
© Cyrille CARRY

Paravirtualisation Oct 2006

@
Gelato

www.gelato.unsw.edu.au

Performance and

Scalability on Itanium

peterc@gelato.unsw.edu.au c© Gelato@UNSW 1

© Cyrille CARRY

Paravirtualisation Oct 2006

Virtualising PCI

National ICT Australia

and

The University of New South Wales

Myrto Zehnder and Peter Chubb

Gelato Project

October 2006

peterc@gelato.unsw.edu.au c© Gelato@UNSW 2

© Cyrille CARRY

Paravirtualisation Oct 2006

Virtual Machine Monitors

VMM

Hardware

VMM

OS OS

Hardware

Host OS

Apps Apps

Apps

Other Apps

Type I VMM

(Native)

Type II VMM

(Hosted)

Guest

OS

peterc@gelato.unsw.edu.au c© Gelato@UNSW 3

There are two kinds of virtual machine monitors (VMM). A Type I

VMM controls the hardware directly (The nomenclature was originally

introduced by (Goldberg, 1973)). Guest operating systems see a virtu-

alised version of the hardware. Xen (Barham et al., 2003) and vNUMA (Chapman

are examples of Type I VMMs.

A Type II, or hosted VMM runs as an application on a normal operat-

ing system. Examples are UML (Dike, 2000), VMware (Sugerman et al., 2001)

and Gelato@UNSW’s own LinuxOnLinux (Chubb, 2005).

Both a type I and a type II VMM have to virtualise not only the proces-

sor(s), but also some kind of I/O system. Most commonly, devices are

emulated at ‘standard’ I/O addresses — for example, the free VMware

emulates a standard IDE controller based on the Intel PIIX4 chipset, a

VGA controller, and a LANCE ethernet. The alternative is to paravirtu-

alise disk and console acess, as vNUMA does using the SKI simulator

Supervisor System Calls to emulate a SCSI disk and ethernet controller.

© Cyrille CARRY

Paravirtualisation Oct 2006

Virtual Machine I/O

VMM

Hardware

VMM

OS OS

Hardware

Host OS

Apps Apps

Apps

Other Apps

Type I VMM

(Native)

Type II VMM

(Hosted)

Guest

OS

peterc@gelato.unsw.edu.au c© Gelato@UNSW 4

In addition, a Type I VMM can allow transparent access to the real

hardware from guest operating systems. Until recently, Xen allowed this

only for one specially privileged guest, ‘Dom0’. Other guests see simple

emulated devices, that talk to the ‘real’ device drivers in Dom0.

© Cyrille CARRY

Paravirtualisation Oct 2006

Virtual Machine I/O

VMM

Hardware

VMM

OS OS

Hardware

Host OS

Apps Apps

Apps

Other Apps

Type I VMM

(Native)

Type II VMM

(Hosted)

Guest

OS

?

peterc@gelato.unsw.edu.au c© Gelato@UNSW 5

Our question was, what does it take to allow the native drivers in a

guest in a type II VMM access to real devices?

© Cyrille CARRY

Paravirtualisation Oct 2006

LinuxOnLinux

• Type II VMM

• Uses (enhanced) SKI SSCs

• Uses SKI simscsi, simserial and simeth

• Can emulate many processors

• Reasonably fast

• Itanium only!

• Minimal (200 line) change to native Linux

peterc@gelato.unsw.edu.au c© Gelato@UNSW 6

LinuxOnLinux was explained in my ‘Paravirualisation without Pain’

(Chubb, 2005) talk last year. It uses automatic pre-virtualisation (‘af-

terburning’) to allow rapid tracking of upstream kernels and reasonable

performance. It allows no real access to hardware — the simulated

network device maps onto /dev/tun, the serial device to standard in-

put/output of the emulator, and the scsi device to a regular file in the

host’s filesystem.

© Cyrille CARRY

Paravirtualisation Oct 2006

User Level Driver Framework

• Exclusive claiming of a device.

• Interrupt management

– but not IRQ sharing

• DMA setup/teardown

peterc@gelato.unsw.edu.au c© Gelato@UNSW 7

Likewise, the user-level driver framework has been explained else-

where — e.g., in (Chubb, 2004b) and (Chubb, 2004a). There are three

parts:

1. The new system call usr pci open(), that allows a suitably

privileged user-space program to claim a PCI device and obtain

a handle on it (the handle happens to be implemented as a file

descriptor).

2. Extension of /proc/irq/ to include a named file for every pos-

sible interrupt on the system, that can be opened and closed,

and that when read() pauses until that interrupt occurs. poll

also works; and for this project we implemented asynch I/O, to

provide a signal when an interrupt occurs.

3. The new system call usr pci map() that pins virtual memory

pages, and provides a scatterlist suitable for a device to use for

DMA.

© Cyrille CARRY

Paravirtualisation Oct 2006

Driver Architecture: Unmodified Linux

System

Abstraction

Layer

BAR0

BAR5

PCI Device Config

Memory Map

I/O port space

Driver

peterc@gelato.unsw.edu.au c© Gelato@UNSW 8

Each PCI device has an address: a triple (bus, slot, function). Each

platform has a way to get at a device’s configuration space; for Ita-

nium, PCI configuration space accesses are mediated by the System

Abstraction Layer (SAL). Within the configuration space for each de-

vice are Base Address Registers (BARs) that give the address in either

port space or MMIO space of the control registers for the device.

The Itanium has no separate port space; all I/O registers are mapped

into the physical memory space. However, accessing mapped port reg-

isters obeys port semantics (i.e., synchronous operation) and is there-

fore slow. Memory-mapped I/O regions are posted — i.e., write opera-

tions are queued, so that the CPU can continue to process instructions

in parallel with the device’s write operation. MMIO operations also have

‘interesting’ synchronisation requirements, in that it’s the programmers’

responsibility to ensure outstanding writes have completed before issu-

ing reads in some circumstances.

© Cyrille CARRY

Paravirtualisation Oct 2006

• Linux has to walk the busses querying each slot.

• IA64 may have more than 255 PCI busses – divides into

segments or domains

• Populated range of busses available from ACPI

• ACPI is huge

— so we don’t want to emulate it if we don’t have to

peterc@gelato.unsw.edu.au c© Gelato@UNSW 9

The Itanium architecture extends the PCI address space with a seg-

ment ID, to allow more than 255 busses. Typically, for good perfor-

mance, each bus will have only one or two slots used. One way to

discover what devices are present would be to iterate over all possi-

ble PCI addresses. This would be far too slow, and in most cases is

unnecessary, so ACPI provides a table, the SB section of the DSDT

(differentiated services descriptor table), that can be used to determine

which buses are available.

© Cyrille CARRY

Paravirtualisation Oct 2006

Tables
In

Firmware

PCI subsystem

ACPI subsystem

Root Bus Discovery

peterc@gelato.unsw.edu.au c© Gelato@UNSW 10

We decided to emulate only a single root bus, and map all accessible

devices onto that bus, regardless of their true address. This means we

can avoid most of ACPI, and instead hack the guest kernel to call a

single discovery routine. Obviously this isn’t a long-term soultion, but it

gets us going for now.

© Cyrille CARRY

Paravirtualisation Oct 2006

PCI Config space access

• On Host via libpci (/proc/bus/pci, /sys/bus/pci/)

• On Guest via SAL

→ Virtualise SAL

peterc@gelato.unsw.edu.au c© Gelato@UNSW 11

Most architectures provide access to the PCI configuration space

through the system firmware. On IA64 such access is mediated by

the System Abstraction Layer. A virtual machine implementation al-

ready has to emulate SAL, but LinuxOnLinux follows the Ski Simulator:

the bootloader provided in arch/ia64/hp/sim/boot emulates a very

small subset of the available SAL calls.

Usually, PCI is disabled when configuring Linux for the simulator.

However, the bootloader contains code to access the configuration space

by doing port I/O to the legacy space IO ports 0xCF8 and 0xCFC (which

is where, on PC99 architecture, the PCI controller is traditionally mapped).

I’m not sure that this code ever worked. Consequently, we disabled

it, and instead implemented a couple of new Supervisor System Calls

to access the PCI configuration space.

© Cyrille CARRY

Paravirtualisation Oct 2006

Host Kernel

VMM: ssc handler

PCI Mapping info

libpci

Linux core Kernel

ia64_sal_pci_config_read()

pci_read_config_word()

peterc@gelato.unsw.edu.au c© Gelato@UNSW 12

The result is that the VMM can virtualise the PCI configuration space

BARs.

© Cyrille CARRY

Paravirtualisation Oct 2006

MMIO and Port I/O access

• Keep virtual I/O layer out of the way

• Remap /dev/mem into Region 0

• Virtualise BAR registers

peterc@gelato.unsw.edu.au c© Gelato@UNSW 13

And everything’s hunky-dory.

© Cyrille CARRY

Paravirtualisation Oct 2006

Interrupts

Three issues here:

1. Claiming an interrupt

2. Masking/Unmasking an interrupt

3. Delivering an interrupt

peterc@gelato.unsw.edu.au c© Gelato@UNSW 14

There are three issues in handling interrupts.

1. How is an interrupt claimed?

2. How to enable or disable a particular interrupt?

3. How an interrupt can be hooked up to cause an action in the

guest when it occurs in the underlying hardware.

The first two of these can be handled in the same way.

© Cyrille CARRY

Paravirtualisation Oct 2006

Linux Generic Interrupt handling

VMM

IOC

enable()

Hardware−Specific

request_irq()

setup_irq()

peterc@gelato.unsw.edu.au c© Gelato@UNSW 15

In the guest, a driver will discover which interrupt to claim by read-

ing the PCI configuration space, and then invoke request irq() to

associate the interrupt with its handler.

request irq() in its turn calls setup irq() in the generic code,

then eventually calls the IOC-specific enable() routine.

To paravirtualise interrupt requesting, we provide a new emulated

interrupt controller, that uses Supervisor System Calls to call into the

VMM.

Linux uses a struct irq chip (formerly struct hw interrupt type)

that contains a vector of routines for what we want.

Thus paravirtualisation merely means creating and populating the

struct irq chip and making the methods call into the VMM with an

SSC.

© Cyrille CARRY

Paravirtualisation Oct 2006

IRQ handling state diagram

Ready

Null

Handling

Interrupt

ReleaseRequest

ack()

eoi()

peterc@gelato.unsw.edu.au c© Gelato@UNSW 16

When a device asserts an interrupt, the Advanced Peripheral Inter-

rupt Controller it is attached to signals the processor that an interrupt is

pending, and gives information as to which interrupt is pending. Linux

provides a generic set of methods for controlling this chip; but as far as

we’re concerned the only important one is the eoi().

© Cyrille CARRY

Paravirtualisation Oct 2006

User-level Driver IRQ handling: with Signals

Unmask

IRQ

read(irqfd)

EOI: Issue READ

EOI

Device

IRQ

Handler

g
en

er
ic

 IR
Q

 h
an

d
le

r

Guest Kernel

InterruptGenerate

Interrupt to

Guest

VMM

SIGIOIRQ

Hardware

signals

Mask IRQ

Make irqfd

 ready

Host Kernel

peterc@gelato.unsw.edu.au c© Gelato@UNSW 17

On end-of-interrupt, the VMM needs to be informed. The chip-specific

EOI routine invokes an SSC to tell the VMM to complete the work; which

it does by issuing a non-blocking read on the IRQ file descriptor. In the

kernel, the user driver framework uses this as a request to unmask the

interrupt. If the interrupt is still pending at this time (e.g., because it has

been reasserted by the device) the read will return a value greater than

one and mask the interrupt again. At this time, the VMM has to re-send

the interrupt to the guest, and the whole cycle repeats.

An alternative implementation that was considered was to use a sep-

arate thread that did a blocking read on the IRQFD; because it would

have to raise a signal anyway (because of the architecture of VMM) the

asynchronous I/O approach was considered better in this instance.

© Cyrille CARRY

Paravirtualisation Oct 2006

DMA

DMA Area

DMA descriptors

Kernel memory

pci_map_consistent

PCI device

peterc@gelato.unsw.edu.au c© Gelato@UNSW 18

The addresses a device works with are as seen from the PCI bus. On

simple systems they are physical memory addresses; but most mod-

ern IA64 machines incorporate an IO MMU that virtualises these ad-

dresses.

To perform DMA, a typical device starts by requesting that some ker-

nel memory be allocated and mapped such that both the kernel and

the device can access it. Such memory is called, in Linux-speak, ‘PCI-

consistent memory’. Because many PCI devices cannot see the full

64-bit address space, PCI-consistent memory may have to be allocated

at a low physical address, or an IO TLB slot reserved for it. This mem-

ory is used for DMA descriptors, that are set up by the driver to perform

individual I/O operations, and updated by the device as DMA opera-

tions finish. Typically a single page is reserved for each device’s DMA

shared area, and remains allocated for the entire time the device driver

is loaded into the kernel.

When an individual I/O operation is to occur, the device driver uses

generic kernel to pin the I/O buffer into memory (so it isn’t paged out),

and to map it into PCI virtual memory space. The routine used for

this is pci_map_sg(), which eventually calls into the device-dependent

IOMMU code.

The scatterlist returned from pci_map_sg() is usualy fairly easy to

convert into a set of DMA descriptors suitable for the device. When the

driver has updated the DMA descriptors, it can set the I/O going. When

the I/O completes, the device will update the DMA descriptors with the

status of the result and (eventually) raise an interrupt.

When the interrupt happens, the driver can free any IOMMU resurces

by calling pci_unmap_sg().

The user drive framework exposes pci_map_sg() and pci_unmap_sg()

to user space. The obvious way to hook up dma is to add the pci map

and pci unmap (etc) operations to the machine vector for the simulator.

However, time did not permit us to do this.

© Cyrille CARRY

Paravirtualisation Oct 2006

Results

• One device hacked in for device discovery

• Interrupts enabled and hooked up

• Config space virtualised

• IO port and MMIO spaces remapped apropriately

peterc@gelato.unsw.edu.au c© Gelato@UNSW 19

So far so good... we have a proof of concept (an IDE card hooked

up enough to be able to get the disk status and read the partition table).

This is enough to validate the overall scheme; but not enough to be able

to say anything about performance.

© Cyrille CARRY

Paravirtualisation Oct 2006

Boot log

peterc@gelato.unsw.edu.au c© Gelato@UNSW 20

© Cyrille CARRY

Paravirtualisation Oct 2006

Future Work

• Interrupts

• DMA

• Device Discovery and ACPI

– Genericise to remove hard-wired bus discovery

peterc@gelato.unsw.edu.au c© Gelato@UNSW 21

References

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neuge-

bauer, R., Pratt, I., and Warfield, A. (2003). Xen and the art of

virtualization. pages 164–177, Bolton Landing, NY, USA.

Chapman, M. and Heiser, G. (2005). Implementing transparent shared

memory on clusters using virtual machines. pages 383–386, Ana-

heim, CA, USA.

Chubb, P. (2004a). Get more device drivers out of the kernel! In Ottawa

Linux Symposium, Ottawa, Canada.

Chubb, P. (2004b). Linux kernel infrastructure for user-level device

drivers. Adelaide, Australia.

Chubb, P. (2005). [Para]virtualisation without pain. In Gelato ICE, Brazil.

Dike, J. (2000). A user-mode port of the linux kernel. In Proceedings of

the 4th Annual Linux Showcase and Conference, Atlanta, Geor-

gia, USW.

Goldberg, R. P. (1973). Architecture of virtual machines. pages 74–112,

New York.

Sugerman, J., Venkitachalam, G., and Lim, B.-H. (2001). Virtualiz-

ing I/O devices on VMware Workstation’s hosted virtual machine

monitor. pages 1–14, Boston, MA, USA.

