support in the Linux kernel are very en-

ouraging. Namely, we �nd that the performan
e

improvement of appli
ations written in various mod-

ern programming languages range from 10% to over

35%. The observed performan
e improvements are

onsistent with those reported by other resear
hers.

Considering that memory laten
ies
ontinue to grow

and represent a barrier for a
hieving s
alable perfor-

man
e on faster pro
essors, we argue that multiple

page size support is a ne
essary and important ad-

dition to the OS kernel and the Linux kernel in par-

ti
ular.

1 Introdu
tion

To a
hieve high performan
e, many pro
essors sup-

porting virtual memory implement a Translation

Lookaside Bu�er (TLB) [8℄. A TLB is a small

hardware
a
he for maintaining virtual to physi-

al translation information for re
ently referen
ed

pages. During exe
ution of any instru
tion, a trans-

lation from virtual to physi
al addresses needs to

be performed at least on
e. Thereby, a TLB is ef-

fe
tively redu
ing the
ost of obtaining translation

information from page tables stored in memory.

Programs with good spatial and temporal lo
ality

of referen
e a
hieve high TLB hit rates whi
h
on-

tribute to higher appli
ation performan
e. Be
ause

of long memory laten
ies, programs with poor lo
al-

ity
an in
ur a noti
eable performan
e hit due to low

TLB utilization. Large working sets of many mod-

ern appli
ations and
ommer
ial middleware [12, 13℄

make a
hieving high TLB hit rates a
hallenging and

important task.

Adding more entries to a TLB to in
rease its
ov-

erage and in
reasing the asso
iativity of a TLB to

rea
h higher TLB hit rates is not always feasible as

large and
omplex TLBs make it diÆ
ult to attain

short pro
essor
y
le times. A short TLB laten
y

is a
riti
al requirement for many modern pro
es-

sors with fast physi
ally tagged
a
hes, in whi
h

translation information (i.e., a physi
al page asso-

iated with a TLB entry) needs to be available to

perform
a
he tag
he
king [8℄. Therefore, many

pro
essors a
hieve wider TLB
overage by support-

ing large pages. Traditionally, operating systems

did not expose large pages to appli
ation software,

limiting this support to the kernel. Growing work-

ing sets of appli
ations make it appealing to support

large pages for appli
ations, as well as for the kernel

itself.

A key
hallenge for this work was to provide eÆ-

ient support for multiple page sizes with only minor

hanges to the kernel. This paper dis
usses ongoing

resear
h to support multiple page sizes in the
on-

text of the Linux operating system, and makes the

following
ontributions:

� it des
ribes the
hanges ne
essary to support

multiple page sizes in the Linux kernel;

� it presents validation data demonstrating the

a

ura
y of our implementation and its ability

to meet our design goals; and

� it illustrates non-trivial performan
e bene�ts of

large pages (rea
hing more than 35%) for Java

appli
ations and (rea
hing over 15%) for C and

C++ appli
ations from well-known ben
hmark

suites.

We have an implementation of multiple page size

support for the IA-32 ar
hite
ture and are
urrently

working on an implementation for the PowerPC

1

ar
hite
ture.

The rest of the paper is organized as follows. In Se
-

tion 2, we present an overview of the Linux virtual

memory subsystem. We des
ribe the design and im-

plementation of multiple page size support in the

Linux kernel in Se
tion 3 and Se
tion 4 respe
tively.

Experimental results obtained from the implemen-

tation are presented and analyzed in Se
tion 5. Re-

lated work is dis
ussed in Se
tion 6. Finally, we

summarize the results of our work and present some

ideas for future work in Se
tion 7.

2 The Virtual Memory Subsystem in

Linux

In this se
tion, we give a brief overview of the Linux

Virtual Memory (VM) subsystem

2

. Unless other-

wise noted, this se
tion refers to the 2.4 series of

kernels after version 2.4.18.

2.1 Address spa
e data stru
tures

Ea
h address spa
e is de�ned by a mm stru
t data

stru
ture

3

. The mm stru
t
ontains information

about the address spa
e, in
luding a list of Virtual

Memory Areas (VMAs), a pointer to the page di-

re
tory, and various lo
ks and resour
e
ounters.

A VMA
ontains information about a single region

of the address spa
e. This in
ludes:

� the address range the VMA is responsible for;

1

This is for the PPC405gp and PPC440 pro
essors, both

of whi
h support multiple page sizes.

2

This se
tion is meant to be neither exhaustive or
om-

plete.

3

Note that multiple tasks
an share the same address

spa
e

� the a

ess rights | read, write, and exe
ute |

for that region;

� the �le, if any, whi
h ba
ks the region; and

� any performan
e hints supplied by an appli
a-

tion, su
h as memory a

ess behaviour.

A VMA is also responsible for populating the region

at page fault time via its nopage method. A VMA

generally maps a virtual address range onto a region

of a �le, or zero �lled (anonymous) memory.

A VMA exists for ea
h segment in a pro
ess's exe-

utable (e.g., its text and data segments), its sta
k,

any dynami
ally linked libraries, and any other �les

the pro
ess may have mapped into its address spa
e.

All VMAs, ex
ept for those
reated when a pro
ess

is initially loaded, are
reated with the mmap sys-

tem
all

4

. The mmap system
all essentially
he
ks

that the pro
ess is allowed the desired a

ess to the

requested �le

5

and sets up the VMA.

The page dire
tory
ontains mappings from vir-

tual addresses to physi
al addresses. Linux uses a

three level hierar
hi
al page table (PT), although in

most
ases the middle level is optimised out. Ea
h

leaf node entry in the PT,
alled a page table en-

try (PTE),
ontains the address of the
orrespond-

ing physi
al page, the
urrent prote
tion attributes

for that page

6

, and other page attributes su
h as

whether the mapping is dirty, referen
ed, or valid.

Figure 1 shows the relationship between the Vir-

tual Address Spa
e, the mm stru
t, the VMAs, the

Physi
al Address Spa
e, and the page dire
tory.

2.2 The page data stru
ture and allo
a-

tor

The page data stru
ture represents a page of phys-

i
al memory, and
ontains the following properties:

� its usage
ount, whi
h denotes whether it is in

the page
a
he, if it has bu�ers asso
iated with

it, and how many pro
esses are using it;

4

This is not stri
tly true: the shmat system
all is also

used to
reate VMAs. It is, however, essentially a wrapper

for the mmap system
all.

5

This
he
k is trivial if the mapping is anonymous.

6

The pages prote
tion attributes may
hange over the life

of the mapping due to
opy-on-write and referen
e
ounting

Virtual Memory Area

mmap

pgd

mm_struct

Page Directory

Page Table

Physical Address Space

Virtual Address Space

Figure 1: Virtual Address Spa
e data stru
tures

� its asso
iated mapping, whi
h indi
ates how a

�le is mapped onto its data, and its o�set;

� its wait queue, whi
h
ontains pro
esses waiting

on the page; and

� its various
ags, most importantly:

lo
ked This
ag is used to lo
k a page. When

a page is lo
ked, I/O is pending on the

page, or the page is being examined by

the swap subsystem.

error This
ag is used to
ommuni
ate to the

VM subsystem that an error o

urred dur-

ing I/O to the page.

referen
ed This
ag is used by the swapping

algorithm. It is set when a page is refer-

en
ed, for example, when the page is a
-

essed by the read system
all, and when

a PTE is found to be referen
ed during the

page table s
an performed by the swapper.

uptodate This
ag is used by the page
a
he

to determine whether the page's
ontents

are valid. It is set after the page is read

in.

dirty This
ag is used to determine whether

the page's
ontents has been modi�ed. It

is set when the page is written to, either by

an expli
it write system
all, or through

a store instru
tion.

lru This
ag is used to indi
ate that the page

is in the LRU list.

a
tive This
ag is used to indi
ate that the

page is in the a
tive list.

launder This
ag is used to determine

whether the page is
urrently undergoing

swap a
tivity. It is set when the page is

sele
ted to be swapped out.

Pages are organised into zones ; memory is requested

in terms of the target zone. Ea
h zone has
ertain

properties: the DMA zone
onsists of pages whose

physi
al address is below the 16MB limit required

by some older devi
es, the normal zone
ontains

pages that
an be used for any purpose (aside from

that ful�lled by the DMA zone), and the highmem

zone
ontains all pages that do not �t into the ker-

nel's virtual memory: when the kernel needs to a
-

ess this memory, it needs to be mapped into a re-

gion of the kernels address spa
e. Note that the

DMA zone is only required for support of lega
y

devi
es, and the highmem zone is only required on

ma
hines with 32 bit (or smaller) address spa
es.

Ea
h zone uses a buddy allo
ator to allo
ate pages,

so pages of di�erent orders
an be allo
ated. Al-

though a
lient of the allo
ator requests pages from

a spe
i�
 list of zones and a spe
i�
 page order, the

pages that are returned
an
ome from anywhere

within the zone. This means that a page for the slab

allo
ator

7

an be allo
ated between pages that are

allo
ated for the page
a
he. The same
an be said

for other non-swappable pages su
h as task
ontrol

blo
ks and page table nodes.

7

The slab allo
ator [5℄ provides eÆ
ient allo
ation of ob-

je
ts, su
h as inodes. Pages allo
ated to the slab allo
ator

annot be paged out.

2.3 The page
a
he

The page
a
he implements a general
a
he for �le

data. Most �lesystems use the page
a
he to avoid

re-implementing the page
a
he's fun
tionality. A

�lesystem takes advantage of the page
a
he by set-

ting a �le's mmap operation to generi
 file mmap.

When the �le is mmaped, the VMA is set up su
h

that its nopage fun
tion invokes filemap nopage.

The �le's read and write operations will also go

through the page
a
he.

The page
a
he uses the page's mapping and o�set

�elds to uniquely identify the �le data that the page

ontains | when an a

ess o

urs, the page
a
he

uses this data to look up the page in a hash table.

2.4 The swap subsystem

Linux attempts to fully utilise memory. At any one

time, the amount of available memory may be less

than that required by an appli
ation. To satisfy

a request for memory, the kernel may need to free

a page that is
urrently being used. Sele
ting and

freeing pages is the job of the swap subsystem.

The swap subsystem uses two lists to re
ord the a
-

tivity of pages: a list of pages whi
h have not been

a

essed during in a
ertain time period,
alled the

ina
tive list, and a list of pages whi
h have been re-

ently a

essed,
alled the a
tive list. The a
tive list

is maintained pseudo LRU, while the ina
tive list is

used by the one-handed
lo
k repla
ement algorithm

urrently implemented in the kernel. Whenever a

page on the ina
tive list is referen
ed, it is moved to

the a
tive list.

The kernel uses a swapper thread to periodi
ally

balan
e the number of pages in the a
tive and in-

a
tive lists: if a page in the a
tive list has been

referen
ed, it is moved to the end of the a
tive list,

otherwise it is moved to the end of the ina
tive list.

Periodi
ally, the swapper thread sweeps through the

ina
tive list looking for pages that
an be freed. If

the swapper thread is unable to free enough pages,

it starts s
anning page tables: for ea
h PTE exam-

ined, the kernel
he
ks to see whether the page has

been referen
ed (i.e., whether the referen
ed bit is

set in the PTE). If so, the page is moved to the a
-

tive list, if it is not already a member. Otherwise,

the page is
onsidered a
andidate for swapping. In

this manner referen
e statisti
s are gathered from

the page tables in the system, and used to sele
t

pages to be swapped out and freed.

The swapper thread may be woken up when the

amount of memory be
omes too low. The swap-

per fun
tions may also be
alled dire
tly when the

amount of free memory be
omes
riti
al: when

memory allo
ation fails, a task may attempt to swap

out pages dire
tly.

2.5 Anatomy of a page fault

When a virtual memory address is a

essed, but a

orresponding mapping is not in the TLB, a TLB

miss o

urs. When this happens, the fault address

is looked up in the page table, by either the hard-

ware in systems with a hardware loaded TLB, or via

the kernel in systems with a software loaded TLB

(note that this implies an interrupt o

urs).

If a mapping exists in the page table, is valid, and

mat
hes permissions with the type of the a

ess, the

entry is inserted into the TLB, the page table is up-

dated to re
e
t the a

ess by setting the referen
ed

bit

8

, and the faulting instru
tion is restarted.

If a valid mapping does not exist, the kernel's page

fault handler is invoked. The handler sear
hes

the
urrent address spa
e's VMA set for the VMA

whi
h
orresponds to the fault address, and
he
ks

whether the a

ess requested is allowed by the per-

missions spe
i�ed in the VMA.

The kernel then looks up the PTE
orresponding to

the fault address and allo
ates a page table node if

ne
essary. If the fault is a write to a PTE marked

read-only, the address spa
e requires a private
opy

of the page. A page is allo
ated, the old page is

opied, and the dirty bit is set in the PTE. If the

PTE exists but isn't valid, the page needs to be

swapped in, otherwise the page needs to be allo
ated

and �lled.

If the VMA does not de�ne a nopage method, the

memory is de�ned to be anonymous, i.e., zero-�lled

memory that is not asso
iated with any devi
e or

�le. In this
ase, the kernel allo
ates a page, zeroes

8

Note that ar
hite
tures with a hardware loaded TLB

whose page table doesn't map dire
tly onto Linux's need to

simulate this bit

it, and inserts the appropriate entry into the page

table. If a valid nopage method exists, it is invoked

and the resulting page is inserted into the PTE.

In the majority of �lesystems, the nopage method

goes to the page
a
he. The mapping and o�set for

the fault address are
al
ulated | the information

required for this
al
ulation is stored in the VMA

| and the page
a
he hash table is sear
hed for the

�le data
orresponding to the mapping and o�set.

If an up-to-date page exists, then no further a
tion

is required. If the page exists but is not up-to-date,

it is read in. Otherwise, a new page is allo
ated,

inserted into the page
a
he, and read in. In all

ases, the page's referen
e
ount is in
remented, and

the page is returned.

3 Design

This se
tion dis
usses the approa
hes we
onsidered

and justi�es our �nal design. This se
tion is or-

ganised as follows: Se
tion 3.1 dis
usses the goals

that guided the design and the terminology used

throughout this and future se
tions. Se
tion 3.2 dis-

usses the semanti
s of large pages: what aspe
ts of

the support for large pages the kernel exports to

user spa
e, the granularity at whi
h page size de
i-

sions are made, and the high-level abstra
tions the

kernel exports to the user.

It should be noted that this is an ongoing proje
t,

so the approa
hes des
ribe here may have been im-

proved upon by the time of publi
ation.

3.1 Goals

This se
tion dis
usses the design goals and guide-

lines whi
h we attempt to adhere to in the design

of our solution. We
onsider a good design to have

the following properties:

Low overhead We do not wish to penalise appli-

ations that will not bene�t from large pages,

so we aim to minimise the performan
e impa
t

of our modi�
ations for these appli
ations.

Generi
 The Linux kernel runs on numerous di�er-

ent ar
hite
tures

9

and is usually ported qui
kly

to new ar
hite
tures. Any kernel enhan
e-

ments su
h as ours should be easily adaptable

to support existing and future systems, espe-

ially
onsidering that many modern ar
hite
-

tures feature MMUs whi
h support multiple

page sizes.

Flexible While a generi
 solution allows for easy

portability, it does not indi
ate how well su
h

a solution takes advantage of an ar
hite
tures

support for multiple page sizes. The design

should be
exible enough to en
ompass any

support.

Simple The more
omplex a solution is, the more

likely it is to have subtle bugs, and the harder

it is to understand. While we
an foresee a

point at whi
h a more
omplex solution may be

ne
essary, the initial design should be as simple

as possible.

Minimal The Linux kernel is a large and
om-

plex system, so a minimalist approa
h is re-

quired: subsystem modi�
ations that are not

absolutely required may result in a solution

that is overly
omplex and unwieldy. There-

fore, we try to limit our
hanges to the VM

subsystem only.

3.2 Semanti
s

This se
tion dis
usses the semanti
s asso
iated with

supporting multiple page sizes: how the page size for

a range of virtual addresses is
hosen and whether

the kernel
onsiders this page size mandatory or ad-

visory.

The following terms are used throughout this and

later se
tions:

Base page A base page is the smallest page sup-

ported by the kernel, usually the minimum di
-

tated by the hardware.

Superpage A superpage is a
ontiguous sequen
e

of 2

n

base pages.

Order A superpage's order refers to its size. A

superpage of order n
ontains 2

n

base pages.

9

A
ount of the number of ar
hite
tures in the mainline

kernel reveals 15 implementations that are more or less
om-

plete

Sub-superpage A sub-superpage is a superpage of

order m,
ontained in a superpage of order n,

su
h that n � m. Note that a base page is a

sub-superpage with order m = 0

order = 2

order = 4

base page (order = 0)

Figure 2: A superpage and sub-superpage

These
on
epts are illustrated in Figure 2 whi
h

shows a superpage of order 4
ontaining a sub-

superpage of order 2.

3.2.1 Visibility

There are two basi
 approa
hes to supporting mul-

tiple page sizes: restri
t knowledge of superpages

to the kernel or export page size de
isions to user

spa
e.

In the former approa
h, the kernel
an
reate su-

perpage mappings based on some heuristi
, for ex-

ample, a dynami
 heuristi
 based on TLB miss in-

formation, or a stati
 heuristi
 based on the type of

mapping su
h as whether the mapping is for
ode,

data, or whether it is anonymous. This approa
h is

transparent to appli
ations, and should result in all

appli
ations bene�ting. It is, however, more
om-

plex, and would rely on e�e
tive heuristi
s to map

a virtual address range with large pages.

In the latter approa
h, an appli
ation expli
itly re-

quests a se
tion of its address spa
e be mapped with

superpages. This request
ould
ome in the form of

programmer hints, or via instrumentation inserted

by a
ompiler. While this approa
h requires appli-

ations to have spe
i�
 knowledge of the operating

system's support for large pages, it is mu
h simpler

from the kernels perspe
tive. The major problem

with this approa
h is that it requires the appli
a-

tion programmer to have a good understanding of

the appli
ations memory behaviour.

We have de
ided on the latter approa
h, due to its

simpli
ity: the former approa
h would ne
essitate

developing heuristi
s that require �ne-tuning and

rewriting.

3.2.2 Granularity

This se
tion dis
usses the granularity of
ontrol that

the appli
ation has over page sizes. The approa
hes

onsidered were:

per address spa
e While making page sizes per

address spa
e would simplify some aspe
ts of

the implementation, it is too restri
tive. We

expe
t appli
ations to have regions of their ad-

dress spa
e where the use of large pages would

be a waste of memory;

per address spa
e region type

10

This approa
h also has its drawba
ks: there is

no
lear set of types, although the region's at-

tributes (e.g., exe
utable, anonymous)
ould be

used, so again this approa
h is limited without

any
lear gains;

per address spa
e region This approa
h is more

exible than either of the above approa
hes,

however it does not allow for hotspot mapping

within a region; or

over an arbitrary address spa
e range. This

is the most
exible approa
h, however, there

are implementation issues: the kernel would

need to keep tra
k of the appli
ations desired

page sizes for the entire address spa
e.

To allow maximum
exibility while minimising im-

plementation overhead, we have de
ided upon a

ombination of the last two options: an appli
ation

an di
tate the page size for an arbitrary address

range only if that range belongs to an address spa
e

region. This means that an appli
ation
an map a

region hotspot with large pages, but leave the rest

of the region at the system's default page size.

3.2.3 Interfa
e

This se
tion dis
usses the guarantees given about

the a
tual page size used to map an address spa
e

range.

The kernel
an take a best-e�ort approa
h to map-

ping a virtual address with the appli
ations indi-

ated page size, falling ba
k to a smaller page size if

10

A region is a de�ned part of the address spa
e that
re-

ated by the mmap system
all, for example.

the larger page is not immediately available. Alter-

natively, the kernel
an blo
k the appli
ation until

the desired page size be
omes available,
opying any

existing pages to the newly allo
ates superpage.

Rather than mandating either behaviour, we have

ele
ted to allow the appli
ation to
hoose between

the two alternatives. In situations where sele
ting

a larger page size is merely an opportunisti
 opti-

misation for a relatively short running appli
ation,

the �rst behaviour is desirable. In
ases where the

appli
ation is expe
ted to exe
ute for an extended

period of time, however, the expe
ted performan
e

improvement may be greater than the expe
ted wait

time, and so waiting for a superpage to be
ome

available is justi�ed. If an appli
ation is expe
ted

to re-use a large mapping over a number of invo
a-

tions (a text page or a data �le, for example), the

appli
ation will bene�t by waiting for the large page

to be
onstru
ted.

4 Implementation

This se
tion dis
usses the implementation of the de-

sign in Se
tion 3.

4.1 Interfa
e

An appli
ation requires some me
hanism to
ommu-

ni
ate a desired page size to the kernel. A system

all is the
onventional me
hanism for
ommuni
at-

ing with the kernel. In this se
tion, we dis
uss our

implementation of a system
all interfa
e for setting

the page size for a region of the address spa
e.

We
onsidered three options: add a parameter to

the mmap system
all whi
h spe
ifying the page size

for the new mapping; implement a new system
all,

setpagesize; and add another operation to the

madvise system
all.

Using the mmap system
all would appear to be an

obvious solution. It has, however, several negative

aspe
ts: �rstly, the mmap system
all is
omplex

and is frequently used. Modifying mmap's argument

types would break existing
ode, as would adding

extra parameters. Se
ondly, the appli
ation would

be restri
ted to the one page size for that mapping,

for the life of the mapping.

Using a new system
all would be the
leanest al-

ternative, however this requires signi�
ant modi�
a-

tions to all ar
hite
tures, and is generally frowned

upon where an alternative exists.

Using the madvise system
all would allow an appli-

ation to modify the page size at any point during

its exe
ution and would not a�e
t existing appli
a-

tions, as any modi�
ation would be orthogonal to

urrent operations.

We therefore added a setregionorder(n) operation to

the madvise system
all, where n is the new page or-

der. We implemented this using the advise param-

eter of the madvise system
all. The upper half of

the parameter word
ontains the desired page order,

while the lower half indi
ates that a setregionorder

operation is to be performed.

Within the kernel, the madvise system
all veri-

�es that the requested page order is a
tually sup-

ported by the pro
essor, and sets the VMA's order

attribute a

ordingly.

4.2 Address spa
e data stru
tures

This se
tion dis
usses the modi�
ations made to the

kernel's representation of a virtual address spa
e.

The appli
ation
an modify the page size used by

a VMA at runtime, either by an expli
it madvise

system
all or by instru
ting the kernel to fall ba
k

to a smaller page size if a larger is not available.

Consequently, the kernel needs to keep tra
k of the

following: �rstly, the page size indi
ated by the ap-

pli
ation, whi
h is asso
iated with the VMA; se
-

ondly, the a
tual page size used to map a virtual

address.

To
ommuni
ate the requested page order to the

VMA's nopage fun
tion, another parameter was

added. This parameter indi
ates the desired page

order at invo
ation, and
ontains the a
tual page

size upon return. We rely upon the fa
t that subsys-

tems whi
h have not been modi�ed will only return

base pages.

To store the superpage size that a
tually maps the

virtual address range, the PTE in
ludes the order

of the mapping. To a
hieve this, we asso
iated un-

used bits within the PTE with di�erent page sizes,

although the a
tual bits and sizes may be di
tated

by hardware.

16K 4M

Physical memory

Page Table

Page Directory

Figure 3: The modi�ed page table stru
ture

The page table stru
ture was also modi�ed: super-

pages whi
h span a virtual address range greater or

equal to that of a non-leaf page dire
tory entry are

ollapsed until they �t into a single page table node

(see Figure 3). This means that we
an now have

valid page table elements at ea
h level of the address

translation hierar
hy. This a�e
ts kernel routines

whi
h s
an the page table, for example, the swap

routine.

Although the main reason behind this was to
on-

form to the page table stru
ture de�ned by the x86

family, it also has other advantages: the kernel
an

use positional information to determine the page

size, rather than relying solely on the information

store in the PTE. This means that the number of

page sizes supported by the kernel is not restri
ted

by the number of unused bits in the PTE (whi
h
an

be quite few). There may also be some performan
e

advantage as the TLB re�ll handler does needs to

traverse fewer page table levels.

4.3 Representing superpages in physi-

al memory

This se
tion dis
usses the representation of super-

pages in the page data stru
ture. The kernel needs

to keep tra
k of various properties of the superpage,

su
h as whether it is freeable, whether it needs to

be written ba
k, et
. The superpage
an in
lude

sub-superpages whi
h are in use: any superpage op-

eration that a�e
ts the sub-superpage also a�e
ts

the superpage, and this needs to be taken into
on-

sideration.

We
onsidered the following representations of su-

perpages: �rstly, an expli
it hierar
hy of page data

stru
tures, with one level for ea
h possible order.

A superpage would then be operated on using the

page data stru
ture at the appropriate level. This

implies that ea
h operation would only have to look

at a single instan
e of the page data stru
ture.

This approa
h is the
leanest in terms of semanti
s.

Unfortunately, the kernel makes
ertain assump-

tions about the one-to-one relationship between the

page data stru
ture and the a
tual physi
al page.

Implementing this design would violate those as-

sumptions and also involve signi�
ant modi�
ations

to the lower levels of the kernel.

The alternative involves a modi�
ation to the exist-

ing page data stru
ture, su
h that ea
h page
on-

tains the order of the superpage it belongs to. A

superpage of order n would then be operated on

by iterating over all 2

n

base pages. This approa
h

onforms to the kernels existing semanti
s. It is,

however, subje
t to various ra
e
onditions, and is

inelegant.

We implemented a
ombination of the two ap-

proa
hes presented: while we do not have an ex-

pli
it hierar
hy, there is an impli
it hierar
hy
re-

ated by storing the superpage's order in ea
h
om-

ponent base page. We logi
ally partition the proper-

ties of a page into those asso
iated with superpages,

or with base pages.

This partitioning was guided by the usage of these

properties: if the property was used in the VM sub-

system only, it was usually put in the superpage

partition. If the property was used for I/O, it was

put into the base page partition. The properties

were then partitioned as follows:

� the page's usage
ount is per superpage. As

all allo
ation are done in terms of superpages,

it follows that a superpage is only freeable if

no sub-superpage is being used. This means

that whenever a sub-superpage's usage
ount

is modi�ed, the a
tual modi�
ation is applied

to the superpage;

� the mapping and offset properties are per base

page, as they are only used to perform I/O on

the page;

� the wait queue is per base page, as it is used

to signal when I/O has
ompleted;

� the flags are partitioned as follows:

lo
ked is per base page, as it is used primarily

to indi
ate that a page is undergoing I/O;

error is per base page, as it is used to indi
ate

an I/O error in the page;

referen
ed is per superpage, as it is used by

the VM subsystem only;

uptodate is per base page, as it is set when

I/O su

essfully
ompletes on a page;

dirty is per superpage, as it is primarily used

in the VM subsystem;

lru is per superpage, as it indi
ates whether a

page is in the LRU list, and the LRU list

is now de�ned to
ontain superpages;

a
tive is per superpage, as it indi
ates

whether a page is in the a
tive list, and

the a
tive list is now de�ned to
ontain

superpages;

launder is per superpage, as it is only used in

the swap subsystem, and the swap subsys-

tem has to deal with superpages.

All other
ags are per base page, as they re-

e
t stati
 properties of the page, (for example,

whether the page is in the highmem zone).

Operations that iterate over ea
h base page in a

superpage are required to operate in as
ending order

to avoid deadlo
k or other in
onsisten
ies.

4.4 Page allo
ation

The
urrent page allo
ator supports multiple page

sizes, however it has 2 major problems: �rstly, non-

swappable pages
an be spread throughout ea
h

zone,
ausing memory fragmentation; se
ondly, if

a large page is required, but a user (i.e. swappable)

page is in the way, there is no eÆ
ient way to �nd

all users of that page.

While the latter problem
an be solved by Rik van

Riel's reverse mapping pat
h[18℄, the former is still

an issue. For this implementation, we have
reated

another largepage zone, whi
h is used ex
lusively for

large pages. While this is not a permanent solution,

it does aid in debugging, and solves the immedi-

ate problem for spe
ialised users. The size of the

largepage zone is �xed at boot time.

For maximum
exibility, the
urrent allo
ator

should be modi�ed so that pages whi
h are not page-

able are allo
ated in so that they do not
ause frag-

mentation. Also, pages whi
h are allo
ated together

will probably be freed together, so
lustering pages

at allo
ation time may also redu
e fragmentation.

4.5 The Page Ca
he

To support mapping �les with superpages, the page

a
he needs to be modi�ed. The bulk of these mod-

i�
ations are in the nopage and aÆliated fun
tions,

whi
h attempt to allo
ate and read in a superpage

of the requested order. To avoid any problems due

to overlapping superpages, we require a superpage

of order n also have �le order n | that is, the align-

ment of the superpage in the virtual, physi
al, and

�le spa
e is the same. For example, a 64K mapping

of a �le should be at a �le o�set that is a multiple of

64K, a virtual o�set that is a multiple of 64K, and

a physi
al o�set of 64K

11

.

The
hanges to the nopage fun
tion are essentially

straightforward. If an appli
ation requests a super-

page whi
h
ontained in the page
a
he, it get ba
k

a sub-superpage whose order is the minimum of the

requested order and the superpage's order. If a su-

perpage does not exist, a page of the requested order

is allo
ated, ea
h base page is read in, and the su-

perpage is added to the LRU and a
tive queues.

Be
ause reading in a large page
an
ause signi�-

ant I/O a
tivity (the amount of time required to

read in 4MB of data from a disk
an be signi�
ant),

we may need to read in base pages in a more in-

telligent fashion. One solution is to read in the

sub-superpage whi
h
ontains the address of inter-

est �rst and s
hedule the remainder of the superpage

to be read in after the �rst sub-superpage has
om-

pleted. When the rest of the superpage has
om-

pleted I/O, the address spa
e
an be mapped with

the superpage. Note that this is similar to the early

restart method used in some modern pro
essors to

fet
h a
a
he line.

4.6 The swap subsystem

In our
urrent implementation, a region mapped

with superpages will not be swapped out. Swapping

a superpage would negate any performan
e gained

by its use due to the high
ost of disk I/O. The su-

perpage may need to be written ba
k, however, and

11

The virtual and physi
al alignment
onstraints are
om-

mon to most ar
hite
tures.

this is handled in an essentially iterative manner |

when the superpage is not being used by any appli-

ations, and it is
hosen by the swap subsystem to

be swapped out (i.e. when it appears as a vi
tim on

the LRU list), ea
h base page is
ushed to disk, and

the superpage is freed.

In the future, a number of approa
hes present them-

selves. The kernel may, for example, split up a su-

perpage into smaller superpages over a series of swap

events, until a threshold superpage order is met, and

then swap that out. Alternatively, the kernel may

just swap out the entire page.

4.7 Ar
hite
ture spe
i�
s

This se
tion dis
usses the ar
hite
ture spe
i�
 as-

pe
ts of our implementation. Although our imple-

mentation attempts to be generi
, the kernel re-

quires knowledge of the ar
hite
ture's support for

multiple page sizes and the additional page table

requirements.

The ar
hite
ture spe
i�
 layer in our implementa-

tion
onsists mainly of page table operations, i.e.,

reating and a

essing a PTE. To
onstru
ted a

PTE, the kernel now uses mk pte order, whi
h is

identi
al to mk pte

12

ex
ept for an additional order

parameter. This fun
tion
reates a PTE with whi
h

maps a page of order order. To allow the kernel to

inspe
t a PTE, a pte order fun
tion is required.

This fun
tion returns the order of a PTE.

On ar
hite
tures whi
h use an additional page ta-

ble (usually be
ause it is required by the hardware),

the update mmu
a
he needs to be modi�ed to take

superpages into
onsideration. The kernel also re-

quires a me
hanism to verify that a page size is

supported. This is a
hieved by implementing the

pgorder supported fun
tion.

4.8 Anatomy of a large page fault

In systems with a hardware loaded TLB, a TLB

miss is transparent to the kernel, and so is not dif-

ferent in the
ase of a large page. In ar
hite
tures

with a software TLB re�ll handler, the new page ta-

ble stru
ture needs to be taken into
onsideration:

12

For ba
kwards
ompatibility, mk pte
alls mk pte order

with order 0

the handler needs to
he
k whether ea
h level in

the page table hierar
hy is a valid PTE. The re�ll

handler also needs to extra
t the page size from the

entry and insert the
orre
t (V A; PA; size) entry

into the TLB.

If there is no valid mapping in the page table, a

page fault o

urs. As with the standard kernel, the

VMA is found and the a

ess is validated. The PTE

is then found, although a page table node is not

reated if it is required | the page table node is

allo
ated later on in the page fault pro
ess. This

postponement in allo
ating page table nodes is re-

quired as the kernel does not know what size the

allo
ated page will be: this is determined when the

page is allo
ated.

On a write a

ess to a page marked read-only in

the PTE, a private
opy is
reated and repla
es the

read-only mapping. This involves
opying the entire

superpage, so it is a relatively expensive operation

| as with all superpage operations, there will only

be overhead if the operations would not have been

done on ea
h base page. For example, writing a

single
hara
ter to a 4Mb mapping will result in

the whole 4Mb being
opied, whi
h would not have

o

urred if the region was mapped with 4K pages.

Conversely, if most or all of the base pages are to

be written to,
opying them in one operation may

redu
e the total overhead due to
a
hing e�e
ts and

the redu
ed number of page faults.

If no mapping exists, the VMA's order �eld is
on-

sulted to determine the appli
ation's desired page

size. If there are pages mapped into the region de-

�ned by this order and the fault address, and the

appli
ation has ele
ted to opportunisti
ally allo
ate

superpages, the kernel sele
ts the largest supported

order that
ontains the fault address, no mapped

pages, and is less than or equal to the desired or-

der. Otherwise, the appli
ation's desired page order

is sele
ted.

After the kernel has determined the
orre
t page or-

der, it examines the VMA's nopage method. If the

nopage method is not de�ned, a zeroed superpage

is allo
ated and inserted into the page table. Oth-

erwise, the nopage method is
alled with the
al
u-

lated page order, and the result is inserted into the

page table.

If the �le that ba
ks the VMA is using the page

a
he to handle page faults, the kernel sear
hes the

page
a
he for the �le data asso
iated with the fault

I-TLB 4K pages 128 entries, 4-way SA

I-TLB 4M pages Fragmented into 4K I-TLB

I-L1
a
he 12K mi
ro-ops

D-TLB 4K pages 64 entries, FA

D-TLB 4M pages Shared with 4K D-TLB

D-L1
a
he 8K, 64 byte CL, 4-way SA

uni�ed L2
a
he 256K, 64-byte CLS, 8-way SA

Table 1: Pentium 4 pro
essor's memory system

hara
teristi
s (Notation: CL -
a
he lines; CLS -

a
he lines, se
tored; SA - set asso
iative; FA - fully

asso
iative).

address. If a superpage is found, the minimum

of the superpage's order and the requested order

is used to determine the sub-superpage to be vali-

dated. The sub-superpage is then
he
ked to ensure

its
ontents are valid, and if so, it is returned. If

the sub-superpage's
ontents is not valid, ea
h base

page is read in, and the sub-superpage is returned.

5 Experimental Results

In this se
tion, we present and analyze the exper-

imental data from our implementation of multiple

page size support in the Linux kernel.

All results in this se
tion were generated on a

1.8GHz Pentium 4 system with 512M of RAM. The

Pentium 4 pro
essor has separate instru
tion and

data TLBs and supports two di�erent page sizes:

4K and 4M

13

. Table 1 shows the parameters of the

memory system of Pentium 4.

5.1 Validating the Implementation with

a Mi
ro-ben
hmark

This se
tion presents and dis
usses the data validat-

ing the a

ura
y of our implementation and demon-

strating the bene�ts of multiple page size support

for a simple mi
roben
hmark. The use of a sim-

ple ben
hmark makes it possible to reason in detail

about its memory behavior and its intera
tions with

the memory system.

The ben
hmark allo
ates a heap and initializes it

with data. We vary the heap size from 128K to

13

Note that with large physi
al memory support (>4GB),

the large page size on Pentium 4 pro
essors is 2M.

32M in 128K in
rements in order to adjust the work-

ing set of the ben
hmark. The ben
hmark per-

forms 1000 iterations during ea
h of whi
h it strides

through the heap in the following manner: for ea
h

4K page, it a

esses one word of data. Assuming

that
a
hes and TLBs do not
ontain any informa-

tion, ea
h data a

ess brings one
a
he line of PTEs

and one
a
he line of data into the data L1
a
he.

To ensure that
onse
utive a

esses do not
ompete

for
a
he lines in the same
a
he set, we in
rement

the o�set at whi
h we a

ess data within a page by

the size of a
a
he line. We also a

ess every six-

teenth page to ensure that we use only one PTE per

L1
a
he line

14

.

We performed two sets of experiments. In the �rst

set, the heap was mapped with 4K pages. In the

se
ond set, the heap was mapped with 4M pages.

Both the 4K and the 4M
ases have several in
e
-

tion points. The �rst two in
e
tion points for the

4K
ase are at 4M and 6M, and the �rst two in-

e
tion points for the 4M
ase are at 8M and 10M.

The �rst in
e
tion point indi
ates that the impor-

tant working set (
onsisting of data and PTEs)
an

no longer �t in the fast L1
a
he. Up to this point,

the ben
hmark a
hieves full L1
a
he reuse (both

data and PTEs �t in the L1
a
he)

15

. Between the

�rst and the se
ond in
e
tion points, the ben
hmark

a
hieves partial
a
he reuse (some of the data and

PTEs remain in L1 a
ross iterations). After the se
-

ond in
e
tion point, there is no L1
a
he reuse (nei-

ther data nor PTEs remain in the L1
a
he a
ross

iterations). The working set, however, still �ts in

the larger L2
a
he. The performan
e of the 4K
ase

degrades sooner than that of the 4M
ase due to the

spa
e overhead of PTEs

16

. The 4M
ase does not

su�er from this behavior as it uses few PTEs and,

hen
e, signi�
antly less spa
e in the L1 data
a
he;

ea
h
a
he line
an a

ommodate 16 PTEs mapping

a total of 64M of
ontiguous address spa
e.

By extending the portion of the graph where the

ben
hmark a
hieves full L1
a
he reuse (i.e., past

the �rst in
e
tion point to the right), one
an esti-

mate the performan
e of the ben
hmark on a sys-

tem with in
reasingly larger L1
a
he. Similarly,

14

On our Pentium 4 ma
hine, one 64-byte
a
he line a
-

ommodates sixteen 4-byte PTE entries.

15

Coin
identally, be
ause we a

ess one
a
he line of data

per 4K page and a

ess every sixteenth page, the 64-entry

D-TLB begins thrashing at 4M, too.

16

Namely, the PTEs o

upy the same number of
a
he lines

as the data. Consequently, the number of L1 misses begins

to grow on
e the number of distin
t pages we tou
h ex
eeds

one half the number of
a
he lines in the L1 data
a
he.

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

T
im

e
(m

ill
is

ec
on

ds
)

Test size (megabytes)

DTLB micro-benchmark (L1-DCache)
1000 iterations, 128k increments

4k pagesize
4M pagesize

0
1
2
3
4
5
6
7
8
9

0 2 4 6 8 10 12 14 16

4k
:4

M

Test size (megabytes)

DTLB micro-benchmark (L1-DCache)
1000 iterations, 128k increments

4k:4M

Figure 4: The exe
ution times of the mi
roben
hmark with small 4K pages and large 4M pages (left) and

the ratios of exe
ution times (right).

by extending the portion of the graph where the

ben
hmark experien
es no L1
a
he reuse, one
an

estimate the performan
e of the ben
hmark on a

system with a slower L1 data
a
he (whose a

ess

time is equal to the a

ess time of the L2
a
he of

our
on�guration). The next in
e
tion point (not

shown on the graph) will o

ur when the L2
a
he

starts to saturate.

5.2 Assessing Performan
e for Tradi-

tional Workloads

This se
tion dis
uss the performan
e of multi-

ple page size support in the
ontext of the

SPEC CPU2000 ben
hmark suite[16℄, spe
i�-

ally CINT2000, the integer
omponent of SPEC

CPU2000.

The CINT2000 ben
hmark suite was designed to

measure the performan
e of a CPU and its mem-

ory subsystem. There are 12 integer ben
hmarks in

the suite. These are the gzip data
ompression util-

ity, vpr
ir
uit pla
ement and routing utility, g

ompiler, m
f minimum
ost network
ow solver,

rafty
hess program, parser natural language pro-

essor, eon ray tra
er, perlbmk

17

perl utility, gap

omputational group theory, vortex obje
t oriented

database, bzip2 data
ompression utility, and twolf

pla
e and route simulation ben
hmarks. All appli-

ations, ex
ept for eon, are written in C. The eon

ben
hmark is written in C++.

We noted that the appli
ations in the CINT2000

suite use the mallo
 family of fun
tions to allo
ate

17

Due to
ompilation diÆ
ulties, this ben
hmark was ex-

luded from out results

the majority of their memory. To provide the ap-

pli
ation with memory ba
ked by large pages via

the mallo
 fun
tion, we modi�ed the sbrk fun
tion.

The memory allo
ator uses sbrk to allo
ate memory

at page granularity; it then allo
ates portions of this

memory to the appli
ation upon request. The sbrk

fun
tion ensures that the pages it gives to memory

allo
ator are valid; i.e., it grows the pro
ess's heap

using the brk system
all when required.

We modi�ed the sbrk fun
tion so that it returns

memory ba
ked by large pages. At the �rst request,

sbrk maps a large region of memory, and uses the

madvise system
all to map that region with large

pages. Whenever the memory allo
ator requests a

memory, sbrk returns the next free page in this re-

gion.

If the memory request is greater than some thresh-

old (128K), the
urrent memory allo
ator will al-

lo
ate pages using the mmap system
all. To ensure

that the memory allo
ator returned memory ba
ked

by large pages, we disabled this feature so that the

allo
ator always uses our sbrk.

To allow the appli
ations to use our modi�ed mem-

ory allo
ator and sbrk fun
tions, we pla
ed these

fun
tions in a shared library and used the dy-

nami
 linker's preload fun
tionality. We set the

LD PRELOAD environment variable to out library, so

the dynami
 linker will resolve any mallo
 fun
tion

alls in the appli
ation to our implementation. In

this way, no re
ompilation is ne
essary for the ap-

pli
ations to use large pages.

Table 2 shows the performan
e results we obtained

using large pages. Overall, the results obtained are

en
ouraging, many appli
ations showing approxi-

Ben
hmark Improvement (%)

164.gzip 12.31

175.vpr 16.72

176.g

 9.29

181.m
f 9.43

186.
rafty 15.22

197.parser 16.30

252.eon 12.07

254.gap 5.91

255.vortex 22.27

256.bzip2 14.37

300.twolf 12.47

Table 2: Performan
e improvements for SPEC

CPU2000 integer ben
hmark suite using large pages

mately 15% improvement in run time.

5.3 Assessing Performan
e with Emerg-

ing Workloads

This se
tion dis
usses the impa
t of large pages on

the performan
e of Java workloads. Java appli
a-

tions, and SPECjvm98 [15℄ appli
ations in parti
u-

lar, are known to have to have poor
a
he and page

lo
ality of data referen
es [11, 14℄. To demonstrate

the advantages of large pages for Java programs, we

ondu
ted a set of experiments with the fast
on-

�guration of Jikes Resear
h Virtual Ma
hine (Jikes

RVM) [1, 2℄
on�gured with the mark-and-sweep

memory manager (
onsisting of an allo
ator and a

garbage
olle
tor) [3, 10℄.

To get the baseline numbers, i.e., where the heap is

mapped with 4K pages, we ran the SPECjvm98 ap-

pli
ations with the largest available data size on an

unmodi�ed Jikes RVM. The virtual address spa
e in

Jikes RVM
onsists of three regions: the bootimage

region, the small heap (the heap region intended for

small obje
ts), and the large heap (for obje
ts whose

size ex
eeds 2K). We modi�ed the bootimage run-

ner of Jikes RVM

18

to ensure that the small heap

is aligned to a 4M boundary and is mapped by 4M

pages.

The de
ision to map only the small heap to large

pages was based on the observation that, with a

18

The bootimage runner is a program responsible for map-

ping memory for Jikes RVM and the heap, loading the
ore

of the RVM into memory, and then passing
ontrol to the

RVM.

few ex
eptions, most obje
ts
reated by SPECjvm98

are small. We then repeated the experiments by

mapping all three heap regions to large pages. We

also varied the size of the small heap from 16M to

128M and
omputed the performan
e improvements

with 4M pages over a
on�guration that uses only

4K pages.

For ea
h appli
ation, Figure 5 shows the minimum,

the average, and the maximum performan
e im-

provements when the small heap is mapped to large

pages (left) and when all three heap regions are

mapped to large pages (right). It
an be seen that

for several appli
ations the performan
e improve-

ments are
onsistent and range from 15% to 30%

even if only the small heap is mapped to large pages.

The
ompress ben
hmark is the only one in the

suite that
reates a signi�
ant number of large ob-

je
ts and only a few small obje
ts, and so does not

bene�t from large pages in this
ase.

When all three heap regions are mapped to large

pages, we observe an additional 5% to 10% perfor-

man
e improvement. For many appli
ations, the

performan
e improvement ranges from 20% to 40%

over the base
ase. It
an also be seen that the

ompress ben
hmark enjoys a signi�
ant perfor-

man
e boost.

5.4 Dis
ussion

The observed bene�ts of large page support
an vary

and depend on a number of fa
tors su
h as the
har-

a
teristi
s of appli
ations and ar
hite
ture. In this

se
tion, we dis
uss some of these fa
tors.

A small number of TLB entries
overing large

pages

19

may not be suÆ
ient for a realisti
 appli-

ation to take full advantage of large page support.

If the working set of an appli
ation is s
attered over

a wide range of address spa
e, the appli
ation is

likely to experien
ing thrashing of a relatively small

4M page TLB, in some
ases to a mu
h larger extent

than with the 64-entry 4K page data TLB. This is a

problem on pro
essors like Pentium II and Pentium

III.

Appli
ations exe
uting on pro
essors with software

loaded TLBs are expe
ted to bene�t from large

19

In Pentium II and Pentium III mi
ropro
essors, there are

eight 4M page data TLB entries some of whi
h are used by

the kernel.

0

5

10

15

20

25

30

35

40

45

50

_2
01

_c
om

pr
es

s

_2
02

_j
es

s

_2
05

_r
ay

tr
ac

e

_2
09

_d
b

_2
13

_j
av

ac

_2
22

_m
pe

ga
ud

io

_2
27

_m
tr

t

_2
28

_j
ac

k

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t (

pe
rc

en
t)

Performance improvement with the small heap
mapped to large pages

Ratio

0

5

10

15

20

25

30

35

40

45

50

_2
01

_c
om

pr
es

s

_2
02

_j
es

s

_2
05

_r
ay

tr
ac

e

_2
09

_d
b

_2
13

_j
av

ac

_2
22

_m
pe

ga
ud

io

_2
27

_m
tr

t

_2
28

_j
ac

k

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t (

pe
rc

en
t)

Performance improvement with all three heap regions
mapped to large pages

Ratio

Figure 5: Summary of results for SPECjvm98.

pages. The TLB miss overhead of an appli
ation

exe
uting on a pro
essor that handles TLB misses

in hardware (su
h as x86 pro
essors)
an also be

signi�
ant unless most page tables of an appli
ation

an �t in the L2
a
he and
o-reside with the rest

of the working set. This is highly unlikely for ap-

pli
ations of interest: assuming that ea
h L2
a
he

line is 32 bytes and ea
h PTE is 4 bytes, one L2

a
he line
an
over eight 4K pages (a total of 32k).

Hen
e, a 512K L2
a
he
an a

ommodate PTEs

to
over only 512M of address spa
e (this does not

leave any spa
e for data in the L2
a
he). Conse-

quently, for appli
ations with relatively large work-

ing sets, it is highly likely that a signi�
ant fra
tion

of PTEs would not be found in the L2
a
he on a

TLB miss. Although hardware makes reloading a

TLB from a L2
a
he relatively inexpensive, many

TLB misses may need to be satis�ed dire
tly from

memory.

The Java platform [7℄ presents another set of
hal-

lenges. For performan
e reasons, state-of-the-art

JVMs
ompile Java byte
ode into exe
utable ma-

hine
ode [1, 2, 9℄. In some virtual ma
hines,

su
h as Jikes RVM [1, 2℄, generated ma
hine
ode is

pla
ed into the same heap as appli
ation data and is

managed by the same memory manager. It has been

observed that the
ode lo
ality of Java programs

tends to be better than their data lo
ality [14℄. This

suggests that appli
ation
ode should reside in small

pages while appli
ation data should reside in large

pages. In Jikes RVM, generated
ode and data ob-

je
ts are indistinguishable from the memory man-

ager's point of view and are intermixed in the heap.

Be
ause a memory region
an only be mapped to ei-

ther small or large pages, a tradeo� must be made.

Mapping the entire heap region to large pages may

not be e�e
tive sin
e appli
ation
ode may not need

to use large pages. What is worse is that some pro-

essors have a very small number of 4M page in-

stru
tion TLB entries

20

whi
h
an lead to thrashing

of an instru
tion TLB. Consequently, for best per-

forman
e results, a JVM should be made aware of

the
onstraints imposed by the underlying OS and

hardware, and segregate appli
ation
ode and data

into separate well-de�ned regions.

For Java programs, some performan
e gains are ex-

pe
ted to
ome from better garbage
olle
tion (GC)

performan
e. Mu
h work during garbage
olle
tion

is spent on
hasing pointers in obje
ts to �nd all

rea
hable obje
ts in the region of the heap that is

being
olle
ted [4℄. Many rea
hable obje
ts
an be

s
attered throughout the heap. As a result, the lo-

ality of GCs is often worse than that of appli
a-

tions [11℄. This behavior is representative of sys-

tems employing non-moving GCs whi
h have to be

used when some obje
ts
annot be relo
ated (e.g.,

when not all pointers
an be identi�ed reliably by

a runtime). Consequently, large pages
an improve

TLB miss rates during GC (and overall GC perfor-

man
e). Appli
ations that perform GC frequently,

have a lot of live data at GC times, or whose live

data are spread around the heap
an bene�t from

large page support and a
hieve short GC pauses.

Short pauses are
riti
al for software systems that

20

There are only two 4M page instru
tion TLB entries in

Pentium II and Pentium III pro
essors.

are expe
ted to have relatively predi
table response

times.

The availability of large pages
an also be bene�-

ial for programs that use data prefet
hing instru
-

tions. Modern pro
essors squash a data prefet
hing

request if the appropriate translation information is

not available in the data TLB. Consequently, high

TLB miss rates of appli
ations
an lead to many

prefet
hing requests being squashed, thereby lead-

ing to ine�e
tive utilization of memory bandwidth

and redu
ed appli
ation performan
e[14℄. The use

of large pages
an help redu
e TLB misses and take

full advantage of prefet
hing hardware. Further,

a hardware performing automati
 sequential data

and
ode prefet
hing stops when a page boundary

is
rossed and has to be restarted at the beginning

of the next page

21

. Large pages make it possible

for su
h hardware to run for a longer period of time

and to perform more useful work with fewer inter-

ruptions.

6 Related work

Ganapathy and S
himmel [6℄ dis
ussed a design of

general purpose operating system support for large

pages. They implemented their design in the IRIX

operating system for the SGI ORIGIN 2000 system

that employs the MIPS R10000 pro
essors (whi
h

handle TLB misses in software).

An important aspe
t of their approa
h is that it

preserves the format of pfdat and PTE data stru
-

tures of the IRIX OS. The pfdat stru
tures rep-

resent pages of a base size and
ontain no page

size information (just as in the original system).

Large pages are simply treated as a
olle
tion of

base pages. Consequently, only a few parts of the

OS kernel need to be aware of large pages and need

to be modi�ed.

The PTEs
ontain the page size information but

the page table layout is un
hanged. They use one

PTE for ea
h base page of a large page and
reate a

set of PTEs that
orrespond to all addresses falling

withing a large page. As expe
ted, for the large page

PTEs, the page frame numbers are
ontiguous.

To support multiple page sizes, the TLB miss han-

21

This is due to the fa
t that su
h automati
 prefet
hing

hardware uses physi
al addresses for prefet
hing.

dler needs to set a page mask register in the pro-

essor on ea
h TLB miss. To ensure that programs

that do not use large pages do no in
ur unne
essary

runtime overhead, a TLB handler is
on�gured per

pro
ess. The allo
ation poli
y is spe
i�ed on a
om-

mand line (on a per segment basis) before starting

an appli
ation. Hen
e, appli
ations do not need to

be modi�ed to take advantage of large pages, and

appli
ations that do not use large pages are not put

at disadvantage.

The advantage of this design is that it allows dif-

ferent pro
esses to map the same large page with

di�erent page sizes. The disadvantages are (i) this

approa
h does not redu
e the size of page tables for

appli
ations that use large pages and (ii) the infor-

mation stored in PTEs that
over a large page needs

to be kept
onsistent.

They demonstrated that appli
ations from SPEC95

and NAS parallel suite do bene�t from large pages.

For these appli
ations, they registered 80% to 99%

redu
tion in TLB misses and 10% to 20% perfor-

man
e improvement. A business appli
ation like the

TPC-C ben
hmark (whi
h is known to have poor

lo
ality and large working set) was also shown to

bene�t from large pages. The authors report 70%

to 90% redu
tion in TLB misses and 6% to 9% per-

forman
e improvement for this appli
ation.

Subramanian et al. [17℄ des
ribe their implementa-

tion of multiple page size support in the HP-UX

operating system for the HP-9000 Series 800 system

whi
h uses the PA-8000 mi
ropro
essor.

In their design the VM data stru
tures su
h as the

page table entry, virtual and physi
al page frame

des
riptors are based on the smallest page size sup-

ported by the pro
essor. A large page is de�ned as a

set of
ontiguous small base size pages. Hen
e, this

design is
on
eptually similar to that of Ganapathy

and S
himmel [6℄.

The authors note that an important advantage of

this approa
h is that it does not require
hanges to

many parts of the OS. However, it neither redu
es

the sizes of data stru
tures for appli
ations that use

large pages. In addition, lo
king, a

ess, and up-

dates of data stru
tures for large pages are some-

what ineÆ
ient. In spite of the bene�ts of spa
e

eÆ
ien
y and the eÆ
ien
y of updates, they
hoose

not to use variable page size based data stru
tures

be
ause, as the authors indi
ate, su
h an approa
h

would lead to more
hanges in the OS and would

have negative performan
e impli
ations (e.g., a high

page-fault laten
y in
ertain
ases).

In their s
heme, appli
ations do not need to be re-

ompiled to take advantage of large pages. The

hints spe
ifying large page sizes are region-based

and are used at page fault time. In some
ases,

su
h as for performan
e reasons, the OS
an ignore

these page size hints and fall ba
k to mapping small

pages.

They implemented their design in the HP-UX oper-

ating system and studied the impa
t of large pages

on several VM ben
hmarks, SPEC95 appli
ations,

and one
ommer
ial appli
ation. The reported per-

forman
e improvements range from 15% to 55%.

7 Con
lusions and Further Work

Many modern pro
essors support pages of vari-

ous sizes ranging from a few kilobytes to several

megabytes. The Linux OS uses large pages inter-

nally for its kernel (to redu
e the overhead of TLB

misses) but does not expose large pages to appli
a-

tions. Growing memory laten
ies and large working

sets of appli
ations make it important to provide

support for large pages to the user-level
ode as well.

In this paper, we dis
ussed the design and imple-

mentation of multiple page size support in the Linux

kernel. We validated our implementation on a sim-

ple mi
roben
hmark. We also demonstrated that re-

alisti
 appli
ations
an take advantage of large pages

to a
hieve signi�
ant performan
e improvements.

This work opens up a number of interesting dire
-

tion. In the future, we plan to modify kernel's mem-

ory allo
ator to further support large pages. We

would also like to evaluate the impa
t of large pages

on database and web workloads. These types of

workloads are known to have large working sets and

poor lo
ality. A
hieving high performan
e on
om-

mer
ial workloads is
ru
ial for
ontinuing su

ess

of Linux.

The laten
y of fet
hing a large 4M page from a

disk (as a result of a page fault)
an be signi�
ant.

We
onsider implementing the \early restart" fea-

ture that would fet
h and map the
riti
al
hunk of

data �rst and
omplete fet
hing the remaining data

hunks later, thereby redu
ing pauses experien
ed

by appli
ations.

Some ar
hite
tures support a number of di�erent

page sizes (e.g., 16K, 256K, 4M, and 64M). We

would be interested in evaluating the performan
e of

appli
ations on systems that have this ar
hite
tural

support.

A
knowledgements

We would like to thank Pratap Pattnaik and Manish

Gupta for supporting this work. We also like to

thank Chris Howson for all of his helpful advi
e.

Referen
es

[1℄ B. Alpern, C. R. Attanasio, J. J. Barton, M. G.

Burke, P.Cheng, J.-D. Choi, A. Co

hi, S. J. Fink,

D. Grove, M. Hind, S. F. Hummel, D. Lieber,

V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell,

V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E.

Smith, V. C. Sreedhar, H. Srinivasan, and J. Wha-

ley. The Jalape~no Virtual Ma
hine. IBM System

Journal, 39(1), 2000.

[2℄ B. Alpern, A. Co

hi, D. Lieber, M. Mergen, and

V. Sarkar. Jalape~no - a
ompiler-supported Java

virtual ma
hine for servers. In Workshop on Com-

piler Support for Software System (WCSSS 1999),

Atlanta, GA, May 1999.

[3℄ C. Attansio, D. Ba
on, A. Co

hi, and S. Smith. A

omparative evaluation of parallel garbage
olle
-

tors. In Pro
. of Fourteenth Annual Workshop on

Languages and Compilers for Parallel Computing

(LCPC), Cumberland Falls, Kentu
ky, Aug. 2001.

[4℄ H.-J. Boehm. Redu
ing garbage
olle
tor
a
he

misses. In Pro
. of ISMM 2000, O
t. 2000.

[5℄ J. Bonwi
k. The slab allo
ator: An obje
t-
a
hing

kernel memory allo
ator. In Summer 1994 USENIX

Conferen
e, pages 87{98, 1994.

[6℄ N. Ganapathy and C. S
himmel. General purpose

operating system support for multiple page sizes. In

Pro
. of the 1998 USENIX Te
hni
al Conferen
e,

New Orleans, USA, June 1998.

[7℄ J. Gosling, B. Joy, and G. Steele. The Java

(TM)

Language Spe
i�
ation. Addison-Wesley, 1996.

[8℄ J. L. Hennessy and D. A. Patterson. Computer

Ar
hite
ture: A Quantitative Approa
h. Morgan

Kaufmann Publishers, 1995.

[9℄ The Java Hotspot Performan
e Engine Ar
hite
-

ture. http://java.sun.
om/produ
ts/hotspot/

whitepaper.html.

[10℄ R. Jones and R. Lins. Garbage Colle
tion: Algo-

rithms for Automati
 Dynami
 Memory Manage-

ment. John Wiley and Sons, 1996.

[11℄ J.-S. Kim and Y. Hsu. Memory system behavior

of Java programs: Methodology and analysis. In

Pro
. of SIGMETRICS 2000, June 2000.

[12℄ C. Navarro, A. Ramirez, J.-L. Larriba-Pey, and

M. Valero. Fet
h engines and databases. In Pro
. of

Third Workshop On Computer Ar
hite
ture Eval-

uation Using Commer
ial Workloads, Toulouse,

Fran
e, 2000.

[13℄ V. Oleson, K. S
hwan, G. Eisenhaur, B. Plale,

C. Pu, and D. Aminv. Operational information

systems - an example from the airline industry. In

First USENIX Workshop on Industrial Experien
es

with Systems Software (WIESS), San Diego, Cali-

fornia, O
tober 2000.

[14℄ Y. Shuf, M. J. Serrano, M. Gupta, and J. P. Singh.

Chara
terizing the memory behavior of Java work-

loads: A stru
tured view and opportunities for op-

timizations. In Pro
. of SIGMETRICS 2001, June

2001.

[15℄ Standard Performan
e Evaluation Coun-

il. SPEC JVM98 Ben
hmarks, 1998.

http://www.spe
.org/osg/jvm98/.

[16℄ Standard Performan
e Evaluation Coun-

il. SPEC CPU2000 Ben
hmarks, 2000.

http://www.spe
.org/osg/
pu2000/.

[17℄ I. Subramanian, C. Mather, K. Peterson, and

B. Raghunath. Implementation of multiple pa-

gesize support in HP-UX. In Pro
. of the 1998

USENIX Te
hni
al Conferen
e, New Orleans, USA,

June 1998.

[18℄ R. van Riel. Rik van Riel's Linux kernel pat
hes.

http://www.surriel.
om/pat
hes/.

