
fence.t.s: Closing Timing Channels in
High-Performance Out-of-Order Cores through

ISA-Supported Temporal Partitioning

Nils Wistoff1, Gernot Heiser2, and Luca Benini1,3

1 IIS, ETH Zürich, Switzerland / Email: {nwistoff, lbenini}@iis.ee.ethz.ch
2 UNSW Sydney, Australia / Email: gernot@unsw.edu.au

3 DEI, University of Bologna, Italy

Abstract. Microarchitectural timing channels exploit information leak-
age between security domains that should be isolated, bypassing the
operating system’s security boundaries. These channels result from con-
tention for shared microarchitectural state. In the RISC-V instruction
set, the temporal fence instruction (fence.t) was proposed to close timing
channels by providing an operating system with the means to temporally
partition microarchitectural state inexpensively in simple in-order cores.
This work explores challenges with fence.t in superscalar out-of-order
cores featuring large and pervasive microarchitectural state. To over-
come these challenges, we propose a novel SW-supported temporal fence
(fence.t.s), which reuses existing mechanisms and supports advanced mi-
croarchitectural features, enabling full timing channel protection of an
exemplary out-of-order core (OpenC910) at negligible hardware costs
and a minimal performance impact of 1.0 %.

1 Introduction and Related Work

Computing systems are often time-shared between mutually untrusting applica-
tions, such as servers running different users’ workloads, cyber-physical systems
running control and service tasks concurrently, and personal devices that process
sensitive data while accessing the internet. To prevent malicious attackers and
faulty programs from accessing restricted data, modern instruction set architec-
tures (ISAs) specify a set of mechanisms for memory protection, allowing an
operating system (OS) to isolate the memory views of concurrent applications.

However, as the Spectre attacks [1] have demonstrated, existing memory pro-
tection is insufficient to isolate applications reliably. Microarchitectural timing
channels create undesired information transfer across security boundaries. They
leverage observable differences in an application’s execution time depending on
the microarchitectural resource usage of a previously running application.

Some works propose spatial partitioning [2–4] or randomisation [5–7] to close
timing channels in data caches. However, these approaches do not address other
microarchitectural components, such as branch predictors or buffers. As a gen-
eral solution, Ge et al. propose time protection: A methodology for the OS to
partition time-shared hardware (HW) [8, 9]. However, they observe that most

processors do not provide the means to temporally partition (i.e., flush) on-core
microarchitectural state and call for an ISA extension. Wistoff et al. propose
the temporal fence instruction, fence.t, to systematically clear microarchitec-
tural state and thus allow the OS to fully isolate applications [10,11]. A similar
approach was presented by Escouteloup et al. [12]. While fence.t was shown
to be highly effective and inexpensive on a simple in-order core, the viability of
fence.t on complex out-of-order (OoO) cores remains unknown.

Evaluating fence.t in complex OoO cores is relevant for multiple reasons: (a)
OoO cores are commonly deployed in security-critical environments such as those
described above, (b) they contain large and often pervasive microarchitectural
state that needs to be partitioned, (c) flushing and restoring on-core state to and
from off-core memory incurs higher penalties and can, therefore, be expected
to be more expensive than in simple cores, (d) the overall HW-software (SW)
implications of dynamically clearing complex microarchitectural state have not
been studied yet. Hence, we specifically make the following contributions:

– we show that integrating fence.t in an OoO core with advanced microarchi-
tectural features combining architectural and microarchitectural state comes
with challenges,

– we address these challenges by presenting the SW-supported temporal fence
(fence.t.s) methodology,

– we implement fence.t.s in a fully-featured, open-sourced, commercial,
high-performance, 64-bit RISC-V core, namely OpenC910,

– we show that fence.t.s closes all on-core timing channels in OpenC910
without measurable HW overhead at a minimal performance impact of 1.0 %.

2 Background

2.1 Processor State

In the remainder of this paper, we will use the term architectural state to refer to
all processor state that is specified as part of the ISA and thus can be accessed
directly by SW. Examples are the logical registers, control and status registers
(CSRs), and memory. Conversely, microarchitectural state refers to all state that
is transparent and not directly accessible by SW, such as caches, branch predic-
tors, and potentially any state-holding elements within the core, such as flip-flops
and static random-access memories (SRAMs) in the processor pipeline.

2.2 Timing Channels

A covert channel is a communication channel that uses mechanisms that are not
intended for information transfer [13]. A microarchitectural timing channel is
a covert channel that leverages differences in execution time due to contention
for shared microarchitectural resources. Exploitable resources are any microar-
chitectural, sequential components with a possible timing impact, such as data
caches [14,15], instruction caches [16], and branch predictors [17].

2.3 Time Protection and fence.t

Ge et al. have proposed time protection as a methodology to prevent timing
channels [9]. The key idea is to consistently partition all shared HW resources,
either spatially (e.g., through colouring the last level cache [18]) or temporally
(i.e., resetting the resource to a pre-defined value).

The temporal fence instruction, fence.t, was proposed to temporally par-
tition on-core microarchitectural state [10, 11]. It achieves this by writing back
dirty cache state, clearing on-core SRAMs and microarchitectural flip-flops, and
padding its completion to a worst-case execution time.

2.4 OpenC910

OpenC910 is an industrial, 64-bit, application-class, 12-stage, OoO RISC-V core
developed by T-Head Semiconductor Co., Ltd., featuring the RV64GCXtheadc
ISA [19]. It was open-sourced in 2021 under the Apache license and features the
custom Xtheadc extension [20].

In this work, we leverage the following custom instructions and CSRs:
dcache.call clears the L1 data cache (L1D), writing back any dirty cache
lines. The mcor CSR enables targeted invalidations of different SRAMs in the
design. SW can trigger an invalidation of the L1 caches and branch predictors
by setting corresponding bits. sync.i serves as an execution barrier in the
instruction stream, ensuring that all instructions preceding it have been
completed before executing instructions following it. The mrvbr CSR contains
the address from which the core will start executing after reset.

3 Temporally Partitioning Out-of-Order Cores

3.1 Challenges of fence.t in Complex Cores

Challenge 1: The Problem of Mixed State fence.t (Section 2.3) clears all mi-
croarchitectural state and retains architectural state as defined in Section 2.1,
meaning that while clearing the processor’s microarchitectural state, function-
ally, fence.t behaves as a nop.

This approach requires a clear separation of architectural and microarchi-
tectural state, which may not be possible in a complex processor. For instance,
register renaming , a mechanism previously targeted in side-channel attacks [21],
dynamically allocates logical registers to a large physical register file to miti-
gate data dependencies. A register allocation table (RAT) stores this mapping
between logical and physical registers. The RAT is not specified in the ISA or
accessible by SW, classifying it as microarchitectural state. Since it impacts ex-
ecution time, it can be exploited as a timing channel and, therefore, needs to
be cleared by fence.t. However, it also contains crucial information on the lo-
cation of the processor’s logical registers. Simply clearing it on fence.t would,
therefore, corrupt the processor’s architectural state. We refer to such state as
mixed state, since it combines microarchitectural and architectural information.
Handling mixed state in a way that does not leak timing information while main-
taining functional correctness is challenging to achieve in HW alone. Section 3.2
will propose SW support to achieve these goals.

Algorithm 1 fence.t.s procedure.

1: for all r ∈ ArchRegs do
2: stack ← r
3: end for
4: scratch← sp

5: ClearL1D
6: InvalSRAMs
7: ClearFFs
8: sp← scratch

9: for all r ∈ ArchRegs do
10: r ← stack
11: end for
12: PadTime

Challenge 2: Reusability of Instructions The fence.t instruction performs mul-
tiple operations, such as clearing SRAMs, flip-flops, and padding for a worst-
case execution time. These operations are orchestrated by a finite-state machine
(FSM) in HW upon executing fence.t. However, this monolithic approach does
not give the OS any flexibility in selecting mitigation mechanisms according
to the system’s security and performance requirements, nor does it allow the
reuse of the mechanisms for other purposes. Therefore, we propose to split the
functionality of fence.t in multiple instructions performing single tasks.

3.2 Software-Supported Temporal Fence

To address the challenges introduced in Section 3.1, we propose a SW-supported
temporal fence (fence.t.s) by splitting the functionality of fence.t into dis-
crete instructions and executing these as required. An overview of this approach
is shown in Algorithm 1.

First, all architectural (logical) registers are stored on the stack. The stack
pointer is saved at a well-known location not affected by the temporal fence, such
as a scratch CSR. Next, the L1D is cleared by writing all dirty entries back into
higher-level memory. This is followed by a (set of) instruction(s) that invalidate
on-core SRAMs such as caches, TLBs, and branch predictors. Once this is done,
we clear all on-core flip-flops except for the CSRs and resume execution at the
next instruction. We restore the stack pointer and the architectural registers
and finally pad the execution time to a worst-case delay to prevent leakage
through the context-switch latency. This worst-case delay happens when the
microarchitecture is not trained for kernel execution, and the L1D is fully dirty
and needs to be written back completely in line 5 of Algorithm 1. In particular,
note that by saving the logical registers on the stack, the RAT can be safely
cleared in line 7 of Algorithm 1 without losing the architectural register values,
solving the problem of mixed state discussed in Section 3.2.

4 Implementing fence.t.s in OpenC910

We implement fence.t.s in the industrial, 12-stage, OoO OpenC910 core in-
troduced in Section 2.4. We select this core as an evaluation target due to its
openness, high performance, and commercial background, making it a suitable
target for a representative case study.

The only HW modification needed in OpenC910 is the addition of the ff.clr
instruction, which clears all on-core flip-flops except for the CSRs according to
line 7 of Algorithm 1. To do so, we extend the decoder and the synchronous reset
controller and route the required pipeline signals.

Listing 1. fence.t.s in OpenC910.
 1 fence_t_s:
 2 // store logical registers
 3 // on stack
 4 addi sp, sp, -31*8
 5 csrw sscratch, sp
 6 sd x1, 0*8(sp)
 7 ...
 8 sd x31, 30*8(sp)
 9
10 // configure reset address
11 la t0, post_ff_clr
12 csrw mrvbr, t0

14 // clear and invalidate
15 // caches, branch predictors
16 dcache.call
17 li t0, 0x70011
18 csrs mcor, t0

19 // clear on-core flip-
20 // flops except CSRs
21 sync.i
22 ff.clr
23 post_ff_clr:
24 sync.i

26 // restore logical
27 // registers from
28 // stack
29 csrr sp, sscratch
30 ld x1, 0*8(sp)
31 ...
32 ld x31, 30*8(sp)
33 addi sp, sp, 31*8
34
35 ret

Listing 1 shows an implementation of fence.t.s in OpenC910. We start
by storing the logical registers on the stack. The stack pointer is saved on the
standard RISC-V sscratch CSR. Next, we load the address of the instruction
after ff.clr into the custom mrvbr CSR to continue execution from this address
after coming out of reset. Then, the data cache is cleared with dcache.call, and
the OpenC910’s on-core SRAMs (caches, branch predictors) are invalidated using
the custom mcor CSR. Now, we can safely execute ff.clr to clear all on-core
flip-flops. We insert sync.i instructions to prevent a premature reset. Finally,
we restore the logical registers from the stack and return from the function. We
pad the execution time of fence.t.s to 15 k cycles, which proved sufficient in
all experiments even with a fully dirty L1D.

5 Evaluation

5.1 Platform

For our evaluation, we embed OpenC910 into a minimal system with peripherals
and memory required to preload and execute binaries. We map this design onto a
Xilinx VCU128 FPGA board running at 50 MHz. Figure 1 illustrates this setup.

Furthermore, we port an experimental version of seL4, a formally verified
microkernel with strong security guarantees [22], onto this system. Since this
work focuses on on-core timing channels (within Core 0 shown in Figure 1), we
configure seL4 to colour the L2 cache of OpenC910 to prevent timing interference
through off-core cache refill latencies [18].

5.2 Security Analysis

To evaluate the efficacy of fence.t.s, we adopt the methodology of previous
works [8–11] and port channel bench [8], an evaluation framework for timing
channels, to OpenC910. Channel bench sets up two applications, a Trojan and
a spy, that actively try to communicate through different microarchitectural
components using a prime-and-probe attack [15]. For a given secret s, the Trojan
performs a corresponding action (e.g. evict s lines from the L1D), and the spy
subsequently measures its own execution time. The results of these experiments
are captured in channel matrices; see Figure 3 for examples. The x-axis displays
the secret values encoded by the Trojan, and the y-axis denotes the subsequent

AXI4 Crossbar

JT
A

G
 to

 A
X

I
DDR4UART O

pe
nC

91
0Coherence Interface Unit

L2 CLINT PLICCore 0VC
U

12
8

Fig. 1. FPGA evaluation platform.

ba
rn

es
ch

ol
es

ky ff
t

fm
m lu

oc
ea

n
ra

di
os

it
y

ra
di

x
ra

yt
ra

ce
w
at

er
n-

sq
ua

re
d

w
at

er
-

sp
at

ia
l

0%

1%

S
lo

w
d
o
w

n

Fig. 2. Splash-2 slowdown by fence.t.s.

0 128 256 384 512

42,000
44,000
46,000
48,000
50,000

Secret

T
im

e
(c

y
cl

es
)

M = 4283 mb,M0 = 0.7 mb

(a) L1D. Unmitigated.

0 128 256 384 512

50,000

60,000

70,000

Secret

M = 5940 mb,M0 = 0.8 mb

(b) L1I. Unmitigated.

0 32 64 96 128

1,200

1,300

1,400

Secret

0

10−2

10−1

P
ro

b
a
b

il
it

y

M = 698.8 mb, M0 = 1.1 mb

(c) BHT. Unmitigated.

0 128 256 384 512

51,300
51,320
51,340
51,360
51,380
51,400

Secret

T
im

e
(c

y
cl

es
)

M = 64.3 mb, M0 = 71.0 mb

(d) L1D. fence.t.s.

0 128 256 384 512

70,600

70,650

70,700

70,750

70,800

Secret

M = 3.2 mb,M0 = 3.5 mb

(e) L1I. fence.t.s.

0 32 64 96 128

4,780

4,790

4,800

4,810

4,820

Secret

0

10−2

10−1

P
ro

b
a
b

il
it

y

M = 3.3 mb, M0 = 6.4 mb

(f) BHT. fence.t.s.

Fig. 3. Channel matrices and corresponding mutual information.

execution time of the spy’s prime function. Colours indicate the rate of incidence
for a given secret-time pair. If a channel matrix shows a horizontal variation, this
indicates a correlation between the spy’s execution time and the Trojan’s secret
and, thus, a potential timing channel.

In addition, we use leakiEst [23] to compute the mutual information M for a
channel matrix to quantify the channel’s capacity. M measures the information
gained about one random variable (e.g., the Trojan’s secret) by observing another
(e.g., the spy’s execution time) [24]. In our security analysis, we report M in
millibits (mb). Since a non-zero M can be caused by random noise, we simulate
a channel-less measurement with the same output distribution and compute the
zero-leakage upper bound, M0, from it. M > M0 indicates a timing channel.

Figure 3 shows the channel bench results on OpenC910 for the L1D, the
L1 instruction cache (L1I), and the branch history table (BHT) without timing
channel mitigations (top) and with fence.t.s on a context switch (bottom).
We use these components as examples for our security evaluation but stress that
fence.t.s aims at preventing timing channels through any microarchitectural
state. Without mitigations (top), all three components show significant leaks,
evident from the diagonal patterns in their channel matrices and their M be-
ing several orders of magnitude greater than the corresponding M0. Executing
fence.t.s on a context switch (bottom) reliably closes all timing channels, as
there are no variations along the x-axis. The M values support this, as all three
are smaller than M0.

5.3 Performance Overhead

To evaluate the performance impact of fence.t.s, we run one application ex-
ecuting the Splash-2 benchmarks [25] and one idle application concurrently on
OpenC910. seL4 performs a context switch every 10 M cycles, corresponding to
a typical time slice length of 10 ms at a clock frequency of 1 GHz.

Figure 2 shows the relative slowdown of the benchmarks when calling
fence.t.s on a context switch. The combined performance impact of the
increased context-switch latency (direct costs) and the cold microarchitecture
after context-switching (indirect costs) is, on average, 1.0 %, while being
consistently below 1.6 % for all benchmark applications.

The low overhead of the temporal fence can be explained by the large number
of system clock cycles per OS time slice and, as Ge et al. [8] argue, the low
persistance of L1 state across multiple time slices. We stress that the OS can
choose if and at what interval to perform the temporal fence according to the
system’s performance and security requirements.

5.4 Hardware Costs

As discussed in Section 4, our HW modifications are limited to adding the
minimal ff.clr instruction. To evaluate the HW costs of this modification,
we synthesise the original and the extended version of OpenC910 in Global-
Foundries 12LP+ FinFET technology in typical corners at a clock speed of
2 GHz. The addition of ff.clr does not cause a notable change in the area or
timing of the design.

6 Conclusion

This work proposes the SW-supported temporal fence (fence.t.s) that closes
timing channels even in complex OoO cores. By implementing it in OpenC910, an
industry-grade, high-performance RISC-V core, we observe that this processor
already provides a set of mechanisms to clear most on-core state required for
time protection. We add the simple ff.clr instruction, which clears all on-core
flip-flops except for thee CSRs at negligible HW costs, and demonstrate that an
OS can combine it with custom instructions already provided by OpenC910 to
reliably close timing channels at a minimal performance overhead of 1.0 %.

We conclude that by exposing mechanisms already available in commercial
HW to SW, an OS can efficiently enforce temporal isolation when needed. Adding
this abstraction to the ISA would enable a unified set of mechanisms to close
timing channels across different RISC-V implementations.

Acknowledgements

This work was supported in part through the TRISTAN (101095947) project
that received funding from the HORIZON CHIPS-JU programme.

References

1. Kocher, P. et al.: Spectre attacks: Exploiting speculative execution. In: IEEE S&P.
(2019) 1–19

2. Page, D.: Partitioned cache architecture as a side-channel defence mechanism.
IACR Cryptology ePrint Archive (2005)

3. Domnitser, L. et al.: Non-monopolizable caches: Low-complexity mitigation of
cache side channel attacks. ACM TACO 8 (2012) 35:1–35:21

4. Kiriansky, V. et al.: Dawg: A defense against cache timing attacks in speculative
execution processors. In: IEEE/ACM MICRO. (2018) 974–987

5. Wang, Z. et al.: New cache designs for thwarting software cache-based side channel
attacks. In: IEEE/ACM ISCA. (2007) 494–505

6. Qureshi, M. K.: CEASER: Mitigating conflict-based cache attacks via encrypted-
address and remapping. IEEE/ACM MICRO (2018) 775–787

7. Werner, M. et al.: SCATTERCACHE: Thwarting cache attacks via cache set
randomization. In: USENIX SEC. (2019) 675–692

8. Ge, Q. et al.: No security without time protection: We need a new hardware-
software contract. In: ACM APSys. (2018) 1:1–1:9

9. Ge, Q. et al.: Time protection: The missing OS abstraction. In: ACM EuroSys.
(2019) 1:1–1:17

10. Wistoff, N. et al.: Microarchitectural timing channels and their prevention on an
open-source 64-bit RISC-V core. In: DATE. (2021) 627–632

11. Wistoff, N. et al.: Systematic prevention of on-core timing channels by full temporal
partitioning. IEEE. Trans. Comput. 72(5) (2023) 1420–1430

12. Escouteloup, M. et al.: Under the dome: preventing hardware timing information
leakage. In: CARDIS. (2021) 1–20

13. Lampson, B. W.: A note on the confinement problem. Commun. ACM 16 (1973)
613–615

14. Hu, W.-M.: Lattice scheduling and covert channels. In: IEEE S&P. (1992) 52–61
15. Percival, C.: Cache missing for fun and profit. In: BSDCan. (2005)
16. Acıiçmez, O.: Yet another microarchitectural attack: Exploiting i-cache. In: ACM

CSAW. (2007) 11–18
17. Acıiçmez, O. et al.: Predicting secret keys via branch prediction. In: CT-RSA.

(2007) 225–242
18. Kessler, R. E. et al.: Page placement algorithms for large real-indexed caches.

ACM TOCS 10(4) (1992) 338–359
19. Chen, C. et al.: Xuantie-910: A commercial multi-core 12-stage pipeline out-of-

order 64-bit high performance RISC-V processor with vector extension : Industrial
product. In: ACM/IEEE ISCA. (2020) 52–64

20. T-Head Semiconductor Co., Ltd.: OpenC910 core (2021) https://github.com/T-
head-Semi/openc910.

21. May, D. et al.: Random register renaming to foil DPA. In: CHES. (2001) 28–38
22. Klein, G. et al.: Comprehensive formal verification of an OS microkernel. ACM

TOCS 32(1) (2014) 2:1–2:70
23. Chothia, T. et al.: A tool for estimating information leakage. In: CAV. (2013)

690–695
24. Shannon, C. E.: A mathematical theory of communication. Bell Labs Tech. J. 27

(1948) 379–423
25. Woo, S. C. et al.: The splash-2 programs: Characterization and methodological

considerations. ACM SIGARCH Comput. Archit. News 23(2) (1995) 24–36

	fence.t.s: Closing Timing Channels in High-Performance Out-of-Order Cores through ISA-Supported Temporal Partitioning

