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Abstract

In modern computing environments, applications concurrently executing on the same system often compete for
shared hardware resources, such as caches and buffers. The ensuing contention can lead to timing interferences,
posing significant threats such as deadline misses in real-time systems and the creation of timing channels in
secure systems. This work proposes an ISA extension based on the RISC-V Capacity and Bandwith Controller
QoS Register Interface (CBQRI). Our proposal enables dynamic, comprehensive temporal and spatial partitioning
of shared hardware resources, ensuring the isolated execution times of concurrent applications.

Introduction
Modern computing systems are often time-shared be-
tween multiple applications. By doing so, these appli-
cations compete for shared hardware resources such
as caches, buffers, and branch predictors, impacting
each other’s execution time. This becomes an issue in
two types of systems.

Mixed Criticality Systems comprise applications
with different safety and timing requirements, such
as engine control and infotainment in a vehicle. Tim-
ing interference can cause deadline misses of real-time
applications due to unpredictable execution time.

Mixed Confidentiality Systems run mutually untrust-
ing applications, such as a mail client and a browser
on a personal device or virtual machines on a comput-
ing server. As previously demonstrated, interference
in execution time caused by contention for hardware
resources can be leveraged as a timing channel to
transfer information across isolation boundaries [1, 2].

Depending on the system’s requirements in such
safety- and security-critical environments, an OS must
be able to partition shared hardware resources partially
or completely. Generally, a resource can be partitioned
spatially by sub-dividing it and allocating its discrete
elements (e.g., ways or sets of a cache) or temporally by
setting it to a predefined state. Mutually trusting or
non-critical applications can be grouped into domains
to reduce the overhead of partitioning.

Previous works have proposed ISA extensions for
temporally partitioning on-core microarchitectural
state [3, 4, 5]. A similar approach is currently be-
ing discussed in the RISC-V Microarchitecture Side
Channels Special Interest Group (uSC SIG) [6]. How-
ever, hitherto, these proposals do not address off-core
components that could leak data and violate real-time
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requirements.
One option to spatially partition shared caches is by

cache colouring, which leverages the physical memory
layout to map isolated applications to non-overlapping
cache sets [7, 8]. This approach is applicable only to
last-level caches in systems where the physical page
bits coincide with the cache index bits, significantly
constraining its applicability and adaptability.

A more general approach to system-level hardware
resource management is being discussed in the RISC-V
Capacity and Bandwidth Controller Quality-of-Service
Register Interface Task Group (CBQRI TG) [9]. They
propose tagging memory requests with resource con-
trol IDs (RCIDs), indicating the originator domain,
and splitting hardware resources into capacity units
that can be allocated to one such RCID, providing
corresponding performance guarantees. However, the
CBQRI lacks mechanisms for complete temporal and
spatial partitioning, ensuring strict non-interference
of execution times.

In this work-in-progress, we propose a general spatial
and temporal hardware resource partitioning method-
ology based on the CBQRI semantics and discuss
previous and ongoing implementation efforts.

Architecture
Similar to the CBQRI, each shared hardware resource
can be spatially divided into one or more capacity units,
as shown in Figure 1. These are the smallest fraction
of the resource that can be allocated to a domain.
As in the CBQRI, memory requests are tagged with
the requesting domain’s RCID to specify the target
capacity units. However, this proposal extends the
CBQRI with the following properties:

Flushable capacity units. There is a mechanism
to flush a capacity unit (writing back dirty state and
setting it to a predefined state) to temporally par-
tition it. This is needed for deterministic execution
time after a capacity unit was re-allocated, and to
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Figure 1: Partitioning shared hardware resources.

allow predictable access latency to data that is shared
between domains.

Lifecycle. Capacity units have a lifecycle, as shown
in Figure 1. Software must flush the capacity unit
when de-allocating it to ensure deterministic execution
time after re-allocating it.

No inter-block accesses. The state of a capacity
unit allocated to one domain must not impact the
execution time of another domain. In particular, this
means that a cache hit in a capacity unit allocated to
an RCID cannot be returned if the request is tagged
with a different RCID. This property ensures strict
spatial partitioning.

System-level ubiquity. All hardware resources
in a system with variable timing, including the CPU,
must consist of one or more capacity units that can be
temporally partitioned. Otherwise, non-partitionable
hardware resources can create a timing channel.

Time padding. There needs to be a (set of) mech-
anism(s), e.g., a pad instruction, that an OS can use
to enforce a constant context-switch latency, includ-
ing flushing of capacities to prevent timing channels
through context-switch latency [5].

These changes are intended to be flexible by max-
imising the observability and controllability of the
underlying hardware so that an OS can implement a
partitioning policy depending on the system’s safety,
security, and performance requirements.

Examples
Temporally partitioning on-core microarchitec-
tural state. The previously proposed fence.t in-
struction [5] matches the proposed architecture by
defining the processor core’s microarchitecture as a
hardware resource with a single capacity unit. When
re-allocating the microarchitectural state on a context
switch from one application to another, an OS can
execute fence.t to temporally partition this capacity
unit at a minimal overhead.

Spatially partitioning caches. A single capacity
unit in a cache can, for instance, comprise the entire
cache, one way, or one set. To flush a capacity unit,
the cache controller needs to write back any dirty
cache lines and invalidate all lines. Notably, the cache
controller itself may contain state with a timing impact
and thus need to be partitioned. A last-level cache with
support for such flexible way-partitioning is currently
under development.

Temporally partitioning the system bus. Time

slicing regulates shared bus traffic by allocating specific
bandwidth and time periods to each system master.
A hardware helper module manages traffic at the bus
ingress and egress, ensuring deterministic bounds, as
shown in [10]. This method aligns with CBQRI, with
helper modules acting as programmable capacity units
by the OS or hypervisor. Note that an extension of
this scheme is necessary for interference-free secure
domains, as literature mostly focused on deterministic
guarantees for the real-time application domain.

Discussion and Future Work
While some hardware resources can, by design, only
contain a single capacity unit and need to be tem-
porally partitioned, such as arbiters on the system’s
control path, for other resources, the number of ca-
pacity units provided by hardware and concurrently
allocated by software is generally a performance trade-
off. We emphasise that we expect the addition of the
proposed mechanisms to come at low hardware over-
head. At the same time, depending on the system’s
requirements, an OS is free to use only a subset or
none of them.

Ongoing and future work can explore these trade-
offs in resources such as on-core microarchitecture.
Furthermore, proofs of concept and empirical evalua-
tions of the proposed mechanism in last-level caches,
memory controllers, system interconnect, and their
integration into an OS are ongoing.
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