
Multiple Page Size Support in the Linux Kernel

Simon Winwood

z x

Ye�m Shuf

z {

Hubertus Franke

z

z

IBM T.J. Watson Researh Center

x

Shool of Computer Siene and Engineering

{

Computer Siene Department

P.O. Box 218 University of New South Wales Prineton University

Yorktown Heights, NY 10598, USA Sydney 2052, Australia Prineton, NJ 08544, USA

fswinwoo, ye�m, frankehg�us.ibm.om sjw�se.unsw.edu.au yshuf�s.prineton.edu

Abstrat

The Linux kernel urrently supports a single user

spae page size, usually the minimum ditated by

the arhiteture. This paper desribes the ongoing

modi�ations to the Linux kernel to allow applia-

tions to vary the size of pages used to map their

address spaes and to reap the performane bene-

�ts assoiated with the use of large pages.

The results from our implementation of multiple

page size support in the Linux kernel are very en-

ouraging. Namely, we �nd that the performane

improvement of appliations written in various mod-

ern programming languages range from 10% to over

35%. The observed performane improvements are

onsistent with those reported by other researhers.

Considering that memory latenies ontinue to grow

and represent a barrier for ahieving salable perfor-

mane on faster proessors, we argue that multiple

page size support is a neessary and important ad-

dition to the OS kernel and the Linux kernel in par-

tiular.

1 Introdution

To ahieve high performane, many proessors sup-

porting virtual memory implement a Translation

Lookaside Bu�er (TLB) [8℄. A TLB is a small

hardware ahe for maintaining virtual to physi-

al translation information for reently referened

pages. During exeution of any instrution, a trans-

lation from virtual to physial addresses needs to

be performed at least one. Thereby, a TLB is ef-

fetively reduing the ost of obtaining translation

information from page tables stored in memory.

Programs with good spatial and temporal loality

of referene ahieve high TLB hit rates whih on-

tribute to higher appliation performane. Beause

of long memory latenies, programs with poor loal-

ity an inur a notieable performane hit due to low

TLB utilization. Large working sets of many mod-

ern appliations and ommerial middleware [12, 13℄

make ahieving high TLB hit rates a hallenging and

important task.

Adding more entries to a TLB to inrease its ov-

erage and inreasing the assoiativity of a TLB to

reah higher TLB hit rates is not always feasible as

large and omplex TLBs make it diÆult to attain

short proessor yle times. A short TLB lateny

is a ritial requirement for many modern proes-

sors with fast physially tagged ahes, in whih

translation information (i.e., a physial page asso-

iated with a TLB entry) needs to be available to

perform ahe tag heking [8℄. Therefore, many

proessors ahieve wider TLB overage by support-

ing large pages. Traditionally, operating systems

did not expose large pages to appliation software,

limiting this support to the kernel. Growing work-

ing sets of appliations make it appealing to support

large pages for appliations, as well as for the kernel

itself.

A key hallenge for this work was to provide eÆ-

ient support for multiple page sizes with only minor

hanges to the kernel. This paper disusses ongoing

researh to support multiple page sizes in the on-

text of the Linux operating system, and makes the

following ontributions:

� it desribes the hanges neessary to support

multiple page sizes in the Linux kernel;

� it presents validation data demonstrating the

auray of our implementation and its ability

to meet our design goals; and

� it illustrates non-trivial performane bene�ts of

large pages (reahing more than 35%) for Java

appliations and (reahing over 15%) for C and

C++ appliations from well-known benhmark

suites.

We have an implementation of multiple page size

support for the IA-32 arhiteture and are urrently

working on an implementation for the PowerPC

1

arhiteture.

The rest of the paper is organized as follows. In Se-

tion 2, we present an overview of the Linux virtual

memory subsystem. We desribe the design and im-

plementation of multiple page size support in the

Linux kernel in Setion 3 and Setion 4 respetively.

Experimental results obtained from the implemen-

tation are presented and analyzed in Setion 5. Re-

lated work is disussed in Setion 6. Finally, we

summarize the results of our work and present some

ideas for future work in Setion 7.

2 The Virtual Memory Subsystem in

Linux

In this setion, we give a brief overview of the Linux

Virtual Memory (VM) subsystem

2

. Unless other-

wise noted, this setion refers to the 2.4 series of

kernels after version 2.4.18.

2.1 Address spae data strutures

Eah address spae is de�ned by a mm strut data

struture

3

. The mm strut ontains information

about the address spae, inluding a list of Virtual

Memory Areas (VMAs), a pointer to the page di-

retory, and various loks and resoure ounters.

A VMA ontains information about a single region

of the address spae. This inludes:

� the address range the VMA is responsible for;

1

This is for the PPC405gp and PPC440 proessors, both

of whih support multiple page sizes.

2

This setion is meant to be neither exhaustive or om-

plete.

3

Note that multiple tasks an share the same address

spae

� the aess rights | read, write, and exeute |

for that region;

� the �le, if any, whih baks the region; and

� any performane hints supplied by an applia-

tion, suh as memory aess behaviour.

A VMA is also responsible for populating the region

at page fault time via its nopage method. A VMA

generally maps a virtual address range onto a region

of a �le, or zero �lled (anonymous) memory.

A VMA exists for eah segment in a proess's exe-

utable (e.g., its text and data segments), its stak,

any dynamially linked libraries, and any other �les

the proess may have mapped into its address spae.

All VMAs, exept for those reated when a proess

is initially loaded, are reated with the mmap sys-

tem all

4

. The mmap system all essentially heks

that the proess is allowed the desired aess to the

requested �le

5

and sets up the VMA.

The page diretory ontains mappings from vir-

tual addresses to physial addresses. Linux uses a

three level hierarhial page table (PT), although in

most ases the middle level is optimised out. Eah

leaf node entry in the PT, alled a page table en-

try (PTE), ontains the address of the orrespond-

ing physial page, the urrent protetion attributes

for that page

6

, and other page attributes suh as

whether the mapping is dirty, referened, or valid.

Figure 1 shows the relationship between the Vir-

tual Address Spae, the mm strut, the VMAs, the

Physial Address Spae, and the page diretory.

2.2 The page data struture and alloa-

tor

The page data struture represents a page of phys-

ial memory, and ontains the following properties:

� its usage ount, whih denotes whether it is in

the page ahe, if it has bu�ers assoiated with

it, and how many proesses are using it;

4

This is not stritly true: the shmat system all is also

used to reate VMAs. It is, however, essentially a wrapper

for the mmap system all.

5

This hek is trivial if the mapping is anonymous.

6

The pages protetion attributes may hange over the life

of the mapping due to opy-on-write and referene ounting

Virtual Memory Area

mmap

pgd

mm_struct

Page Directory

Page Table

Physical Address Space

Virtual Address Space

Figure 1: Virtual Address Spae data strutures

� its assoiated mapping, whih indiates how a

�le is mapped onto its data, and its o�set;

� its wait queue, whih ontains proesses waiting

on the page; and

� its various ags, most importantly:

loked This ag is used to lok a page. When

a page is loked, I/O is pending on the

page, or the page is being examined by

the swap subsystem.

error This ag is used to ommuniate to the

VM subsystem that an error ourred dur-

ing I/O to the page.

referened This ag is used by the swapping

algorithm. It is set when a page is refer-

ened, for example, when the page is a-

essed by the read system all, and when

a PTE is found to be referened during the

page table san performed by the swapper.

uptodate This ag is used by the page ahe

to determine whether the page's ontents

are valid. It is set after the page is read

in.

dirty This ag is used to determine whether

the page's ontents has been modi�ed. It

is set when the page is written to, either by

an expliit write system all, or through

a store instrution.

lru This ag is used to indiate that the page

is in the LRU list.

ative This ag is used to indiate that the

page is in the ative list.

launder This ag is used to determine

whether the page is urrently undergoing

swap ativity. It is set when the page is

seleted to be swapped out.

Pages are organised into zones ; memory is requested

in terms of the target zone. Eah zone has ertain

properties: the DMA zone onsists of pages whose

physial address is below the 16MB limit required

by some older devies, the normal zone ontains

pages that an be used for any purpose (aside from

that ful�lled by the DMA zone), and the highmem

zone ontains all pages that do not �t into the ker-

nel's virtual memory: when the kernel needs to a-

ess this memory, it needs to be mapped into a re-

gion of the kernels address spae. Note that the

DMA zone is only required for support of legay

devies, and the highmem zone is only required on

mahines with 32 bit (or smaller) address spaes.

Eah zone uses a buddy alloator to alloate pages,

so pages of di�erent orders an be alloated. Al-

though a lient of the alloator requests pages from

a spei� list of zones and a spei� page order, the

pages that are returned an ome from anywhere

within the zone. This means that a page for the slab

alloator

7

an be alloated between pages that are

alloated for the page ahe. The same an be said

for other non-swappable pages suh as task ontrol

bloks and page table nodes.

7

The slab alloator [5℄ provides eÆient alloation of ob-

jets, suh as inodes. Pages alloated to the slab alloator

annot be paged out.

2.3 The page ahe

The page ahe implements a general ahe for �le

data. Most �lesystems use the page ahe to avoid

re-implementing the page ahe's funtionality. A

�lesystem takes advantage of the page ahe by set-

ting a �le's mmap operation to generi file mmap.

When the �le is mmaped, the VMA is set up suh

that its nopage funtion invokes filemap nopage.

The �le's read and write operations will also go

through the page ahe.

The page ahe uses the page's mapping and o�set

�elds to uniquely identify the �le data that the page

ontains | when an aess ours, the page ahe

uses this data to look up the page in a hash table.

2.4 The swap subsystem

Linux attempts to fully utilise memory. At any one

time, the amount of available memory may be less

than that required by an appliation. To satisfy

a request for memory, the kernel may need to free

a page that is urrently being used. Seleting and

freeing pages is the job of the swap subsystem.

The swap subsystem uses two lists to reord the a-

tivity of pages: a list of pages whih have not been

aessed during in a ertain time period, alled the

inative list, and a list of pages whih have been re-

ently aessed, alled the ative list. The ative list

is maintained pseudo LRU, while the inative list is

used by the one-handed lok replaement algorithm

urrently implemented in the kernel. Whenever a

page on the inative list is referened, it is moved to

the ative list.

The kernel uses a swapper thread to periodially

balane the number of pages in the ative and in-

ative lists: if a page in the ative list has been

referened, it is moved to the end of the ative list,

otherwise it is moved to the end of the inative list.

Periodially, the swapper thread sweeps through the

inative list looking for pages that an be freed. If

the swapper thread is unable to free enough pages,

it starts sanning page tables: for eah PTE exam-

ined, the kernel heks to see whether the page has

been referened (i.e., whether the referened bit is

set in the PTE). If so, the page is moved to the a-

tive list, if it is not already a member. Otherwise,

the page is onsidered a andidate for swapping. In

this manner referene statistis are gathered from

the page tables in the system, and used to selet

pages to be swapped out and freed.

The swapper thread may be woken up when the

amount of memory beomes too low. The swap-

per funtions may also be alled diretly when the

amount of free memory beomes ritial: when

memory alloation fails, a task may attempt to swap

out pages diretly.

2.5 Anatomy of a page fault

When a virtual memory address is aessed, but a

orresponding mapping is not in the TLB, a TLB

miss ours. When this happens, the fault address

is looked up in the page table, by either the hard-

ware in systems with a hardware loaded TLB, or via

the kernel in systems with a software loaded TLB

(note that this implies an interrupt ours).

If a mapping exists in the page table, is valid, and

mathes permissions with the type of the aess, the

entry is inserted into the TLB, the page table is up-

dated to reet the aess by setting the referened

bit

8

, and the faulting instrution is restarted.

If a valid mapping does not exist, the kernel's page

fault handler is invoked. The handler searhes

the urrent address spae's VMA set for the VMA

whih orresponds to the fault address, and heks

whether the aess requested is allowed by the per-

missions spei�ed in the VMA.

The kernel then looks up the PTE orresponding to

the fault address and alloates a page table node if

neessary. If the fault is a write to a PTE marked

read-only, the address spae requires a private opy

of the page. A page is alloated, the old page is

opied, and the dirty bit is set in the PTE. If the

PTE exists but isn't valid, the page needs to be

swapped in, otherwise the page needs to be alloated

and �lled.

If the VMA does not de�ne a nopage method, the

memory is de�ned to be anonymous, i.e., zero-�lled

memory that is not assoiated with any devie or

�le. In this ase, the kernel alloates a page, zeroes

8

Note that arhitetures with a hardware loaded TLB

whose page table doesn't map diretly onto Linux's need to

simulate this bit

it, and inserts the appropriate entry into the page

table. If a valid nopage method exists, it is invoked

and the resulting page is inserted into the PTE.

In the majority of �lesystems, the nopage method

goes to the page ahe. The mapping and o�set for

the fault address are alulated | the information

required for this alulation is stored in the VMA

| and the page ahe hash table is searhed for the

�le data orresponding to the mapping and o�set.

If an up-to-date page exists, then no further ation

is required. If the page exists but is not up-to-date,

it is read in. Otherwise, a new page is alloated,

inserted into the page ahe, and read in. In all

ases, the page's referene ount is inremented, and

the page is returned.

3 Design

This setion disusses the approahes we onsidered

and justi�es our �nal design. This setion is or-

ganised as follows: Setion 3.1 disusses the goals

that guided the design and the terminology used

throughout this and future setions. Setion 3.2 dis-

usses the semantis of large pages: what aspets of

the support for large pages the kernel exports to

user spae, the granularity at whih page size dei-

sions are made, and the high-level abstrations the

kernel exports to the user.

It should be noted that this is an ongoing projet,

so the approahes desribe here may have been im-

proved upon by the time of publiation.

3.1 Goals

This setion disusses the design goals and guide-

lines whih we attempt to adhere to in the design

of our solution. We onsider a good design to have

the following properties:

Low overhead We do not wish to penalise appli-

ations that will not bene�t from large pages,

so we aim to minimise the performane impat

of our modi�ations for these appliations.

Generi The Linux kernel runs on numerous di�er-

ent arhitetures

9

and is usually ported quikly

to new arhitetures. Any kernel enhane-

ments suh as ours should be easily adaptable

to support existing and future systems, espe-

ially onsidering that many modern arhite-

tures feature MMUs whih support multiple

page sizes.

Flexible While a generi solution allows for easy

portability, it does not indiate how well suh

a solution takes advantage of an arhitetures

support for multiple page sizes. The design

should be exible enough to enompass any

support.

Simple The more omplex a solution is, the more

likely it is to have subtle bugs, and the harder

it is to understand. While we an foresee a

point at whih a more omplex solution may be

neessary, the initial design should be as simple

as possible.

Minimal The Linux kernel is a large and om-

plex system, so a minimalist approah is re-

quired: subsystem modi�ations that are not

absolutely required may result in a solution

that is overly omplex and unwieldy. There-

fore, we try to limit our hanges to the VM

subsystem only.

3.2 Semantis

This setion disusses the semantis assoiated with

supporting multiple page sizes: how the page size for

a range of virtual addresses is hosen and whether

the kernel onsiders this page size mandatory or ad-

visory.

The following terms are used throughout this and

later setions:

Base page A base page is the smallest page sup-

ported by the kernel, usually the minimum di-

tated by the hardware.

Superpage A superpage is a ontiguous sequene

of 2

n

base pages.

Order A superpage's order refers to its size. A

superpage of order n ontains 2

n

base pages.

9

A ount of the number of arhitetures in the mainline

kernel reveals 15 implementations that are more or less om-

plete

Sub-superpage A sub-superpage is a superpage of

order m, ontained in a superpage of order n,

suh that n � m. Note that a base page is a

sub-superpage with order m = 0

order = 2

order = 4

base page (order = 0)

Figure 2: A superpage and sub-superpage

These onepts are illustrated in Figure 2 whih

shows a superpage of order 4 ontaining a sub-

superpage of order 2.

3.2.1 Visibility

There are two basi approahes to supporting mul-

tiple page sizes: restrit knowledge of superpages

to the kernel or export page size deisions to user

spae.

In the former approah, the kernel an reate su-

perpage mappings based on some heuristi, for ex-

ample, a dynami heuristi based on TLB miss in-

formation, or a stati heuristi based on the type of

mapping suh as whether the mapping is for ode,

data, or whether it is anonymous. This approah is

transparent to appliations, and should result in all

appliations bene�ting. It is, however, more om-

plex, and would rely on e�etive heuristis to map

a virtual address range with large pages.

In the latter approah, an appliation expliitly re-

quests a setion of its address spae be mapped with

superpages. This request ould ome in the form of

programmer hints, or via instrumentation inserted

by a ompiler. While this approah requires appli-

ations to have spei� knowledge of the operating

system's support for large pages, it is muh simpler

from the kernels perspetive. The major problem

with this approah is that it requires the applia-

tion programmer to have a good understanding of

the appliations memory behaviour.

We have deided on the latter approah, due to its

simpliity: the former approah would neessitate

developing heuristis that require �ne-tuning and

rewriting.

3.2.2 Granularity

This setion disusses the granularity of ontrol that

the appliation has over page sizes. The approahes

onsidered were:

per address spae While making page sizes per

address spae would simplify some aspets of

the implementation, it is too restritive. We

expet appliations to have regions of their ad-

dress spae where the use of large pages would

be a waste of memory;

per address spae region type

10

This approah also has its drawbaks: there is

no lear set of types, although the region's at-

tributes (e.g., exeutable, anonymous) ould be

used, so again this approah is limited without

any lear gains;

per address spae region This approah is more

exible than either of the above approahes,

however it does not allow for hotspot mapping

within a region; or

over an arbitrary address spae range. This

is the most exible approah, however, there

are implementation issues: the kernel would

need to keep trak of the appliations desired

page sizes for the entire address spae.

To allow maximum exibility while minimising im-

plementation overhead, we have deided upon a

ombination of the last two options: an appliation

an ditate the page size for an arbitrary address

range only if that range belongs to an address spae

region. This means that an appliation an map a

region hotspot with large pages, but leave the rest

of the region at the system's default page size.

3.2.3 Interfae

This setion disusses the guarantees given about

the atual page size used to map an address spae

range.

The kernel an take a best-e�ort approah to map-

ping a virtual address with the appliations indi-

ated page size, falling bak to a smaller page size if

10

A region is a de�ned part of the address spae that re-

ated by the mmap system all, for example.

the larger page is not immediately available. Alter-

natively, the kernel an blok the appliation until

the desired page size beomes available, opying any

existing pages to the newly alloates superpage.

Rather than mandating either behaviour, we have

eleted to allow the appliation to hoose between

the two alternatives. In situations where seleting

a larger page size is merely an opportunisti opti-

misation for a relatively short running appliation,

the �rst behaviour is desirable. In ases where the

appliation is expeted to exeute for an extended

period of time, however, the expeted performane

improvement may be greater than the expeted wait

time, and so waiting for a superpage to beome

available is justi�ed. If an appliation is expeted

to re-use a large mapping over a number of invoa-

tions (a text page or a data �le, for example), the

appliation will bene�t by waiting for the large page

to be onstruted.

4 Implementation

This setion disusses the implementation of the de-

sign in Setion 3.

4.1 Interfae

An appliation requires some mehanism to ommu-

niate a desired page size to the kernel. A system

all is the onventional mehanism for ommuniat-

ing with the kernel. In this setion, we disuss our

implementation of a system all interfae for setting

the page size for a region of the address spae.

We onsidered three options: add a parameter to

the mmap system all whih speifying the page size

for the new mapping; implement a new system all,

setpagesize; and add another operation to the

madvise system all.

Using the mmap system all would appear to be an

obvious solution. It has, however, several negative

aspets: �rstly, the mmap system all is omplex

and is frequently used. Modifying mmap's argument

types would break existing ode, as would adding

extra parameters. Seondly, the appliation would

be restrited to the one page size for that mapping,

for the life of the mapping.

Using a new system all would be the leanest al-

ternative, however this requires signi�ant modi�a-

tions to all arhitetures, and is generally frowned

upon where an alternative exists.

Using the madvise system all would allow an appli-

ation to modify the page size at any point during

its exeution and would not a�et existing applia-

tions, as any modi�ation would be orthogonal to

urrent operations.

We therefore added a setregionorder(n) operation to

the madvise system all, where n is the new page or-

der. We implemented this using the advise param-

eter of the madvise system all. The upper half of

the parameter word ontains the desired page order,

while the lower half indiates that a setregionorder

operation is to be performed.

Within the kernel, the madvise system all veri-

�es that the requested page order is atually sup-

ported by the proessor, and sets the VMA's order

attribute aordingly.

4.2 Address spae data strutures

This setion disusses the modi�ations made to the

kernel's representation of a virtual address spae.

The appliation an modify the page size used by

a VMA at runtime, either by an expliit madvise

system all or by instruting the kernel to fall bak

to a smaller page size if a larger is not available.

Consequently, the kernel needs to keep trak of the

following: �rstly, the page size indiated by the ap-

pliation, whih is assoiated with the VMA; se-

ondly, the atual page size used to map a virtual

address.

To ommuniate the requested page order to the

VMA's nopage funtion, another parameter was

added. This parameter indiates the desired page

order at invoation, and ontains the atual page

size upon return. We rely upon the fat that subsys-

tems whih have not been modi�ed will only return

base pages.

To store the superpage size that atually maps the

virtual address range, the PTE inludes the order

of the mapping. To ahieve this, we assoiated un-

used bits within the PTE with di�erent page sizes,

although the atual bits and sizes may be ditated

by hardware.

16K 4M

Physical memory

Page Table

Page Directory

Figure 3: The modi�ed page table struture

The page table struture was also modi�ed: super-

pages whih span a virtual address range greater or

equal to that of a non-leaf page diretory entry are

ollapsed until they �t into a single page table node

(see Figure 3). This means that we an now have

valid page table elements at eah level of the address

translation hierarhy. This a�ets kernel routines

whih san the page table, for example, the swap

routine.

Although the main reason behind this was to on-

form to the page table struture de�ned by the x86

family, it also has other advantages: the kernel an

use positional information to determine the page

size, rather than relying solely on the information

store in the PTE. This means that the number of

page sizes supported by the kernel is not restrited

by the number of unused bits in the PTE (whih an

be quite few). There may also be some performane

advantage as the TLB re�ll handler does needs to

traverse fewer page table levels.

4.3 Representing superpages in physi-

al memory

This setion disusses the representation of super-

pages in the page data struture. The kernel needs

to keep trak of various properties of the superpage,

suh as whether it is freeable, whether it needs to

be written bak, et. The superpage an inlude

sub-superpages whih are in use: any superpage op-

eration that a�ets the sub-superpage also a�ets

the superpage, and this needs to be taken into on-

sideration.

We onsidered the following representations of su-

perpages: �rstly, an expliit hierarhy of page data

strutures, with one level for eah possible order.

A superpage would then be operated on using the

page data struture at the appropriate level. This

implies that eah operation would only have to look

at a single instane of the page data struture.

This approah is the leanest in terms of semantis.

Unfortunately, the kernel makes ertain assump-

tions about the one-to-one relationship between the

page data struture and the atual physial page.

Implementing this design would violate those as-

sumptions and also involve signi�ant modi�ations

to the lower levels of the kernel.

The alternative involves a modi�ation to the exist-

ing page data struture, suh that eah page on-

tains the order of the superpage it belongs to. A

superpage of order n would then be operated on

by iterating over all 2

n

base pages. This approah

onforms to the kernels existing semantis. It is,

however, subjet to various rae onditions, and is

inelegant.

We implemented a ombination of the two ap-

proahes presented: while we do not have an ex-

pliit hierarhy, there is an impliit hierarhy re-

ated by storing the superpage's order in eah om-

ponent base page. We logially partition the proper-

ties of a page into those assoiated with superpages,

or with base pages.

This partitioning was guided by the usage of these

properties: if the property was used in the VM sub-

system only, it was usually put in the superpage

partition. If the property was used for I/O, it was

put into the base page partition. The properties

were then partitioned as follows:

� the page's usage ount is per superpage. As

all alloation are done in terms of superpages,

it follows that a superpage is only freeable if

no sub-superpage is being used. This means

that whenever a sub-superpage's usage ount

is modi�ed, the atual modi�ation is applied

to the superpage;

� the mapping and offset properties are per base

page, as they are only used to perform I/O on

the page;

� the wait queue is per base page, as it is used

to signal when I/O has ompleted;

� the flags are partitioned as follows:

loked is per base page, as it is used primarily

to indiate that a page is undergoing I/O;

error is per base page, as it is used to indiate

an I/O error in the page;

referened is per superpage, as it is used by

the VM subsystem only;

uptodate is per base page, as it is set when

I/O suessfully ompletes on a page;

dirty is per superpage, as it is primarily used

in the VM subsystem;

lru is per superpage, as it indiates whether a

page is in the LRU list, and the LRU list

is now de�ned to ontain superpages;

ative is per superpage, as it indiates

whether a page is in the ative list, and

the ative list is now de�ned to ontain

superpages;

launder is per superpage, as it is only used in

the swap subsystem, and the swap subsys-

tem has to deal with superpages.

All other ags are per base page, as they re-

et stati properties of the page, (for example,

whether the page is in the highmem zone).

Operations that iterate over eah base page in a

superpage are required to operate in asending order

to avoid deadlok or other inonsistenies.

4.4 Page alloation

The urrent page alloator supports multiple page

sizes, however it has 2 major problems: �rstly, non-

swappable pages an be spread throughout eah

zone, ausing memory fragmentation; seondly, if

a large page is required, but a user (i.e. swappable)

page is in the way, there is no eÆient way to �nd

all users of that page.

While the latter problem an be solved by Rik van

Riel's reverse mapping path[18℄, the former is still

an issue. For this implementation, we have reated

another largepage zone, whih is used exlusively for

large pages. While this is not a permanent solution,

it does aid in debugging, and solves the immedi-

ate problem for speialised users. The size of the

largepage zone is �xed at boot time.

For maximum exibility, the urrent alloator

should be modi�ed so that pages whih are not page-

able are alloated in so that they do not ause frag-

mentation. Also, pages whih are alloated together

will probably be freed together, so lustering pages

at alloation time may also redue fragmentation.

4.5 The Page Cahe

To support mapping �les with superpages, the page

ahe needs to be modi�ed. The bulk of these mod-

i�ations are in the nopage and aÆliated funtions,

whih attempt to alloate and read in a superpage

of the requested order. To avoid any problems due

to overlapping superpages, we require a superpage

of order n also have �le order n | that is, the align-

ment of the superpage in the virtual, physial, and

�le spae is the same. For example, a 64K mapping

of a �le should be at a �le o�set that is a multiple of

64K, a virtual o�set that is a multiple of 64K, and

a physial o�set of 64K

11

.

The hanges to the nopage funtion are essentially

straightforward. If an appliation requests a super-

page whih ontained in the page ahe, it get bak

a sub-superpage whose order is the minimum of the

requested order and the superpage's order. If a su-

perpage does not exist, a page of the requested order

is alloated, eah base page is read in, and the su-

perpage is added to the LRU and ative queues.

Beause reading in a large page an ause signi�-

ant I/O ativity (the amount of time required to

read in 4MB of data from a disk an be signi�ant),

we may need to read in base pages in a more in-

telligent fashion. One solution is to read in the

sub-superpage whih ontains the address of inter-

est �rst and shedule the remainder of the superpage

to be read in after the �rst sub-superpage has om-

pleted. When the rest of the superpage has om-

pleted I/O, the address spae an be mapped with

the superpage. Note that this is similar to the early

restart method used in some modern proessors to

feth a ahe line.

4.6 The swap subsystem

In our urrent implementation, a region mapped

with superpages will not be swapped out. Swapping

a superpage would negate any performane gained

by its use due to the high ost of disk I/O. The su-

perpage may need to be written bak, however, and

11

The virtual and physial alignment onstraints are om-

mon to most arhitetures.

this is handled in an essentially iterative manner |

when the superpage is not being used by any appli-

ations, and it is hosen by the swap subsystem to

be swapped out (i.e. when it appears as a vitim on

the LRU list), eah base page is ushed to disk, and

the superpage is freed.

In the future, a number of approahes present them-

selves. The kernel may, for example, split up a su-

perpage into smaller superpages over a series of swap

events, until a threshold superpage order is met, and

then swap that out. Alternatively, the kernel may

just swap out the entire page.

4.7 Arhiteture spei�s

This setion disusses the arhiteture spei� as-

pets of our implementation. Although our imple-

mentation attempts to be generi, the kernel re-

quires knowledge of the arhiteture's support for

multiple page sizes and the additional page table

requirements.

The arhiteture spei� layer in our implementa-

tion onsists mainly of page table operations, i.e.,

reating and aessing a PTE. To onstruted a

PTE, the kernel now uses mk pte order, whih is

idential to mk pte

12

exept for an additional order

parameter. This funtion reates a PTE with whih

maps a page of order order. To allow the kernel to

inspet a PTE, a pte order funtion is required.

This funtion returns the order of a PTE.

On arhitetures whih use an additional page ta-

ble (usually beause it is required by the hardware),

the update mmu ahe needs to be modi�ed to take

superpages into onsideration. The kernel also re-

quires a mehanism to verify that a page size is

supported. This is ahieved by implementing the

pgorder supported funtion.

4.8 Anatomy of a large page fault

In systems with a hardware loaded TLB, a TLB

miss is transparent to the kernel, and so is not dif-

ferent in the ase of a large page. In arhitetures

with a software TLB re�ll handler, the new page ta-

ble struture needs to be taken into onsideration:

12

For bakwards ompatibility, mk pte alls mk pte order

with order 0

the handler needs to hek whether eah level in

the page table hierarhy is a valid PTE. The re�ll

handler also needs to extrat the page size from the

entry and insert the orret (V A; PA; size) entry

into the TLB.

If there is no valid mapping in the page table, a

page fault ours. As with the standard kernel, the

VMA is found and the aess is validated. The PTE

is then found, although a page table node is not

reated if it is required | the page table node is

alloated later on in the page fault proess. This

postponement in alloating page table nodes is re-

quired as the kernel does not know what size the

alloated page will be: this is determined when the

page is alloated.

On a write aess to a page marked read-only in

the PTE, a private opy is reated and replaes the

read-only mapping. This involves opying the entire

superpage, so it is a relatively expensive operation

| as with all superpage operations, there will only

be overhead if the operations would not have been

done on eah base page. For example, writing a

single harater to a 4Mb mapping will result in

the whole 4Mb being opied, whih would not have

ourred if the region was mapped with 4K pages.

Conversely, if most or all of the base pages are to

be written to, opying them in one operation may

redue the total overhead due to ahing e�ets and

the redued number of page faults.

If no mapping exists, the VMA's order �eld is on-

sulted to determine the appliation's desired page

size. If there are pages mapped into the region de-

�ned by this order and the fault address, and the

appliation has eleted to opportunistially alloate

superpages, the kernel selets the largest supported

order that ontains the fault address, no mapped

pages, and is less than or equal to the desired or-

der. Otherwise, the appliation's desired page order

is seleted.

After the kernel has determined the orret page or-

der, it examines the VMA's nopage method. If the

nopage method is not de�ned, a zeroed superpage

is alloated and inserted into the page table. Oth-

erwise, the nopage method is alled with the alu-

lated page order, and the result is inserted into the

page table.

If the �le that baks the VMA is using the page

ahe to handle page faults, the kernel searhes the

page ahe for the �le data assoiated with the fault

I-TLB 4K pages 128 entries, 4-way SA

I-TLB 4M pages Fragmented into 4K I-TLB

I-L1 ahe 12K miro-ops

D-TLB 4K pages 64 entries, FA

D-TLB 4M pages Shared with 4K D-TLB

D-L1 ahe 8K, 64 byte CL, 4-way SA

uni�ed L2 ahe 256K, 64-byte CLS, 8-way SA

Table 1: Pentium 4 proessor's memory system

harateristis (Notation: CL - ahe lines; CLS -

ahe lines, setored; SA - set assoiative; FA - fully

assoiative).

address. If a superpage is found, the minimum

of the superpage's order and the requested order

is used to determine the sub-superpage to be vali-

dated. The sub-superpage is then heked to ensure

its ontents are valid, and if so, it is returned. If

the sub-superpage's ontents is not valid, eah base

page is read in, and the sub-superpage is returned.

5 Experimental Results

In this setion, we present and analyze the exper-

imental data from our implementation of multiple

page size support in the Linux kernel.

All results in this setion were generated on a

1.8GHz Pentium 4 system with 512M of RAM. The

Pentium 4 proessor has separate instrution and

data TLBs and supports two di�erent page sizes:

4K and 4M

13

. Table 1 shows the parameters of the

memory system of Pentium 4.

5.1 Validating the Implementation with

a Miro-benhmark

This setion presents and disusses the data validat-

ing the auray of our implementation and demon-

strating the bene�ts of multiple page size support

for a simple mirobenhmark. The use of a sim-

ple benhmark makes it possible to reason in detail

about its memory behavior and its interations with

the memory system.

The benhmark alloates a heap and initializes it

with data. We vary the heap size from 128K to

13

Note that with large physial memory support (>4GB),

the large page size on Pentium 4 proessors is 2M.

32M in 128K inrements in order to adjust the work-

ing set of the benhmark. The benhmark per-

forms 1000 iterations during eah of whih it strides

through the heap in the following manner: for eah

4K page, it aesses one word of data. Assuming

that ahes and TLBs do not ontain any informa-

tion, eah data aess brings one ahe line of PTEs

and one ahe line of data into the data L1 ahe.

To ensure that onseutive aesses do not ompete

for ahe lines in the same ahe set, we inrement

the o�set at whih we aess data within a page by

the size of a ahe line. We also aess every six-

teenth page to ensure that we use only one PTE per

L1 ahe line

14

.

We performed two sets of experiments. In the �rst

set, the heap was mapped with 4K pages. In the

seond set, the heap was mapped with 4M pages.

Both the 4K and the 4M ases have several ine-

tion points. The �rst two inetion points for the

4K ase are at 4M and 6M, and the �rst two in-

etion points for the 4M ase are at 8M and 10M.

The �rst inetion point indiates that the impor-

tant working set (onsisting of data and PTEs) an

no longer �t in the fast L1 ahe. Up to this point,

the benhmark ahieves full L1 ahe reuse (both

data and PTEs �t in the L1 ahe)

15

. Between the

�rst and the seond inetion points, the benhmark

ahieves partial ahe reuse (some of the data and

PTEs remain in L1 aross iterations). After the se-

ond inetion point, there is no L1 ahe reuse (nei-

ther data nor PTEs remain in the L1 ahe aross

iterations). The working set, however, still �ts in

the larger L2 ahe. The performane of the 4K ase

degrades sooner than that of the 4M ase due to the

spae overhead of PTEs

16

. The 4M ase does not

su�er from this behavior as it uses few PTEs and,

hene, signi�antly less spae in the L1 data ahe;

eah ahe line an aommodate 16 PTEs mapping

a total of 64M of ontiguous address spae.

By extending the portion of the graph where the

benhmark ahieves full L1 ahe reuse (i.e., past

the �rst inetion point to the right), one an esti-

mate the performane of the benhmark on a sys-

tem with inreasingly larger L1 ahe. Similarly,

14

On our Pentium 4 mahine, one 64-byte ahe line a-

ommodates sixteen 4-byte PTE entries.

15

Coinidentally, beause we aess one ahe line of data

per 4K page and aess every sixteenth page, the 64-entry

D-TLB begins thrashing at 4M, too.

16

Namely, the PTEs oupy the same number of ahe lines

as the data. Consequently, the number of L1 misses begins

to grow one the number of distint pages we touh exeeds

one half the number of ahe lines in the L1 data ahe.

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

T
im

e
(m

ill
is

ec
on

ds
)

Test size (megabytes)

DTLB micro-benchmark (L1-DCache)
1000 iterations, 128k increments

4k pagesize
4M pagesize

0
1
2
3
4
5
6
7
8
9

0 2 4 6 8 10 12 14 16

4k
:4

M

Test size (megabytes)

DTLB micro-benchmark (L1-DCache)
1000 iterations, 128k increments

4k:4M

Figure 4: The exeution times of the mirobenhmark with small 4K pages and large 4M pages (left) and

the ratios of exeution times (right).

by extending the portion of the graph where the

benhmark experienes no L1 ahe reuse, one an

estimate the performane of the benhmark on a

system with a slower L1 data ahe (whose aess

time is equal to the aess time of the L2 ahe of

our on�guration). The next inetion point (not

shown on the graph) will our when the L2 ahe

starts to saturate.

5.2 Assessing Performane for Tradi-

tional Workloads

This setion disuss the performane of multi-

ple page size support in the ontext of the

SPEC CPU2000 benhmark suite[16℄, spei�-

ally CINT2000, the integer omponent of SPEC

CPU2000.

The CINT2000 benhmark suite was designed to

measure the performane of a CPU and its mem-

ory subsystem. There are 12 integer benhmarks in

the suite. These are the gzip data ompression util-

ity, vpr iruit plaement and routing utility, g

ompiler, mf minimum ost network ow solver,

rafty hess program, parser natural language pro-

essor, eon ray traer, perlbmk

17

perl utility, gap

omputational group theory, vortex objet oriented

database, bzip2 data ompression utility, and twolf

plae and route simulation benhmarks. All appli-

ations, exept for eon, are written in C. The eon

benhmark is written in C++.

We noted that the appliations in the CINT2000

suite use the mallo family of funtions to alloate

17

Due to ompilation diÆulties, this benhmark was ex-

luded from out results

the majority of their memory. To provide the ap-

pliation with memory baked by large pages via

the mallo funtion, we modi�ed the sbrk funtion.

The memory alloator uses sbrk to alloate memory

at page granularity; it then alloates portions of this

memory to the appliation upon request. The sbrk

funtion ensures that the pages it gives to memory

alloator are valid; i.e., it grows the proess's heap

using the brk system all when required.

We modi�ed the sbrk funtion so that it returns

memory baked by large pages. At the �rst request,

sbrk maps a large region of memory, and uses the

madvise system all to map that region with large

pages. Whenever the memory alloator requests a

memory, sbrk returns the next free page in this re-

gion.

If the memory request is greater than some thresh-

old (128K), the urrent memory alloator will al-

loate pages using the mmap system all. To ensure

that the memory alloator returned memory baked

by large pages, we disabled this feature so that the

alloator always uses our sbrk.

To allow the appliations to use our modi�ed mem-

ory alloator and sbrk funtions, we plaed these

funtions in a shared library and used the dy-

nami linker's preload funtionality. We set the

LD PRELOAD environment variable to out library, so

the dynami linker will resolve any mallo funtion

alls in the appliation to our implementation. In

this way, no reompilation is neessary for the ap-

pliations to use large pages.

Table 2 shows the performane results we obtained

using large pages. Overall, the results obtained are

enouraging, many appliations showing approxi-

Benhmark Improvement (%)

164.gzip 12.31

175.vpr 16.72

176.g 9.29

181.mf 9.43

186.rafty 15.22

197.parser 16.30

252.eon 12.07

254.gap 5.91

255.vortex 22.27

256.bzip2 14.37

300.twolf 12.47

Table 2: Performane improvements for SPEC

CPU2000 integer benhmark suite using large pages

mately 15% improvement in run time.

5.3 Assessing Performane with Emerg-

ing Workloads

This setion disusses the impat of large pages on

the performane of Java workloads. Java applia-

tions, and SPECjvm98 [15℄ appliations in partiu-

lar, are known to have to have poor ahe and page

loality of data referenes [11, 14℄. To demonstrate

the advantages of large pages for Java programs, we

onduted a set of experiments with the fast on-

�guration of Jikes Researh Virtual Mahine (Jikes

RVM) [1, 2℄ on�gured with the mark-and-sweep

memory manager (onsisting of an alloator and a

garbage olletor) [3, 10℄.

To get the baseline numbers, i.e., where the heap is

mapped with 4K pages, we ran the SPECjvm98 ap-

pliations with the largest available data size on an

unmodi�ed Jikes RVM. The virtual address spae in

Jikes RVM onsists of three regions: the bootimage

region, the small heap (the heap region intended for

small objets), and the large heap (for objets whose

size exeeds 2K). We modi�ed the bootimage run-

ner of Jikes RVM

18

to ensure that the small heap

is aligned to a 4M boundary and is mapped by 4M

pages.

The deision to map only the small heap to large

pages was based on the observation that, with a

18

The bootimage runner is a program responsible for map-

ping memory for Jikes RVM and the heap, loading the ore

of the RVM into memory, and then passing ontrol to the

RVM.

few exeptions, most objets reated by SPECjvm98

are small. We then repeated the experiments by

mapping all three heap regions to large pages. We

also varied the size of the small heap from 16M to

128M and omputed the performane improvements

with 4M pages over a on�guration that uses only

4K pages.

For eah appliation, Figure 5 shows the minimum,

the average, and the maximum performane im-

provements when the small heap is mapped to large

pages (left) and when all three heap regions are

mapped to large pages (right). It an be seen that

for several appliations the performane improve-

ments are onsistent and range from 15% to 30%

even if only the small heap is mapped to large pages.

The ompress benhmark is the only one in the

suite that reates a signi�ant number of large ob-

jets and only a few small objets, and so does not

bene�t from large pages in this ase.

When all three heap regions are mapped to large

pages, we observe an additional 5% to 10% perfor-

mane improvement. For many appliations, the

performane improvement ranges from 20% to 40%

over the base ase. It an also be seen that the

ompress benhmark enjoys a signi�ant perfor-

mane boost.

5.4 Disussion

The observed bene�ts of large page support an vary

and depend on a number of fators suh as the har-

ateristis of appliations and arhiteture. In this

setion, we disuss some of these fators.

A small number of TLB entries overing large

pages

19

may not be suÆient for a realisti appli-

ation to take full advantage of large page support.

If the working set of an appliation is sattered over

a wide range of address spae, the appliation is

likely to experiening thrashing of a relatively small

4M page TLB, in some ases to a muh larger extent

than with the 64-entry 4K page data TLB. This is a

problem on proessors like Pentium II and Pentium

III.

Appliations exeuting on proessors with software

loaded TLBs are expeted to bene�t from large

19

In Pentium II and Pentium III miroproessors, there are

eight 4M page data TLB entries some of whih are used by

the kernel.

0

5

10

15

20

25

30

35

40

45

50

_2
01

_c
om

pr
es

s

_2
02

_j
es

s

_2
05

_r
ay

tr
ac

e

_2
09

_d
b

_2
13

_j
av

ac

_2
22

_m
pe

ga
ud

io

_2
27

_m
tr

t

_2
28

_j
ac

k

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t (

pe
rc

en
t)

Performance improvement with the small heap
mapped to large pages

Ratio

0

5

10

15

20

25

30

35

40

45

50

_2
01

_c
om

pr
es

s

_2
02

_j
es

s

_2
05

_r
ay

tr
ac

e

_2
09

_d
b

_2
13

_j
av

ac

_2
22

_m
pe

ga
ud

io

_2
27

_m
tr

t

_2
28

_j
ac

k

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t (

pe
rc

en
t)

Performance improvement with all three heap regions
mapped to large pages

Ratio

Figure 5: Summary of results for SPECjvm98.

pages. The TLB miss overhead of an appliation

exeuting on a proessor that handles TLB misses

in hardware (suh as x86 proessors) an also be

signi�ant unless most page tables of an appliation

an �t in the L2 ahe and o-reside with the rest

of the working set. This is highly unlikely for ap-

pliations of interest: assuming that eah L2 ahe

line is 32 bytes and eah PTE is 4 bytes, one L2

ahe line an over eight 4K pages (a total of 32k).

Hene, a 512K L2 ahe an aommodate PTEs

to over only 512M of address spae (this does not

leave any spae for data in the L2 ahe). Conse-

quently, for appliations with relatively large work-

ing sets, it is highly likely that a signi�ant fration

of PTEs would not be found in the L2 ahe on a

TLB miss. Although hardware makes reloading a

TLB from a L2 ahe relatively inexpensive, many

TLB misses may need to be satis�ed diretly from

memory.

The Java platform [7℄ presents another set of hal-

lenges. For performane reasons, state-of-the-art

JVMs ompile Java byteode into exeutable ma-

hine ode [1, 2, 9℄. In some virtual mahines,

suh as Jikes RVM [1, 2℄, generated mahine ode is

plaed into the same heap as appliation data and is

managed by the same memory manager. It has been

observed that the ode loality of Java programs

tends to be better than their data loality [14℄. This

suggests that appliation ode should reside in small

pages while appliation data should reside in large

pages. In Jikes RVM, generated ode and data ob-

jets are indistinguishable from the memory man-

ager's point of view and are intermixed in the heap.

Beause a memory region an only be mapped to ei-

ther small or large pages, a tradeo� must be made.

Mapping the entire heap region to large pages may

not be e�etive sine appliation ode may not need

to use large pages. What is worse is that some pro-

essors have a very small number of 4M page in-

strution TLB entries

20

whih an lead to thrashing

of an instrution TLB. Consequently, for best per-

formane results, a JVM should be made aware of

the onstraints imposed by the underlying OS and

hardware, and segregate appliation ode and data

into separate well-de�ned regions.

For Java programs, some performane gains are ex-

peted to ome from better garbage olletion (GC)

performane. Muh work during garbage olletion

is spent on hasing pointers in objets to �nd all

reahable objets in the region of the heap that is

being olleted [4℄. Many reahable objets an be

sattered throughout the heap. As a result, the lo-

ality of GCs is often worse than that of applia-

tions [11℄. This behavior is representative of sys-

tems employing non-moving GCs whih have to be

used when some objets annot be reloated (e.g.,

when not all pointers an be identi�ed reliably by

a runtime). Consequently, large pages an improve

TLB miss rates during GC (and overall GC perfor-

mane). Appliations that perform GC frequently,

have a lot of live data at GC times, or whose live

data are spread around the heap an bene�t from

large page support and ahieve short GC pauses.

Short pauses are ritial for software systems that

20

There are only two 4M page instrution TLB entries in

Pentium II and Pentium III proessors.

are expeted to have relatively preditable response

times.

The availability of large pages an also be bene�-

ial for programs that use data prefething instru-

tions. Modern proessors squash a data prefething

request if the appropriate translation information is

not available in the data TLB. Consequently, high

TLB miss rates of appliations an lead to many

prefething requests being squashed, thereby lead-

ing to ine�etive utilization of memory bandwidth

and redued appliation performane[14℄. The use

of large pages an help redue TLB misses and take

full advantage of prefething hardware. Further,

a hardware performing automati sequential data

and ode prefething stops when a page boundary

is rossed and has to be restarted at the beginning

of the next page

21

. Large pages make it possible

for suh hardware to run for a longer period of time

and to perform more useful work with fewer inter-

ruptions.

6 Related work

Ganapathy and Shimmel [6℄ disussed a design of

general purpose operating system support for large

pages. They implemented their design in the IRIX

operating system for the SGI ORIGIN 2000 system

that employs the MIPS R10000 proessors (whih

handle TLB misses in software).

An important aspet of their approah is that it

preserves the format of pfdat and PTE data stru-

tures of the IRIX OS. The pfdat strutures rep-

resent pages of a base size and ontain no page

size information (just as in the original system).

Large pages are simply treated as a olletion of

base pages. Consequently, only a few parts of the

OS kernel need to be aware of large pages and need

to be modi�ed.

The PTEs ontain the page size information but

the page table layout is unhanged. They use one

PTE for eah base page of a large page and reate a

set of PTEs that orrespond to all addresses falling

withing a large page. As expeted, for the large page

PTEs, the page frame numbers are ontiguous.

To support multiple page sizes, the TLB miss han-

21

This is due to the fat that suh automati prefething

hardware uses physial addresses for prefething.

dler needs to set a page mask register in the pro-

essor on eah TLB miss. To ensure that programs

that do not use large pages do no inur unneessary

runtime overhead, a TLB handler is on�gured per

proess. The alloation poliy is spei�ed on a om-

mand line (on a per segment basis) before starting

an appliation. Hene, appliations do not need to

be modi�ed to take advantage of large pages, and

appliations that do not use large pages are not put

at disadvantage.

The advantage of this design is that it allows dif-

ferent proesses to map the same large page with

di�erent page sizes. The disadvantages are (i) this

approah does not redue the size of page tables for

appliations that use large pages and (ii) the infor-

mation stored in PTEs that over a large page needs

to be kept onsistent.

They demonstrated that appliations from SPEC95

and NAS parallel suite do bene�t from large pages.

For these appliations, they registered 80% to 99%

redution in TLB misses and 10% to 20% perfor-

mane improvement. A business appliation like the

TPC-C benhmark (whih is known to have poor

loality and large working set) was also shown to

bene�t from large pages. The authors report 70%

to 90% redution in TLB misses and 6% to 9% per-

formane improvement for this appliation.

Subramanian et al. [17℄ desribe their implementa-

tion of multiple page size support in the HP-UX

operating system for the HP-9000 Series 800 system

whih uses the PA-8000 miroproessor.

In their design the VM data strutures suh as the

page table entry, virtual and physial page frame

desriptors are based on the smallest page size sup-

ported by the proessor. A large page is de�ned as a

set of ontiguous small base size pages. Hene, this

design is oneptually similar to that of Ganapathy

and Shimmel [6℄.

The authors note that an important advantage of

this approah is that it does not require hanges to

many parts of the OS. However, it neither redues

the sizes of data strutures for appliations that use

large pages. In addition, loking, aess, and up-

dates of data strutures for large pages are some-

what ineÆient. In spite of the bene�ts of spae

eÆieny and the eÆieny of updates, they hoose

not to use variable page size based data strutures

beause, as the authors indiate, suh an approah

would lead to more hanges in the OS and would

have negative performane impliations (e.g., a high

page-fault lateny in ertain ases).

In their sheme, appliations do not need to be re-

ompiled to take advantage of large pages. The

hints speifying large page sizes are region-based

and are used at page fault time. In some ases,

suh as for performane reasons, the OS an ignore

these page size hints and fall bak to mapping small

pages.

They implemented their design in the HP-UX oper-

ating system and studied the impat of large pages

on several VM benhmarks, SPEC95 appliations,

and one ommerial appliation. The reported per-

formane improvements range from 15% to 55%.

7 Conlusions and Further Work

Many modern proessors support pages of vari-

ous sizes ranging from a few kilobytes to several

megabytes. The Linux OS uses large pages inter-

nally for its kernel (to redue the overhead of TLB

misses) but does not expose large pages to applia-

tions. Growing memory latenies and large working

sets of appliations make it important to provide

support for large pages to the user-level ode as well.

In this paper, we disussed the design and imple-

mentation of multiple page size support in the Linux

kernel. We validated our implementation on a sim-

ple mirobenhmark. We also demonstrated that re-

alisti appliations an take advantage of large pages

to ahieve signi�ant performane improvements.

This work opens up a number of interesting dire-

tion. In the future, we plan to modify kernel's mem-

ory alloator to further support large pages. We

would also like to evaluate the impat of large pages

on database and web workloads. These types of

workloads are known to have large working sets and

poor loality. Ahieving high performane on om-

merial workloads is ruial for ontinuing suess

of Linux.

The lateny of fething a large 4M page from a

disk (as a result of a page fault) an be signi�ant.

We onsider implementing the \early restart" fea-

ture that would feth and map the ritial hunk of

data �rst and omplete fething the remaining data

hunks later, thereby reduing pauses experiened

by appliations.

Some arhitetures support a number of di�erent

page sizes (e.g., 16K, 256K, 4M, and 64M). We

would be interested in evaluating the performane of

appliations on systems that have this arhitetural

support.

Aknowledgements

We would like to thank Pratap Pattnaik and Manish

Gupta for supporting this work. We also like to

thank Chris Howson for all of his helpful advie.

Referenes

[1℄ B. Alpern, C. R. Attanasio, J. J. Barton, M. G.

Burke, P.Cheng, J.-D. Choi, A. Cohi, S. J. Fink,

D. Grove, M. Hind, S. F. Hummel, D. Lieber,

V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell,

V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E.

Smith, V. C. Sreedhar, H. Srinivasan, and J. Wha-

ley. The Jalape~no Virtual Mahine. IBM System

Journal, 39(1), 2000.

[2℄ B. Alpern, A. Cohi, D. Lieber, M. Mergen, and

V. Sarkar. Jalape~no - a ompiler-supported Java

virtual mahine for servers. In Workshop on Com-

piler Support for Software System (WCSSS 1999),

Atlanta, GA, May 1999.

[3℄ C. Attansio, D. Baon, A. Cohi, and S. Smith. A

omparative evaluation of parallel garbage olle-

tors. In Pro. of Fourteenth Annual Workshop on

Languages and Compilers for Parallel Computing

(LCPC), Cumberland Falls, Kentuky, Aug. 2001.

[4℄ H.-J. Boehm. Reduing garbage olletor ahe

misses. In Pro. of ISMM 2000, Ot. 2000.

[5℄ J. Bonwik. The slab alloator: An objet-ahing

kernel memory alloator. In Summer 1994 USENIX

Conferene, pages 87{98, 1994.

[6℄ N. Ganapathy and C. Shimmel. General purpose

operating system support for multiple page sizes. In

Pro. of the 1998 USENIX Tehnial Conferene,

New Orleans, USA, June 1998.

[7℄ J. Gosling, B. Joy, and G. Steele. The Java

(TM)

Language Spei�ation. Addison-Wesley, 1996.

[8℄ J. L. Hennessy and D. A. Patterson. Computer

Arhiteture: A Quantitative Approah. Morgan

Kaufmann Publishers, 1995.

[9℄ The Java Hotspot Performane Engine Arhite-

ture. http://java.sun.om/produts/hotspot/

whitepaper.html.

[10℄ R. Jones and R. Lins. Garbage Colletion: Algo-

rithms for Automati Dynami Memory Manage-

ment. John Wiley and Sons, 1996.

[11℄ J.-S. Kim and Y. Hsu. Memory system behavior

of Java programs: Methodology and analysis. In

Pro. of SIGMETRICS 2000, June 2000.

[12℄ C. Navarro, A. Ramirez, J.-L. Larriba-Pey, and

M. Valero. Feth engines and databases. In Pro. of

Third Workshop On Computer Arhiteture Eval-

uation Using Commerial Workloads, Toulouse,

Frane, 2000.

[13℄ V. Oleson, K. Shwan, G. Eisenhaur, B. Plale,

C. Pu, and D. Aminv. Operational information

systems - an example from the airline industry. In

First USENIX Workshop on Industrial Experienes

with Systems Software (WIESS), San Diego, Cali-

fornia, Otober 2000.

[14℄ Y. Shuf, M. J. Serrano, M. Gupta, and J. P. Singh.

Charaterizing the memory behavior of Java work-

loads: A strutured view and opportunities for op-

timizations. In Pro. of SIGMETRICS 2001, June

2001.

[15℄ Standard Performane Evaluation Coun-

il. SPEC JVM98 Benhmarks, 1998.

http://www.spe.org/osg/jvm98/.

[16℄ Standard Performane Evaluation Coun-

il. SPEC CPU2000 Benhmarks, 2000.

http://www.spe.org/osg/pu2000/.

[17℄ I. Subramanian, C. Mather, K. Peterson, and

B. Raghunath. Implementation of multiple pa-

gesize support in HP-UX. In Pro. of the 1998

USENIX Tehnial Conferene, New Orleans, USA,

June 1998.

[18℄ R. van Riel. Rik van Riel's Linux kernel pathes.

http://www.surriel.om/pathes/.

