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Abstract
This thesis describes the design of a system-level instruction set simulator,
a software tool that emulates enough software-visible aspects of a computer
system to allow direct execution of an unmodified operating system in a
controlled, transparent environment. Instruction set (ISA) simulation is an
established technique used for debugging, profiling and validation of com-
puter systems since the introduction of the first EDSAC ISA in 1949. To
date, all such simulators have been designed in an ad hoc fashion, targeted
for a particular combination of the target architecture, operating system and
simulation technique. This approach leaves little room for code reuse, and
is unsatisfactory as instruction set simulators represent a substantial code
investment, but are typically employed in a research or a development envi-
ronment as short-lived, project-specific tools. Therefore, there exists a clear
need for a robust framework for sharing and reusing simulator components.
Sulima is a result of my attempt to design such a framework, in which system-
level simulators can be constructed from opaque, autonomous modules, each
representing a distinct component of a complete hardware system. For ex-
ample, one can design modules simulating a particular processor, peripheral
device, memory configuration or a floating-point unit for the desired level of
accuracy and performance. In this thesis, I also discuss issues associated with
design of a simulator based on dynamic translation of instruction sets and
a novel technique that uses the Sulima framework to efficiently distribute a
simulation of a multiprocessor system across multiple simulator hosts. Fi-
nally, I describe the implementation of a fairly sophisticated simulator for a
complete MIPS64-based system.
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1 Introduction

1 Introduction
The Sulima project begun when I was faced with the task of adopting the well-
known instruction set simulator SimOS [1] for use as a teaching and research
tool in an Operating Systems course at the University of New South Wales.
It soon became obvious that SimOS, while efficient and fairly complete, falls
short of its promise of delivering an extendible framework suitable for use in
an arbitrary research environment. Based on my experiences with the SimOS
code, I have decided to implement a new system-level simulator which would
provide levels of extendibility and flexibility not found in any of the existing
products.

This thesis describes the design of Sulima, a system-level instruc-
tion set simulator. A system-level instruction set simulator is a software tool
that emulates enough software-visible aspects of a computer system to al-
low direct execution of an unmodified operating system (referred to as the
“simulator workload”) in a controlled, transparent environment. Instruction
set (ISA) software simulation is an established technique used for debug-
ging and profiling of computer software, dating back to the introduction
of the first EDSAC ISA in 1949 [2]. I include an overview of the relevant
work in this field in the History section at the end of the Background chapter.
More recently, software models have been proposed as a specification and
validation tool for hardware architectures in projects such as Hawk [3] and
sim-nML [25]. However, most of the existing simulators are concerned only
with application-level software, and do not simulate such system features
as the memory management unit (MMU), direct access to memory by pe-
ripheral devices (DMA) or hardware exceptions and interrupts. All of those
affect the behaviour of system software and, as such, must be modeled when
this behaviour is the subject of an investigation. Extending an arbitrary in-
struction set simulator to accommodate system software is a fairly difficult
task due to the combinatorial explosion of the potential interactions between
system components, and the need to simulate multiple value-indexed arrays
(such as caches and TLB) which are cumbersome to implement efficiently
and prone to programming errors. To date, all such system-level simulators
have been designed in an ad hoc fashion, targeted for a particular combina-
tion of the target architecture, operating system and simulation technique.
This approach leaves little room for code reuse, as demonstrated by the at-
tempts to extend SimOS [1] to simulate multiple architectures. SimOS has
originally been designed at Stanford University to model behaviour of the
Flash multiprocessor [4] based on the MIPS architecture [5]. Subsequently,
various groups have attempted to extend the simulator with a support for
the Alpha [6], PowerPC [7], x86 [8] and SPARC [9] architectures. Of those,
only the Alpha port by Digital (now Western Research Laboratory) and the
PowerPC port by Austin Research Lab have been successful, mostly due to
the similarity between the MIPS and Alpha architectures and the amount of
resources available to the companies sponsoring the projects. The remaining
two ports, attempted by the original SimOS team at Stanford, have failed
(private communication with Bob Lantz from Stanford.) The URLs for all
three SimOS projects have been included in the WWW Resources chapter.

Classical uses of an instruction set simulator are described in the
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Background chapter. Like most simulator tools, instruction set simulators are
typically short-lived tools specialized for a single research project and usually
discarded after its completion. However, unlike most other simulators, a
system-level simulator is a very sophisticated application that represents
a substantial code investment. Many components of a simulator, such as
cache models and peripheral devices, can be readily reused in many different
scenarios, dramatically decreasing the amount of time and effort required
to implement a system to the specific requirements of a particular project.
The primary goal of Sulima is to provide a stable framework in which the
different components of a simulator for an arbitrary computer system can
be modeled as autonomous, reusable software modules. Performance was
of a secondary concern, although, naturally, I took care to ensure reasonable
efficiently.

This document has been divided into five chapters.
The Background chapter introduces the concept of an instruction set

simulator by discussing the various simulation techniques and their uses. At
the end of the chapter, I include an overview of the historic developments in
the field, annotated with the relevant bibliographic references.

In the Design chapter, I introduce Sulima by discussing the different
components of a simulator and their treatment by the framework. I also
describe the design of a simple interpreting processor module. Although
interpreter-based simulators are known for their inefficiency [35], they are
still an important technique for simulating secondary processors, such as
DMA controllers, that tend to be too specialized to benefit from the more
sophisticated instruction set translation techniques. Interpreting simulators
are also important for executing rarely-used code in a generational instruction
set translator. In this chapter, I avoid the use of the actual C++ code fragments
in favour of an abstract description of the interfaces, in order to emphasize
the design rather than the implementation details, which are discussed later.

The Distributed Simulator chapter describes a design of an efficient
simulator that utilizes multiple host systems in order to maintain acceptable
performance, even when the complexity of the simulator workload signifi-
cantly exceeds the complexity of the host. In most cases, it is impossible or
impractical to extract sufficient amount of parallelism out of the workload to
significantly utilize commodity multiprocessing hardware, and consequently
there has been little success in the area. I propose to solve the problem by
distributing the simulator state, and decoupling the simulated processors by
resorting to backtracking whenever a true state dependency is violated.

The Instruction Set Translation chapter discusses some issues in-
volved in designing a simulator module that performs a dynamic (or “just
in time”) translation of the simulator workload into the native instruction set
of the host. This popular technique dramatically improves performance of
the simulator for frequently-executed portions of the workload such as loops
and certain portions of the operating system. The technique has received a
reasonable coverage in literature, and accordingly this section simply sum-
marizes the established methods and their suitability for implementation in
the Sulima framework.

The final chapter, Implementation, describes the actual C++ imple-
mentation of the framework and the Koala-R4600 interpreting simulator for
the IDT R4600 [10] implementation of the MIPS64 ISA.
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2 Background
The benefits of using software tools to simulate the behaviour of a hardware
system for both engineering and research purposes are well known. To-
day, ISA simulators exist for all major instruction set architectures, including
Alpha (SimOS [1], SimICS [11]), ARM (ARMulator), IA-32 (SimICS), IA-64
(the HP/Intel IA-64 simulator), MIPS (SimOS, SPIM [12]), PowerPC (SimOS,
PSIM]), SPARC (Shade [14], SimICS) and SuperH (e-sim, et al.). Pointers to
URLs for most of these projects have been included in the WWW Resources
chapter. In many cases, these simulators have been developed by the origi-
nal instruction set design team and provided by the ISA vendors as part of
the official software development kits. The four traditional applications of
instruction set simulators have been described below.

2.1 Applications of ISA Simulators

2.1.1 System Development
Development of many low-level operating system services on real hardware
is a tedious and thankless task, with little debugging information available
to the programmer. Further, even when kernel debugging is supported by
the architecture, these kernel debuggers usually interfere with the state of
the processor executing the investigated code, reducing the quality of the
available information. Traditionally, operating system developers have re-
sorted to logic analyzers and hardware debuggers such In-Circuit Emulators
(ICE) [14] because software debuggers, being themselves executed in the de-
bugged environment, cannot be used to examine the system state during
execution of exception handles and other critical routines on most architec-
tures. The importance and difficulties of operating system debugging are
best illustrated by the provisions that most modern architectures make for
supporting system debuggers at the hardware level. These provisions range
from the watch registers on Alpha [6], IA-32 [8], MIPS [5] and SPARC [9],
which trigger an exception every time a specified physical or virtual address
is accessed by a software instruction, to hardware support for single-stepping
through system code (IA-32), and a complete set of alternate system registers
for exclusive use by the debugger on the UltraSPARC implementation of the
SPARC architecture [15].

An instruction simulator can potentially eliminate the need for those
cumbersome and expensive tools and reduce development time by exposing
the complete machine state to the programmer, even during sensitive code
segments such as exception handlers and bootstrap loaders. In addition, the
simulator, itself running in a complete operating system, may be given access
to the complete source code and symbolic information for the debugged
kernel, and utilize it to provide some symbolic debugging facilities impossible
with hardware tools [16].

2.1.2 Instruction Set Design
The recent trends in post-RISC instruction set architecture design includes
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development of highly elaborate software architectures such as HP PA-
RISC [17], Transmeta Crusoe [18] and HP/Intel IA-64 [19]. These architec-
tures share the common theme of shifting the burden of performance tuning
from the hardware to the compiler technology and other software techniques.
In order to achieve good performance, designers of these architectures resort
to software simulations for an evaluation of the effectiveness of the design
trade-offs and novel architecture features. A good example of this application
of software simulation can be found in [20].

An interesting recent application of software simulation is illustrated
by the Hawk project [21], which proposes to use a lazy functional language
(Haskell) to specify the instruction set architecture [22] and its implementa-
tion [23]. Krstic, et al. argue that such a model can be used directly to verify
processor implementation [24]. A similar project is conducted at the Indian
Institute of Technology, using another functional language ML [25].

2.1.3 System Behaviour Analysis
The most common use of software simulators involves modeling of a com-
puter system in order to analyze its behaviour under certain conditions.
Instruction simulators can extract statistical data unavailable to or difficult
to collect by a natively-executed software. Data acquisition was the original
purpose of the SimOS project [26, 27].

Instruction set simulators are particularly suitable for obtaining
memory usage and cache utilization statistics that are imperative to the
performance tuning of system software, but difficult to collect without a
simulator or some instruction trace data [28, 29].

The importance of software simulation for memory usage analysis
is not lessened by the fact that most modern architectures, including IA-32,
IA-64, Alpha and SPARC include performance monitoring counters that pro-
vide hardware usage statistics such as the cache hit and miss rates. The
data available from performance monitoring counters is fairly crude and of-
ten noisy due to the interference of the system software. Most importantly,
however, performance counters cannot be used to evaluate the impact of
adjustments to the cache parameters such as size and associativity which are
fixed on an particular implementation of an ISA.

2.1.4 Architecture Emulators
Substituting software simulators for the real hardware is a common technique
in education (SPIM, et al.) and in development projects that target hardware
with a limited availability, such as obsolete or newly-developed architectures
(ARMulator, HP/Intel IA-64 simulator.)

More recently, the success of the IA-32 (Intel) architecture has
prompted creation of many software emulators (Bochs, VMware, em86, fx!32,
SoftWindows and Crusoe). The URLs for most of these projects are listed in
WWW Resources. Many techniques employed by these tools are applicable
to other instruction set simulators, especially as these emulators are faced
with the daunting task of accurately modeling multimedia hardware and
other complex devices. However, with the notable exception of Bochs and
Crusoe, none of these simulators simulate the workload with sufficient fi-
delity to be of any use as a debugging or data gathering tool. In particular,
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in order to achieve reasonable performance, these tools do not preserve the
memory access patterns of the real machine, which renders them useless
for performance analysis applications. Further, none of the IA-32 architec-
ture emulators except for Bochs provide debugger access to the simulated
machine state.

2.2 Types of ISA Simulators
Instruction set simulators may be categorized according to the simulation
methodology and precision. Simulators have been constructed for modeling
the system at the switch or circuit level (various VHDL simulators, Hawk, et
al.) but these are mostly used for hardware design rather than system anal-
ysis. Functional or ISA-level simulators simulate the software-visible state
of the system. The majority of the simulators mentioned in this document
belong to this class. A few simulators model the hardware at an intermediate
level, implementing an informal, descriptive model of the machine rather
than its format specification, but simulating its operation with a substantial
amount of detail, usually providing a mostly-accurate picture of each pipeline
stage in a pipelined microprocessor. Therefore, these simulators are typically
capable of computing the exact instruction timings with fidelity impossible
in the more relaxed functional models. These simulators are usually referred
to as “cycle-level”. Examples of cycle-level simulators include MXS (part of
SimOS), the SPARC v8 simulator Shade [13] and the SimpleScalar family of
processor models (URL included in the WWW Resources list.)

2.3 History
The first tool that passes for an instruction set simulator is described in the
1951 EDSAC Debug paper by Maurice V. Wilkes, the creator of the first
instruction set architecture [3]. The EDSAC Debugger was a tracing sim-
ulator that operated by fetching and decoding the simulated instructions,
updating the program counter for branches and executing other instructions
directly in the simulator loop. The ST-80 (1984) and Mimic (1987) simula-
tors [30, 31] have introduced the idea of dynamic instruction set translation,
with Mimic being the first to implement the technique for a real instruction
set and demonstrate the importance of optimizing the just-in-time-compiled
code. The first reasonably-efficient system simulator was the g88 [32] written
by Rober Bedichek (1990), who has reduced the simulator overhead to less
than 100 host instructions per simulated instruction by optimizing the address
translation code. Some of the techniques from g88 have later found their way
into SimICS, a commercial system-level simulator by Peter Magnusson, et al.
[11, 33]. SimOS, written at Stanford as part of the Flash project [1] is by far the
best-known and most complete instruction set simulator, which has popular-
ized the technique of dynamic code translation. The use of check-pointing
and state roll-backs is due to Sathaye [34] who uses them to model the ef-
fects of speculative execution. More recently, VMWare has introduced their
nested-system product, the first simulator with a performance overhead of
less than 100%. In 2000, Transmeta has announced Crusoe, the first product
that substitutes simulation technology for hardware instruction decoding in
a commercial processor.
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3 Design
As mentioned in the introduction, the primary goal of Sulima is to provide
a solid, extendible platform for development of specialized simulators. Ex-
tendibility of a software system refers to its ability to adapt to a varying set of
requirements. Traditionally, extendibility has been achieved by insisting on
modularity of the system, which promotes code reuse in components with
similar functionality, and a set of well-defined interfaces that facilitate grad-
ual addition of new components without the need for making modifications
to the existing portions of the system. This is the approach taken in Sulima.

The problem of simulating a computer system is equivalent to that of
computing a sequence of machine states as a function of the initial state (also
referred to as the workload), the simulation time, and possibly some interactive
events such as the console traffic. This third component of the input is specific
to system-level simulators and architecture emulators, but fortunately no
more difficult to handle provided that we use only the most recent copy of
the state in the computation. An implementation of an interactive console is
described briefly in the Implementation chapter.

From the point of view of an instruction set simulator, the machine
state consists of the register file and the address space visible to each simu-
lated processor, possibly extended with the I/O space on architectures such
as IA-32. In system-level simulators, the state also includes the output of
peripheral devices such as hard disks and consoles, which would otherwise
be masqueraded as part of an address space. Note that, in general, a mul-
tiprocessing system has a number of register files and address spaces that
contribute towards the global state. When the simulator is used to gather
system behaviour data, it is usually necessary to include in the state addi-
tional, otherwise inaccessible to software, information such as certain event
counters and the various hardware buffers and caches. Finally, the simula-
tor clock, representing a measure of the simulation time, forms a part of the
state. Because all instruction set simulators model discrete events, the clock is
a simple integer counter whose value is directly proportional to the number
of hardware clock cycles elapsed since the commencement of simulation.

The machine state is computed by hardware as a sequence of small
modifications to the initial state. This behaviour can be modeled in soft-
ware directly as a state transition function applied iteratively to the supplied
workload, once for each increment of the simulator clock. Therefore, the
main problem that the design of Sulima must solve is a method of efficiently
partitioning the monolithic system state to promote code reuse and modu-
larity.

3.1 Modules
In Sulima, each distinct component of the simulated system is represented,
literally, by a module. A module is simply an autonomous portion of the
simulator state, annotated with a set of interface functions. Modules with
similar structure are grouped together into classes in order to allow definition
of common interfaces to similar hardware components. Hence, modules
correspond directly to objects in the object-oriented terminology, although,
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unlike generic objects, Sulima modules represent a concrete, static component
of the simulated hardware. Except for the limited amount of book-keeping
necessary to provide a convenient user interface, every piece of simulator
state must be attributed to a specific module, which greatly simplifies the
component interface.

To illustrate the use of Sulima modules, Figure 1 describes the decom-
position of a simulator of a complete MIPS64 R4600-based system designed
and built locally at UNSW.

cpu0
(Koala)

sim

rom
(ROM) (MuxDevice)

sio1
(SCC)

sio0
(SCC)

dlr
(DLR1414)

rtc
(MT48Tx2)

mem0
(MIPS64Bus)

(IntrCtrl)mux0
int0

fpu0
(KoalaFPU)

(Sulima)

Figure 1 — Modular Decomposition of U4600

In Figure 1, lines connecting different modules represent corresponding soft-
ware interfaces. For example, the peripheral devices (rom , rtc , sio0 , sio1
and dlr ) are not visible to the main processor (cpu0 ), except through the
address space abstraction of the mem0module. Both the book-keeping sim
module and the interrupt controller int0 are visible to every other compo-
nent in the system. Each module in a particular system configuration has a
unique name and a type representing its implementation. The module types
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are specified in parentheses under their names in Figure 1. Although not
evident in the example decomposition, a particular module may have more
than one implementation, chosen dynamically during simulation. In partic-
ular, Witchel and Rosenblum [35] have demonstrated that implementation of
multiple processor models with a range of performance and accuracy con-
straints (often spanning several orders of magnitude) is essential for usability
of a system-level simulator. A fast, low-accuracy simulator may be used to
execute a substantial amount of initialization code leading to the code section
under investigation. The simplicity of the module interface in Sulima makes
such multiple models trivial to implement and interface.

With the exception of the mux0, mem0and fpu0 modules, all mod-
ules in Figure 1 represent distinct hardware components. This is fortunate,
as it allows Sulima to model the hardware design directly to provide a ro-
bust and flexible interface between the corresponding simulator modules.
For example, the complexity of various peripheral devices can be hidden
conveniently behind a simple interface consisting of only three functions:
read mem, which returns up to one word from a device register stored at a
particular physical address, the resulting access latency and a possible bus
error indicator, write word , which modifies a particular device register,
and returns the access latency, and deliver interrupt , which asserts a
particular interrupt line of the interrupt controller, (int0 in Figure 1.)

The sim module represents some common infrastructure available
to all components of the system. In particular, it provides support for event
logging, processor scheduling and module management as described in the
Implementation chapter.

Modules may be classified into two groups, according to the mecha-
nisms available for affecting their state. The state of a passive module may be
modified only by another module. Because of that property, passive mod-
ules are very easy to design, interface and maintain. All peripheral devices,
busses and memory caches are implemented in that manner. Active modules,
on the other hand, are truly autonomous citizens in a simulator, and rep-
resent components whose state is computed iteratively as a function of the
simulator clock. They include all processors in a multiprocessing system as
well as an occasional DMA, memory or bus controller whose state is more
readily computed in this manner. The two kinds of modules are discussed in
detail below.

3.1.1 Passive Modules
An implementation of a passive module consists of a data structure annotated
with a set of predefined interface procedures. These procedures are invoked
whenever a component of the simulator requires access to the encapsulated
portion of the simulator state.

Passive modules are easy to implement, but are best suited for mod-
eling of synchronous devices such as memory banks and graphic hardware
that do not perform any significant asynchronous processing. Even though
dynamic memory technology such as DRAM involves write buffers and pe-
riodic refresh cycles, in most cases their effect on the simulator state can be
modeled by adjusting access latencies by a factor computed as a relatively
simple function of the simulator clock.
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3.1.2 Active Modules

For example, a ROM module may be implemented as an array of
integers. The read mem( paddr, size) interface would extract and return the
number of bits specified by the size parameter from the word at the array
index and bit offset computed from paddr and return a fixed preconfigured
value for the access latency.

Most input hardware, on the other hand, utilizes asynchronous in-
terrupts to avoid expensive software event polling. In general, there is no
efficient method of delivering these to the processor simulator directly from
a passive module without some form of periodic polling of the device state.
However, in most cases asynchronous interrupts can be predicted from an
earlier request issued by some processor in the system. For example, inter-
rupts generated by SCSI and ethernet devices are a delayed response to earlier
commands issued by writes to a device register. In Sulima, these devices are
most naturally implemented as passive modules interacting with an active
interrupt controller module, as described in the Interrupts section below.

3.1.2 Active Modules
Active modules represent portions of the simulator state that are best mod-
eled iteratively. This kind of modules is implemented by extending the usual
module interface with a run procedure that iteratively updates the module
state until it exhausts the time quantum allocated to it, or encounters a de-
pendency on the state of another active module. run is called directly by the
Sulima scheduler.

The reasons for selecting a passive or active implementation of a
module vary. There must be at least one active module in the system, as they
are the only mechanism available for inducing state change and advancing
the simulator clock. Therefore, I expect all central processing units (CPUs) to
be implemented as active modules. On the other hand, a module designer
has a much greater freedom when modeling an asynchronous input device or
a secondary processor such as a DMA controller. In those cases, the choice be-
tween the module type is largely subjective, and depends mostly on the style
of programming the user is more comfortable with and the available host
hardware. If used indiscriminately, active modules may impose a significant
performance penalty on uniprocessor simulator hosts due to the increased
frequency of interruptions to the performance-critical dispatch loop of the
main processor. However, computing the device state by repetitive applica-
tion of a state transition function is typically easier than designing a passive
function that performs the same task given only the simulator clock and a
previous snapshot of the module state.

The active module mechanism allows Sulima users to extend the sim-
ulator with custom processor simulators in much the same manner as that
used to implement peripheral devices in a conventional simulator frame-
work such as SimICS [36]. To the best of my knowledge, Sulima is the first
instruction set simulator that distinguishes between active and passive mod-
ule and modularizes the interpreter loop at the heart of every instruction set
simulator. Both SimICS and SimOS provide capabilities for statically replac-
ing the simulated architecture, but these involve major modifications to the
simulator core. In the case of SimOS, significant modifications to existing
code are necessary to extend the model even with a simple peripheral device,
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while SimICS provides a simple public interface to custom devices but not
processor models. SimOS compensates for the inflexibility of its core with
support for generic “event queues.” An event queue, polled at the end of
each iteration of the main simulator loop, allows users to schedule arbitrary
code for execution at the specified simulator time. Because the SimOS events
must be scheduled at predefined times, the mechanism, although sufficient
for a periodic collection of statistics and simple implementations of polling
input devices, is too tightly interlocked with the main execution loop to be
useful as a generic implementation mechanism for arbitrary asynchronous
components. In Sulima, the functionality of SimOS event queues is available
through an active interrupt controller module.

3.2 Simulator clock
Every instruction set simulator, including Sulima, is a discrete event simula-
tor. Because the simulator is largely concerned with computing the software-
visible state of the system, there is a simple relationship between the sam-
pling interval of the simulator clock and the frequencies of the hardware
clocks driving the simulated processors. Specifically, the optimal sampling
granuality can always be computed as the least common multiple of the
frequencies of all hardware clocks in the system. In Sulima, in order to as-
sign unique times to the otherwise simultaneous events and to disambiguate
software race conditions in a predetermined fashion, this frequency is also
multiplied by the number of active modules in the system, rounded to the
nearest power of two for efficiency. Events attributed to a particular active
module in a simulator with n active modules are offset from the scheduler
clock by the module index in the range [0, n-1].

The simulator clock, calculated in this way, can be used to distinguish
simulator events and to synchronize modules as required. However, there is
no need to maintain its value explicitly, and indeed it is, in general, impos-
sible to do so, because active modules, executed in parallel according to the
simulator clock, are usually scheduled sequentially in a round-robin fashion.
Therefore, each active module maintains its own idea of the simulator clock,
usually scaled down to its local hardware clock frequency.

3.3 Scheduler
A conventional instruction set simulator such as SimOS or SimICS simulates
a multiprocessing system using a double nested loop as follows:

do
for each processor

fetch and execute n instructions on that processor
end for

repeat

where n is either 1 for an interpreting simulator, or a small, fixed number,
usually representing a small multiple of the number of instructions fitting in
one instruction cache line for translating simulators such as Embra [35].
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The simplest way of achieving the same effect in Sulima is to call the
run function for each active module in much the same manner as above:

do
for each active module i

call run i( τi)
end for

repeat

Active modules are effectively implemented as cooperative user-level
threads. The parameter τi is the time slice hint that specifies the average
number of simulator cycles that the run i function should simulate. In or-
der to preserve relative speeds of the different hardware clocks and prevent
distortion of the simulator results, the parameters τi are chosen so that

τi × f(i) = F

where f(i) represents the declared frequency of the hardware clock driving
the corresponding system component, and F is the least common multiple
of all clock frequencies in the system.

It is important to note that τi is unrelated to the amount of host
processor time spent computing the state of the corresponding module. In
particular, secondary processors such as interrupt controllers may receive a
very large time slice to ensure prompt delivery of interrupts (see the Interrupts
section below), but, in reality, its state at the end of the time slice may be
usually computed using a single comparison testing for pending interrupt
events as described in the Interrupts section.

Because the overhead of calling run i may be high compared to the
time spent computing τi cycles-worth of state, all time slices may be mul-
tiplied by a small constant parameter α, effectively “unrolling” the inner
simulator loop.

α represents a compromise between the simulator accuracy and the
scheduling overhead the user is prepared to pay for it. Most active modules
can also be accessed using a passive interface such as interrupt delivery or
shared memory. Therefore, by partitioning the simulator state, we introduce
inter-modular state dependencies. Because every state access operation is
tagged with a specific simulator time, the framework should, ideally, ensure
that the state of each module depends only on the past states of the system.
As discussed in the Interrupts section below, the accuracy of the dependencies
between processors quickly degrades with an increase of the magnitude of
α, but for most applications the round-robin scheduler is still an acceptable
solution.

3.3.1 Preserving State Consistency
At first sight, the simple round-robin scheduler is incapable of preserving
dependencies between module states, such as those arising from delivery of
interrupts or accesses to the memory shared between different processors.
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Figure 2 — Violation of Instruction Dependencies

In Figure 2, two processors are scheduled sequentially, each receiving a three-
cycle time slice. Because the two time slices represent overlapped time inter-
vals (ie. a total period of only three simulator clock cycles), the st instruction,
scheduled at simulator time 1, should be executed before the ld in the first
time slice, which is scheduled to occur at time 2. However, because the two
processors are actually simulated sequentially rather than in parallel, all three
instructions in the first time slice will be simulated before the instructions on
the second processor, and the ld will not see the value stored at the address
0x1000 by the st .

Fortunately, this situation is acceptable, provided that the length of
the time slices is comparable to the actual timing accuracy of the events that in-
troduce the state dependency. Although simulated with uniform resolution,
in most cases the hardware involved in those events operates at frequencies
many orders of magnitude lower than those of the system processors. For
example, an access to shared memory costs between 20 and 100 processor cy-
cles on most architectures, and mechanical input devices such as hard disks
operate at a millisecond resolution compared to the nanosecond accuracy of
the simulator clock. Therefore, small inconsistencies in event timings will be
comparable to the behaviour observed on physical hardware. Of course, any
such inconsistency should not affect a properly-written system software that
correctly implements locks around critical code sections.

The round-robin scheduler is appropriate for simple uniprocessor
simulators. On a distributed host or a systems with a large number or simu-
lated processors, it is beneficial to implement a more elaborate scheduler that
maintains module dependencies explicitly by examining event timestamps,
and rolls inconsistent portions of the state back as required. In Figure 2, the
state of the first processor would be rolled back to the simulation time 0
when the second processor discovers that it is just about to update a memory
location already accessed at a future simulation time. Such a scheduler may
significantly improve the performance of a complex system simulator and
can even be used to execute multiple active modules in parallel on a mul-
tiprocessing host, but requires a significant amount of cooperation between
modules and tracking of changes to the simulator state. A design of such
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scheduler is described in the Distributed Simulator chapter.

3.4 Asynchronous Interrupts
Up to now, I have assumed that all asynchronous input devices are imple-
mented as active modules. This is clearly a suboptimal solution, as increas-
ing the number of active modules in the system may result in an excessive
scheduling overhead. Further, the clock frequencies of the input peripheral
modules are going to be low compared to those of the main processors, re-
sulting in long processor time slices and consequently a reduced accuracy of
the state dependencies.

The solution used in Sulima has been inspired by the SimOS event
queues mentioned above. Interrupt events are queued by passive devices
for delivery to the indicated processor at the specified type. As mentioned
previously, in most cases an event can be predicted by a passive device from a
processor-initiated access to its control registers (for an example, see A Timer
Device Module below.) The device computes the time of the future event
and enqueues it in a global interrupt controller module (int0 in Figure 1)
using the schedule interrupt interface. The interrupt controller stores
the scheduled events in a list sorted by the delivery time. The run function
of the interrupt controller is a simple test:

while next event ≤ end of this time slice
deliver the interrupt

end while

The deliver interrupt interface delivers the corresponding interrupt
(represented by an interrupt number) to the indicated processor. The proces-
sor module typically implements the interrupt interface by setting a bit in an
internal register, and polling the value of that bit after each instruction fetch.
For an example, see the Implementation chapter.

The interrupt controller module may also be used to periodically col-
lect statistical data, and for internal communication between active modules.
For example, in a distributed simulator it is necessary to synchronize the
simulator before examining its state with a debugger. This may be imple-
mented using a barrier synchronization signal delivered using the interrupt
controller.

3.5 A Timer Device Module
To illustrate the techniques described in this chapter, I will provide a pseudo-
code for a passive module implementing a simple count-down timer. The
device state consists of a single register implemented as an integer counter ,
specifying the simulation time at which the timer is scheduled to expire.
When read from, the timer register contains the current count-down value in
seconds. When written with a non-zero value, the device resets the counter
to the specified value. An interrupt is scheduled when the timer expires, and
the timer is disabled by setting the counter to zero.

Like all memory-mapped devices, the timer provides two interfaces,
write memand read mem. The paddr (physical address) and size parameters
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to both interfaces, usually employed to select the accessed register, are ignored
for simplicity. In reality, the module should ensure that the parameters select
a valid register by verifying its alignment and size requirements, and set the
“bus error” bit in the returned result if an illegal access attempt is discovered.

The read meminterface is implemented as follows:

read mem(paddr, size)
if counter < current simulation time then

return 0
else

return (counter - current time) / clock frequency
end if

The write memis implemented as follows:

write mem(paddr, size, data)
counter = current time + (data × clock frequency)
schedule interrupt (timer interrupt , counter )

Finally, the timer interrupt routine called by the interrupt controller may
be implemented as:

timer interrupt ()
if counter ≤ current time

deliver interrupt
end if

where the current time seen by timer interrupt is set to the end of the
interrupt controller’s time slice, and the interrupt number and destination is
preset in the simulator’s configuration script.

Note that, by carefully planning the implementation of the timer
state, we were able to predict all relevant events and model a distinctly-
asynchronous device using a passive module, without any need for periodic
updates of the device registers. Interestingly, a similar technique may be
employed in an accurate model of a pipelined processor, by capturing only
the final “write-back” stage of the pipeline in the processor state and carefully
predicting pipeline disturbances such as jumps, slips and exceptions. Consult
the Implementation chapter for more details.

The simple technique illustrated above is powerful enough to simu-
late virtually all hardware devices that do not require cooperation between
multiple simulator modules. Controllers and other “connecting” devices
may be easier to implement as active modules in order to reduce the amount
of public state and the complexity of the interface functions.
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4 Distributed Simulation
In this chapter, I describe a design of a distributed, deterministic system
simulator based on the Sulima framework. When the simulator workload is
significantly more complex than the host on which it is executing, as is the
case when simulating a distributed, networked or otherwise multiprocessing
system, it becomes desirable to spread the computation across multiple hosts
in order to maintain a reasonable performance. Unfortunately, extracting
parallelism out of a typical workload is surprisingly difficult, and the exist-
ing instruction set simulators have had little success in the area. I propose
to solve the problem by distributing the simulator state between hosts, and
decoupling active modules in the simulated system by executing instruc-
tions speculatively in absence of dependency information, and rolling the
simulator state back whenever a state inconsistency is discovered.

4.1 A Case for Determinism
A deterministic system is one in which the output is completely determined
by a well-defined function of the input. For example, a multiprocessing
hardware system is non-deterministic because of the randomizing effect of
the interrupt hardware and the memory access latencies, combined with
software race conditions. On the other hand, a single-threaded software
simulator is completely deterministic as all execution, including detection of
interrupt signals, occurs in a well-defined order in a single dispatch loop nest
as described in the Design chapter above.

Absence of randomness in a simulator system implies that all results
can be reproduced faithfully, simply by executing the simulator on the same
workload, and replacing any interactive input with the data played back from
the log files created during the original simulation. Because the amount of
interactive (usually console) data is relatively small, it is reasonable to store
it in a simple text file, annotating each input event with the corresponding
value of the simulator clock.

An ability to reproduce all results of a simulation is essential to the
usefulness of the simulator as a debugging tool, and beneficial when the sim-
ulator is employed to collect performance figures. Without determinism, it
would be impossible to retrospectively analyses events leading to a particular
condition of interest without maintaining full instruction traces and check-
points of each execution, reducing the simulator to an elaborate instruction
set tracer. Therefore, I consider determinism to be an essential property of
any instruction set simulator.

4.2 Extracting Parallelism
Parallelism refers to the ability to perform portions of a single computa-
tion simultaneously, decreasing the total computation time. The simulated
hardware typically exhibits multiple levels of parallelism. Most processors
are implemented using a bit-slicing design, introducing parallelism between
the operations on the individual bits of a register. This, however, is closely
matched by the similar parallelism of the host. For example, all bits of the
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result of a bitwise AND operation can usually be computed using one or
two AND instructions on the host system, completely exhausting this level of
parallelism. Similarly, the parallelism in a super-scalar and super-pipelined
processor is best utilized by translating the simulated instructions into the na-
tive instruction set of the host and relying on the instruction-level parallelism
of the host system. As demonstrated by ST-80 [30] and Embra [35], dynamic
instruction translation can easily improve the performance of an interpreting
simulator by an order of magnitude, while threading a model of a quad-issue
processor is unlikely to achieve the ideal performance improvement of 400%,
at the cost of a much higher code complexity.

Further parallelism exists between distinct components of a hard-
ware single device, such as memory caches and the address translation hard-
ware (TLBs) is exhausted when these components are implemented as pas-
sive functional modules illustrated in the Design chapter above. Therefore,
a distributed simulator should target parallelism between multiple active
modules, such as the distinct processors in a multiprocessing system. The
task is made realistic by the costs associated with accessing shared data in a
multiprocessing system [37]. Because of those costs, sharing of data is typi-
cally minimized in a well-designed system, a fact that a simulator can use to
its advantage by selectively improving the performance of the common case
of independent instruction streams.

4.3 Scheduler
In order to spread a multiprocessing workload across multiple simulator
hosts, we must modify the round-robin scheduler described in the Design
chapter, to allow parallel execution of distinct active modules on separate
host processors.

In most cases, the number of simulation cycles and the amount of
host CPU time spent in each module is directly proportional to its declared
clock frequency. Even though some instructions are more expensive to sim-
ulate than others (for example, memory loads is an order of magnitude more
expensive than simple register operations), the heavy-weight instructions
owe their cost mostly to the amount of state that they process, and therefore
migrating such process to a less-utilized host is not a feasible option. For
that reason, it is reasonable to assign active modules to host processors stati-
cally, based only on their declared clock frequencies and the known relative
computational power of the hosts. Once the active modules have been dis-
tributed in that manner, a simple round-robin scheduler can be utilized on
each host processor without further modifications to the framework. If the
number of host processors is comparable to the number of active modules in
the simulated system, we can further simplify the system by executing each
active module in a separate simulator process, and therefore eliminate the
need for a scheduler entirely.

4.4 Event Dependencies
As mentioned previously, every simulator event is associated with a unique
simulation time. Two events (for example, two instructions executed on
different processors) are dependent if they access the same portion of the

– 18 –



4.5 Distributed State

simulator state, and at least one of them modifies the state, as illustrated
earlier in Figure 2. In that case, the simulator must ensure that the event
scheduled first according to the simulator clock is simulated before the later
event, and the later event sees the state updated by the earlier one. It is
important to note that each processor’s program counter, modified by every
instruction executed on that processor, contributes to the shared simulator
state, and it is also modified by the interrupts potentially issued by remote
modules. Further, every instruction is fetched from potentially shared mem-
ory. Therefore, sharing opportunities are common and naive synchronization
algorithms are unsuitable for use in a serious distributed simulator.

The scaling of the simulator clock described in the Design chapter
introduces a strong ordering between simulation events. Therefore, no two
distinct events in Sulima will be marked with the same time stamp, which
simplifies the design of the distribution algorithm presented below.

4.5 Distributed State
The techniques for reducing sharing in distributed memory systems have
been covered exhaustively in literature, with further references listed in [38].
Most of those techniques apply to a simulator system if we substitute the
global simulator state for the the distributed shared memory.

The granularity of sharing is somewhat arbitrary and depends mostly
on the available networking hardware. Li and Hudak [38] argue, based on
their informal experiences, for sharing granularity between 256B and 1KB
in size. In the remainder of this chapter, I optimistically refer to a unit of
sharing as “an object”. Typically, every interrupt on every system will be
treated as a separate object, and the address space will be partitioned into
fixed 1KB pages to maximize utilization of the ethernet medium with its
1500 byte maximum packet size (MTU). In particular, there is no need for
the objects of the address space to correspond to the architecture page size,
although operating systems are probably likely to partition the working set
of each processor on page boundaries to maximize utilization of the address
translation hardware.

A distributed version of the memory hierarchy module distributes
the physical address space rather than a particular level of the caching hier-
archy. Therefore, every cache line with a copy of the data from a particular
memory location is included in the corresponding shared object. This ap-
proach avoids the overhead of distributing data at the granularity of the
individual cache lines (which are typically 32 bytes in size and therefore very
inefficient to transfer over the network) and the implementation of “real”
cache coherency algorithms in a distributed environment. It is also more
efficient because shared access to a particular level of the cache hierarchy
usually affects the remaining levels, even if only by modifying the coherency
and line ownership information. As described in the above-mentioned IVY
paper [38], maintaining memory cache coherency in a loosely coupled dis-
tributed environment is prohibitively expensive.

In order to minimize sharing, we attempt to distribute objects be-
tween hosts based on their usage. The IVY algorithm maintain multiple
read-only copies of a shared object, one on each host which has recently re-
quested its value, or a single writable copy on a host that has updated the
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object. Initially, a single writable copy of every object is stored on a prede-
termined host. Below, I present a modification of the fully distributed IVY
algorithm to further decouple the simulated processors, by optimistically ex-
ecuting instructions in absence of certain sharing, and rolling the state back
when a state inconsistency is discovered.

4.5.1 Read Operations
When a module requires read access to an object stored locally, it updates
its local “read time stamp” for the object, and proceeds with the simulation
without any communication with other modules. Therefore, such accesses
are almost as efficient as the same operation in a monolithic system. The time
stamp does not have to be updated accurately if the overhead of doing so is
found to be prohibitive. It is used only to limit the extend of a potential roll-
back to the absolutely necessary instructions, and roll-backs of a consistent
state, although redundant, are technically correct.

When the object is stored on a remote node, the module requests read
access to the object using the standard distributed owner-search protocol, as
described in Figure 3. The message sent to the owner includes the simulation
time of the sender. At this point, no local state has been modified by the
current operation, and the module is prepared to receive remote object and
roll-back messages, as well as the expected reply.

When the read request is received by a remote node (the temporary
“server” for that object) holding a copy of the object, the server must verify
consistency of the state before returning a copy of the object to the requesting
node. The simulator state is too inconsistent to proceed with speculative
execution if and only if the read request is younger than the current value of
the object, as indicated by the object’s write time stamp. Every reader knows
the accurate value of this time stamp which it receives together with its copy
of the object.

If the state is consistent, the object is returned to the reader and the
object tables updated as described in Figure 3. Otherwise, the state of the
simulator must be rolled back past the write time stamp of the object. This
is achieved by sending a roll-back request to all modules that have read the
object since the most recent write operation, as indicated by the copy set
stored in the table. The roll-back is essentially the IVY ıinvalidate operation
that restores a past module state in addition to adjusting the object table. For
more information, see State Roll-Back below.

4.5.2 Write Operations
Local writes and the client side of a remote write operation are analogous
to the read operations described in Read Operations above. Unlike read time
stamp, write time stamps must be maintained accurately at all times.

The server for ownership and write access requests must verify the
consistency of the state before returning a copy of the object. If the requested
write is older than the current value of the object, we consider the state
consistent and proceed with an update to the object tables, flushing the copy
set and resetting the server’s access rights to read-only as described in Figure 3.
Otherwise, the reply is delayed until the state of the server advances past
that of the caller. Deadlocks are impossible as no module may depend on
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the future state of another. The interrupt controller from the Design chapter
may be conveniently reused to enque the write requests until they would no
longer result in an inconsistent state.

4.5.3 Invalidation and Roll-Back Server
The distributed page invalidation server in IVY propagates the request to all
nodes found in the copy set of the page, and resets the access permissions
and the copy set. The modified Sulima version of the algorithm verifies
the consistency of the state in addition to the above. Any module that has
already accessed the object after the invalidation request has been issued, as
indicated by the read time stamp, must roll its own state back to preserve its
consistency, possibly generating cascaded roll-back events. If maintaining an
accurate read time stamp proves to be inefficient, a pessimistic guess of its
value can be made using the simulator clock.

4.5.4 The Algorithm
The shared simulator state includes an object table (probably implemented
using one of the well-known page table data structures), which associates a
probable owner, access (read or write) and a a copy set (a set of modules holding
a local copy of the object) with each shared object in the simulator. These
three fields are present in the original design of the IVY algorithm. In order
to implement the above modifications, we extend the object table with a read
and a write time stamp.

Read fault handler:
ask ptable[p].prob owner for read access to p
ptable[p].prob owner = reply node
ptable[p].access = read
ptable[p].read time = now
ptable[p].write time = clock form the reply node

Read server:
if ptable[p].access 6= nil then

if ptable[p].write time < requesting clock then
ptable[p].copyset =

ptable[p].copyset ∪ {request node}
ptable[p].access = read
send p

else
roll back(p, ptable[p].copyset,

ptable[p].write time)
tell the client to retry the request

end if
else

forward request to ptable[p].prob owner
ptable[p].prob owner = request node

end if

Figure 3 — Algorithm for distributing simulator state (cont’d)
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Write fault handler:
ask ptable[p].prob owner for write access to p
invalidate(p, ptable[p].copyset)
ptable[p].prob owner = self
ptable[p].access = write
ptable[p].write time = now
ptable[p].copyset = ∅

Write server:
if the owner then

if ptable[p].write time < request time then
ptable[p].access = nil
send p and ptable[p].copyset
ptable[p].prob owner = request node

else
enque the request for later

end if
else

forward request to ptable[p].prob owner
ptable[p].prob owner = request node

end if

Invalidate and roll-back server:
if ptable[p].access 6= nil then

invalidate(p, ptable[p].copyset)
if request time > ptable[p].read time then

ptable[p].access = nil
ptable[p].copyset = ∅

else
roll back(p, ptable[p].copyset,

request time)
end if

end if

Figure 3 — Algorithm for distributing simulator state

I believe the resulting algorithm, presented in Figure 3, to be correct. However,
proving its correctness remains to be done as a future work that must be
completed before the algorithm can be used with confidence in a simulator.

4.6 State Roll-Back
The state roll-back operations mentioned above may be implemented easily
by interactively restoring any state updated by the rolled-back instructions.
Because the state change contributed by each instruction is small, this is a
reasonable implementation. For example, a typical three-register instruction
modifies a single register and the program counter. Position of branches in
the input stream must be recorded in a separate vector, as, in general, it is
impossible to predict whether a given instruction has been reached sequen-
tially or as a branch destination. Other operations such as memory accesses
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are handled similarly although the amount of state stored for those events is
considerably larger.

If we store the branch positions in a bit queue and other data on a
simple data queue, the roll-back operation may be designed as follows:

Roll-back:
while the state is inconsistent

if the top of the bit queue indicates a jump
program counter =

top word of the data queue
discard the top word from the data queue

else
program counter =

program counter - instruction size
end if
read the instruction at the program counter
read the corresponding state from the data queue
restore the simulator state using that data

end while

In the process of restoring the simulator state from the queued data, we may
have to initiate roll-backs of remote active modules if undoing the effect of a
load or store operation or a reception of an interrupt.

The size of the data and branch queues may be bounded by a reason-
able value, as the queues may be always emptied simply by unconditionally
synchronizing all active modules in the system to the same clock value.

4.7 Distributing Device Modules
The device modules such as disk drives or SCSI controllers represent a sub-
stantial amount of code, but typically benefit very little from distribution.
Because these passive modules are usually bound statically to a particular
processor, it is reasonable to expect little or no sharing of their state. There-
fore, the single-threaded implementation of these devices may be reused in
a distributed simulator by unconditionally synchronizing all active modules
before every access to a device. This approach is essential for devices that
maintain a record of their output (such as disks and consoles) as, in general,
it is impossible to roll their stack back once it has been updated.
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5 Instruction Set Translation
In this chapter, I discuss issues involved in designing a processor simulator
module that performs dynamic (or “just in time”) translation of the exe-
cuted instructions into the native instruction set of the host. This technique,
discussed in [31] and [35], can dramatically improve performance of a simu-
lator for the frequently-executed portions of the workload such as the inner
loops and most of the operating system. The Embra [35] simulator in SimOS
demonstrates that the technique may reduce the simulator overhead to as
little as 500% (five host instructions per simulated instruction.) The fastest
interpreting simulators claim a slowdown of 50 to 100 times compared to the
native execution.

5.1 Simple Instruction Translation
Most instructions are translated by loading the relevant processor state into
registers on the host machine, modifying the register and updating the simu-
lator state with the result. On CISC host architectures that support load-and-
operate and store-and-operate instruction forms, most instructions can be
translated into only two native instructions. For example, Figure 4 describes
the translation of a simple MIPS code fragment into the IA-32 instruction
set. For the purpose of the illustration, I assume that the host edi register
contains the address of the simulated register file. For frequently executed
blocks, redundant register accesses can be eliminated using standard copy
propagation techniques as mentioned in the Optimizations section below.

In this scheme, the main fetch execute loop, marked by the
main loop label, is used to dispatch the basic blocks of simulated instruc-
tions (ie. the smallest blocks of code ending with a branch instruction) as
described by the following pseudo-code:

do
if the program counter is in the translation cache then

if the cache does not contains a valid translation
translate the code

else if required (∗)
optimize the existing code

end if
jump to the translated code

else
insert an entry in the translation cache
interpret the instruction

endif
repeat

The heuristics for choosing to optimize the code (on the line marked with
(∗) above) can be based on a counter stored in the translation cache and
incremented on each use of the corresponding code fragment. The possible
optimizations are discussed briefly in the Optimizations chapter below.

The translation cache consists of a large hash table that maps values
of the program counter (ie. jump destinations) to fragments of pre-translated
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code.

jmp 4096

ld r3, 16(r1)

add r4, r3, r2

mov eax, edi

call load_mem

mov edi[3], eax

mov eax, edi[3]

add eax, edi[2]

mov edi[4], eax

jmp main_loop

mov eax, 4096

Figure 4 — Instruction Set Translation

5.2 Memory Hierarchy Issues
Maintaining memory cache information in a dynamic instruction translator is
more problematic than in a simple interpreter, as demonstrated by Mimic [31],
Embra [35] and SimICS [33]. Because loads and stores involve a complicated
physical address computation and are unlikely to benefit from instruction
set translation, we can simply call the interpreted implementation of those
instructions from the translated code. However, instruction fetches must still
be handled reasonably by the translator, even though the fetched instruc-
tions are not used after they have been translated into the native instruction
set. Updating the simulated instruction cache state before every simulated
instruction would dramatically reduce the benefits of instruction translation.
Fortunately, the interpreter interacts with the instruction cache only during
instruction fetches, and therefore the additional checks can usually be re-
moved from the translated code and performed once on each entry into a
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basic block. Embra and SimICS further improves the performance of simu-
lated memory accesses by utilizing the host’s address translation hardware.
Embra replaces the simulated TLB with a linear page table (virtual array) that
can be accessed with as little as eight native instructions [35].

5.3 Memory Management
The translator has to manage a large volume of small, variable-size code
fragments. Traditional dynamic memory allocators are a particularly poor fit
for this usage pattern. A better data structure for an instruction set translator
is a simplified generational garbage collector, described, amongst others, by
Jacob Seligmann and Steffen Grarup [39].

interpreted

word

Translation
Cache Table

First
Generation

Arena

Second
Generation

Arena

but not yet
transated

(optimized)

basic block

next unused

Figure 5 — Memory Management in a Translator

The first-generation arena contains the freshly translated code, while sub-
sequent generations contain only optimized code. This style of garbage
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collection is particularly well-suited to our needs as each code fragment is
built incrementally without any assumptions about its final size, by storing
each translated instructions at the end of the main arena maintained by a
single “free store” pointer as illustrated in Figure 5. This eliminating the need
for expensive reallocations of large fragments when they grow to exceed the
initial size estimate. When the preallocated space is exhausted, the garbage
collector is called, which makes a single pass over the first-generation arena,
moving any optimized code into the second-generation arena and discarding
any unoptimized (and hence rarely used) fragments. Because all pointers to
the translated code represent jump destinations and as such are stored only
in the translation cache table, and all unoptimized jumps are simulated using
the table, heap compaction is trivial. The hash function that translates jump
destinations into translation cache indexes should be designed carefully to
allow quick invalidation of cache entries: in particular, it must be possible to
compute the range of translation cache entries for a particular page of phys-
ical memory in order to invalidate those entries when the page is modified.
To improve the performance of store instructions, each TLB entry should be
extended with an “executable” bit to indicate presence of translation cache
entries referring to the page. On architectures that support “execute” per-
missions for a page (IA-64), this information, maintained by the simulated
operating system, may be used instead.

5.4 Optimizations
Optimization refers to transformation of a code fragment into an equivalent,
but more efficient code. After a code fragment has been executed frequently
enough, it may be beneficial to optimize it in order to improve subsequent
performance of the simulator [31]. The most significant optimization that can
be performed on the generated code is merging of basic blocks by predicting
certain branches, therefore reducing the frequency of jumps to the main
dispatch loop. As demonstrated in [40] and other publications, backward
branches can be predicted as taken with a success rate of over 90%. This is
particularly significant as many inner loops are likely to consist of a single
basic block, and as such may be simulated completely using translated code
without any intervention of the main dispatch loop and the translation cache,
provided that one integrates the usual interrupt and instruction cache tests
into the code in the block.

Other useful optimizations include copy propagation, constant fold-
ing, code scheduling and register reallocation [41]. More sophisticated op-
timization techniques are not feasible due to the excessive, almost always
non-linear, costs involved. One may reasonably assume that the simulated
code has already been optimized whenever appropriate, and therefore any
optimizations performed by the simulator should utilize the differences be-
tween the simulated and native instruction sets.

Of the optimizations listed above, copy propagation is the most im-
portant as a naive translation will result in a contention of only a few registers
used to fetch operands from the register file. Further, the loads and stored
of simulated registers introduce many data movement instructions into the
translated code that may be optimized away with little difficulty. This op-
timization should be followed by register allocation to accommodate the
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available register file sizes between the host and the simulator. Constant
folding is another simple optimization which may be used whenever the
source instruction supports immediate (constant) operands larger than those
on the host architecture. For example, MIPS supports 16 bit operands while
Alpha has only 8 bit operands, so a naive translator will generate two Alpha
instructions for a single MIPS instruction with an immediate operand.
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6 Implementation
In this chapter, I describe the current implementation of the framework. The
prototype includes a complete implementation of the runtime module man-
ager, the configuration interface and logging, and a partial implementation
of state check-pointing. I have also implemented two memory-mapped de-
vices: an accurate model of the MT48T02 real-time clock chip and a simple
file-backed ROM module needed for boot-strapping of an operating system.
The implementation also includes the state interface for the MIPS64 ISA and
a reasonably accurate interpreting model of the IDT R4600 microprocessor.
Finally, the MIPS64SimpleBus module provides a simple model of a data
bus and the main memory.

The framework is implemented in ISO C++, the only polymorphic
language sufficiently popular to be used in a project claiming to be extendible.
Data polymorphism is essential for a clean implementation of module inter-
faces. C++ is far from the ideal language for our purposes, but the alterna-
tives such as Ada95 and Modula3 are much less popular and could reduce the
potential user base of the framework. Java offers no significant software en-
gineering advantages over C++ (portability of bytecode is clearly immaterial
for customized, open-source applications such as Sulima) while introducing
additional virtual machine overhead. The deficiencies of C++ are most visible
with relation to linking. Ideally, modules should be compiled as individual
static or dynamic libraries, but C++ linker bugs make it impossible to do so
portably. As a work-around, I link Sulima statically using a single invocation
of a linker, and a very complicated makefile. The current implementation of
Sulima consists of approximately 10,000 lines of commented code.

6.1 Architecture
As described in the Modules section in the Design chapter, Sulima is structured
as a collection of independent modules. The module types are represented by
C++ classes. The arrangement and configuration of simulation components
in a particular system is specified statically using a Tcl configuration script.
I have chosen Tcl as the configuration language for Sulima, because it comes
with a very convenient C and C++ programming interface and is already
known to the SimOS users.
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6.1.1 Module Hierarchy
The best way of introducing an object-oriented framework is by describing
its class hierarchy. In Sulima, I use the C++ inheritance mechanism to group
modules according to common functionality, and employ virtual functions
to implement the public interfaces.

BasicModule
Module

CPU
MIPS64Cpu

Koala R4600
MIPS64Bus

MIPS64SimpleBus
GT 64010A

ROM
MT48Tx2

Sulima
Device

ROM
MT48Tx2

6.1.1.1 BasicModule
BasicModule provides the infrastructure common to the Sulima class and
all runtime modules. Specifically, it creates the Tcl namespace with the same
name as the module, and implements the logging system, by providing the
following functions:

const char* BasicModule:: name() const

name provides public access to the module name.

void BasicModule:: log(char c) const
void BasicModule:: log(const char* templ, ...) const
void BasicModule:: msg(char c) const
void BasicModule:: msg(const char* templ, ...) const

This group of functions provides the log file management and services in the
framework. Because logging is essential if the framework is to be applied as
a debugger or a data gathering tool, these functions have been implemented
with considerable care. Every character output to the log file (log ) or a
console (msg) is attributed to a particular module. Each line in the log file is
prefixed with the name of the module that has generated the corresponding
output, resulting in very clear record of the simulation, that may be processed
both manually and with scripts.
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void BasicModule:: define(
const char* nm,
T& var,
T val = T(),
bool ro = false)

Every module has a distinct configuration namespace. This namespace is
populated using the define function, which creates a configuration variable
nmbound to the C++ variable var with the initial value of val . ro is used
to create read-only constants. The type T can be one of int , long or const
char* .

void BasicModule:: define(
const char* nm,
SimArg (*fn)(const SimArgs&))

void BasicModule:: define(
const char* nm,
BasicModule* obj
SimArg (BasicModule::*fn)(const SimArgs&))

Besides variables, modules have to define commands such as a debugger
interface to their state. These are introduced into the module namespace
using further two define methods, which interface C++ functions and class
members respectively.

6.1.1.2 Module
The Module class extends BasicModule with dynamic module manage-
ment facilities. It provides two constructors for creating a module object
from a list of Tcl arguments and from checkpoint data.

virtual void Module:: reset(bool warm)

The reset interface is called to initialize or reinitialize the module state
from the configuration script. the warm parameter may be used to request
a partial initialization such as that performed by a “warm” reset on some
microprocessors.

virtual void Module:: checkpoint(Checkpoint& cp) const

The checkpoint interface is called while the simulator state is being saved
to a checkpoint file, and should be implemented for each module that con-
tributes to the global state. cp is a C++ output stream.

BasicModuleType* find type(const char* name)
Module* find module(const char* name)

All module types are transparently maintained in a linked list using the C++
static constructor magic, and all modules are linked into yet another list. Both
lists are used to identify the installed modules and their types by name in the
configuration scripts.
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6.1.1.3 CPU
The CPUclass implements the functionality common to all active modules,
in particular the round-robin scheduler, an interrupt interface and the asyn-
chronous event queues.

ClockValue CPU:: now()

now returns the current value of the simulator clock.

void CPU:: poll events()

The interrupt controller module described in the Design chapter is currently
merged with the active module interface in the CPUclass. poll events is
called on each iteration of the dispatch loop. It is implemented as:

void CPU::poll events() {
if (now > earliest) {

Event* e = queue;
try {

do {
Event* f = e->next;
e->invoke();
delete e;
e = f;

} while (now > e->when);
queue = e;
earliest = e->when;

}
catch (...) {

queue = e->next;
earliest = queue->when;
delete e;
throw;

}
}

}

Note that events may use C++ exceptions to leave the polling loop early, for
example when preempting an active module. Once enqueued, an event object
remains in the queue until scheduled, at which time its invoke interface is
called. Events are destroyed immediately after invocation, as once-off events
tend to be more useful than periodic ones. The functionality of a periodic
event may be achieved in Sulima by scheduling a new copy of the event from
within its invoke method.

void CPU:: deliver interrupt(int n)

This function implements the interrupt delivery mechanism discussed in the
Design chapter.
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void CPU:: run(ClockValue timeslice)

The run interface represents the main dispatch loop of an active module.
In the current implementation of the framework, every run function must
simulate exactly time slice simulator clock cycles before returning. Pre-
emption is implemented individually by each active module, which, at the
beginning of every time slice, should schedule a preemption event at the
indicated time. The run methods of each processor are invoked iteratively
by the run all function, as described in the Scheduler section of the Design
chapter.

6.1.1.4 MIPS64Cpu
MIPS64Cpu implements the processor state defined by the MIPS III archi-
tecture [5], including all registers, caches and the TLB. It therefore facilitates
dynamic switching between modules that implement different models of
the MIPS64 ISA in order to adjust the performance/accuracy trade-off for a
particular section of the simulated code:

VA pc;
UInt64 gpr[32];
UInt64 fpr[32];
UInt64 cp0[32];
UInt64 cp1[32];
UInt64 hi, lo;
bool ll bit;

void MIPS64Cpu:: sync state()

Derived modules are not required to use the state information of MIPS64Cpu
directly. Instead, they must implement the sync state interface that syn-
chronizes the module state with the state information in MIPS64Cpu. For
example, caches and TLBs are better maintained directly by each CPU model,
but must be preserved across a model switch.

6.1.1.5 MIPS64Bus
A bus module interfaces general memory devices to a processor, by providing
the following two interfaces:

virtual ClockValue read(
MIPS64Cpu& cpu,
PA paddr,
UInt64* buf,
int size)

virtual ClockValue write(
MIPS64Cpu& cpu,
PA paddr,
const UInt64* data,
int size)
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The interfaces include the requesting processor to provide for interrupt de-
livery. paddr specifies the requested region of memory, while size is the
number of bytes requested. Valid sizes include all integers between 1 and
8 (MIPS64 supports odd memory access sizes) and multiples of 8 (for block
accesses). Results smaller than eight bytes are returned in the following bit
range:

[(paddr % 8) × 8, (paddr % 8 + size) × 8)

This, somewhat surprising, design models the behaviour of the hardware,
which maintains memory data on the bus lines selected by the low-order bits
of the address. It allows devices to implement memory directly as an array
of 64 bit integers, simplifying the interface and eliminating endianess issues.

The value returned by both interfaces represents the pin-to-pin access
latency of the memory operation.

6.1.1.6 Device
Similarly, the interface between the bus and the individual devices is provided
by the Device class.

virtual ClockValue read(
MIPS64Cpu& cpu,
PA paddr,
UInt64* buf,
int size)

virtual ClockValue write(
MIPS64Cpu& cpu,
PA paddr,
const UInt64* data,
int size)

These interfaces differ from the processor equivalents in the restrictions im-
posed on the size parameter. To simplify device implementation, block
accesses are handled completely in the bus simulator and therefore the indi-
vidual devices do not have to handle requests above 8 bytes.
Both interfaces return the access latency. Unlike the processor interfaces
however, these latencies exclude the address bus cycles, which are computed
by the data bus simulator.

6.2 Modules
In the remainder of this chapter, I discuss the implementation of the actual
simulator components currently implemented in the framework.

6.2.1 A Simple Data Bus
The MIPS64SimpleBus module provides a minimal implementation of the
main memory, data bus and console devices. The module namespace contains
the following configuration parameters:

memory configures the amount of RAM in megabytes. The RAM is mapped

– 34 –



6.2.2 A ROM Device

at the addresses [0, memory * 220 - 1]. The maximum supported
value is 500 to leave room for the device banks.

dev0 specifies the name of the boot device module

dev1 specifies the name of the first device module

dev2 specifies the name of the second device module

dev3 specifies the name of the third device module

The programming interface is just as simple. The interrupt map is:

0 bus interrupt (write error)

1 system console

The status register, stored in the register bank at the physical address
0x1F400000, has the following layout:

bits 0..1 interrupt enable mask

8..9 interrupt cause bits

All of these are read/write. Except for bits 8..9, these bits are never
modified by the module. Bits 8..9 are never cleared by the module (they
are treated as “sticky” bits.) Setting bits 8..9 in software does not raise the
corresponding interrupt.

Each of the five device banks has a preallocated address region which
the device is free to use for its own registers. This reduces the problem of
decoding the physical address supplied by the processor to only five condi-
tionals. Because the vast majority of memory instructions access the main
memory, we can isolate this common case and obtain a reasonable perfor-
mance out of the simulator. The memory itself is a simple dynamically-
allocated array of UInt64 integers.

The other interesting aspect of MIPS64SimpleBus is the implemen-
tation of the interactive console module. The console consists of a single
one-byte register storing the most recent byte of data read from the terminal.
For simplicity, I follow the SimOS technique of polling the host terminal using
the select UNIX system call, inserted into the event loop at regular, long
intervals.

6.2.2 A ROM Device
The ROM device is an illustrative example of a memory-mapped device. Its
simple read meminterface is implemented as follows:

Time ROM::read mem(
CPU& cpu,
MemAddr addr,
MemData* datap,
int size)

{
assert(size >= 1 and size <= MemData::size);
assert(addr % size == 0 or
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!is power of two(size));

if (freq != cpu.freq)
update latencies(cpu.freq);

// Decode the address. Note that,
// as with real hardware, we simply ignore
// irrelevant address lines (the hardware
// has no way of knowing where in
// the address space it is currently mapped.)
addr &= image.size - 1;

// Fetch eight bytes around the given address.
*datap = image.data[addr / MemAddr::size];

// Assume an 8-bit ROM:
return latency.read * size;

}

6.2.3 The Koala R4600 Processor Simulator
The R4600 processor is a single-issue MIPS64 processor with a five-stage
pipeline. Its simple design makes it possible to model it with high fidelity
using a simple interpreting module.

The Koala R4600 class implements a simple interpreting simula-
tor of the single-issue R4600/R4700 microprocessor. It is possible to obtain
a cycle-accurate simulator by simulating only the final (retire) stage of the
pipeline, and adjusting operation latencies by the number of pipeline “bub-
bles” (wasted cycles) associated with them. For example, an exception taken
in the first state of a five-stage pipeline has a latency of five cycles. The same
technique is unfortunately inapplicable to super-scalar and out-of-order pro-
cessors.

The remainder of this section discusses the details of the main dis-
patch loop at the heart of every interpreting simulator, which provides an
illustrative example of a typical implementation of such tool.

void Koala R4600::run(
ClockValue timeslice)

{

First, we register an event that will wake us up at the end of the current
timeslice and perform a long jump out of the dispatch loop into the scheduler.

// Register the preemption event
register preemptor(now + timeslice);
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Next, we must prepare for handling exceptions. All synchronous exceptions
are simulated using a long jump back to the start of the simulator loop. By
taking care to check for the exceptional conditions in the proper order, the
exception priorities are implemented without any further overhead.

// Prepare for exceptions
setjmp(env);
for (;;) {

On MIPS, the first register is hard-wired to 0. Rather than testing each register
update, I reset %r0 at the beginning of each cycle.

// Reset gpr[0].
gpr[0] = 0;

Advance the simulator clock measuring the progress of the simulation. We
start by assuming that every instruction has a latency of one cycle.

// First of all, increment the PClock.
// After this, all we need
// to handle is any slips and stalls.
++now;

As argued earlier, we must poll for interrupts before each instruction fetch.
The instrrupts, and certain other conditions such as hardware resets, are
represented by bits in the events byte. The details of the calculation are
specified in the R4600 User’s Manual.

// Check for interrupts. In real hardware,
// these have a priority lower
// than all exceptions, but simulating
// this effect is too hard to be
// worth the effort (interrupts and
// resets are not meant to be
// delivered accurately anyway.)

if (events) {
if (bits(events, 7, 0))

process reset();
else if (bit(cp0[SR], SR IE)

&& (events & cp0[SR]))
process interrupt();

}

Address translation is expensive and must be avoided at all cost. Therefore,
we maintain a two-entry instruction TLB that caches the two most recent in-
struction address translations. Because a page of code contains a large num-
ber of instructions, the hit rate of this cache is very good. The asid match
function performs a comparison of the address space identifiers, encoded for
efficiency.
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// Look up the ITLB. It’s not clear
// from the manuals whether the ITLB
// stores the ASIDs or not. I assume
// it does. ITLB has the same size
// as in the real hardware, mapping
// two 4KB pages (again, the documentation
// is incomplete, but the size of ITLB
// does not affect anything other than
// the instruction timings.) Because
// decoding a MIPS64 virtual address
// is far from trivial, ITLB and DTLB
// actually improve the simulator’s
// performance: something I cannot say
// about caches and JTLB.

PA pa;

VA vpn = pc / 4096;
if (vpn == itlb[0].vpn &&

asid match(asid, itlb[0].asid))
{

pa = itlb[0].pa + (pc % 4096);
lru itlb = 1;

}
else if (vpn == itlb[1].vpn &&

asid match(asid, itlb[1].asid))
{

pa = itlb[1].pa + (pc % 4096);
lru itlb = 0;

}
else {

Full address translation involves decoding the most-significant bits of the
address and traversing the simulated TLB (implemented as a hash table) to
compute the physical address of the instruction. Notice the adjustment made
to the processor clock to account for a bubble in the pipeline.

// Do a full address translation.
// This introduces a slip in the I
// pipeline stage. The slip costs
// 1 cycle for branch, jump and
// ERET instructions, and 2 cycles
// otherwise.

++now;
pa = translate vaddr(pc,

instr fetch);
itlb[lru itlb].vpn = vpn;
itlb[lru itlb].asid = asid;
itlb[lru itlb].pa = pa / 4096;
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lru itlb = !lru itlb;
}

Similarly, it is advantegous to cache the most recent instruction cache lookups,
although the benefits are much smaller as each cache line contains only eight
instructions. If we have no luck with the lookup buffers, a full instruction
fetch is simulated by calling fetch . It will access the cache state (an array
of words indexed by the tag obtained from the virtual address), perform the
LRU replacement on the cache lines in the set, and update the lookup buffers
for future reference.

// Access the instruction cache.
// Because the simulated caches are
// slow, we maintain a two-entry
// buffer to cut down full fetches by
// the factor of (up to) sixteen.

Instr instr;

if (ibuf match(pc, ibuf[0].tag)) {
instr = swizzle(ibuf[0][pc], pc);
lru ibuf = 1;

}
else if (ibuf match(pc, ibuf[1].tag)) {

instr = swizzle(ibuf[1][pc], pc);
lru ibuf = 0;

}
else {

// No such luck:
// fetch the data from the cache.
instr = fetch(pc, pa);

}

Finally, we can decode the simulated instruction. decode is implemented as
a large switch statement that examines the various fields of the instruction
word and performs necessary updates of the state. The MIPS64 architecture
has delayed branches (ie. the instruction immediately following a branch is
executed unconditionally), which requires some special treatment in the sim-
ulator. The pipeline and next state variables form a two-position stack
of pipeline states that differentiate between normal instructions, branches
(which require to update the program counter from the branch target rather
than with an implicit increment) and the special case of the instruction address
errors, possible only after indirect jumps. In all cases, the stack arrangement
of pipeline and next state ensure that the result of decode is processed
with a delay of one loop iteration.

// Now, decode and run the instruction.
int next state = decode(instr);
// Dump the registers if required.
if (trace level >= dump gprs)
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dump gpr registers();

// Advance the PC.
switch (pipeline) {
case nothing special:

pc += 4;
break;

case branch delay:
pc = branch target;
break;

case instr addr error:
process address error(

instr fetch, branch target);
}
pipeline = next state;

}
}

6.3 Building and Using Sulima
To install Sulima, download and extract the tar file into your home directory.
The tar file will extract itself into a directory sulima.

There is no makefile in the source distribution. Instead, the makefile
is created dynamically using the install shell script.

Run the install script:

$ ARCH="xxx"
export ARCH
$ sulima/install -g

This will also create an "install.log" file with the output of the script, and
hopefully build the simulator system.

The ARCHenvironment variable specifies some string used to identify
the host architecture. It is used by the install script to maintain separate build
trees for each architecture.

The install script should build the executable

sulima/work-$ARCH/bin/sulima

which may be executed as:

$ sulima <TCL configuration script>

For example, the tar file includes a sample script that runs a bare L4:

$ sulima/work-$ARCH/bin/sulima
sulima/runtime/mipsL4/mipsL4.tcl

Each time the simulator is executed, it will create a log file sulima.log . The
simulator has been configured to maintain four rotated logs.
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7.1 Extendibility
The Sulima framework shows how an extensible instruction set simulation
may be implemented by partitioning the simulator state into independent
modules with a well-defined interface. By modularizing the main simulator
loop, customized simulators can be constructed by selectively replacing com-
ponents of the system model. The active module abstraction gives module
implementators unparalleled freedom of implementation when dealing with
complex devices such as DMA controllers, while retaining the functionality
of traditional event queue implementations.

7.2 Distribution
The modularized design of Sulima lends itself well to distribution across
loosely-coupled hosts. The traditional IVY algorithm can be used to main-
tain internal consistency of the simulator state in a distributed environment,
by maintaining a history of state changes. State dependencies can be easily
identified and the affected modules rolled back to a consistent state if re-
quired. In addition, the state history may be utilized by debuggers and other
tools that examine the simulator state.

7.3 Future Directions
The implementation of the framework is still very young. To utilize the po-
tential benefits of the design, models of many more hardware components
should be added to the system. I plan to implement models of Alpha micro-
processors in a near future, and a complete simulator of the SPARCv9-based
Fujitsu multiprocessor is currently being implemented at the ANU/Fujitsu
CAP project at Australian National University. To simplify design of active
modules, a tool for generating Sulima modules from formal specification
would be a welcome addition to the framework. Finally, in order to use
Sulima on large workloads, a translating processor simulator is necessary.
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The SimOS Home Page
Stanford University
http://simos.stanford.edu/

SimOS-Alpha
Western Research Laboratory
http://www.research.compaq.com/wrl/projects/SimOS/

SimOS-PPC
Austin Research Lab’s Full System Simulation Project
http://www.cs.utexas.edu/users/cart/simOS/

The SimICS Home Page
Virtutech AB
http://www.simics.com/

ARMulator
ARM Ltd.
http://www.arm.com/

IA-64 simulator
Intel Corp.
http://developer.intel.com/ia64/

PSIM — Model of the PowerPC(tm) Architecture
Andrew Cagne
http://sources.redhat.com/psim/

e-sim
(SuperH simulator) The Virtual Product Company
http://www.e-sim.com/

Hawk
Oregon Graduate Institute
http://www.cse.ogi.edu/PacSoft/projects/Hawk/

SimpleScalar
Simulation Tools for Microprocessor and System Evaluation
http://www.simplescalar.org/

MIPS Architecture
MIPS Technologies, Inc.
http://www.mips.com/

SPARC Documents
SPARC International, Inc.
http://www.sparc.org/
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IA-32 Documents
Intel Corp.
http://developer.intel.com/

The Crusoe Processor
Transmeta
http://www.transmeta.com/

PA-RISC Documents
Hewlett Packard
http://devresource.hp.com/devresource/Docs/Refs/PA1 1/

IDT Processors
Integrated Device Technology, Inc.
http://www.idt.com/

Bochs
Bochs x86 PC Emulation Software
http://www.bochs.com/

VMWare
VMWare, Inc.
http://www.vmware.com/

SoftWindows
FWB Software, LLC
http://www.fwb.com/
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