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Abstract
Device driver bugs are the leading cause of OS compro-
mises, and their formal verification is therefore highly
desirable. To the best of our knowledge, no realistic and
performant driver has been verified for a non-trivial de-
vice. We propose Pancake, an imperative language for
systems programming that features a well-defined and
verification-friendly semantics. Leveraging the verified
compiler backend of the CakeML functional language,
we develop a compiler for Pancake that guarantees that
the binary retains the semantics of the source code. Us-
ing automatic translation of Pancake to the Viper SMT
front-end, we verify a performant driver for an Ethernet
NIC.

1 Introduction

Device driver bugs are the leading cause of OS compro-
mises, accounting for the majority of the 1,057 CVEs
reported for Linux in the period 2018–22 [MITRE Cor-
poration, 2023]—clearly they should be the #1 targets of
OS verification efforts.

While there have been a number of prior efforts to
verify drivers [Alkassar, 2009; Alkassar and Hillebrand,
2008; Chen et al., 2016; Duan, 2013; Duan and Regehr,
2010; Kim et al., 2008; Möre, 2021; Penninckx et al.,
2012], to our knowledge none have yet succeeded on re-
alistic, non-trivial devices, nor have they presented any
performance analysis of the drivers verified.

Most of these efforts demanded highly manual inter-
active theorem proving, sometimes requiring drivers to
be written and analysed in assembly. On the other hand,
attempts to apply more usable methods like model check-
ing [Kim et al., 2008] and automated deductive verifica-
tion [Penninckx et al., 2012] left significant gaps between
the analysed model and the real code.

Moreover, of the above, only Chen et al. [2016] pro-
vided an end-to-end verification story that preserved the

driver’s verified correctness from a driver-appropriate
systems programming language down to the binary level.
Likewise, with no formal semantics or verified compiler,
recent proposals like that of [Chen et al., 2024] to verify
drivers written in Rust [Klabnik and Nichols, 2017] have
no plan to close the semantic gap to the binary.

Devices are commodities: new ones are created all the
time. This means that to be practicable, their verifica-
tion must have a high degree of usability and automation.
But verification of C code is made needlessly expensive
by C’s complicated semantics. In short, the situation de-
mands a performant systems language with support for
usable automated verification, and a means of ensuring
the semantics of the verified drivers are preserved down
to the binary level.

To this end, we present Pancake, an imperative pro-
gramming language designed to enable verification of
low-level systems code, complete with:

• a verified compiler from Pancake to binary that
leverages the final stages of the verified CakeML
compilation stack [Tan et al., 2019]. Section 2 dis-
cusses the overall structure of Pancake’s semantics
and the compiler, and how the verification of its
compiler guarantees that the semantics of drivers
and other systems code written in Pancake, once
verified, will be preserved down to binary level.

• an automated deductive verification front-end for
Pancake that leverages the Viper verification frame-
work [Müller et al., 2016a], a middle-end for vari-
ous SMT solver-based verification back-ends. This
takes the form of (1) an annotation syntax for Pan-
cake and (2) a transpiler from annotated Pancake to
the Viper intermediate language (IL), which we ex-
plain in Section 3.

Using this support, we produce the first verification of
a device driver for a non-trivial device, a driver for the
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seL4-based LionsOS [Heiser et al., 2025] for a 1 Gb/s
Ethernet card that is used in popular Arm SoCs.

Our experience shows that Pancake’s automated de-
ductive verification support is usable for those with a sys-
tems development background, allowing the verification
of critical guarantees for practical drivers (Section 4). A
first-year PhD student, with a background of mostly sys-
tems development, but not formal verification, was able
to complete the verification of our Pancake-based Eth-
ernet driver in about three person-months (after manu-
ally transcribing a C implementation into Pancake)—a
process that is likely significantly faster when applied to
further drivers. This demonstrates Pancake as a viable
alternative to C for systems-level code, but one with the
advantage of accessible end-to-end verification support.

Our evaluation in Section 5 shows that the verified
Pancake driver performs very close to the C version.

We discuss in Section 6 the trusted computing base
(TCB) and threats to the validity of Pancake’s auto-
mated deductive verification story and end-to-end se-
mantic preservation guarantees, as well as how we plan
to address them with future plans for verification.

2 Pancake Language and Compiler

2.1 The Rationale
While C is the de-facto standard systems language, C’s
semantics has a number of undesirable properties from
a verification standpoint: a complicated memory model,
underspecified order of evaluation, and the need to prove
the absence of undefined behaviour at almost every step.
While the seL4 verification demonstrated that these chal-
lenges can be overcome, even when verifying machine
code without relying on formal properties of a com-
piler [Sewell et al., 2013], the cost was high: $350/SLOC
just for verifying the C code [Klein et al., 2009], and this
cost continues to impact evolution of the kernel. While
using a verified compiler [Leroy, 2009] with the verifi-
cation toolchain VST [Appel, 2011] can help, this has to
date not resulted in verified real-world drivers.

Attempts have been made to achieve better systems
programming languages by incorporating advanced lan-
guage features that make certain safety properties hold
by construction. For example, Cogent has a linear type
discipline that prevents memory leaks [Amani et al.,
2016], Rust’s borrow checker enforces ownership and
lifetimes [Klabnik and Nichols, 2017], and Cyclone in-
corporates garbage collection and ML-style polymor-
phism [Jim et al., 2002]. Such advanced features can
eliminate whole classes of bugs, or at least reduce bug
density, but at the cost of making the language semantics
and implementation more complicated. Furthermore,
garbage collection introduces unpredictable delays that

are highly undesirable in low-level systems code. Yet
these approaches still fall short of ensuring full func-
tional correctness, and it is unclear how helpful such ad-
vanced language features are in achieving it.

Functional correctness proofs produce (and consume)
significantly stronger properties than type systems typi-
cally guarantee. A stronger type system could give more
useful information, but unless it is so powerful (and so
undecidable) as to be a full-featured proof calculus, the
information we need will almost always be stronger than
what the type system provides.

The information provided by a type system is only
useful if the type system is sound, but most practical
languages have unverified type systems, or type systems
with known soundness bugs. Type systems can be veri-
fied [Naraschewski and Nipkow, 1999], but type sound-
ness proofs tend to be delicate, and have subtle inter-
actions with seemingly minor changes to a language.
Maintaining a type soundness proof for a living language
can significantly bog down development.

Moreover, the safety guarantees of a language only
hold if no backdoors are used. But in low-level sys-
tems programming it is often necessary to break out of a
type-safe environment. For example, device driver code
must adhere to hardware-specified data locations, layouts
and access protocols. Hence driver code written in safe
languages must use significant amounts of unsafe code,
effectively escapes to C [Astrauskas et al., 2020; Evans
et al., 2020], which mostly eliminates the benefit of using
a safe language.

Instead of adding more safety features to a language,
which tends to make the semantics more complicated, we
believe a simple formal semantics will help lead to sim-
ple proofs. Of course, such a formal semantics must exist
in the first place: despite years of research [Jung et al.,
2018; Kan et al., 2018; Wang et al., 2018; Weiss et al.,
2019], there is still no complete formal specification of
Rust.

We propose Pancake as the solution—a radically min-
imal language that nonetheless offers a sufficiently ex-
pressive interface for writing low-level systems pro-
grams, such as device drivers, alongside a number of
advantages for formal verification. Most importantly,
the language is completely specified by a straightforward
formal semantics that fits in a few hundred lines of HOL4
code, with a simple memory model, no notion of unde-
fined behaviour, and no ambiguities in evaluation order.

Pancake is an unmanaged language with no static type
system, at a level of abstraction between C and assem-
bly. The data representation and memory model are kept
as simple as possible: the only kinds of data are machine
words, code pointers, and structs. Programs cannot in-
spect the stack, which simplifies semantics. All memory
is statically allocated; there is no equivalent of malloc
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and free. There are no concurrency primitives—making
drivers single-threaded [Ryzhyk et al., 2009a, 2010] sig-
nificantly simplifies verification, maps well onto the
modular design of microkernel-based OSes, and is rou-
tinely used for drivers on seL4 without undue impact on
performance [Heiser et al., 2022, 2025].

1 fun handle_irq()
2 { /@ requires valid_device() @/
3 /@ ensures valid_device() @/
4 var 1 EIR = get_device_EIR();
5 !st32 (REG_BASE + EIR_OFFSET), IRQ_MASK;
6 while (true)
7 { /@ invariant valid_device() @/
8 var rx_work = EIR & EIR_RXF_MASK;
9 var tx_work = EIR & EIR_TXF_MASK;

10 if (rx_work) {
11 /@ unfold full_heap_access() @/
12 rx_return();
13 rx_provide();
14 /@ fold full_heap_access() @/
15 }
16 if (tx_work) {
17 /@ unfold full_heap_access() @/
18 tx_return();
19 tx_provide();
20 /@ fold full_heap_access() @/
21 }
22 if (!rx_work) {
23 if (!tx_work) { break; }
24 }
25 EIR = get_device_EIR();
26 !st32 (REG_BASE + EIR_OFFSET), IRQ_MASK;
27 }
28 return 0;
29 }

Listing 1: Pancake code snippet (concrete syntax) with
annotations.

2.2 The Language and its Semantics
From a programmer’s point of view, Pancake looks and
feels like a traditional imperative program language (see
Listing 1, ignore the /@...@/ annotations for now). Fig-
ure 1 shows the current abstract syntax of Pancake, di-
vided into expressions (exp) and statements (prog). The
nuts and bolts of a typical Pancake program should be
familiar to any programmer. Mutable variables, if state-
ments, while loops and the like – nothing fancy. This is a
deliberate design decision: we want Pancake to feel sim-
ple and familiar to systems programmers, and minimise
the cognitive overhead imposed by exotic language fea-
tures. In our experience, this has been borne out in prac-
tice: systems programmers familiar with C have so far
found Pancake easy to learn.

Since Pancake is targeting verified low-level code, an-
other key design concern is to give programmers direct
access to low-level details without the language getting

exp := Const word | Var string | Label string
| Struct exp⋆ | Field num exp
| Load shape exp | LoadByte exp
| Op binop exp⋆ | Cmp cmp exp exp
| Shift shift exp num | BaseAddr
| BytesInWord

prog := Skip | Dec string exp prog
| Assign string exp | Store exp exp
| StoreByte exp exp | Seq prog prog
| If exp prog prog | While exp prog
| Break | Continue | Call ret exp exp⋆

| Raise string exp | Return exp | Tick
| ShMemStore opsize exp exp
| ShMemLoad opsize string exp
| DecCall string shape exp exp⋆ prog
| ExtCall string exp exp exp exp
| Annot string string

Figure 1: Abstract syntax of Pancake.

in their way. This is part of the motivation for Pancake’s
perhaps most radical design decision: no static type sys-
tem, and no distinction between different kinds of data.
In sloganeering terms, we might say that Pancake is a
language where everything is a machine word. For ex-
ample, there is no distinction between pointers and inte-
gers: it’s all words.

We can choose to treat a word as an integer by adding
or subtracting with it, and we can choose to treat a word
as a pointer by dereferencing it. This means the pro-
grammer is free to do arbitrary pointer arithmetic. This
is of course unsafe in general, and we do not attempt to
make it safe; rather, we give it a simple and well-defined
semantics that can support formal verification, without
the need for complicated rules about (say) pointer prove-
nance. In this way, the historically minded reader may
notice that the language is rather closer to BCPL than C
in terms of design philosophy.

With this in mind, the data representation and memory
model of Pancake are kept as simple as possible. There
are only three kinds of data: machine words, code point-
ers, and structs (whose fields are machine words, code
pointers, or nested structs). Local variables are stack-
allocated, and the language does not allow pointers into
the stack. Global data may be stored in a statically al-
located global memory region: there is no equivalent of
malloc and free.

The operational semantics of Pancake is specified in
the same style as CakeML’s: functional big-step seman-
tics [Owens et al., 2016], which uses an evaluation func-
tion from programs to results. In standard relational big-
step semantics, a program is given meaning by a relation
between programs and results. The functional style is
similar to a language interpreter, but not necessarily exe-
cutable. All the intermediate languages used in the com-
piler have this kind of semantics. This style simplifies

3



formal proofs of compiler correctness by making the se-
mantics more amenable to term rewriting. The semantics
of a program is defined in terms of how it communicates
with the outside world; specifically, as a possibly infinite
trace of I/O events, each of which denotes either a return-
ing foreign function call or a shared memory load/store
operation. The semantics is parameterised on a function
that models the effects of these observable I/O events,
i.e., how they change the state of the outside world and
what data they pass back to Pancake.

2.3 Verified Compiler

The Pancake compiler is verified, and thus eliminated
from the TCB. This sidesteps the need for fragile vali-
dation of the compiler output on a program-by-program
basis [Sewell et al., 2013].

We re-use the lower parts of the verified CakeML com-
piler [Kumar et al., 2014; Tan et al., 2019]. Figure 2
shows the relationship, with CakeML compiler on the
right side and the Pancake compiler on the left. The
CakeML compiler consists of 36 (term rewriting) passes,
indicated by arrows in the diagram, and uses 11 inter-
mediate languages (coloured boxes). It compiles a strict
functional language (in the style of Standard ML and
OCaml) all the way down to concrete machine code for
six target architectures.

CakeML itself is a high-level functional programming
language, unsuited for low-level systems programming
in resource-constrained environments where predictable
performance is important. CakeML’s memory manage-
ment is all handled by the language runtime, and memory
allocation may trigger a stop-the-world garbage collector
at any time.

Pancake, in contrast, is explicitly designed to be un-
managed and close to hardware, and, importantly, no
runtime. Yet by integration into the CakeML ecosystem,
it can reuse many of the existing correctness proofs for
the CakeML compiler.

The first few phases of our Pancake compiler goes
through two intermediate languages (ILs) that are sepa-
rate from the CakeML compiler’s ILs. The first compiler
phase flattens structs and converts the programs to Cre-
pLang, which is a stepping stone into LoopLang. In Loo-
pLang, we compute minimal live sets and divide loops
(including their break and continue statements) into tail-
recursive functions that better fit the CakeML IL called
WordLang. When the program under compilation is
translated from LoopLang to WordLang, all loops are re-
placed with fast tail-calls, as WordLang has no loops.
However, the CakeML compiler is set up to compile tail
calls into fast simple jumps in the generated machine
code.

Once we have entered WordLang, we use the CakeML
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stack.

compiler’s compilation phases, including its phases for
instruction selection, register allocation, concretisation
of the stack, and, at the end, encoding of the entire pro-
gram into concrete machine code.

The compiler correctness proofs allow safety and live-
ness properties of Pancake programs to carry over to the
machine code that runs them.

Our Pancake compiler has a special feature by which
it not only produces the output machine code, but can
also predict the concrete maximum stack size that the
program can use, as long as the user’s input program
did not include any recursive calls that are not in tail
position. We have proved that the maximum stack size
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that the Pancake compiler returns is sufficient for run-
ning the Pancake program without running out of stack
space. This allows Pancake to guarantee the absence of
premature termination arising from stack overflows.

The functional correctness proof of the Pancake com-
piler follows the style of the CakeML compiler proofs.
The top-level Pancake compiler correctness theorem
states that the source Pancake program and the compiler-
generated machine code exhibit exactly the same seman-
tics, in particular, the same observable behaviour (I/O
events), if the compiler-generated code is run with at
least as much stack space as its maximum stack requires.

The compiler and the associated proofs are free soft-
ware, and available online.1

2.4 Challenges with Device Drivers

CakeML assumes exclusive ownership of its statically
allocated memory region and that this memory is not
observable by the environment. These assumptions are
not valid for memory-mapped device registers, which
are special memory locations used for interfacing with
device hardware, nor does it hold when devices directly
write to memory (DMA).

With this limitation, any interaction with the device
from CakeML would have to be mediated by FFI calls
to C, adding a layer of indirection as part of the TCB.
We eliminate this indirection in Pancake by adding native
support for interacting with shared memory.

A key challenge here is that the ISA models used
by the compiler backend [Tan et al., 2019] are inher-
ently sequential, and 100+ KSLOC of compiler correct-
ness proofs inextricably rely on this fact. Previous work
has integrated driver models for specific devices directly
into an ARM ISA model with an interleaving seman-
tics [Alkassar et al., 2007]. This approach would have
to abandon much of the existing proof base, and would
not provide the modularity we need for targeting multi-
ple ISAs and devices. We therefore parameterise the lan-
guage semantics on a model for shared memory, which
supports proof reuse and provides flexibility for incorpo-
rating arbitrary devices.

We also add shared memory semantics to all com-
piler ILs from Pancake downwards, and verify compi-
lation all the way down to machine code, from Pancake
abstract syntax which we extend with load/store opera-
tions dedicated for shared memory regions (ShMemLoad
and ShMemStore in Figure 1). These operations represent
reads and writes that are treated as observable events, just
as in the case of any foreign function calls, while being

1http://code.cakeml.org for source, or http://cakeml.org for
pre-packaged versions. Note that Pancake is fully integrated into the
CakeML compiler, rather than a stand-alone release.

compiled into the load and store instructions of the target
machine-language.

Another challenge arising from the CakeML lineage
is the issue of function entry points. Implementing the
expected driver interface in Pancake requires a mecha-
nism that allows the functions in question to be called
from outside the Pancake program. However, the compi-
lation output inherited from CakeML dictates that execu-
tion enters through the main function and exits entirely
when the main function returns. Additionally, the main
function is preceded by lengthy initialisation, and does
not support parameters.

Using this execution flow to implement the driver in-
terface demands workarounds, such as branching in the
main function based on data indirectly passed through
memory, and manually editing the compiler output to re-
turn to the caller. Notably, it also results in a substantial
performance penalty from repeated re-initialisation. A
calling mechanism with this basis is neither scalable nor
performant.

Instead, Pancake’s support for multiple entry points
provides a calling mechanism to address these issues.
Using this feature, a function specification can be tagged
with the export keyword, which extends the generated
compiler output to expose the function to the calling con-
ventions of the target platform and restore the state ini-
tialised by the main function when the exported function
is called. This circumvents the re-initialisation, and han-
dles argument passing and returning to the caller without
programmer intervention. It enables calling into the Pan-
cake driver as if it was written in C. The compiler cor-
rectness proofs currently account only for the main entry
point but not for reentry points.

2.5 Verification Approaches

Our aim is high-assurance machine code implementing
device drivers. The verified compiler (Section 2.3) guar-
antees that our source code (written in Pancake) compiles
to machine code that implements the source’s behaviour.
This is half of the story: we must also be sure that the
Pancake code we have compiled implements the device
driver correctly (incorrect source + verified compiler =
incorrect machine code).

The gold-standard (but expensive!) way to verify
source code is to use interactive theorem-proving (ITP),
as done by (for example) the seL4 [Klein et al., 2014]
and CertiKOS [Gu et al., 2016] kernels, and the Com-
pCert [Leroy, 2009], and CakeML [Kumar et al., 2014]
(and thus Pancake) compilers. As Pancake is an imper-
ative language, it would be natural to use an ITP-based
implementation of Hoare logic as the foundation for the
necessary proofs. We describe preliminary and future
work on ITP-based approaches to source verification in
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Section 6.2.2 below.
However, as described in Section 3, our approach here

is to use automated deductive verification, rather than an
ITP, for productivity reasons. Using Viper [Müller et al.,
2016a] (and its realisation of Hoare logic) increases the
size of the trusted computing base (see Section 6.1 be-
low), but can be expected to be less expensive in terms
of developer time and expertise. The example of our case
study bears this out.

Supporting this, Pancake syntax includes Viper anno-
tations (visible in Listing 1). These annotations resem-
ble comments in the source code, and can appear at the
top level and within function bodies. Top-level annota-
tions are used, for instance, to specify function contracts,
while in-function annotations can be used to specify loop
invariants. The Pancake compiler treats annotations as
null statements, and they disappear in the first phase of
compilation. However, the Viper transpiler (see below)
preserves the annotations so that verification can be car-
ried out.

3 A Viper Front-end for Pancake

Our verifier transpiles annotated Pancake code into the
Viper IL, then verifies the generated Viper code using
Viper’s symbolic execution backend Silicon [Schwer-
hoff, 2016]. This approach is comparable to that of Viper
front-ends such as Gobra [Wolf et al., 2021] for Go and
Prusti [Astrauskas et al., 2022] for Rust.

Our transpiler first uses the -explore option of the
Pancake compiler to extract the abstract syntax tree
(AST) of the input program, which includes Pancake-
level (1) annotations of the kind shown in Listing 1 as
well as (2) hooks into a device model that we will de-
scribe in Section 3.3. It then translates that AST into
encodings we have chosen for Pancake’s variables, val-
ues, memory locations, and annotated logical assertions
over these, as expressed in Viper IL code.

The rest of this section will document and explain the
most interesting of these encoding decisions, which re-
gard our encoding of Pancake’s machine word type and
memory in Viper. Our objective is to choose an encoding
that maximises the performance of the resulting queries
to Viper’s backend, while still being sound—that is, it
does not produce a Viper query that is verifiable as true
when the assertion from Pancake level that it is supposed
to represent is actually false.

We aim for most produced queries to take seconds or
minutes to verify, to make verification usable as an ac-
tive part of a driver developer’s workflow. Our overrid-
ing concern is to prevent the transpiler from producing
queries that cause the Viper SMT-based back-end either
to diverge or to take a prohibitively long time to be used
for continuous integration testing. We leave proving the

soundness of the encoding to future transpiler verifica-
tion work (see Section 6).

3.1 Machine-Word Encoding

For the best query performance, we encode Pancake’s
machine-size word variables as integers in Viper.

As a language whose only primitive type is machine-
size words (used for both values and pointers), Pancake’s
word variables have bitvector semantics and overflows
are well-defined behaviour, i.e., the variable is wrapped
modulo the word size.

To preserve these semantics when encoding these as
integers in Viper, which are signed and unbounded, one
option is to treat arithmetic operations as modulo the
word size. However, this approach significantly slows
verification due to the mixing of arithmetic that is lin-
ear (such as addition, subtraction etc.) versus non-linear
(such as modulo and bitvector operations) with respect to
Viper’s unbounded signed integer space. Poor query per-
formance due to mixing of different theories that require
handling by different solver strategies is a well-known
hazard for SMT solvers [Jovanovic and Barrett, 2013].

Instead, since overflows are rarely intended behaviour,
we adopt Prusti’s approach, treating overflows as verifi-
cation failures. We do this by checking the bounds of
every variable after having unrolled all arithmetic oper-
ations into three-address code. We make this decision
to ensure soundness at the mild expense of disallowing
intended machine word overflows. These were used in
the original C implementation of the driver but could be
avoided with a one line change in the Pancake version.

Another concern is that bitvector operations are also
non-linear with respect to Viper integers, causing similar
performance concerns. Observing that almost all bitvec-
tor operations in our driver occur as part of bit mask-
ing, shifting etc. for accesses to device memory as part of
a well defined device interface, we instead abstract this
device interface, which we cover in Section 3.3. Addi-
tionally we precompute constant expressions and apply
heuristics to rewrite common bitvector operations, e.g.
x&255 is rewritten as x%256. Although the rewritten op-
erations still use non-linear arithmetic, performance is
improved compared to bitvector operations. This elim-
inates the vast majority of bitvector operations, with the
remaining few in our Ethernet driver turning out to be
reasonably performant.

3.2 Local Memory Encoding

As mentioned in Section 2, Pancake disallows pointers
to stack variables, which simplifies modelling them in
Viper, as for these we do not have have to manage any
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kind of access permission or to check for references to
invalid memory.

For all other memory, the memory model of Pancake
poses unique challenges due to its assembly-like nature,
such as the lack of first-order support for arrays and re-
liance on pointer arithmetic for memory operations. Due
to the lack of information about what different mem-
ory regions represent—be it an array, struct or other
data structures—we must adopt the naivest modelling ap-
proach: with the exception of shared and device memory
(described in the next section), we encode memory as an
array of words. This approach results in non-idiomatic
Viper code but captures Pancake’s native word-size treat-
ment memory operations accurately.

The various memory regions a function needs access
to, and with which permission, are added via annotations.
These annotations are encoded as an iterated separating
conjunction [Müller et al., 2016b], which can be verified
efficiently in Viper.

3.3 Shared and Device Memory Encoding

As mentioned in Section 2.4, Pancake includes dedicated
load/store operations for shared memory regions, whose
behaviour in a sense resembles the effect of the volatile
keyword in C which prevents the compiler from reorder-
ing or optimizing away those accesses. Thus, our driver
uses these primitives for accesses to device memory, as
well as accesses to memory shared between it and other
OS components. Moreover, unlike the rest of memory,
we cannot encode shared memory in Viper simply as an
array of words, because we cannot rely on its contents
not to change between accesses.

Device register accesses, needed for implementing
drivers, make extensive use of bitwise operations to ac-
cess the correct bits. As stated before, these operations
result in bad performance so we seek to avoid them
where possible.

1 method store_rx_free(heap: IArray,
2 device: Ref, addr: Int, value: Int)
3

4 /@ shared rw u64 rx_free[lower..upper] @/

Listing 2: Method signature of shared memory store in
device model and the corresponding top-level annotation
in Pancake, specifying that shared memory accesses to
the address range lower..upper should transpile to a
Viper invocation of store_rx_free or load_rx_free.

To limit these, we model accesses to shared mem-
ory as separate Viper method calls, which the driver de-
veloper should specify in an external Viper file repre-
senting the device model for the driver’s target device.

These methods define valid operations for specific ad-
dress ranges corresponding to particular device registers
and memory regions. They also specify requires and
ensures clauses for the hardware interfaces, as asser-
tions in terms of a global device state and the non-device
memory. This is a good fit with how the Pancake seman-
tics models shared memory operations (Section 2) as ob-
servable events, whose interpretation is parameterised on
a model of the environment—a semantics which is also
preserved by the Pancake compiler.

For interactions via shared memory with other OS
components, we make it the responsibility of the driver
developer to specify a neighbouring component model
similarly in a separate Viper file. The developer should
use this to capture the guarantees the driver should meet
for the Viper verification to enforce, as well as any as-
sumptions about the behaviour of those neighbouring
components with respect to the shared memory.

We then provide a syntax for top-level Pancake an-
notations that allow the driver developer to specify the
correct method(s) to use for a shared memory operation,
according to the address range the driver interacts with,
allowing the transpiler to infer automatically which Viper
method the produced Viper model should invoke in place
of the shared memory interaction (see Listing 2).

This way, the driver developer does not necessarily
have to specify the model of the device or neighbouring
component before they implement their driver in Pan-
cake, and furthermore they do not have to modify their
Pancake driver’s shared memory accesses after speci-
fying these models—they just add extra annotations to
specify which Viper methods the transpiler should pro-
duce in place of loads/stores to given shared memory ad-
dresses. This approach ensures the separation of driver
implementation and device specification, whilst also im-
proving verification speeds.

4 Verified Ethernet Driver

We formally verify a single-core i.MX Ethernet driver
for LionsOS [Heiser et al., 2025]. LionsOS uses a sim-
ple OS-side interface for device drivers using zero-copy
shared-memory communication for network data, and
lock-free, bounded, single-producer, single-consumer
(SPSC) queues for meta data and control information.
The driver synchronises with the rest of the OS via
semaphores (implemented as seL4 Notifications).

The target driver, implemented in Pancake, controls
the MAC-NET 1 Gb/s Ethernet core common to NXP
i.MX 8M Mini, Dual, QuadLite and Quad Applications
Processors present in various Arm-based NXP system-
on-chips (SoC), operating as a network interface card
(NIC). The NIC uses DMA descriptor rings for passing
the addresses of data buffers.
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The driver incorporates formal specifications through
annotations using Hoare logic and the Viper verifica-
tion framework. This verification work establishes four
classes of critical guarantees over the device driver,
which we will examine in turn: (1) protocol compliance
with NIC device interfaces (Section 4.1), (2) protocol
compliance with neighbouring OS component interfaces
(Section 4.2), (3) guaranteed data integrity across trans-
fers (Section 4.3), and (4) memory safety through region
separation and restricted access controls (Section 4.4).

4.1 Device Model and Properties
We model and enforce three kinds of properties with re-
spect to the driver’s correct use of the device interfaces:
(1) that device memory accesses are within the right ad-
dress ranges, (2) that values written to the device obey
the device’s requirements, and (3) that verification of the
rest of the driver is robust for any values read from the
device, as constrained only by the device model.

First, we enforce that the driver only accesses the parts
of device memory that comprise the NIC’s hardware in-
terfaces for packet receipt and transmission— namely,
the device’s RX (receive) and TX (transmit) hardware
descriptor ring regions and other essential registers. To
enforce this, recall from Section 3.3 that our transpiler
supports and looks for top-level Pancake annotations that
specify which addresses correspond to valid device in-
terfaces, as illustrated in Listing 2. Our verifier will re-
ject any Pancake drivers that attempt to invoke a shared
memory load or store operation on an address that is not
covered by any such annotations.

1 method store_EIR(device: Ref, addr: Int,
2 value: Int)
3 requires addr == (REG_BASE + EIR_OFFSET)
4 requires value == IRQ_MASK
5 requires valid_device(device)
6 ensures valid_device(device)
7

8 method load_EIR(device: Ref, addr: Int)
9 returns (retval: Int)

10 requires addr == (REG_BASE + EIR_OFFSET)
11 requires valid_device(device)
12 ensures bounded32(retval)
13 ensures valid_device(device)
14

15 /@ shared rw u32 EIR[REG_BASE + EIR_OFFSET] @/

Listing 3: Examples of device register store/load inter-
faces in the device model as specified by Viper methods
using requires and ensures, and corresponding top-
level Pancake annotation.

Second, we verify that whenever the driver interacts
with these device interfaces, it does so in the required
way not to put the device into a bad state, as specified by

its documentation and captured by our device model. To
enforce this, we specify two kinds of requires clauses
for device interface methods, as illustrated in Listing 3
for a representative pair of examples, the store and load

methods for EIR, a particular device register:

1. Method-specific requirements, such as the
store_EIR method’s requires of both an ad-
dress and a value requirement—namely, that the
address is the EIR’s and that the driver only ever
writes a particular IRQ_MASK constant to it;

2. Device-wide invariants—in this example, captured
by valid_device in store_EIR’s third requires

clause. For our NIC, valid_device asserts that
the state of the hardware descriptors remains valid:
the bitfields are cleared and set properly accord-
ing to the device’s documented specifications, data
pointers are 32-bit width and byte-aligned, and data
lengths are within 16-bit bounds.

The device state of our NIC device, as modelled by
device and asserted valid by valid_device(device),
comprises the hardware descriptor rings, with each ring
decomposed into three integer sequences representing
data addresses, lengths, and bitfields. These integers
represent machine words and are converted by Viper to
bitvectors when bit-level operations are required. Our
decomposition of these descriptor components into na-
tive Viper integers thus simplifies verification and re-
duces SMT solver complexity, particularly when using
non-linear arithmetic and bitvector operations.

Note that, while the presence of valid_device in the
requires clauses of device interface methods requires
the driver not to violate the validity of the device state,
its presence also in the ensures clauses of all device
methods specifies that we can assume the device itself
will maintain that same validity invariant throughout all
driver-device interactions.

Finally, we model the non-determinism of the values
the driver could possibly obtain from the device by un-
derspecifying its interface methods, forcing the verifica-
tion of the calling context of the method (i.e. the Pan-
cake code that invoked the shared memory operation) to
account for a wide range of possible values constrained
only by their ensures clauses. For example, load_EIR in
Listing 3 ensures that the return value is a valid unsigned
32-bit word value, as captured by bounded32(retval).
Verification must subsequently succeed for any value re-
turned by that interface that satisfies the ensures, i.e. any
unsigned 32-bit word value.

4.2 OS Communication Protocols
Using much the same techniques just described in the
previous section for specifying valid device interactions,
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we constrain the driver’s access to shared memory re-
gions for network SPSC queues through annotations
when interfacing with LionsOS components. We also
model the shared SPSC queues non-deterministically to
verify that the driver maintains protocol compliance—
assuming the neighbouring OS component maintains it
too—without assuming specific state values.

We verify that the driver adheres to the following net-
work queue signaling protocols: When consuming data
buffers from network queues, the driver requests wake-
up signals from the OS when hardware rings have va-
cancy. When providing data buffers to the OS, the driver
signals the OS’s semaphores if and only if (1) a signal
was explicitly requested by the OS and (2) the queue
state has changed by the driver [Heiser et al., 2025]. To
prevent double signaling, we also ensure that the driver
clears signal requests after notification. We also verify
that queue states remain valid during all SPSC queue op-
erations, for instance we check that no queue overflows
or underflows occur at the driver side.

4.3 Data Integrity
To ensure reliable data transfer between the OS and the
device during the translation between hardware descrip-
tor and SPSC formats, we verify that the driver maintains
data integrity by tracking packet addresses and lengths.

For example, we check that the given data address
and data length are stored properly after updating the TX
hardware descriptor ring, as shown in Listing 4.

1 buffer = net_dequeue(os_tx_avail);
2 update_tx_hw_ring(hw_tail, buffer);
3 /@ assert(device.hw_ring_tx[hw_tail].data_addr
4 == buffer.data_addr) @/
5 /@ assert(device.hw_ring_tx[hw_tail].data_len
6 == buffer.data_len) @/

Listing 4: Data integrity verification example in anno-
tated Pancake. For brevity, unwrapping of predicates re-
ferred to by the assertions is omitted.

We establish this integrity check on all pathways of
data transfers in the driver. We also verify data trans-
fer completeness by ensuring that within the driver, the
number of SPSC queue operations align with the number
of hardware descriptor ring state changes, so that there is
no data loss in the driver.

4.4 Memory Access Control
In addition to the memory access constraints described in
Section 4.1 and Section 4.2, we furthermore verify that
only the parts of the driver responsible for packet trans-
mission paths access any TX-related descriptor rings and

os.vpr

driver.

device.vpr

driver.vpr

Transpiler Viper
driver.

Manual
annotations

yes/no/
try harder

Figure 3: Driver verification workflow.

SPSC queue state, and likewise that only its packet re-
ceipt paths access RX-related state.

We enforce this using Viper’s native permissions fea-
tures to specify access controls, in this way providing
formal verification of memory safety and region isola-
tion. In effect, our driver verification applies a separation
logic-like principle by partitioning the driver’s global
memory into RX and TX regions (which reflects their
use in LionsOS [Heiser et al., 2025]).

4.5 Verification Workflow
Figure 3 shows the resulting verification workflow. The
verifier annotated the Pancake source of the driver and
processes the resulting source with the transpiler, which
produces the input for Viper. The verifier also supplies
Viper specifications of the device interface, as well as
the interface between the driver and the rest of LionsOS.
These are then processed by Viper which either returns a
result (proved or falsified) or times out.

5 Performance Evaluation

We now examine how our verified Pancake driver com-
pares to the original C implementation.

Pancake driver compilation time is a matter of sec-
onds, and the verification of the driver in full takes
around 20 minutes on a typical laptop. When verified
separately, the device model takes 10 minutes and the
driver’s functions each take around 1 minute.

Our evaluation platform is an AVnet MaaXBoard with
an NXP i.MX8MQ SoC, having four Arm Cortex A53
cores capable of a maximum of 1.5 GHz; we run our
measurements at a fixed clock rate of 1 GHz. The board
has 2 GiB of RAM and the on-chip 1 Gb/s NIC specified
earlier (in Section 4).

The evaluation system runs a networking client on Li-
onsOS. The client simply receives data packets from the
NIC and echoes them back. We use an external load gen-
erator that sends an adjustable load (requested through-
put) to the target system, and measures the amount of
data received back (received throughput) as well as the
latency. On the evaluation system we also measure CPU
load.

Figure 4 shows the result. The system has no prob-
lems handling the requested load: the received through-
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Figure 4: Performance of Ethernet Driver written in
Pancake vs C, in terms of achieved throughput (Xput)
and Driver CPU utilisation.
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Figure 5: Performance of Ethernet Driver written in
Pancake vs C, in terms of average round trip time (RTT)
with standard deviation and total CPU utilisation.

put equals the requested. The Pancake version of the
driver uses slightly more CPU time to handle the load
than the C version, the difference is about 10%.

Figure 5 puts this slight increase into context, by look-
ing at latency (RTT) and the overall CPU use of the
whole system. The difference in CPU usage of the
drivers becomes unnoticeable. Similarly, the differences
in latency is well within the variance of the results. We
can summarise that the performance cost of the verified
driver is in the noise.

6 Discussion

While our main results are formally verified, no proof
about a real-world artifact is ever fully complete and
self-contained: there will always be a trusted computing
base (TCB). The TCB, in brief, is everything that we rely
on for the correct operation of our system, but which is
currently outside the scope of the formal verification ef-
fort. For a formal verification result, the TCB is the main
threat to validity.

In Section 6.1, we discuss our TCB. Section 6.2 dis-

cusses alternative verification approaches we are pursu-
ing that would mitigate the TCB. Finally, Section 6.3 dis-
cusses potential usability improvements to the verifica-
tion front-end.

6.1 Threats to Validity

For the Pancake compiler correctness proofs, we trust:
that the HOL4 theorem prover is a sound implementation
of higher order logic; that the official specification of the
Arm ISA is correctly implemented by the CPU [Kanabar
et al., 2022]; and that an unverified linker for connect-
ing the Pancake binary to external code such as LionsOS
library routines is correct. With these as the TCB, the
Pancake compiler is verified, just like the CakeML com-
pilation passes that it leverages, to preserve the semantics
of the main function of the source program.

Our verification results presented here establish cer-
tain observable properties of the driver including its be-
haviour after reentry. Putting these together, the verified
compiler guarantees that the binary obtained by compil-
ing this driver should preserve the verified observable
properties, although we are not (yet) providing links be-
tween the two results formally, in the sense that there is
no theorem yet to state this on a single, unified formal-
ism. Future work will strengthen this by verifying the
transpiler as well as extending the compiler proofs to ac-
count for reentry points.

Moreover, while we plan to verify our transpiler from
annotated Pancake to Viper (Section 6.2.1), this is not
done yet. Until then, a mistake in the transpiler could
produce a Viper query that the underlying SMT-based
backend can prove true, even if the property as speci-
fied at the Pancake program point via Viper annotations
is false. Beyond this, we also trust the Viper verification
infrastructure and SMT solvers called by its backends to
discharge the Hoare logic queries specified using its in-
put language soundly, i.e. only when true.

Like any device driver, we trust the device not to
malfunction—that is, to guarantee that it meets the
ensures specifications we impose on return from device
interfaces in our device model. This includes trusting
that the device’s initialisation process establishes a valid
initial state. Verification of the device hardware and ini-
tialisation process would be needed to gain further assur-
ance of this.

Meanwhile, we assume that the neighbouring OS
components comply with the SPSC queue protocols, as
mentioned in Section 4.2, and that the driver acts as the
sole consumer or producer per queue. We will need to
leverage Viper’s access permission system to establish
more sophisticated guarantees about concurrent accesses
and thread safety properties.

Finally, we trust the operating system kernel and its
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userland support libraries not to crash or malfunction.
LionsOS runs on the seL4 OS microkernel, which is ver-
ified not to crash [Klein et al., 2014], and relies on the
seL4 Microkit support library, whose main server loop
has been verified not to exhibit undefined behaviour [Pa-
turel et al., 2023]. However, functional properties of in-
dividual seL4 system calls relied on by Microkit have not
yet been verified.

6.2 Future Verification Efforts
6.2.1 Transpiler

Work towards a formal correctness proof for the imple-
mentation of the transpiler described in Section 3 is still
ongoing. Though the Viper IL code is obtained by the
transpiler in a straightforward manner from the original
Pancake code, presently we have no formal proof of a se-
mantic correspondence between the input Pancake code
and the resulting Viper IL code. Consequently, the tran-
spiler is currently included as part of the trusted comput-
ing base, as discussed in Section 6.1.

Such a proof would complete our end-to-end verifica-
tion story, by allowing us to soundly infer the correctness
of our initial Pancake code from a successful verifica-
tion run of the corresponding Viper IL code. This as-
sumes the correct operation of the Viper toolchain which
our verification step relies on. Existing efforts to vali-
date parts of this toolchain can be found in [Gössi, 2016;
Parthasarathy et al., 2024].

Our eventual plan is to complete a mechanised correct-
ness proof for the Pancake to Viper IL transpiler within
the HOL4 theorem prover. As a first step towards this, we
require formal descriptions of the transpiler, and the se-
mantics of Pancake and the Viper IL. Though the current
Rust implementation of the transpiler contains 7 kLOC,
a significant portion of this code consists of workarounds
which extract the underlying abstract syntax from an
unparsed Pancake program without interfacing directly
with the existing Pancake parser. However, as part of the
CakeML project, the Pancake language already has its
parser defined in HOL4. Additionally, the formal syn-
tax and semantics of Pancake have been mechanised in
HOL4. Thus, an implementation in HOL4 can access the
abstract syntax directly, which could simplify the imple-
mentation considerably.

6.2.2 Interactive Theorem Proving for Pancake pro-
grams

The Pancake language semantics are defined in the
HOL4 interactive theorem prover (ITP). It would be
natural to verify a Pancake program directly in HOL4,
proving that its semantics agree with its specification:
it would significantly shrink the TCB. Furthermore, it

would be possible to formally compose the source-level
verification with the compiler correctness proof for Pan-
cake (also in HOL4) to give an end-to-end proof that the
compiled binary is correct.

Hoare logic We have defined a Hoare logic for Pan-
cake programs in HOL4. This is a standard approach
to verifying programs in an interactive language, and re-
sembles the proof approach of Viper. Programs are deco-
rated with preconditions, postconditions, and loop invari-
ants. The logic specifies how a proof of a precondition/-
postcondition pair for a function body can be decom-
posed into proofs about each statement. We have defined
the logic in HOL4 and proved its soundness against the
Pancake semantics. We have also added an automated
proof tactic that drives the logic, doing all the decompo-
sition and re-composition steps, leaving the user to prove
verification conditions such as that the precondition they
supplied is sufficient, that their loop invariant implies it-
self at the next iteration, etc.

At the time of writing, this Hoare logic automation
makes the proof process far more productive than a naive
manual approach. But our proof productivity with this
automation is still far short of what is achieved with our
Viper-based approach. We think that there is still sub-
stantial room for improvement in future work.

One interesting possibility is to try to maximise com-
patibility between the HOL4 Hoare logic and the frag-
ment of Viper’s annotation syntax we are using in this
work. The aim would be that an initial verification in
Viper could later be minimally converted into a HOL4
verification, and replayed without the involvement of
Viper or the transpiler. This is a potential alternative to
verifying the transpiler and would also take Viper and the
SMT solvers out of the TCB.

Interaction trees semantics As mentioned in Sec-
tion 2.2, Pancake programs that communicate with the
outside world are parameterised on a function that mod-
els how the outside world behaves. These models are
deterministic, which simplifies definitions and compiler
proofs but makes modelling realistic devices awkward:
from a programmer’s point of view, devices are non-
deterministic. Moreover, requiring device models up-
front makes it difficult to decouple reasoning about code
and about devices.

A more promising approach is interaction trees [Xia
et al., 2020], which represent the behaviour of a program
as a coinductive tree, with nodes for actions and branches
for possible environmental responses. This model natu-
rally accommodates non-determinism, in contrast to the
linear-time view of a functional semantics.

We have developed an interaction tree semantics for
Pancake and are currently proving its correspondence to
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the functional semantics. We are also currently apply-
ing it to verification of device drivers similar to those de-
scribed here.

6.3 Transpiler usability improvements
The current workflow involves transpiling Pancake into
Viper for verification. Whilst the transpiler allows for
direct verification, error messages are tied to the gener-
ated Viper code and are not reflected back to the Pan-
cake code, complicating debugging. Additionally, while
many annotations are automatically inferred, some re-
quire manual specification, increasing the effort required
from the programmer.

In addition to the command line tool we have built
an initial development environment for verified Pancake
based on Microsoft’s VS Code framework. As of yet
this lacks some features like support for the separate
Viper device model. The transpiler supports verifying
functions individually. This could be integrated into
the development environment to allow for efficient re-
verification of only modified functions.

Despite these shortcomings, we expect that these tools
can be combined and improved to form a cohesive and
usable toolchain for writing and verifying device drivers.

7 Related Work

A number of prior works have investigated verification of
device drivers at various programming language levels.
Within this space, researchers have employed different
verification approaches like model checking [Kim et al.,
2008] and interactive theorem proving [Möre, 2021].
Among these efforts, [Penninckx et al., 2012] developed
their verification using VeriFast [Jacobs et al., 2010], a
deductive verification approach similar to ours. They
also notably extended their analysis to include concur-
rency properties beyond our current scope. However, a
common limitation across all these approaches was the
significant gap between the analysed model and the ac-
tual executable code—a gap which we narrow by using
Pancake’s verified compilation stack.

Others, which we detail below, have done better at
closing such gaps (e.g. in some cases providing support
for direct access by drivers to memory-mapped device
ports, as we have), but failed to demonstrate scalability
beyond the simplest serial drivers – among other reasons,
by failing to include any performance evaluation of the
drivers they verified.

The earliest driver verification effort for a non-trivial
device we are aware of is that of Alkassar [2009]; Alka-
ssar and Hillebrand [2008], who verified a (still simpli-
fied) ATAPI hard disk device driver in Isabelle/HOL in-
teractive proof assistant [Nipkow et al., 2002] as part of

the Verisoft project. Similar to our work, they verify
their driver relative to a functional model of the memory-
mapped device – in their case, based on a subset of the
ATAPI standard. However, the type safety of the frag-
ment of C they used for most of their OS limited their
ability to model direct access to memory-mapped device
ports directly from that language; consequently, they in-
stead had to write and verify their driver in a MIPS-like
assembly language.

Duan and Regehr [2010] presented a framework for
verifying device drivers integrated with the L3 model of
ARM machine code [Fox, 2003; Fox and Myreen, 2010]
for HOL4 [Slind and Norrish, 2008], with a UART driver
as the case study. Like Alkassar and Hillebrand [2008]
they did not support reasoning about DMA, but Duan
[2013] later added support in the form of Hoare triples
for device memory access scenarios. The way we inte-
grate shared memory access in Pancake with the speci-
fication of requires and ensures as Viper annotations
is similar, and allows us to impose the requirements of
our device model on our driver’s device memory ac-
cess directly from the Pancake language. Schwarz and
Dam [2014] further extend the L3 model to support de-
vice drivers with DMA. This goes further than the device
model of our paper, as the Ethernet device we verify is
documented not to interfere with the hardware ring in-
dices, which are left under the control of the driver.

As part of the CertiKOS project, Chen et al. [2016]
added support for verifying drivers and integrating them
with their OS verification framework in the Rocq (for-
merly Coq) interactive proof assistant. Unlike the above
works, whose drivers were implemented in assembly,
the serial and interrupt controller device drivers Chen
et al. [2016] verified are implemented in ClightX [Gu
et al., 2015], an extension of the CompCert Clight lan-
guage [Leroy, 2009] with extra instrumentation to sup-
port CertiKOS’s abstraction-guided approach to OS veri-
fication. Like our work, their use of a verified compiler (a
modification of CompCert) to compile the driver down to
binary gives some assurance that any properties proved at
the driver source level are preserved down to the binary.
However, driver verification in their framework requires
interactive proofs in Rocq, for a C variant whose proof
relies on adding abstract state elements that can influence
program execution. This is more disruptive to the origi-
nal code than mere annotations or typical “ghost state”,
and arguably requires more formal methods experience
than automated deductive verification via annotations.

Unlike our work, none of the works above presented
any analysis or discussion their drivers’ performance.

We are also aware of some current efforts by Chen
et al. [2024] to verify device drivers written in Rust
[Klabnik and Nichols, 2017] using the Verus automated
deductive verifier [Lattuada et al., 2023]. However, with-
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out a formal semantics let alone a verified compiler,
the possibility of end-to-end assurances for Rust-based
drivers still seems remote.

Finally, there has been also been work on driver syn-
thesis by [Ryzhyk et al., 2009b, 2014] that took as in-
put detailed specifications of interfaces for (1) the device
class the driver needs to implement, the (2) device it-
self and (3) OS service it needs to provide to the rest of
the OS, written in a custom specification language. Al-
though, like in our work, their device interface included
details such as valid registers and their sizes, it also in-
cluded more detailed elements like a state transition dia-
gram. In our work, we have a model of device state that
we use for specifying and verifying the maintenance of
invariants (the valid_device(device) assertion seen in
Listing 3 and explained in Section 4.1))—this could in
future form the basis for more detailed, state machine-
based specifications of internal device states. Note, how-
ever, that this synthesis work could not deal with DMA.

8 Conclusion

This paper presents, to our knowledge, the first formal
verification of a demonstrably performant driver for a re-
alistic, non-trivial device, the Ethernet NIC common to a
number of variants of NXP i.MX 8M processors.

It also introduces the Pancake systems programming
language, designed especially for systems-level code to
be amenable to formal verification. With Pancake, it
makes two enabling contributions: (1) a verified com-
piler that carries the semantics of Pancake down to bi-
nary, leveraging CakeML’s verified compiler backend;
and (2) an automated deductive verification front-end
that takes Pancake with Viper annotations, leveraging the
Viper SMT-based verification framework.

This work shows that Pancake is usable for develop-
ing verified, performant drivers. A PhD student with a
systems background and not much formal methods ex-
perience was able to write and verify the aforementioned
Ethernet driver in a few person-months. The Pancake
driver shows performance very close to C.

This work paves the way for verified development
of performant device drivers—a leading source of OS
vulnerabilities—as common-place infrastructure.
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