
THE UNIVERSITY OF NEW SOUTH WALES
SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

A Secure Microkernel

Philip Geoffrey Derrin

Thesis submitted as a requirement for the degree
Bachelor of Computer Science (Honours)

Submitted: June 7, 2005

Supervisor: Dr. Kevin Elphinstone
Assessor: Prof. Gernot Heiser

Abstract

Specification of a new kernel API is a challenging task. If the specification is initially
developed at an abstract level, it is easy to overlook important implementation is-
sues; on the other hand, writing a real kernel to test a specification involves low-level
programming and debugging, which takes a lot of time and effort and which may
be difficult to formally verify. This project is an attempt to develop a technique for
prototyping a kernel in a high-level functional language, with the goal of being able
to rapidly evaluate design decisions and specify the behaviour of the kernel more
precisely than an abstract model.

Acknowledgements

I would like to thank all the people who helped to make it possible for me to com-
plete this thesis: my supervisor, Kevin Elphinstone, for the guidance he has given
me over the last twelve months; the many people from the ERTOS and Formal Meth-
ods groups who provided helpful advice and suggestions, particularly Harvey Tuch,
Rafal Kolanski and Adam Wiggins; Sara Falamaki, for her invaluable friendship and
support; and my family, for making it possible for me to be here at all.

Contents

1. Introduction 8
1.1. The L4 Microkernel . 8
1.2. Goal . 8
1.3. Motivation . 9

1.3.1. Rapid Prototyping . 9
1.3.2. Formalisation . 9

1.4. About This Document . 10

2. Background 11
2.1. The L4Ka::Pistachio Microkernel . 11
2.2. L4 Security Issues . 13

2.2.1. IPC Security . 13
2.2.2. Resource Management . 14
2.2.3. Previous Solutions . 14

2.3. Capabilities . 16
2.3.1. EROS . 16
2.3.2. Mach and Chorus . 16

2.4. Haskell . 17
2.4.1. Overview . 17
2.4.2. State Monad . 18
2.4.3. ErrorT Monad Transformer . 19

3. The seL4 Kernel 20
3.1. Overview . 20

3.1.1. User-level Management of Kernel Memory 20
3.1.2. Endpoint-Oriented IPC . 21
3.1.3. API Specification . 21

3.2. Capabilities . 22
3.2.1. User-level Object Allocation . 22
3.2.2. Retyping Objects . 22
3.2.3. Object Types . 23

3.3. Endpoints and Inter-Process Communication 23
3.3.1. Identification . 24

3.4. Threads . 24
3.4.1. ThreadControl . 25
3.4.2. ExchangeRegisters . 25

4

3.4.3. Scheduling . 26
3.5. The Capability Space . 26

3.5.1. Capability Table Entries . 26
3.5.2. The CapCopy Operation . 27
3.5.3. The CapRevoke Operation . 28
3.5.4. The Map Operation . 28
3.5.5. Capability Table Structures . 29
3.5.6. The Data Space . 29

3.6. Errors and Faults . 30
3.6.1. System Call Errors . 30
3.6.2. Fault IPC . 30
3.6.3. Per-Region Fault Handling . 31

3.7. Summary . 31

4. Modelling seL4 in Haskell 32
4.1. Overview . 32
4.2. The Event Stream . 33

4.2.1. Event Generation . 34
4.3. System State . 34

4.3.1. Kernel Objects . 34
4.3.2. Physical Memory . 35
4.3.3. Object Types . 36

4.4. State Transformations . 36
4.5. Faults and Errors . 38

4.5.1. Recoverable and Fatal Errors . 38
4.5.2. Fault Handling . 39

4.6. Event Handling . 39
4.7. User-Level Simulator . 40

4.7.1. User Context . 41
4.7.2. User State Transition Functions 41
4.7.3. An Assembler-like Language . 41

4.8. The Main Loop . 42
4.9. Summary . 44

5. Evaluation 45
5.1. Usability and Completeness . 45
5.2. Rapid Prototyping . 45
5.3. A Specification Document . 46
5.4. Formal Verification . 46

6. Conclusion 48
6.1. Future Work . 48

6.1.1. Further Development of the Kernel 48
6.1.2. A New User Level Simulator . 49
6.1.3. Running on Real Hardware . 50

5

Bibliography 51

A. Annotated Haskell Code 53
A.1. Kernel API . 53

A.1.1. Pointer Types . 53
A.1.2. Object Types . 54
A.1.3. Events . 54
A.1.4. Exceptions . 55
A.1.5. Miscellaneous Constants . 55

A.2. Kernel State . 56
A.2.1. Data Types . 56
A.2.2. Public Functions . 56

A.3. System Calls . 57
A.3.1. Public Functions . 57

A.4. Capability Space . 63
A.4.1. Types . 63
A.4.2. Physical Storage . 64
A.4.3. Public Functions . 65
A.4.4. Private Functions . 71

A.5. Threads . 75
A.5.1. Data Types . 75
A.5.2. Type Class Instance . 76
A.5.3. System Call Implementations . 76
A.5.4. Public Functions . 79
A.5.5. Constants . 81
A.5.6. Private Functions . 82

A.6. IPC and Endpoints . 83
A.6.1. Data Types . 84
A.6.2. Type Class Instance . 84
A.6.3. Public Functions . 85

A.7. Kernel Objects . 88
A.7.1. Data Types . 88
A.7.2. Public Functions . 89
A.7.3. Type Class . 89
A.7.4. Type Class Instances . 89

A.8. Physical Address Space . 91
A.8.1. Data Types . 91
A.8.2. Public Functions . 91

A.9. Object Types . 92
A.9.1. Public Functions . 93
A.9.2. Private Functions . 93

A.10.Bootstrapping . 94
A.10.1. Public Functions . 95

A.11.User Level Machine Model . 97
A.11.1. Instructions and Registers . 97

6

A.11.2. User Level State . 98
A.11.3. CPU Simulation . 99
A.11.4. Public Functions . 99
A.11.5. Internal Functions . 100

7

Chapter 1.

Introduction

1.1. The L4 Microkernel

L4 is a high-performance, lightweight operating system kernel. It is a microkernel,
which means that it provides only the minimal set of low-level abstractions required
for building a complete system.

Unfortunately, L4 suffers from a number of security issues which make it unsuitable
for building secure systems. While several attempts have been made to solve those
problems, all such attempts have had other limitations. A useable solution appears
to require the development of a significantly revised kernel design.

1.2. Goal

The goal of this thesis was to build a prototype for a new microkernel. The new
kernel is similar to the existing L4 microkernel, but attempts to solve some of the
known security issues by taking a capability-based approach.

I had originally planned to achieve this by modifying the existing L4Ka::Pistachio im-
plementation. However, there is a very great deal of effort involved in understanding
an existing kernel implementation and making extensive modifications to it. Trying
to do so while the eventual goal is not yet clearly defined, and experimenting with
different design alternatives at the same time, is clearly impractical.

The focus of this thesis has therefore changed. Instead of a stand-alone kernel im-
plementation, I have developed an executable model of the kernel. It is written in
Haskell, a functional programming language that I believe is quite well suited to this
task.

The main focus of this report is the advantages and limitations of building an exe-
cutable model of the kernel using Haskell. However, in order to provide some con-
text for the discussion of the model, this report also describes the current state of the
kernel interface, and some of the issues that motivated the present design.

8

1.3. Motivation

1.3.1. Rapid Prototyping

A stand-alone operating system kernel runs under performance and implementation
constraints that cannot easily be included in an abstract model of a kernel API —
whether that model is expressed in prose or using formal methods. When a design
is implemented under those constraints, certain aspects of the design may have an
adverse effect on performance — or even affect the feasibility of the implementa-
tion, depending on the target architecture. Therefore, I believe that starting with a
relatively abstract definition of a kernel API risks making decisions that will cause
problems later. This implies that it is better to build a low-level prototype early on,
so that such problems are more likely to be noticed.

Implementing any large system is challenging; operating system kernels, even mi-
crokernels, are no exception. The challenge is made even greater when developing a
new kernel because such systems must interact with their host’s hardware at a very
low level. It is usually necessary to write significant amounts of assembly code; also,
incorrect use of privileged hardware operations may cause problems that are very
difficult to locate. Building a prototype to test new design features in such an envi-
ronment is difficult and time consuming, and slows down the design process.

This thesis investigates the possibility that simulating the system’s behaviour using
an unambiguous, high-level language — for example, Haskell — may be an effective
compromise. Such a prototype will expose low-level implementation details which
might influence the design of the kernel. At the same time, being written in a high-
level programming language and run at user level makes it far easier to write and
debug than a standalone kernel implementation, which is a major advantage during
the early stages of development.

1.3.2. Formalisation

In order to formally verify an operating system, it is necessary to generate a formal
specification of the kernel’s API. Previous attempts at deriving such a formal spec-
ification from an existing natural-language informal description have found many
aspects of the design to be incompletely or inconsistently specified [6, 16].

Developing the new kernel’s informal specification as a prototype in a functional pro-
gramming language may ease this transition considerably. This thesis attempts to
show that a prototype implementation developed in Haskell can be made relatively
easy to formalise. Such a model can specify the kernel’s behaviour in a more readable
and concise manner than the more typical C, C++ and assembler languages, but at the
same time can be more complete and precise than a natural-language specification.

9

Also, by using only an abstract model of the hardware, it can avoid being cluttered
with complicated architecture-specific implementation details.

1.4. About This Document

The remainder of this report is structured as follows:

• Chapter 2 on the following page provides some context for the work described
in this thesis. It gives a brief overview of the existing L4Ka::Pistachio microker-
nel, and of the security issues present in L4 and some attempts to solve them. It
also describes the Haskell functional language, and discusses some of the issues
involved in using it to model operating systems kernels.

• Chapter 3 on page 20 describes the present state of the new kernel design, as
implemented in the Haskell prototype. It discusses some of the design issues
that have been encountered so far, and the solutions chosen.

• Chapter 4 on page 32 documents the design and implementation of the Haskell
prototype.

• Chapter 5 on page 45 evaluates the results of the project and discusses its suc-
cesses and limitations.

• Chapter 6 on page 48 sums up the outcome of the project, and presents some
avenues of future work.

• Appendix A on page 53 presents annotated Haskell source code for the exe-
cutable specification.

10

Chapter 2.

Background

This chapter provides some context for this thesis, and discusses related work. Specif-
ically, it discusses:

• the existing L4Ka::Pistachio implementation of L4, in section 2.1;

• the security issues in the L4 API, in section 2.2;

• capability-based access control, particularly of IPC operations, in section 2.3;
and

• the Haskell programming language used to develop the prototype, in section
2.4.

2.1. The L4Ka::Pistachio Microkernel

L4Ka::Pistachio [7] is an implementation of the L4 microkernel API, version X.2. It is
a lightweight, high performance microkernel, which provides user tasks with three
basic services: thread management, virtual address spaces, and a communication
operation (called IPC, an abbreviation of Inter-Process Communication).

L4 provides only a small number of system calls, which are used for performing op-
erations related to the three services it provides. There are also several special IPC
protocols, which are used for mapping virtual memory, and for handling interrupts,
exceptions and page faults. All other operating system services — such as file systems
and device drivers — must be implemented by user-level server tasks.

Threads

Every thread in the system has a global thread ID that is unique throughout the system,
and a local thread ID which is unique among a group of threads sharing the same
address space. These IDs are used to identify the thread when performing system
calls that modify its state, or when communicating with it.

11

Every running thread also requires two areas of memory to store its state: a thread
control block (or TCB) in the kernel address space, and a user thread control block (or
UTCB) in its own address space.

Scheduling of threads is via a multiple priority round robin scheduler, though there
is a mechanism defined for replacing this with a user-level scheduler thread. When
the default scheduler is used, threads are scheduled in round robin order from the
highest-priority queue of runnable threads; runnable threads at lower priorities are
never scheduled.

Two system calls are used to control the creation and execution of threads. Thread-
Control is used to activate or deactivate a thread, and set its priority, UTCB location,
address space, and user-level scheduler and page fault handler. ExchangeRegisters is
used to modify the state of a running thread.

Some threads are privileged, meaning that they are allowed to perform certain opera-
tions such as creation of new threads. The initial threads — σ0 and the root task —
are both privileged.

IPC

The IPC operation allows messages to be exchanged between two user-level threads,
or in some cases between the microkernel and a user level thread. The messages
consist of up to 64 message registers, containing a combination of untyped data, map
objects (discussed in the next section), and string objects (which are only available on
some implementations).

All messages are synchronous; both the sender and the recipient will block until the
message has been transferred. The sender and recipient may each specify a timeout,
which limits the time that the thread will wait for a message to be transferred. This
timeout may have a specific value, including zero; or it may be infinite.

Messages are addressed using local or global thread identifiers. Local identifiers may
be used to specify threads that share the caller’s address space; all other threads must
be identified using their global identifiers. Send operations must specify a recipient,
but receive operations may either specify a sender or allow any sender.

Address Spaces

Virtual address spaces in L4 are shared by a group of one or more threads. When a
thread is created, its address space must be configured using the SpaceControl system
call; that call may be used to specify that the thread either has its own new, initially
empty address space, or alternatively that it shares the address space of an existing
thread.

12

Virtual memory management in L4 is performed by user-level pager threads. At boot
time, the kernel maps all unallocated memory in the system into the address space of
the privileged thread σ0. From then on, all memory mappings are created by sending
IPC with map items in the message registers; these specify a region of memory in
the sender’s address space which is to be mapped into the recipient’s address space.
This is the Map operation. There is also a variant in which the sender transfers its
mapping, removing it from its original location in the sender’s address space; this is
Grant. The recipient of a mapping may choose to limit the possible destinations for
it.

The kernel keeps records of the ancestry of each mapping. Any thread may call the
Unmap system call and specify a mapping; the kernel will then revoke any other
mappings that have been created with it via Map operations. The caller may request
that the given mapping itself be removed as well.

When a thread causes a page fault, a message is sent to the pager thread that was
specified for it using ThreadControl, and the faulting thread waits for a reply. The
message is in a format defined by the kernel API; it states the nature of the fault and
the address at which it occurred. The pager is expected to either use a Map operation
to resolve the fault and restart the thread, or deny the access and take some other
action (such as killing the thread).

2.2. L4 Security Issues

There are some security issues with the L4 API which are a concern from the perspec-
tive of designers of secure systems [2, 10, 14]. One of these is the global namespace
used for specifying IPC partners, along with the related problem of imposing restric-
tions on which pairs of threads can engage in IPC; another problem is related to the
management of kernel resources, particularly dynamically allocated memory.

2.2.1. IPC Security

There are two security issues with the present IPC model.

First, the namespace for IPC outside the current address space is global, and visible
to every thread in the system. This exposes the structure of the system to all threads
which need to perform such communication. This causes a few problems. First, it
restricts the design of OS personalities somewhat — for example, if a server is multi-
threaded, the client threads must be aware of that fact. More importantly, it opens a
possible covert channel between areas of the system that should be isolated.

The second issue is that there is no efficient method available for restricting overt
communication channels between threads. In fact, until recently, L4Ka::Pistachio did

13

not apply any restriction at all. There have been several attempts to solve this prob-
lem, but every solution has its own issues, most of them related to performance. Refer
to section 2.2.3 for a summary of these attempts.

2.2.2. Resource Management

Several of the services provided by L4 need storage space in kernel memory. For ex-
ample, virtual address spaces require page tables in which the mappings from virtual
address to physical frame can be stored, and entries in a mapping database which
record the hierarchy of map operations which have been performed on each physical
page.

Kernel resources can be managed, to some extent, by user level tasks: system calls ex-
ist to map and unmap pages, and to create and destroy threads and address spaces.
However, in the L4Ka::Pistachio kernel, the space available to store the in-kernel
metadata representing these resources must be allocated from a fixed pool of mem-
ory, the size of which is determined when the kernel is compiled. This is obviously
not an ideal solution, as the kernel’s memory pool can very easily be exhausted —
either due to high system load, or a deliberate denial of service attack [10].

2.2.3. Previous Solutions

Several approaches have been proposed or implemented to solve these issues in L4;
however, none of them are really satisfactory [2]. Some of the previous attempts and
their limitations are briefly summarised below.

IPC Security

Clans and Chiefs were part of version 2 of the L4 API [8]. In this model, each thread
is a member of a group of threads known as a clan, and each clan has a single
thread nominated as the chief. Any message passing across a clan’s boundary —
either from a thread outside the clan directed to a thread inside it, or vice versa
— is redirected to the chief, which may forward or discard it.

A major limitation of this approach is its poor performance, due to the many
extra IPC operations it causes. An extra IPC operation is required for every clan
boundary that a message has to cross. For example, in the common situation in
which two communicating threads are members of separate clans contained in
a single enclosing clan, three IPC operations are required for each message.

14

IPC Redirection was developed as a replacement for the Clans and Chiefs model [5].
In this system, tasks are grouped into redirection sets which each have a redirec-
tion monitor. The monitor is responsible for providing the kernel with mappings
between (sender, destination) pairs and recipients (which may or may not be the
same as the nominal destinations). The kernel is able to cache these redirections,
so if two threads are to be permitted to communicate without restrictions, only
one extra context switch to the redirection monitor is required for as long as the
redirection remains in the cache.

This approach performs better than the Clans and Chiefs model in most cases;
however, it increases the penalty for the check when a thread attempts to im-
personate another, which is necessary when messages are to be transparently
monitored.

IPC Redirectors are used in L4Ka::Pistachio [7]. They are a simplification of the redi-
rection model, in which the kernel does not cache redirections but instead for-
ward all messages passing outside the redirection set to a redirector thread. This
model combines the worst features of the previous two: it suffers from perfor-
mance problems due to excess IPC operations and must perform a potentially
slow search when a redirector impersonates a message’s sender.

Virtual Threads replace L4’s global thread identifiers with a local address space for
each thread, which is managed in a similar way to the virtual memory space.
This solves the global IPC namespace covert channel problem, and also enforces
mandatory control of the ability to use overt channels. However, to be able to
efficiently inform an IPC recipient of the sender’s identity, the implementation
requires that every sender know and specify its address in the recipient’s thread
space; if the sender does not know it or specifies it incorrectly, the result is a
long-running search to locate the sender in the recipient’s space.

Resource Management

Donation: Liedtke et al. have proposed [10] that the privileged σ0 thread be able
to donate memory to the kernel to be used to satisfy requests from a specific
thread. The donated memory is returned to σ0 when the specified thread’s ad-
dress space is destroyed, which leads to a major limitation of this solution: if an
active thread’s requirements decrease over time, there is no way to reclaim the
unneeded kernel memory.

Kernel Pagers: Haeberlen and Elphinstone [4] implemented an extension of the exist-
ing L4 memory management model, in which the pager thread used for han-
dling virtual memory page faults is joined by a kpager thread, which handles
kernel memory exhaustion faults. The kpager is able to donate a page to the

15

kernel on behalf of the faulting client thread; it may also revoke donated mem-
ory, for example to store it to disk. The kernel either zeros the contents of re-
claimed memory, or converts them to a form that can be validated if the page is
returned to the kernel.

This approach solves the problem of reclamation of resources, but introduces
a new issue: there is no way for the kpager to tell what a kernel page is being
used for, so revoking kernel pages risks severe performance degradation. For
example, accidentally revoking the page containing the client’s root page table
node would unmap the entire virtual address space of the client, and rebuilding
it could take a long time.

2.3. Capabilities

A capability is an object that represents the right to perform a specific operation on a
specific object. In a capability-based system, a task may only perform certain opera-
tions if it possesses a capability allowing it to do so; to perform those operations, the
task must provide a reference to an appropriate capability when calling a capability
invocation system call.

Several microkernels other than L4 have used capabilities to restrict tasks’ ability to
communicate, including Mach, Chorus and EROS.

2.3.1. EROS

EROS [15] provides entry capabilities, which allow a process to send requests to an-
other specific process. No distinction is made between processes and threads, so there
is exactly one possible recipient of any message sent using a given entry capability.

Invocation of an entry capability can optionally create a reply capability, which is a
single-use object that can be used to reply to the sender of the original message. Once
it is used, it becomes invalid, including all copies of it that may have been sent to
other threads.

2.3.2. Mach and Chorus

The Mach [12] and Chorus [13] systems also use capabilities to restrict communica-
tion. Unlike EROS, they do not provide capabilities for sending messages to specific
threads; instead they allow send or receive operations on intermediate objects called
ports.

Ports are not tied to a specific destination, so they can be shared by multiple server
threads without exposing this fact to clients. They cannot be used concurrently by

16

multiple server tasks (which are groups of threads sharing an address space and a set
of capabilities). However, Chorus provides a port group object which allows a send
operation to address multiple ports (and therefore multiple tasks) at once. Also, both
systems allow send and receive capabilities for ports to be sent to other tasks, so mi-
gration of a port from one task to another can be performed in a manner transparent
to the clients.

The Mach model also includes single-use ports, similar to the reply capabilities in
EROS. They become invalid after a single message is send to them, and their capa-
bilities cannot be duplicated. While these are convenient, they are not essential, and
they add extra complexity to the IPC path.

Discussion

2.4. Haskell

The executable specification is intended to be the middle ground between an English-
language specification, a formal specification, and an implementation. It is important,
therefore, to develop it in a language that allows an easy transition into each of those
three forms. Haskell one such language.

The following is a summary of the features of Haskell that are relevant to its use in
this thesis.

2.4.1. Overview

Haskell is a general purpose functional programming language [11]. It is in widespread
use in the research and education communities; several universities, including UNSW,
use it in introductory programming courses.

The features of Haskell that are most relevant to this thesis are:

• The type system performs strict checks at compile time; it must be possible to
determine the type of every expression. Invalid values such as null pointers are
impossible, as are unsafe or implicit type conversions. This simplifies debug-
ging, as most incorrect code will not compile.

• There is a formal definition of the language’s sematics [3]. There is only one
case in which it is ambiguous; that case is unlikely and easily avoided. The
pure functional semantics and strict typing make Haskell quite similar to HOL,
which is being used in the ongoing L4 verification project [16].

17

• By constructs called monads, it is possible to write functions that process state
changes in a manner that superficially resembles an imperative language. These
are easier to read than non-monadic functional programs when performing
complex and inherently imperative state transformations, especially for devel-
opers who have no experience with functional languages. This is discussed
further in sections 2.4.2 and 2.4.3.

The following two sections describe the use of the two monads used in the imple-
mentation of this thesis. For further information about monadic programming and
its use in Haskell, please refer to the tutorial at http://www.nomaware.com/monads/
html/index.html.

2.4.2. State Monad

Haskell is a pure functional language, meaning that expressions in the language must
neither depend on the global state of the system, nor change it as a side effect1. This
makes it fundamentally very different to imperative languages such as C, which are
typically used for kernel implementations.

One problem with pure functional programming is that systems that operate in a
complex state space — for example, models of operating system kernels — must pass
their entire state around in function parameters and return values. This clutters the
code and results in programs that are difficult to read, especially for people unfamiliar
with functional programming. As a trivial example, this is a function for which the
state data is an integer; it adds a given value to the state, and returns the new value
converted to a string:

updateAndShow :: Integer → Integer → (Integer, String)
updateAndShow step state = (new_state, show new_state)

where new_state = state + step

Note that the function must both accept and return an extra Integer value repre-
senting its state. Also, the entire result must be constructed in one expression. If the
computation conceptually involves a sequence of imperative steps, representing it
this way can be quite difficult.

However, Haskell includes support for monadic programming [17], and provides a
monad called State. This monad provides a means to hide the explicit state parame-
ters, and express sequences of state transitions in a form that superficially resembles
an imperative program. To repeat the previous example using State:

updateAndShow :: Integer → State Integer String

updateAndShow step = do

1There are a few exceptions to this rule, including functions in the IO monad and the foreign function
interface. These are special cases, and can only be used under specific conditions.

18

old_value ← get

let new_value = old_value + step

put new_value

return (show new_value)

The get and put functions used in this example are for fetching and setting the cur-
rent state. Note that due to Haskell’s strict typing requirements, transitions between
functions that are not in the State monad and those that are must be explicit — using
the runState function to evaluate expressions in State from outside the monad, and
the let statement to evaluate non-monadic expressions from inside the monad.

For complex state transformations, writing programs in monadic style provides a sig-
nificant improvement in readability over traditional functional programming. This
technique has been used extensively in this project.

2.4.3. ErrorT Monad Transformer

One limitation of the State monad is that there is no straightforward way to halt
processing of a sequence of operations when an error occurs. The ErrorT monad
transformer provides a mechanism for doing so.

Using ErrorT allows sequences of computations in a monad to fail and return an
error value. Further statements in the monad will not be evaluated; the error will be
passed up the call stack in a manner that resembles a C++ or Java exception, until
it reaches a call to catchError. For example, to extend the updateAndShow function
defined above so it returns an error message if the step is not positive:

increaseAndShow :: Integer → ErrorT String (State Integer) String
increaseAndShow step = do

unless (step > 0) $ throwError ‘‘step must be postitive’’
lift $ updateAndShow step

Again, Haskell’s strict typing requires all transitions in and out of the ErrorT monad
transformer to be explicit. The runErrorT function enters the monad; let evaluates
a non-monadic expression; and the function lift adds the ErrorT transformer to the
type of a function that is already in State.

19

Chapter 3.

The seL4 Kernel

The Haskell code, which is presented in appendix A on page 53, should be considered
the authoritative specification of the present kernel interface. This chapter serves as
a high-level overview of the interface, as well as explaining the reasoning behind
some of the design decisions. The design and implementation of the model itself is
described in chapter 4 on page 32.

The design described in this chapter is preliminary, and is not yet ready for seri-
ous use. There are still several areas which have not yet been properly investigated,
and some things — particularly the interrupt handling mechanism — have not been
specified at all. The kernel is presently known as seL4, an abbreviation of “secure
embedded L4”.

3.1. Overview

This design was loosely based on that of the existing L4Ka::Pistachio kernel, as de-
scribed in section 2.1 on page 11. It is similar in that the kernel provides the same
three basic services: thread management, virtual address spaces, and communication
between threads. In many cases, these services are provided in a manner that is at
least superficially similar, if not actually the same. There are, however, some major
changes, which are intended to solve the problems mentioned in section 2.2.

3.1.1. User-level Management of Kernel Memory

With the exception of a small amount of statically allocated memory used for ker-
nel code and the kernel’s stack, all memory resources in the system are managed by
user-level tasks. This is achieved by giving user threads capabilities to access areas of
memory, and requiring that capabilities to unused memory be provided when creat-
ing objects.

This change is intended to solve the kernel resource allocation problem. The require-
ment that threads explicitly identify the memory to be used when creating a new
kernel object provides a mechanism for user-level accounting of kernel resources,

20

and allows OS personalities to prevent denial of service attacks by non-privileged
threads.

In this respect, the design resembles that of EROS [15]. Section 3.2 discusses kernel
resource capabilities in more detail.

3.1.2. Endpoint-Oriented IPC

The other significant change is that IPC operations no longer specify the partner
thread explicitly. Instead, there is a new kernel object called an IPC endpoint, which is
similar in spirit to a Mach port [12]. All send and receive operations must specify ex-
actly one endpoint. Endpoint objects, like all other kernel objects, are managed using
capabilities; the references used to invoke them are specific to the invoking thread’s
address space.

There are several advantages to this approach, compared to that of L4:

• Most importantly, user-level tasks can only communicate through channels that
have been explicitly authorised by the OS personality.1 It is therefore possible
to prevent information leakage or denial of service attacks by untrusted tasks,
without adding any extra complexity to the IPC path.

• Because there is no longer a global namespace for specifying IPC partners, com-
munication channels are not tied to a particular client or server thread. Both
client and server processes are free to delegate communication to other threads
inside their address space (or elsewhere, if they are allowed to share their end-
point capabilities). Server processes may even become multithreaded without
changing their external interface.

• IPC can also be transparently redirected or monitored by privileged threads, by
replacing the sender’s endpoint capability with one that a monitor is listening
to. The monitor may choose to forward the message to the original recipient.

See section 3.3 on page 23 for more information about endpoints.

3.1.3. API Specification

Of the following four sections of this report, the first discusses the capability system;
this is followed by one section for each of the three services provided by the kernel:
threads, address spaces, and IPC. These sections provide an overview of the features
of the new kernel interface; for a more detailed description, refer to the Haskell pro-
totype in appendix A.

1Covert channels are considered to be outside the scope of this thesis.

21

3.2. Capabilities

One of the fundamental design principles for this kernel is that all access to kernel
operations and resources by user-level tasks is via invocation of capabilities. Each
task has a set of capabilities to access kernel objects; each object supports one or more
kernel operations, which the task may or may not have permission to perform. In this
context, kernel operations include system calls, and also accesses to the contents of a
page via a virtual memory mapping. No such operation can be performed without
an appropriate capability, because the capability itself specifies the object that is to be
operated on.

3.2.1. User-level Object Allocation

All access to kernel resources is via capabilities; this includes allocation of new re-
sources for kernel objects. This is achieved by giving the initial user-level server
capabilities to use all unallocated memory in the system — there is no separate re-
served space for dynamically allocated kernel memory. If a new kernel object, such
as a thread, is required, the user-level task that wishes to create it must allocate some
unused memory to which it has a capability.

3.2.2. Retyping Objects

Once a user-level task has allocated some unused memory, it invokes the Retype sys-
tem call. This system call, given a capability, transforms the object it points to into the
requested type.

When performing the Retype system call, it is necessary to specify one of the sev-
eral types of data that can be stored in that memory. These types include ordinary
user-accessible memory, and various objects that are used by the kernel to provide
resources to user level — including threads, page table entries, and IPC endpoints.

Object types are global; once an area of memory has been retyped, all capabilities to
that area of memory can be used to access the new object — as long as their permis-
sions are sufficient.

Alternative Approaches

There were several alternative approaches considered for the storage of type data,
other than global typing. They involved storing a type tag in each capability map-
ping, and preventing multiply-typed pages by either:

• traversing the entire tree of mappings for the object and changing all their types,
or

22

• traversing only the descendants of the retyped mapping, and enforcing that
only one thread can have the ability to retype a capability at any time, or

• limiting the use of retype to a trusted and privileged set of user-level threads.

There are two major motivations for the use of global types for kernel objects, rather
than having a type tag attached to each capability: efficiency and reliability. The
global type tag prevents any situation in which a kernel bug or misbehaving user-
level thread causes a page to be interpreted as containing an object of a type other
than that which it actually contains. This could otherwise be avoided by a sufficiently
careful memory allocation server, or by spending a long time retyping every reference
to an object; but unlike those solutions, a single global type tag for each object is both
efficient and reliable.

3.2.3. Object Types

The following types of object have been defined:

• Untyped memory. The only valid operation for this type is the Retype system
call.

• Data memory. Depending on the set of permissions it has, a user-level task may
be able to read, write and execute the contents of pages with this type.

• Communication endpoints, described in section 3.3.

• Thread control blocks, described in section 3.4 on the following page.

• Capability table entries, described in section 3.5.1 on page 26.

3.3. Endpoints and Inter-Process Communication

Communication between user-level tasks in seL4 uses the Send IPC and Receive IPC
system calls. These are invoked on a kernel object that exists specifically for this pur-
pose — an IPC endpoint. When one thread invokes Send IPC and another invokes
Receive IPC on the same endpoint, a message is transferred from the former thread to
the latter. All messages are synchronous; the thread which performs the first invoca-
tion will block until the message is transferred.

If multiple threads are waiting to send a message through the same endpoint, and
another thread attempts to receive from an endpoint, one of the send operations will
succeed at that point; the other sending threads will continue to wait. The opposite
situation, when multiple threads are waiting to receive from the same endpoint, is
similar.

23

User Thread

TCB

Cap Table

CTE
Endpoint

User Thread

TCB

Cap Table

CTE

ReceiveSend
Badge

Message

Data

Badge

Figure 3.1.: An IPC operation. The badge in the message is copied from the sender’s endpoint
capability.

The order in which the send operations proceed in this case is defined by the imple-
mentation. In the prototype, the order is last in first out; however, first in first out is
likely to be more useful in practice.

3.3.1. Identification

It is only possible to wait for messages to a single endpoint at a time. Therefore, if a
single server thread is providing a service to multiple client threads, it must provide
every client with the same endpoint. So when a server thread receives a message, the
kernel must provide some information about which client thread sent it.

This is achieved by tagging every endpoint capability with an integer, called a badge,
which is provided to the receiver. This tag can be set to an arbitrary value by the user-
level server that provides the thread with the capability to the endpoint. Figure 3.1
shows an example IPC operation.

3.4. Threads

Each user-level thread of execution has a corresponding kernel object, a thread control
block (or TCB), which is used to store its configuration and saved context. The creation
of a new thread is accomplished simply by retyping memory to become a TCB, and
destruction by retyping a TCB to something else.

However, a thread requires configuration to be able to execute. Therefore there are
two additional system calls that are used for initialisation and control of existing
threads. These system calls — ThreadControl and ExchangeRegisters — are similar in
purpose to the system calls of the same names in L4Ka::Pistachio.

24

3.4.1. ThreadControl

ThreadControl is generally used once for each thread, before it runs for the first time.
It sets various configuration parameters for the thread, including:

• the thread’s priority, which is used as discussed in section 3.4.3;

• a capability to the root of the structure that maps the thread’s capability space
(see section 3.5 on the next page);

• a capability to the thread’s default page fault handler endpoint (see section 3.6.2 on
page 30); and

• optionally, a capability to a table of region-specific page fault handlers (sec-
tion 3.6.3).

For the purposes of the CapRevoke system call, the three capabilities are treated as if
they had been copied into the TCB; i.e. a subsequent call to CapRevoke on any of the
original capabilities will remove the thread’s access to that capability, reversing the
effects of the ThreadControl call.

It is possible to call ThreadControl on a running thread; this would most commonly be
done to change the thread’s priority. To allow such a call to avoid re-copying the three
capabilities, ThreadControl has a bitmask argument which is used to specify which of
the configuration parameters should be set.

3.4.2. ExchangeRegisters

The primary purpose of ExchangeRegisters is to allow a user-level server thread to
save and restore the state of its clients. It provides the caller with direct access to the
execution contexts of other threads, by copying all or part of the context between two
specified threads.

ExchangeRegisters expects four parameters. The first two are capabilities to the TCBs
of the source and destination for the copy operation; the caller must have read permis-
sion for the source and write permission for the destination. The third is a pointer,
in the caller’s address space, to an area of physical memory large enough to save
an architecture-dependent subset of a thread’s state; it is required only if either the
source or the destination is the current thread. The fourth is a bitmask that specifies
the operation to be performed.

The meaning of the bits in the mask is partly architecture-dependent. The bits that
are always expected to be present have the following meanings when set:

25

• Copy an architecture-dependent subset of the register set which cannot be copied
directly to or from the current thread’s context. This includes the stack pointer,
the program counter, and any registers required to perform a call to Exchang-
eRegisters. If the source or destination is the current thread, a block of memory
specified by the caller will be used to copy these registers, instead of the current
thread’s context.

• Copy the integer register set, except for the registers in the subset mentioned
above.

There will be additional architecture-specific bits that allow control of the threads’ use
of the floating point and vector units (if they are present), including copying the con-
tents of their register sets. Depending on the architecture and on the circumstances
at the time of the call, it may be possible to perform these operations without any
copying of registers to or from memory.

3.4.3. Scheduling

The scheduler is essentially identical to that of L4Ka::Pistachio. It is a multiple-
priority round robin scheduler, with a separate queue of runnable threads for each
priority. Threads are chosen from the highest priority non-empty ready queue.

There is a Yield system call, which may be invoked at any time without a capability.
This allows a thread to give up the remainder of its time allocation. This system
call will be extended in future to allow the time to be donated to a specific thread
instead.

3.5. The Capability Space

It was noted in section 3.2 that virtual memory accesses are considered a kernel oper-
ation invoking a capability, similar to a system call. It follows that there is not neces-
sarily any distinction between the virtual memory address space and the capability
address space. Capabilities, either to kernel objects or to pages of ordinary memory,
are mapped to the physical memory used to back them by an implementation-defined
page table structure.

3.5.1. Capability Table Entries

While the implementation defines the structure of a capability table, all cap tables are
constructed out of arrays of capability table entry objects, or CTEs. Each CTE maps an
address or region of addresses in a user task’s address space to a capability to a kernel
object; the capability itself is stored in the CTE, where it is not directly accessible from

26

user level. The contents and layout of the entries are left up to the implementation,
but they are expected to contain at least:

• a physical pointer to a kernel object;

• a set of permissions;

• space to store a single machine word, the meaning of which depends on the
object’s type; and

• meta-data to track copies made of the capability, to be used by the revoke oper-
ation.

3.5.2. The CapCopy Operation

The CapCopy system call is intended for use by the servers responsible for memory
allocation and virtual memory paging. It directly accesses a specified capability table
entry, copying the capability that is mapped to a given address in the caller’s address
space. If the destination CTE already contains a valid capability, it is revoked, as if
the CapRevoke system call had been used on the destination.

Servers can use this system call, along with Retype, to construct capability spaces for
their clients. The sequence of operations used to do this depends on the capability
table structure in use. For example, with an implementation using a two-level table,
a server might do the following to create an address space with a data page mapped
at address x:

1. Allocate an unused page of memory and call Retype to convert it to an array of
CTEs.

2. Make the newly created array of CTEs the client thread’s page table, using
ThreadControl (see section 3.4.1 on page 25).

3. Allocate another page, and Retype it to an array of CTEs. This is the second level
of the table.

4. Use CapCopy to place a capability to read the second-level table in the root table.
The offset into the table is determined by multiplying the n most significant bits
of x by the size of a CTE, where n and the CTE size are implementation-defined.

5. Allocate a page and Retype it to a data page.

6. Use CapCopy to place a capability to access the new data page into the second-
level table.

27

Thread

Root CTE

Thread

Root CTE

Cap Table

Cap Table

CTE

Cap Table

CTE

CTE

CTE

CTE

Shared Data

Cap Table

CTE

Private Data

Cap Table

CTE

Private Data

Figure 3.2.: Sharing using capability tables

As shown in figure 3.2, it is possible for capabilities to a single second-level table to
appear in two different root-level CTEs — in this case, in the capability tables of two
different user-level tasks. This provides a simple mechanism for sharing regions of
the address space between multiple tasks. In a system using a variable radix page
table, such as a guarded page table, regions of arbitrary size could be shared.

3.5.3. The CapRevoke Operation

The CapRevoke system call is similar to L4Ka::Pistachio’s Unmap system call. It locates
all capabilities that have been created by copying a specified capability, and inval-
idates them so they can no longer be invoked. At the caller’s request, it may also
invalidate the specified capability.

3.5.4. The Map Operation

CapCopy is useful for constructing address spaces, but may not be appropriate if a
client task wishes to share a kernel resource it possesses. Using CapCopy to control
sharing requires either that at least one client is given direct access to part of the other
client’s address space, or that all sharing requests are mediated by a third party with
access to both clients’ address spaces.

28

While these limitations may be adequate in some situations, it is often desirable for a
client thread to quickly send a capability to another thread — while neither possess-
ing capabilities to the recipient’s address space, nor knowing the details of the ker-
nel’s capability table implementation. For example, a client may wish to nominate an
endpoint for a server to use to send notification that a request has been completed.

The new kernel therefore has a second mechanism for sharing capabilities: the Map
operation. This presently works by invoking a system call on a thread, and providing
two user-level addresses — one in the caller’s address space, and one in the recipi-
ent’s. A capability is then copied from the address in the sender’s space to that in the
recipient’s space.

There are several major problems with Map as it is presently defined, so its semantics
will most likely change significantly in the near future. Most importantly, the recipi-
ent has no control over the new location of the capability, and no way to detect that a
Map has occurred.

3.5.5. Capability Table Structures

The present kernel prototype implements its capability space using a simple two-
level page table. It would, however, be possible for other versions of the kernel to use
different structures, depending on the requirements of the system. For example, on a
64-bit architecture, it may be more appropriate to use a guarded page table [9].

In the present API, changing the page table structure would alter the semantics of
the CapCopy and Map operation. This is potentially a problem, especially since Map
is intended to be used by client applications. Any application using this call would
depend on a specific page table structure, and would require modification to work
with kernels using a different structure.

It is likely that this problem will motivate a change in the semantics of Map in the
near future. On the other hand, CapCopy is intended to be used by memory allocation
servers and other components of the OS personality which are system-specific in any
case, so I believe it would not be such a major problem for it to expose the page table
structure.

3.5.6. The Data Space

Many hardware architectures specify a page table structure that is used by the MMU
to attempt to resolve page faults without entering kernel code. For example, most
32-bit PowerPC CPUs support a hashed page table structure that acts as a cache for
the main page table maintained by the kernel.

It may be desirable for the kernel to support access to such a structure from user level.
We envisage adding a new kernel object type which is used to store the hardware

29

page table structure for the current thread, and allowing user-level code to request
that a capability to access data memory be copied to the corresponding hardware
page table entry (or to simply do this automatically when necessary). The prototype
kernel does not do this, however.

3.6. Errors and Faults

When the kernel detects an error caused by an operation at user level, it must report
the nature and cause of the error so it can be handled. Errors that are reported to user
level fall into three broad categories:

• Invocation of a capability which has an insufficient set of permissions;

• Invocation of a capability that does not exist, or is of the wrong type for the
requested operation; and

• Errors caused by invalid system call arguments (other than capabilities).

These errors are reported to user level using two different mechanisms, depending
on what sort of event that led to the error.

3.6.1. System Call Errors

If an error is encountered during a system call, the kernel can simply cancel pro-
cessing of the system call. When this happens, the failed call returns an error code
corresponding to one of the three classes of error defined above. If the error involved
a capability, the address of the capability will also be returned; this allows the caller
to determine which capability caused the error in cases where more than one is being
used.

Wherever possible , the kernel should detect any errors and cancel the operation be-
fore any changes are made to the kernel’s state.

3.6.2. Fault IPC

If a memory load or store operation fails, it is not possible to simply cancel the opera-
tion and return an error code. Instead, the user-level task responsible must somehow
be suspended while the fault is handled, and then resumed later if appropriate.

The mechanism used to do this is similar to that used by L4Ka::Pistachio. In that
kernel, each thread has another thread nominated as being responsible for handling
page faults. An IPC is sent to the fault handler thread by the kernel whenever a page
fault is detected.

30

The new kernel retains that mechanism, with only one major modification. Since IPC
operations now use endpoints, it is no longer appropriate to nominate a thread as
a fault handler; instead, there is a fault handler IPC endpoint. One or more pager
threads may listen to this endpoint, waiting for fault messages sent by the kernel.
Also, multiple user-level tasks may share a fault endpoint — as for any other request
to a server, they can be distinguished by setting a different badge on each thread’s
capability (see section 3.3.1).

3.6.3. Per-Region Fault Handling

If a region is being shared between multiple threads, it may not be appropriate for
fault messages for that region to be passed to different fault handlers depending on
which thread caused them. Instead, the messages could be passed to a dedicated
fault handler for the shared region, or to the fault handler for the thread that owns
the region.

The present implementation achieves this by using a table of fault handlers, which
shadows the top level of the capability table. Every time a fault occurs at a specific
address, the kernel looks up the address in the fault handler table; if there is a capa-
bility to an endpoint present, it sends the fault IPC to that endpoint. Otherwise, the
fault is sent to the thread’s normal fault handler.

A more general approach would be to allow the entire capability table structure to be
mirrored in the fault handler table. This could work with more complex structures,
such as guarded tables.

Since the default fault handler will be used if the fault handler table is not set, this
feature may be ignored by the user if it is not required.

3.7. Summary

This chapter has presented a preliminary design for an L4-like microkernel that uses
capabilities for access control and resource management. There are still many un-
resolved issues with the design; however, it is sufficiently complete to be used to
demonstrate an executable specification.

Refer to section 6.1.1 on page 48 for a list of known problems with the present de-
sign.

31

Chapter 4.

Modelling seL4 in Haskell

This chapter describes the construction of a model implementation of the seL4 kernel,
using the functional language Haskell. The purpose of this model is to provide a
framework in which to rapidly prototype the kernel design as it is developed; in
future it may also function as an executable specification of the kernel.

The present state of the kernel design is described in chapter 3 on page 20; a discus-
sion of the relevant features of Haskell itself can be found in section 2.4 on page 17.
The source code for the model is in appendix A on page 53.

4.1. Overview

When developing this model, it was necessary to find a compromise between being
close enough to a full implementation to uncover possible implementation issues and
allow execution of realistic user-level systems, and being abstract enough to avoid
unnecessary difficulty in formalisation. I chose to achieve this by explicitly modelling
all elements of the kernel state that could affect the execution of user level programs,
but to avoid modelling the architecture-specific hardware features that a complete
implementation must support. I also took advantage of Haskell’s strict type system
in places that would not have been possible in a stand-alone kernel.

The modelled system therefore has:

• no data cache — read and write accesses all access physical memory directly;

• no instruction cache, nor a binary representation for instructions, nor any stor-
age of program text in memory — programs are stored in a data structure which
is opaque to the kernel code, in each thread’s TCB;

• no cache for virtual address translations — every memory access triggers a page
table lookup;

• no current register set — all user-level accesses to registers directly access the
saved-context area in the current thread’s TCB;

• data stored in physical memory is strongly typed, so bugs caused by type errors
are always caught at run time, and often at compile time.

32

The kernel model works by processing a stream of data objects that correspond to
the events that a real kernel implementation would need to respond to. It determines
how to respond to each event by referring to a data structure that contains the entire
state of the system, and then modifies the state appropriately. The generation of new
events depends on a subset of the kernel state data that represents the state of the
currently running user-level task.

The following sections describe each of these aspects of the kernel model:

• the generation and contents of the event stream, in section 4.2;

• the structure of the system state data, in section 4.3 on the following page;

• the transformations applied to the state data while handling events, in sec-
tion 4.4 on page 36;

• the handling of faults and error conditions, in section 4.5 on page 38;

• the event handling functions, in section 4.6 on page 39;

• the user-level simulation, in section 4.7 on page 40; and

• the main loop, which ties all the other components together, in section 4.8 on
page 42.

4.2. The Event Stream

The model of the kernel processes a stream of events, each of which corresponds to
something that would cause kernel code to execute on a real system:

• invocation of a system call by a user-level task;

• an interrupt from a timer (or some other hardware device);

• an access to a virtual memory region that cannot be translated by the MMU; or

• some illegal action taken by a user-level task.

Additionally there is an event that causes the kernel model to print some debugging
output. This does not correspond to a real system event, but it is useful to know
the current state of the simulation. This set of possible events is represented by the
Haskell type Event (see section A.1.3 on page 54).

33

4.2.1. Event Generation

In a simplistic model, events could be generated by hand and stored in a list, having
the kernel simply process the contents of the list in order. This has limitations, how-
ever. It is difficult to generate a list of events by hand; writing tests this way would
take a long time. Also, in a real system, the order of future events may depend on
actions taken by the kernel — such as scheduling a particular thread, or changing the
contents of a thread’s address space. Therefore, generating events this way would
not provide a very realistic simulation of the kernel’s behaviour; it might be suitable
for a high-level model, but not for one detailed enough to uncover implementation
issues.

To overcome these problems, the model described by this report incorporates sim-
ulation of user-level tasks as well as of the kernel itself. Events are generated by a
user-level CPU simulator, which executes program code associated with the thread
that has been scheduled by the kernel; one or more instructions from the program are
executed until an event is generated. The actions of each instruction depend on, and
may change, the user-level state of the current thread.

Once an event is generated, it is processed by the kernel. This may change the cur-
rent thread’s user-level state; also, the kernel may decide to schedule a new thread.
This technique overcomes the limitations of a hard-coded event list: events may be
generated by a program interacting with the kernel, and the actions of the kernel may
influence the generation of future events.

The user-level CPU simulator is discussed further in section 4.7 on page 40.

4.3. System State

The system’s collection of state data is represented by the Haskell type KernelState.
It contains an array of data structures that each represent one frame of physical mem-
ory, that may contain state data belonging to the kernel or to a user-level task; it also
contains a small amount of statically allocated kernel data, most importantly a phys-
ical pointer to the current user thread’s TCB.

Figure 4.1 on the following page shows the composition of the state data structure.

4.3.1. Kernel Objects

There are several options for the representation of physical memory. It could be real-
istically represented as a large array of integers — one for every word of data. How-
ever, accessing the contents of kernel data structures would then involve calculation
of offsets into the object for each component of the data, which would most likely

34

Kernel State

Ready Queues

Physical Memory

Thread Control Block

Data Page

Endpoint

Integer Data

User Program User Context

CapTable

CTE

Empty Page

Current Thread

Root CTE

Figure 4.1.: Composition of the kernel state data

result in nearly incomprehensible code. So instead, I make use of Haskell’s algebraic
data types.

Complex data objects in Haskell are usually represented using an algebraic data type,
defined by a set of one or more data constructors. Each constructor is a function from
zero or more data elements to an object of the defined type. So, for example, the
definition of a data type representing an IPC endpoint might look like this:

data Endpoint = IdleEP SendEP ThreadPtr RecvEP ThreadPtr

The | symbol is read “or”. So an Endpoint can either be idle, when constructed with
IdleEP; or waiting for a send (SendEP) or receive (RecvEP) operation to complete. In
the latter two cases the constructor takes a thread control block pointer as a parame-
ter; it points to the first thread in the queue.

The kernel model uses the definition above to represent endpoints, and there are sim-
ilar structures for thread control blocks and capability table entries. Refer to chap-
ter 3 on page 20 for a discussion of the purpose of each of these object types.

4.3.2. Physical Memory

There are two alternatives for using a kernel object, as defined above, in a physical
memory model. One possibility is to convert it into a sequence of integers when
storing it in the modelled memory, and then back again before using it in the kernel;
this approximates real physical memory while still allowing reasonably clear Haskell
code in the functions that use the structure. However, doing this would remove the

35

ability to check the type of the object at runtime, causing possible kernel bugs if an
object of the wrong type is accessed.

We therefore store every kernel object as is, wrapped in an algebraic data type called
PhysicalPage. This type acts as a tagged union between all the possible types of
contents of a frame of physical memory. It has one constructor for each of the three
types of kernel object, one for untyped integer data, and two containing nothing. The
latter two are Untyped, which represents an untyped frame which contains no data
and is available for use by user tasks, and KernelPage, which represents a frame
containing kernel code or statically allocated data that should not be visible outside
the kernel. PhysicalPage is defined in section A.7.1 on page 88.

The physical memory space is represented by an array of PhysicalPage objects. Func-
tions are provided in the PSpace module that get or set data in this array; the data may
be of any type that is a member of the Haskell type class Object. If higher-level kernel
code attempts to get or set a kernel object which is of a different type to that which
is already present in the specified page, the kernel will halt with an error message
indicating undefined behaviour.

4.3.3. Object Types

The PageType module contains a function that queries the type of the object stored
in a given frame. This is module is used by the system call handlers to explicitly
check that a capability provided by the user refers to an object of the expected type.
After this check is done, the kernel assumes that the object is the right type. An
equivalent check in a real-world implementation would most likely use a global table
of frame types; the Haskell model needs no such table, because it can find the type by
determining which constructor was used to create the PhysicalPage.

There is also a function that changes the type of a frame’s contents. It is responsible
for cleaning up any kernel objects that previously existed in the frame. For example,
in the case of a thread control block, it must remove the thread from the scheduler’s
queue, cancel any IPC operation involving the thread, and revoke the capabilities
that point to the thread’s capability table and fault IPC endpoint. It then creates a
new kernel object of the requested type, wraps it in a PhysicalPage, and stores it in
the physical memory array.

4.4. State Transformations

At the top level, the kernel consists of a state transition function; given an event and
an initial state structure, it returns an appropriately updated state structure. The
updates might include changes to the contents of kernel structures such as thread
control blocks, capability tables, or the current thread pointer; or changes to user-level

36

Userspace ModelKernel Model

Main

Init Syscall
CPU

User

UserState

ThreadEndpoint CSpace

PSpace

ExceptionHandler

Figure 4.2.: Flow of control between Haskell modules. An arrow between two modules, A→
B, indicates that module A modifies the state using functions in module B.

state data such as a thread’s register state. Note that these changes might influence
the generation of the next event, which depends on the user-level state of the current
thread.

The modifications to the kernel state in response to a specific event are potentially
quite complex and also depend to a great extent on the current state. Therefore it
is most convenient to write them in Haskell’s State monad. This allows the state
transforms to be chained together in a manner that resembles an ordinary procedural
program, and therefore appears more familiar and readable to a kernel developer.
The State monad is described in more detail in section 2.4.2 on page 18.

Most of the functions in the Haskell model’s kernel code, therefore, are of the type
State KernelState a; where a is the type of the result of the function. This is equiv-
alent to a state transition function of type KernelState → (KernelState, a). Typi-
cally there are also some input parameters. For example, there is a function in the
physical memory model:

getPage :: Pointer → State KernelState PhysicalPage

Given a physical pointer and the current system state, this function returns a new
state (which in this case is unmodified) and the contents of the specified area of phys-
ical memory.

For each major component the kernel, there is a Haskell module containing functions
that perform all of the relevant state transformations. The relationship between these
modules is shown in figure 4.2.

37

4.5. Faults and Errors

Whenever an attempt to process an event encounters a recoverable error — for ex-
ample, because an invalid capability was invoked or an unmapped memory address
was accessed — the kernel must immediately stop processing the event and take
some other appropriate action. In the Haskell implementation, this is achieved by
adding the ErrorT monad transformer to the existing State KernelState monad.
See section 2.4.3 on page 19 for a detailed description of ErrorT.

There are three different classes of error, which are enumerated by the type ExceptionType:

data ExceptionType = PermissionFault CapFault InvalidArgument

deriving (Enum, Show, Eq)

The values correspond to an insufficient set of permissions, an invalid capability, or a
bad system call argument, respectively.

The error values which are thrown and caught in the ErrorT monad are of a user-
defined type; a the type Exception. An Exception structure contains a collection
of information about the nature and cause of the error, including an ExceptionType

value:

data Exception = Ex { exType :: ExceptionType,
exDesc :: String,
exCTLevel :: Int,
exAddress :: CapPtr }

4.5.1. Recoverable and Fatal Errors

Early versions of the kernel model consisted almost entirely of functions in the ErrorT
Exception monad transformer. All failures — including both recoverable failures
caused by the actions of user-level tasks, and fatal errors caused by bugs in the kernel
— led to an Exception object being thrown using throwError. However, I found that
this made it difficult to distinguish between errors caused by misbehaving user-level
code, and errors caused by bugs in the kernel.

In the interests of making debugging and formal modelling of the kernel easier, the
functions in the kernel have now been split into two distinct groups: those which can
fail, and those which must not.

Functions that must be able to recover from failures are in the ErrorT Exception

monad; they include all the top-level system call handlers, which explicitly check for
all error conditions that could be caused by the user. When an Exception is thrown
by one of these functions, the kernel typically handles it as specified in section 3.6 on
page 30.

38

The lower-level kernel functions, in which all failures are a result of kernel bugs, are
not in the ErrorT monad. The model’s behaviour after detecting a failure in these
functions is undefined. This is expressed in Haskell by evaluating ⊥ (which is pro-
nounced as “bottom”, and in Haskell source code is written as “undefined”). The
interpreter prints an error message and exits when this symbol is evaluated. In or-
der to assist debugging, the error function is often used instead; it is identical to ⊥
except that it allows the error message to be specified.

Haskell’s strict typing requires an explicit transition between functions that are in
the ErrorT monad and those that are not. This is achieved using the standard lift
function, which can be seen as marking the point of no return when handling an
event. After the lift, any failures will halt the system, so all checks for errors that
might be caused by user-level code must come before it.

4.5.2. Fault Handling

The default response to any error is to set an error code and return. This is done by
the function handleException, which is used to catch any errors that are not caught
before reaching the main loop. It sets one user space register to the error code corre-
sponding to the exception’s ExceptionType field; also, if there is a capability associ-
ated with the exception, it stores its user-level address in a second register.

However, this is not appropriate for errors that are caused by memory accesses at
user-level (see section 3.6.2 on page 30). Therefore, in the event handlers for memory
access events, an additional call to catchError is made. This will pass any detected
errors to handleFault. The latter function locates the appropriate fault handler end-
point, sends an IPC to it containing information about the fault, and suspends the
thread that caused the fault.

4.6. Event Handling

The top-level kernel function for event handling is:

handleEvent :: ThreadPtr → Event →
ErrorT Exception (State KernelState) (Maybe String, Bool)

This function performs all the necessary modifications to the kernel state to process
an event, given the event and a pointer to the current thread. The result is a tuple con-
sisting of a boolean value, and maybe a string; the boolean value indicates whether
the model should continue processing events, and if a string is returned, it will be
printed to the model’s standard output.

Event handling functions for system calls all follow the same basic form, shown in
the following Haskell-like pseudo-code.

39

handleEvent thread SomeEvent = do

To handle an event of type SomeEvent, which was generated by a thread, perform
the following steps:

cap ← asUser thread $ getRegister AR0

param ← asUser thread $ getRegister AR1

Fetch the capability pointers and other parameters from the thread’s registers. asUser
thread executes a given function, in this case getRegister, in the context of a user-
level thread.

(object, capdata) ←
capLookup thread cap capAllowTheOperation (=ExpectedType)

Find the object being accessed. The last two arguments to capLookup are used to
check permissions and object type, respectively.

when (...) $
throwError $ Ex { ... }

Check for any additional error conditions that would not be noticed by capLookup.
When an error has occurred, construct and throw an Exception that describes the
error.

lift $ performTheOperation object capdata param

Call low-level kernel code to perform the requested operation. This is the point of
no return; errors in performTheOperation will print an error message and halt the
kernel.

return (Nothing, True)

The first value indicates that nothing should be printed as a result of this event’s
processing; an alternative would be Just errorString. The second value states that
the model should continue running; it is only False when processing a Halt system
call. Section 4.8 on page 42 explains the use of these values.

4.7. User-Level Simulator

The user-level simulator is used as a source of events for the kernel to process. The
event list could simply be constructed by hand; however, I believe that the ability
to run arbitrary complex programs whose behaviour depends on the actions of the
kernel is a significant advantage over hard-coded event streams. This way, the event
sequences can be less artificial, and testing is easier because incorrect responses from
the kernel will cause the simulated program to misbehave.

40

4.7.1. User Context

The user-level simulator, like the kernel model, consists of a sequence of operations
that each makes some modifications to a collection of state data and then returns a
result. However, it processes a much smaller state data structure, which contains only
the state of a simulated CPU. In the Haskell code, it is known as UserContext.

In the current version of the model, the user context consists of an instruction pointer,
a program (in a format which is discussed in the next two sections), and a mapping
from register names to integer values. The simulated CPU has 32 general purpose in-
teger registers, 8 registers set aside for system call parameters, and a stack pointer.

4.7.2. User State Transition Functions

Programs for the simulator were originally a sequence of Haskell functions in the
State UserContext monad, which could be arbitrarily complex. The only restrictions
on them were that the state that each function could communicate to the next was that
which could be contained in UserContext; that each function had to generate exactly
one event; and that no input or output could be performed1.

After developing some test programs in this form, it was observed that the func-
tions in each user-level programs were quite similar. They tended to consist only of
sequences of relatively simple operations similar to assembly language instructions;
they were also quite tedious to write. On this basis I decided to try another approach,
and replaced the state transition functions with an interpreter for a simple assembly-
like language.

4.7.3. An Assembler-like Language

This is the system used in the current version of the model. It consists of a set of
instructions resembling the user-level instruction set of a very simple RISC CPU. The
entire instruction set is:

data Instruction =
Arithmetic Register (Int → Int → Int) Register Register

ArithmeticI Register (Int → Int) Register
Compare Register (Int → Int → Bool) Register Register

CompareI Register (Int → Bool) Register
LoadImmediate Int Register

Load Int Register Register

Store Register Int Register

Push Register

Pop Register

1Input and output in Haskell are only possible for functions executing in the IO monad.

41

Move Register Register

Branch Int

BranchLinked Int Register

BranchIf Register Int

Syscall Int

DebugPrintf String [Register]

The most significant differences between this and a real CPU are the presence of an
instruction that prints a formatted string, and the use of Haskell functions to specify
arithmetic and comparison operations. In the following example, the function (+),
and a partial application of it to a single integer (+3), are used to define add and
immediate-add instructions respectively:

program = [
LoadImmediate 1 R0,
LoadImmediate 2 R1,
Arithmetic R0 (+) R1 R2,
ArithmeticI R2 (+3) R3,
DebugPrintf ‘‘This should print 6: %’’ [R3],
Syscall (fromEnum SysHalt)

]

Instructions are executed until either an instruction causes an event, or the thread’s
time-slice expires. Instructions that cause events are Load, Store, Push, Pop, Syscall
and DebugPrintf. If the thread runs out of time, a TimerInterrupt event is gener-
ated.

Several programs have been written in this language to confirm that the kernel model
is working correctly. However, it is not easy to develop complex programs this way,
so the existing tests are all short and somewhat artificial. This is discussed further in
section 5.1 on page 45.

4.8. The Main Loop

The main loop of the kernel model is shown below, as annotated Haskell code.

mainLoop :: State KernelState [Maybe String]

The loop is in the form of a state transition function, which returns a list of items
which may contain text strings. These strings are generated when a DebugPrint event
is processed; they are intended to be used to indicate the progress of the user-level
program running in the model. At present, DebugPrint is the only way for the model
to interact with the outside world, because no peripheral devices have been imple-
mented yet.

42

mainLoop = do

thread ← getCurThread

First, a pointer to the current thread’s TCB is fetched from the kernel state.

ev ← runThread thread

The user-level simulator then runs until an event occurs.

Right (output, continue) ← runErrorT $
handleEvent thread ev `catchError` handleException thread

The kernel’s top level event handler function is evaluated inside the ErrorT monad,
given the current thread and the event as arguments. The catchError function ap-
plied to handle any errors encountered by the event handler.

Note that runErrorT returns a value of type Either a b, where b is the type of a suc-
cessful result and a is the type of an error value. In this case, all errors will be captured
by handleException, so the result will always indicate success; it will therefore be ac-
cessible using the data constructor Right — this indicates the right-hand argument
of the Either type, and also that the function has returned the “right” (i.e. correct)
result.

The result itself consists of a tuple of a Boolean value, continue, and output, which
is a Maybe String. continue is True if the model should proceed to process the next
event, or False if it should halt.

rest ← if continue then mainLoop else return []

If continue is True, mainLoop calls itself recursively to continue processing events.
Otherwise, execution is complete, and the result list is terminated with the empty list
[]. Note that the use of return here is potentially confusing: it is being used to place
the value [] into the State KernelState monad, so that it has the same type as the
recursive call to mainLoop. This does not exit the present function.
rest

now contains a list of the outputs of all future kernel events. This list is potentially
infinitely long, but since it is evaluated lazily, that is not a problem.

return $ output:rest

The final result is a list consisting of the output for the current event, followed by the
outputs of the rest of the events.

The loop function is called by main, the top-level function of any compiled Haskell
program. In this case, the main function creates an initial KernelState structure, uses
it to evaluate mainLoop in the State KernelState monad, and prints any strings
returned to standard output. Note that because evaluation of Haskell programs is

43

lazy, the model does not actually process each event until the main loop attempts to
print the string it may generate.

4.9. Summary

A realistic low-level simulation of a microkernel and its user-level clients has been
constructed. It functions by:

• modelling the state as an array of physical data frames and using indices into
that array as physical pointers;

• simulating user-level processes to generate a series of events; and

• processing the events and performing appropriate modifications to the system’s
state.

44

Chapter 5.

Evaluation

5.1. Usability and Completeness

It is clearly important to know whether the new kernel interface is useful for devel-
opment of efficient and secure systems, and whether the model of the interface is
complete enough to allow this. The best way to determine this is to actually develop
such a system, and run it inside the model.

Several short programs have been written in the assembly-like language described
in section 4.7.3. These programs check that specific parts of the kernel interface are
functioning correctly. However, they were mostly intended to be debugging aids.
Each program is short, focuses on testing only one or two elements of the kernel
interface, and often uses the interface in ways that are unlikely for a more complete
system.

Due to time constraints, combined with the difficulty of writing non-trivial programs
in the present low-level user level simulator, no such extensive tests have been writ-
ten yet. To properly evaluate the usability of the kernel interface, it will be neces-
sary to produce a new user level simulator that is capable of supporting develop-
ment of more complete applications. Possible approaches to this are described in
section 6.1.2.

5.2. Rapid Prototyping

Writing an executable specification in a high-level language allows rapid prototyping
of new kernel features, without tedious and difficult low-level programming. Fea-
tures can be implemented one at a time — even those which would be essential in a
stand-alone kernel, such as memory management.

At each stage of the model’s development, it was possible to write and run simple
user-level test programs, despite being too incomplete to function as a stand-alone
kernel. For example, virtual memory was implemented after most of the core fea-
tures of the kernel; up until that point, the tests were running at user level without
ever accessing data memory. Similarly, IPC was implemented before there was any

45

user-level address space at all; at that time the user level programs were using opaque
Capability objects rather than pointers. Such incremental development would not
have been possible with a prototype running as a stand-alone kernel; using an ex-
ecutable model instead allowed specific areas of the kernel design to be designed,
implemented and tested one by one.

I recently attempted to replace the Map operation with one that more closely resem-
bles L4’s, transferring capabilities during an IPC operation. However, I discovered
during the attempt that there are several possible error cases to be considered when
transferring the message1. In situations such as this, the ability to quickly implement
and test subsets of the kernel’s functionality as they are specified is very helpful; it
uncovers implementation issues that would not be so obvious when writing a speci-
fication in English.

5.3. A Specification Document

A reference manual for the kernel’s behaviour could be based on an annotated ver-
sion of the Haskell source code itself. An example of the contents of such a specifi-
cation is shown in appendix A, which was generated directly from the source code
of the kernel model. Note that in this instance, the document is concerned as much
with documenting the Haskell implementation as the technical details of the kernel
interface; a kernel reference manual would most likely contain more discussion of the
semantics of the interface. Also, time constraints have limited the extent to which the
code was annotated; the most complete documentation can be found in the CSpace

module, in section A.4 on page 63.

Since the source code used to generate the reference manual is also an executable
model of the kernel, the manual provides an unambiguous description of how other
implementations should behave. Any apparent ambiguity in the prose can be re-
solved by either reading the embedded Haskell code, or executing the specification
and observing its behaviour.

5.4. Formal Verification

Some preliminary work to formalise the new kernel specification, starting with the
IPC path, has been done by Harvey Tuch. He has reported that a formal specification
of the IPC path was developed with significantly less effort than would be required
to formalise a specification in an imperative language, and estimates it to be at least
an order of magnitude faster than doing the same for the C++ L4Ka::Pistachio imple-
mentation of IPC.

1Due to time constraints, solving this problem has been deferred until after the completion of this thesis.

46

It should be noted that the L4Ka::Pistachio IPC path is inherently more complex than
that of the present version of seL4; the former includes transfers of virtual memory
mapping and string objects, while the latter transfers only untyped data. However,
much of the difference is due to the relative simplicity of the executable specification
compared to a full implementation, and the similarity of pure functional languages
like Haskell to formal specification languages such as HOL.

Further experience is required before we can properly evaluate the relative advan-
tages and disadvantages of formalising an executable specification in Haskell, com-
pared to the combination of English language manual and C++ and assembler source
code of L4Ka::Pistachio. The positive early experiences are promising.

47

Chapter 6.

Conclusion

The goal of this thesis was to build an executable specification for a new L4-like mi-
crokernel. Though many aspects of the kernel design have not yet been defined, an
executable model of a partial specification has been successfully constructed. This
model will continue to be developed in the future as the kernel design process con-
tinues. I believe that it will be useful both as a tool for rapidly prototyping new kernel
features, and as an executable specification that can easily be formalised.

6.1. Future Work

There are two important areas of future work on this project. First, there are many
issues with the kernel design that have yet to be solved; second, some modifications
to the model are necessary to allow effective evaluation of the kernel interface.

6.1.1. Further Development of the Kernel

Many aspects of the kernel design need a significant amount of further development.
These include (but are not limited to):

Page table structures: The seL4 API is claimed to be independent of page table struc-
ture, but has only been tested with a two-level page table. The interface should
be tested with other structures.

Map semantics: It may be desirable to make the Map operation resemble its counter-
part in L4 more closely. In particular, it should be part of the IPC operation, and
should allow the receiving thread to have more control over the destination of
the transferred capability.

Multiple object sizes: The memory efficiency of the present design is poor, because
IPC endpoints and thread control blocks are required to occupy an entire page.

48

Increasing access rights: There is no way to efficiently or transparently grant a client
additional access rights to an object for which some rights have already been
granted, when those rights may have been passed on to other processes. The
present implementation requires revocation of the original rights before grant-
ing the increased set, which will also revoke any rights that have been passed
on.

Interrupt handling: There is not yet any protocol for dispatching interrupts to user
level handlers, nor for acknowledging interrupts from user level.

6.1.2. A New User Level Simulator

As discussed in section 5.1, a conclusive evaluation of the usefulness of the kernel in-
terface will require a new user level simulator capable of supporting the construction
of more complex test programs.

There are two potential approaches to this. One is an improvement upon the initial
user-level simulator that was based on functions in the State monad; it involves
building a new Haskell monad to allow user-level programs to be written in a manner
similar to the kernel model itself. The other approach improves upon the current
user-level assembly interpreter, by replacing it with an emulator that can execute
binary code compiled for an existing architecture.

It should be noted that these two approaches are not mutually exclusive. It would
be possible, and perhaps a good idea, to encapsulate a binary code emulator inside a
user-level state monad.

A User-Level State Monad

The monadic programming technique used in implementing the kernel is very flex-
ible. In particular, a sequence of operations inside a monad may be bound together
using an arbitrary function — the bind operator, >>= — which is defined by the spe-
cific monad. By changing the definition of the bind operator, monads can extend the
language in a wide variety of ways.

It should be possible to replace the user-level assembly emulator with a new monad,
similar to the existing State monad. Rather than simply building a state transition
function from a sequence of operations, this monad’s bind operator could call the
kernel model to handle events. Threads could be modelled by saving the bind oper-
ator’s right hand argument in the current TCB before calling the kernel, and restor-
ing the value from the (potentially different) current TCB afterwards. This might be
achievable with a combination of the existing state and continuation monads (State
and Cont, or their transformer versions StateT and ContT), but most likely would
require development of a new monad.

49

This solution would allow relatively complex user-level programs to be developed,
using syntax quite similar to that used in the kernel itself. However, it would still
require test programs to be developed specifically for the kernel model.

Emulating a Realistic CPU

Rather than developing an entirely new user-level system for testing the kernel, it
may be desirable to port an existing system to the new kernel interface. This would
require that the model be capable of executing compiled binary code.

The present interpreter for the assembler-like user-level language could be replaced
by an emulator for binary executables. Some other minor modifications to the model
would be necessary before this could be achieved. In particular, there are many ref-
erences to specific user-level registers scattered through the kernel. These should be
changed to reflect their meaning rather than their implementation; for example, by
replacing setRegister AR0 with setErrorCode.

The emulator itself might either be a new one written in Haskell, or an existing emu-
lator interfaced with the model through Haskell’s foreign function interface.

6.1.3. Running on Real Hardware

The hOp project has demonstrated [1] that it is possible for Haskell code to run in-
dependently of any external operating system. It might be possible to adapt the exe-
cutable specification to do the same; this would provide a reference implementation,
running as a stand-alone kernel on real hardware. However, Haskell is not a particu-
larly light-weight or fast language, so this would be of very limited practical use.

50

Bibliography

[1] Sébastien Carlier and Jérémy Bobbio. hOp. http://www.macs.hw.ac.uk/~sebc/
hOp/, 2004.

[2] Kevin Elphinstone. Future directions in the evolution of the L4 microkernel. In
Gerwin Klein, editor, Proceedings of the NICTA workshop on OS verification 2004,
Technical Report 0401005T-1, Sydney, Australia, October 2004. National ICT Aus-
tralia.

[3] Karl-Filip Faxén. A static semantics for Haskell. Journal of Functional Program-
ming, 12(4&5):295–357, July 2002.

[4] Andreas Haeberlen and Kevin Elphinstone. User-level management of kernel
memory. In Proceedings of the 8th Asia-Pacific Computer Systems Architecture Con-
ference, Aizu-Wakamatsu City, Japan, September 2003.

[5] Trent Jaeger, Kevin Elphinstone, Jochen Liedtke, Vsevolod Panteleenko, and
Yoonho Park. Flexible access control using IPC redirection. In Proceedings of
the The Seventh Workshop on Hot Topics in Operating Systems, page 191. IEEE Com-
puter Society, 1999.

[6] Rafal Kolanski. A formal model of the L4 µ-kernel API using the B method. BE
thesis, School of Computer Science and Engineering, University of NSW, Sydney
2052, Australia, November 2004.

[7] L4Ka Team. L4Ka::Pistachio kernel. http://l4ka.org/projects/pistachio/,
2003.

[8] Jochen Liedtke. Clans & chiefs. In 12. GI/ITG-Fachtagung Architektur von Rechen-
systemen, pages 294–305, Kiel, 1992. Springer Verlag.

[9] Jochen Liedtke. Page table structures for fine-grain virtual memory. IEEE Tech-
nical Committee on Computer Architecture Newsletter, 1994.

[10] Jochen Liedtke, Nayeem Islam, and Trent Jaeger. Preventing denial-of-service
attacks on a µ-kernel for WebOSes. In Proceedings of the 6th Workshop on Hot
Topics in Operating Systems, pages 73–79, Cape Cod, MA, USA, May 1997. IEEE.

[11] Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, April 2003.

51

[12] Richard Rashid, Daniel Julin, Douglas Orr, Richard Sanzi, Robert Baron, Alesan-
dro Forin, David Golub, and Michael B. Jones. Mach: a system software kernel.
In Proceedings of the 1989 IEEE International Conference, COMPCON, pages 176–
178, San Francisco, CA, USA, 1989. IEEE Comput. Soc. Press.

[13] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Her-
rman, C. Kaiser, S. Langlois, P. Léonard, and W. Neuhauser. Overview of the
Chorus distributed operating system. In Workshop on Micro-Kernels and Other
Kernel Architectures, pages 39–70, Seattle WA (USA), 1992.

[14] Jonathan S. Shapiro. Vulnerabilities in synchronous IPC designs. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 251–262. IEEE, May 2003.

[15] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: a fast ca-
pability system. In Symposium on Operating Systems Principles, pages 170–185,
1999.

[16] Harvey Tuch, Gerwin Klein, and Gernot Heiser. OS verification — now! In
Proceedings of the 10th Workshop on Hot Topics in Operating Systems, Santa Fe, NM,
USA, June 2005. To appear.

[17] Philip Wadler. The essence of functional programming. In POPL ’92: Proceed-
ings of the 19th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 1–14. ACM Press, 1992.

52

Appendix A.

Annotated Haskell Code

This appendix contains the annotated Haskell source code for the kernel model. The
entire code is presented, except for some minor implementation details such as com-
piler pragmas and lists of imported modules.

A.1. Kernel API

module KernelAPI where

This module contains the data types and constants that define the interface between
the kernel model and the user-level code running on the CPU simulator.

A.1.1. Pointer Types

newtype CapPtr = CapPtr Word32

deriving(Show,Eq,Ord,Num,Enum,Real,Integral,Bits)

This is the definition of a new type, based on a 32-bit unsigned integer, which is used
to represent addresses in a user level thread’s capability space. It is declared with
newtype so that casts between it and other integer types must be explicit.

newtype Pointer = Pointer Word32

deriving(Show,Eq,Ord,Num,Enum,Real,Integral,Bits)

Another new type, this time for physical pointers used by the kernel.

nullPointer :: Pointer
nullPointer = 0

The value of an invalid physical pointer.

type ThreadPtr = Pointer

type EndpointPtr = Pointer

53

type CTEPtr = Pointer

type CapTablePtr = Pointer

type DPagePtr = Pointer

Aliases for the Pointer type, used for specific types of object. Note that the compiler
does not distinguish between these types; they exist only to make type signatures for
kernel functions a little clearer.

A.1.2. Object Types

data ObjectType = Untyped

IntDataObject

TCBObject

EndpointObject

CapTableObject

deriving (Enum, Bounded, Eq, Show)

This enumeration is used to specify one of the types of object that can be stored in a
physical page.

A.1.3. Events

data Event = Load CapPtr Register

Store Register CapPtr

SyscallEvent Syscall

UnknownSyscall Int

DebugPrint String

TimerInterrupt

These are the events that can appear in the stream of events processed by the kernel
model. See section 4.2 on page 33.

Note that, since the kernel model has no TLB, every load or store access to virtual
memory generates a kernel event, and the kernel must perform the load or store op-
eration itself. When running on real hardware, the Load and Store events would be
replaced by TLB or page table faults.

data Syscall = SysSendIPC

SysReceiveIPC

SysThreadControl

SysExchangeRegisters

SysCapCopy

SysCapRevoke

SysCapRetype

SysCapSetData

54

SysYield

SysHalt

deriving (Ord, Enum, Bounded, Eq)

This is the set of all valid system calls that can appear after the Event type’s SyscallEvent
constructor.

A.1.4. Exceptions

data ExceptionType = PermissionFault

CapFault

InvalidArgument

deriving (Enum, Show, Eq)

This is an enumeration of every type of fault that the kernel can report to a user-level
fault handler.

A.1.5. Miscellaneous Constants

timeSlice :: Int
timeSlice = 1000

The length of a scheduler timeslice, in CPU cycles. This is quite short, but it should
be noted that with no cache, no TLB, and a separate register set for each thread, the
overhead of a thread switch in this model is effectively zero. On a real system the
timeslice would be much longer.

pageBits :: Int
pageBits = 12

The number of address bits in a page offset.

mask :: Int → Pointer

mask bits = (1 `shiftL` bits) − 1

A trivial function that finds the mask for a given number of bits in an address.

memSize :: Word
memSize = 1024

The size of physical memory in pages.

kernelTop :: Word
kernelTop = 1

55

The number of pages occupied by the kernel’s code and static data. This must be at
least 1 to ensure that accesses to null pointers always fail. In a real kernel implemen-
tation it would be significantly larger.

A.2. Kernel State

module KernelStateData where

This module defines the kernel’s global data, and also the data structure used by the
Haskell model to store the state of the system.

A.2.1. Data Types

type ReadyQueue = [ThreadPtr] — single priority round robin

The ready queue for each priority is represented by a linked list of thread pointers. In
a complete implementation these would be embedded in the thread control blocks.

data KernelState = KState { ksPSpace :: PSpace,
ksReadyQueues :: Array Priority ReadyQueue,
ksCurThread :: ThreadPtr }

This structure is used by the Haskell model to represent the state of the entire system.
It contains two items of global kernel data — the current thread pointer and the ready
queues — and the state of the modelled physical address space.

A.2.2. Public Functions

The functions in this module are simple accessors for the ready queue and current
thread.

getQueue :: Priority → State KernelState ReadyQueue

getQueue prio = gets $ λks → ksReadyQueues ks ! prio

setQueue :: Priority → ReadyQueue → State KernelState ()
setQueue prio q = modify $ λks →

ks { ksReadyQueues = (ksReadyQueues ks)//[(prio,q)] }

Given a priority, these two functions get and set the contents of the ready queue for
that priority level.

56

getCurThread :: State KernelState ThreadPtr

getCurThread = gets ksCurThread

setCurThread :: ThreadPtr → State KernelState ()
setCurThread tptr = modify $ λks → ks { ksCurThread = tptr }

These functions get and set the current thread pointer.

A.3. System Calls

module Syscall where

This module contains the handleEvent function, which processes an event that oc-
curred while the system was running at user level. It also contains a helper function
that implements the Map operation.

A.3.1. Public Functions

handleEvent :: ThreadPtr → Event →
ErrorT Exception (State KernelState) (Maybe String, Bool)

This function handles an event that has caused kernel entry. There is a separate defi-
nition for each type of event.

Note that most definitions of this function are of a similar form, which is documented
(in Haskell-like psuedocode) in section 4.6 on page 39. Descriptions of the definitions
will be brief except where they diverge from this pattern.

System Call Handlers

The interface for the system calls is described in chapter 3 on page 20. Please refer to
that chapter for an overview of the purpose and semantics of the calls.

The following definition is for the Receive IPC system call. It calls receiveIPC, which
is defined in section A.6.3 on page 85.

handleEvent tp (SyscallEvent SysReceiveIPC) = do

fromcap ← lift $ asUser tp $ getRegister AR0

(fromptr,) ←
capLookup tp fromcap capAllowReceive (=EndpointObject)

lift $ receiveIPC tp fromptr

return (Nothing, True)

57

The definition for the Send IPC system call is slightly different, because it must deter-
mine whether the object being invoked is an endpoint or a thread. In the latter case,
it calls handleMapIPC, defined later in this module. Note that the Map IPC operation
is likely to change significantly in future revisions.

handleEvent tp (SyscallEvent SysSendIPC) = do

tocap ← lift $ asUser tp $ getRegister AR0

(toptr, badge) ←
capLookup tp tocap capAllowSend

(λt → t=EndpointObject ∨ t=TCBObject)
ptype ← lift $ getPageType toptr

case ptype of

EndpointObject → lift $ sendIPC tp toptr badge

TCBObject → handleMapIPC tp toptr

return (Nothing, True)

The definition for ThreadControl must inspect a bitmask to determine which of the
thread’s parameters, given in the other arguments, should be set.

Note that the textid argument, and the error that results from giving an invalid value
for it, are both specific to the Haskell model. They exist to select a program from the
list userTaskText, which is defined in the User module.

handleEvent tp (SyscallEvent SysThreadControl) = do

targetcap ← lift $ asUser tp $ getRegister AR0

flags ← lift $ asUser tp $ getRegister AR1

root ← lift $ asUser tp $ getRegister AR2

handler ← lift $ asUser tp $ getRegister AR3

prio ← lift $ asUser tp $ getRegister AR4

textid ← lift $ asUser tp $ getRegister AR5

handlerTable ← lift $ asUser tp $ getRegister AR6

when (textid < 0 ∨ textid ≥ length userTaskText) $
throwError $ Ex {exType = InvalidArgument,

exAddress = ⊥,
exCTLevel = ⊥,
exDesc = ‘‘Invalid index for user text’’}

root′ ← if (flags::Int).&.1/=0

then liftM Just $ findCTE tp root else return Nothing

handler′ ← if flags.&.2/=0

then liftM Just $ findCTE tp handler else return Nothing

let prio′ = if flags.&.4/=0

then Just prio else Nothing

let text = if flags.&.8/=0

then Just $ userTaskText!!textid else Nothing

handlerTable′ ← if flags.&.16/=0

then liftM Just $ findCTE tp handlerTable else return Nothing

58

(target,) ←
capLookup tp targetcap capAllowWrite (=TCBObject)

oldPrio ← lift $
threadControl tp target text root′ handler′ prio′ handlerTable′

lift $ asUser tp $ setRegister AR1 oldPrio

return (Nothing, True)

ExchangeRegisters uses a pointer to a virtual memory page. However, it does so only
under a certain set of conditions: when the flag to copy the argument and execution
state registers is set, and either the source or destination thread is equal to the current
thread.

handleEvent tp (SyscallEvent SysExchangeRegisters) = do

srccap ← lift $ asUser tp $ getRegister AR0

destcap ← lift $ asUser tp $ getRegister AR1

flags ← lift $ asUser tp $ getRegister AR2

saveptr ← lift $ asUser tp $ getRegister AR3

(src,) ← capLookup tp srccap capAllowRead (=TCBObject)
(dest,) ← capLookup tp destcap capAllowWrite (=TCBObject)
savepptr ← if (src = tp ∨ dest = tp) ∧ (flags .&. 4 /= 0)

then do

If this test succeeds, the exchangeRegisters function will be using the save area
pointer. Therefore, it must be converted to a physical pointer, and checked to make
sure it will not cross the boundary between two pages.

let pageSize = 1 `shiftL` pageBits

let intSize = 1 `shiftL` (objBits (⊥ :: Int))
let frameSize = fromIntegral $ intSize ∗ (length [SP .. AR7])
when (saveptr `mod` pageSize + frameSize ≥ pageSize) $ do

throwError

Ex {exType = InvalidArgument,
exAddress = saveptr,
exCTLevel = ⊥,
exDesc = ‘‘Cannot save state across page boundary’’}

Calculate the space required to save the thread state. If writing that amount of data
starting at the save area pointer will cross a page boundary, fail with an error code.

(pptr,) ← capLookup tp saveptr

(λp →
(src /= tp ∨ capAllowRead p) ∧
(dest /= tp ∨ capAllowWrite p))

(=IntDataObject)
return (pptr + fromIntegral (saveptr `mod` pageSize))

Finally, calculate the physical pointer for the save address.

59

else return nullPointer

If the save pointer won’t be used, this will just set it to 0.

lift $ exchangeRegisters tp src dest flags savepptr

lift $ asUser tp $ setRegister AR0 0

return (Nothing, True)

The CapCopy event is mostly handled in capCopy, defined in the CSpace module. See
section A.4.3 on page 66.

handleEvent tp (SyscallEvent SysCapCopy) = do

srcCap ← lift $ asUser tp $ getRegister AR0

destCap ← lift $ asUser tp $ getRegister AR1

permMask ← lift $ asUser tp $ getRegister AR2

capCopy tp srcCap destCap (permsFromWord permMask)
return (Nothing, True)

The CapRevoke event must use a different lookup function — findCTE — because it
operates on the CTE itself rather than on the object it points to. Refer to section A.4.3 on
page 69.

handleEvent tp (SyscallEvent SysCapRevoke) = do

cap ← lift $ asUser tp $ getRegister AR0

self ← lift $ asUser tp $ getRegister AR1

(cteptr, cteperms) ← findCTE tp cap

unless (capAllowModify cteperms) $
throwError $ Ex {exType = PermissionFault,

exAddress = cap,
exCTLevel = 2,
exDesc = ‘‘Cannot revoke cap’’}

lift $ cteRevoke (self/=0) cteptr
return (Nothing, True)

The CapRetype implementation is straightforward.

handleEvent tp (SyscallEvent SysCapRetype) = do

cap ← lift $ asUser tp $ getRegister AR0

newType ← lift $ asUser tp $ getRegister AR1

(page,) ← capLookup tp cap capAllowModify (λ → True)
when (newType < 0 ∨ newType > fromEnum (maxBound :: ObjectType)) $

throwError $ Ex {exType = InvalidArgument,
exAddress = ⊥,
exCTLevel = ⊥,
exDesc = ‘‘Invalid new type for retype’’}

lift $ retypePage (toEnum newType) page
return (Nothing, True)

60

Like CapRevoke, CapSetData operates on a CTE rather than the object it maps, so it uses
findCTE.

handleEvent tp (SyscallEvent SysCapSetData) = do

cap ← lift $ asUser tp $ getRegister AR0

newData ← lift $ asUser tp $ getRegister AR1

capLookup tp cap capAllowModify (λ → True)
(cteptr,) ← findCTE tp cap

lift $ cteSetData cteptr newData

return (Nothing, True)

The Yield system call has no parameters, and cannot fail — hence the call to lift
that wraps the entire function definition. It simply resets the current thread’s time
allocation, and then calls the scheduler to switch to the next thread in the queue.

handleEvent tp (SyscallEvent SysYield) = lift $ do

threadSet (λtcb → tcb {tcbTimeSlice = timeSlice}) tp
schedule

return (Nothing, True)

Halt is a system call added for the purposes of testing the Haskell model; it simply
stops the simulation. This call would not be necessary, or present, in a complete
specification.

handleEvent (SyscallEvent SysHalt) = return (Nothing, False)

Memory Accesses

The following two definitions handle the events generated by a memory access at
user level. They call functions in the DSpace model to read or write integer values
in physical memory, and also functions in the Thread and UserContext modules to
access the appropriate user-level register.

These functions would be defined significantly differently in a complete implemen-
tation; they would modify the hardware’s virtual memory translation cache, and not
modify the user level register set.

handleEvent tp (KernelAPI.Load ptr reg) = do

value ← doLoad tp ptr `catchError` (λex → handleFault tp ex >> return 0)
lift $ asUser tp $ setRegister reg value

return (Nothing, True)

handleEvent tp (KernelAPI.Store reg ptr) = do

value ← lift $ asUser tp $ getRegister reg

doStore tp ptr value `catchError` handleFault tp

61

return (Nothing, True)

Miscellaneous Events

The DebugPrint event is used to produce some output from the executable model.
It would not be present in a standalone implementations, except as part of a kernel
debugger.

handleEvent (DebugPrint str) = return (Just str, True)

The TimerInterrupt event is generated when a thread’s time allocation expires. It is
handled identically to the Yield system call.

handleEvent tp TimerInterrupt = handleEvent tp (SyscallEvent SysYield)

An attempt to invoke an unknown system call causes an error.

handleEvent tp (UnknownSyscall n) =
throwError $ Ex {exType = InvalidArgument,

exAddress = ⊥,
exCTLevel = ⊥,
exDesc = ‘‘Unknown Syscall ’’ ++ show n}

Map IPC

The following function is called when performing a Map operation; it is of similar
form to the system call handlers. It locates CTEs for the source and destination, checks
that the sender has permission to copy the source, and calls cteCopy.

Note that this implementation has an additional argument, representing the level of
the capability table that contains the destination CTE. This allows the Map operation
to resolve faults at any level of the table; however, it also potentially exposes kernel
implementation details to the client application. As discussed in section 3.5.5, this is
a potential problem, and as a result the semantics of the Map operation may change
significantly in the near future.

handleMapIPC :: ThreadPtr → ThreadPtr →
ErrorT Exception (State KernelState) ()

handleMapIPC sender dest = do

srcCap ← lift $ asUser sender $ getRegister AR1

destCap ← lift $ asUser sender $ getRegister AR2

destLevel ← lift $ asUser sender $ getRegister AR3

permMask ← lift $ asUser sender $ getRegister AR4

when (destLevel < 0 ∧ destLevel > 2) $

62

throwError $ Ex {exType = InvalidArgument,
exAddress = ⊥,
exCTLevel = ⊥,
exDesc = ‘‘Map level is out of range’’}

destCTE ← findCTEForMap dest destCap destLevel

oldCTE ← lift $ getObject destCTE

unless (ctePointer oldCTE = 0) $
lift $ cteRevoke True destCTE

(srcCTE, srcPerms) ← findCTE sender srcCap

unless (capAllowCopy srcPerms) $
throwError $ Ex {exType = PermissionFault,

exAddress = srcCap,
exCTLevel = 2,
exDesc = ‘‘Cannot copy capability’’}

lift $ cteCopy (srcPerms `maskCapPerms` permsFromWord permMask)
srcCTE destCTE

lift $ haltThread dest False

A.4. Capability Space

module CSpace (CTE, CapPerms(..),
allPerms, noPerms, maskCapPerms, permsFromWord, capCopy,
cteCopy, cteSetData, cteRevoke, findCTE, findCTEForMap,
capLookup, ctePointer, ctePerms, cteCapData, findFaultHandler,
createInitCap) where

The CSpace module defines the types and functions related to the capability space
structure. The latter include the system calls used for management of capabilities,
and several functions used within the kernel to look up entries in capability tables
and to create the initial thread’s capability table.

A.4.1. Types

Capability Table Entry

data CTE = CTE {
ctePointer :: Pointer,
ctePerms :: CapPerms,
cteCapData :: Int,

63

cteMDBNode :: MDBNode }

Entries in the capability table each contain:

• a physical pointer to the kernel object referenced by the capability;

• a set of permissions which determines which system calls can be performed
using the capability; and

• a mapping database node.

Permissions

data CapPerms = CapPerms {
capAllowRead, capAllowWrite, capAllowCopy,
capAllowModify, capAllowSend, capAllowReceive :: Bool }

XXX: these may not be sufficient

Mapping Database Node

data MDBNode = MDB {
mdbNext, mdbPrev :: CTEPtr,
mdbDepth :: Int }

The mapping database consists of a tree structure for each physical page that can be
mapped at user level. It is used to keep track of all CTEs pointing to each kernel object,
so capabilities can be recursively revoked. When the contents of a CTE are copied to
another, the new CTE becomes a child of the original in the mapping tree.

The structure is similar to that used in L4Ka::Pistachio [7]. It consists of a doubly
linked list that is equivalent to a prefix traversal of the mapping tree; each node
records its depth in the mapping tree, so the tree can be reconstructed from the list.

A.4.2. Physical Storage

This is the instance of the Object class for CTE. It is used by PSpace to determine how
to store CTEs in the simulated physical address space. It is mostly similar to that for
Int, except that there are two special cap table entries — accessible only to the kernel,
or indirectly by the user via SysThreadControl — stored inside each thread control
block.

instance Object CTE where

objBits = 4

makeObject = CTE 0 noPerms 0 (MDB 0 0 0)

64

makeObjectPage obj = CapTablePage $
listArray (0, (1 `shiftL` (pageBits − objBits obj)) − 1) $

repeat obj

getFromPage offset (CapTablePage array) =
if align = 0

then val

else alignError (objBits val)
where

val = array!index
index = offset `shiftR` (objBits val)
align = offset .&. (fromIntegral $ mask (objBits val))

getFromPage offset (ThreadPage tcb)
offset = tcbFaultHandlerOffset = tcbFaultHandler tcb

offset = tcbCTableOffset = tcbCTable tcb

offset = tcbFaultHandlerTableOffset = tcbFaultHandlerTable tcb

otherwise = typeError ‘‘cap table or tcb page’’
getFromPage = typeError ‘‘cap table or tcb page’’

setInPage val offset (CapTablePage array) =
if align = 0

then CapTablePage $ array//[(index, val)]
else alignError (objBits val)

where

index = offset `shiftR` (objBits val)
align = offset .&. (fromIntegral $ mask (objBits val))

setInPage val offset (ThreadPage tcb)
offset = tcbFaultHandlerOffset =

ThreadPage $ tcb {tcbFaultHandler = val}
offset = tcbCTableOffset =

ThreadPage $ tcb {tcbCTable = val}
offset = tcbFaultHandlerTableOffset =

ThreadPage $ tcb {tcbFaultHandlerTable = val}
otherwise = typeError ‘‘cap table or tcb page’’

setInPage = typeError ‘‘cap table or tcb page’’

A.4.3. Public Functions

Permissions

allPerms :: CapPerms
allPerms = CapPerms True True True True True True

noPerms :: CapPerms
noPerms = CapPerms False False False False False False

65

These are the default values for permissions and permission masks, with all or none
of the bits set.

maskCapPerms :: CapPerms → CapPerms → CapPerms

maskCapPerms (CapPerms a1 a2 a3 a4 a5 a6) (CapPerms b1 b2 b3 b4 b5 b6) =
CapPerms (a1∧b1) (a2∧b2) (a3∧b3) (a4∧b4) (a5∧b5) (a6∧b6)

Finds the intersection of two sets of capability permissions.

permsFromWord :: Word → CapPerms

permsFromWord p =
CapPerms (p.&.1/=0) (p.&.2/=0) (p.&.4/=0)

(p.&.8/=0) (p.&.16/=0) (p.&.32/=0)

Converts a word to a set of capability permissions.

Copying Capabilities

capCopy :: ThreadPtr → CapPtr → CapPtr → CapPerms →
ErrorT Exception (State KernelState) ()

cteCopy :: CapPerms → CTEPtr → CTEPtr →
State KernelState ()

These two functions are used to copy a capability. The first, capCopy, is a system call
implementation; its arguments include the calling thread and the source and desti-
nation capability pointers. cteCopy is intended for use by kernel code; it requires
physical pointers to the source and destination CTEs, and does not check for sufficient
permissions and valid pointers.

capCopy thread src dest permMask = do

destCTEPtr ← capLookupForCopy thread dest

oldCTE ← lift $ getObject destCTEPtr

unless (ctePointer oldCTE = 0) $
lift $ cteRevoke True destCTEPtr

Find the destination CTE, and revoke the capability in it if there is one. Note that this
may cause the source capability to be either revoked or otherwise removed from the
address space (eg by revoking part of the page table), though it is unlikely for that
situation to ever occur. If it does, the source lookup will fault. For this reason, the
destination lookup and revocation must happen before the source lookup.

capLookup thread src capAllowCopy (λ →True)
(srcCTEPtr, srcPermMask) ← findCTE thread src

let newPermMask = srcPermMask `maskCapPerms` permMask

66

Find the source CTE. Note that the source capability pointer is expected to be the capa-
bility being copied, while the destination is a capability to a CTE. The actual location
of the new capability will not be equal to dest; it will be the address mapped by the
destination CTE, which may or may not be in the caller’s address space.

lift $ cteCopy newPermMask srcCTEPtr destCTEPtr

Finally, call cteCopy to perform the copy operation.

cteCopy newPermMask srcCTEPtr destCTEPtr = do

srcCTE ← getObject srcCTEPtr

let newPerms = ctePerms srcCTE `maskCapPerms` newPermMask

Load the source capability table entry from physical memory, and calculate the set of
permissions for the new capability. The new permissions are the intersection of the
given permissions mask and the permissions on the old capability.

let parentMDB = cteMDBNode srcCTE

let newMDB = MDB { mdbNext = mdbNext parentMDB,
mdbPrev = srcCTEPtr,
mdbDepth = 1 + mdbDepth parentMDB }

let newCTE = srcCTE { cteMDBNode = newMDB,
ctePerms = newPerms }

setObject destCTEPtr newCTE

Create the new capability table entry and store it in physical memory. The new entry
has the same pointer and additional data as the source entry. Its MDBNode is inserted
in the mapping database as a child of the source entry’s MDBNode.

let parentMDB′ = parentMDB { mdbNext = destCTEPtr }
let srcCTE′ = srcCTE { cteMDBNode = parentMDB′ }
setObject srcCTEPtr srcCTE′

Update the forward link in the source entry’s MDBNode, which should now point to
the new entry.

nextCTE ← getObject $ mdbNext newMDB

let nextMDB′ = (cteMDBNode srcCTE) { mdbPrev = destCTEPtr }
setObject (mdbNext newMDB) $ nextCTE { cteMDBNode = nextMDB′ }

Finally, update the next MDBNode’s reverse link to point to the new entry.

67

Additional Capability Data

cteSetData :: CTEPtr → Int → State KernelState ()
cteSetData ctePtr val = do

cte ← getObject ctePtr

setObject ctePtr $ cte {cteCapData = val}

Capability Revocation

cteRevoke :: Bool → CTEPtr → State KernelState ()

This function revokes the capability stored in a given CTE. If the boolean parameter is
false, only capabilities that are copies of the one specified will be revoked; if it is true,
the specified capability will also be revoked.

cteRevoke revokeSelf ctePtr = do

cte ← getObject ctePtr

let mdb = cteMDBNode cte

Load the CTE and extract its mapping database node.

when (revokeSelf ∧ mdbDepth mdb = 0) $
error ‘‘Tried to revoke initial cap’’

If an attempt is being made to revoke the top level cap (that is, the original capability
given by the kernel to the initial user level thread), then fail.

let prevPtr = if revokeSelf then mdbPrev mdb else ctePtr

Find the MDB node immediately to the left of the revoked nodes in the MDB.

let nextPtr = mdbNext mdb

nextPtr′ ← revokeWithMinDepth (1 + mdbDepth mdb) prevPtr nextPtr

Call a helper function, defined below, to revoke all copies of the given capability,
which are immediately to the right of it in the MDB. This function will also find the
MDB node to the right of those being removed from the MDB, and will set that node’s
leftwards pointer appropriately.

prevCTE ← getObject prevPtr

let prevMDB′ = (cteMDBNode prevCTE) { mdbNext = nextPtr′ }
setObject prevPtr $ prevCTE { cteMDBNode = prevMDB′ }

Update the rightwards pointer of the node to the left of those deleted.

68

when revokeSelf $ setObject ctePtr (makeObject :: CTE)

Finally, if the given capability itself is being revoked, invalidate its CTE.

Capability Space Lookups

capLookup :: ThreadPtr → CapPtr → (CapPerms → Bool) →
(ObjectType → Bool) →
ErrorT Exception (State KernelState) (Pointer, Int)

This function is used by the system call implementations to find the object pointed
to by a given capability. Its parameters are the current thread, a capability, and two
functions that return True if the permissions and object type, respectively, have the
required values.

capLookup tp cap checkPerms checkType = do

ctePtr ← findCTEForCall tp cap checkPerms

cte ← lift $ getObject ctePtr

checkCap cap (ctePointer cte) 2 (ctePerms cte) checkPerms checkType

return (ctePointer cte, cteCapData cte)

The implementation simply locates the capability’s CTE, reads its contents, calls a
helper function to check that the permissions are sufficient and the object type is cor-
rect, and then returns a pointer to the object and the value of the capability-specific
data.

findCTE :: ThreadPtr → CapPtr →
ErrorT Exception (State KernelState) (CTEPtr, CapPerms)

findCTE thread addr = findCTEAtLevel thread addr 2 capAllowRead

This trivial function is used by system calls that need to locate the CTE for a given
capability.

findCTEForMap t a l = liftM fst $ findCTEAtLevel t a l capAllowWrite

findCTEForMap :: ThreadPtr → CapPtr → Int →
ErrorT Exception (State KernelState) CTEPtr

This function is similar to findCTE, except that it is used specifically to find the desti-
nation CTE for a map IPC operation. It therefore checks that the CTE is writable, rather
than readable.

69

Fault Handler Lookups

findFaultHandler :: ThreadPtr → CapPtr → Int → State KernelState CTE

This function is used by the fault handling code to determine whether there is a
region-specific fault handler for the region containing the given capability pointer.
It returns the contents of the CTE for the appropriate fault handler.

findFaultHandler tptr addr level = do

defaultHandler ←
getObject (tptr + fromIntegral tcbFaultHandlerOffset)

First, locate the default handler, which is used whenever a valid per-region handler
cannot be found.

handlerTable ←
getObject (tptr + fromIntegral tcbFaultHandlerTableOffset)

let offset = ((fromIntegral addr `shiftR` (pageBits + levelBits)) .&.
mask levelBits) ∗ cteSize

Locate the table of fault handlers that shadows the top level of the capability table,
and calculate the required offset into it.

let tablePermMask = fromIntegral $ cteCapData handlerTable

if (level = 2) ∧ (capAllowRead $ ctePerms handlerTable) ∧
(capAllowSend $ permsFromWord tablePermMask)

Check the basic conditions for use of a region-specific fault handler: the fault is at
the bottom level of the page table, the handler table is readable, and the permissions
mask on the handler table allows messages to be sent to endpoints in it.

then do

let table = ctePointer handlerTable

ptype ← getPageType table

if ptype = CapTableObject

Check that the fault handler table is, in fact, a capability table.

then do

handler ← getObject $ table + offset

ptype ← getPageType (ctePointer handler)
if ptype = EndpointObject ∧

(capAllowSend $ ctePerms handler)

Check that the appropriate entry in the table contains a valid capability to an endpoint
with permission to send an IPC to it.

70

then return handler else return defaultHandler

else return defaultHandler

else return defaultHandler

If all of the above conditions are true, return the handler found in the table. Other-
wise, return the default fault handler.

Initial Capability Creation

createInitCap :: Pointer → CTEPtr → State KernelState ()
createInitCap ptr cteptr = do

let cte = CTE { ctePointer = ptr,
ctePerms = allPerms,
cteCapData = 0,
cteMDBNode = MDB { mdbNext = cteptr,

mdbPrev = cteptr,
mdbDepth = 0 } }

setObject cteptr cte

This function is used during the bootstrap sequence. It creates a new capability to a
page of user-managed memory, given a pointer to the memory and a pointer to a CTE

to store the capability in.

A.4.4. Private Functions

Capability Verification

checkCap :: CapPtr → Pointer → Int → CapPerms → (CapPerms → Bool) →
(ObjectType → Bool) →
ErrorT Exception (State KernelState) ()

This function is used by the capability table lookup code to determine whether the
permissions and type of the lookup’s result are the same as those expected by the
caller. The caller is expected to provide two functions that, given a set of permissions
and an object type respectively, will return True if these are correct.

checkCap cap ptr level perms checkPerms checkType = do

unless (checkPerms perms) $
throwError $ Ex {exType = PermissionFault,

exAddress = cap,
exCTLevel = level,
exDesc = ‘‘Insufficient permissions for cap’’}

If the permissions check returns False, throw an exception.

71

ptype ← lift $ getPageType ptr

unless (checkType ptype) $
throwError $ Ex {exType = CapFault,

exAddress = cap,
exCTLevel = level,
exDesc = ‘‘Object was not of the expected type’’}

Fetch the object type and provide it to the type-check function; throw an exception if
it returns False.

checkMask :: CapPtr → Int → CapPerms → (CapPerms → Bool) →
ErrorT Exception (State KernelState) ()

checkMask cap level mask checkMask = do

unless (checkMask mask) $
throwError $ Ex {exType = PermissionFault,

exAddress = cap,
exCTLevel = level,
exDesc = ‘‘Operation prohibited in this region’’}

This is a simplifed version of checkCap that checks only the permissions. It is used
during capability lookup, to check that permissions masks on the capability tables do
not prohibit the requested operation.

Capability Space Lookups

findCTEAtLevel :: ThreadPtr → CapPtr → Int → (CapPerms → Bool) →
ErrorT Exception (State KernelState) (Pointer, CapPerms)

This function is the basis of all other capability lookup functions in this module. It
locates a CTE, given a capability address, a pointer to a TCB containing the root of
a capability table, and a level in the table. It uses the given function to check the
permissions on the CTE itself; that function should check for write permissions when
performing a map operation, and read permissions at all other times.

The returned values are a pointer to the requested CTE (not to the object that it maps),
and the product of all the permissions masks that affect access to the capability stored
in the CTE.

findCTEAtLevel thread 0 =
return (thread + fromIntegral tcbCTableOffset, allPerms)

The level 0 (root) CTE is simply retrieved from the TCB. There are no effective permis-
sions masks, so all permissions bits are set in the result.

findCTEAtLevel thread addr 1 checkPerms = do

rootCTE ← lift $ getObject (thread + fromIntegral tcbCTableOffset)
let lperms1 = ctePerms rootCTE

72

let lpermmask1 = permsFromWord $ fromIntegral $ cteCapData rootCTE

let lroot1 = ctePointer rootCTE

let loffset1 = (fromIntegral addr `shiftR` (pageBits + levelBits)) .&.
mask levelBits

let lptr1 = lroot1 + loffset1 ∗ cteSize

checkCap addr lptr1 0 lperms1 checkPerms (=CapTableObject)
return (lptr1, lpermmask1)

A level 1 CTE is located by applying a mask to the capability address, and using the
result as an index into the root capability directory. The permissions mask is stored
as an integer in the thread’s capability to the root of the table.

findCTEAtLevel thread addr 2 checkPerms = do

(lptr1, lpermmask1) ← findCTEAtLevel thread addr 1 capAllowRead

lcte1 ← lift $ getObject lptr1

let lperms2 = ctePerms lcte1

let lpermmask2 = permsFromWord $ fromIntegral $ cteCapData lcte1

let lroot2 = ctePointer lcte1

let loffset2 = (fromIntegral addr `shiftR` pageBits) .&.
mask levelBits

let lptr2 = lroot2 + loffset2 ∗ cteSize

checkCap addr lptr2 1 lperms2 checkPerms (=CapTableObject)
return (lptr2, lpermmask1 `maskCapPerms` lpermmask2)

This is similar to the level 1 definition, except that the level 2 cap directory is obtained
from the level 1 CTE and used instead of the root. Also, the address mask is not shifted
as far to the right, and the returned permissions mask is the product of those for the
two levels of the table.

findCTEAtLevel level = error (‘‘Illegal CT level ’’ ++ show level)

An attempt to access any other level of the page table will fail.

capLookupForCopy :: ThreadPtr → CapPtr →
ErrorT Exception (State KernelState) CTEPtr

This is a helper function for capCopy, used to look up the destination CTE.

capLookupForCopy thread addr = do

(table,) ←
capLookup thread addr capAllowWrite (=CapTableObject)

return $ table + (fromIntegral addr .&. mask pageBits)

73

It calls capLookup with the appropriate parameters, and then adjusts the returned
address to locate the required CTE in the page of them that capLookup returns.

findCTEForCall :: ThreadPtr → CapPtr → (CapPerms → Bool) →
ErrorT Exception (State KernelState) CTEPtr

This function is used by capLookup to locate the CTE for the requested capability.

findCTEForCall t a checkPerms = do

(, lmask1) ← findCTEAtLevel t a 1 capAllowRead

checkMask a 1 lmask1 checkPerms

(cteptr, lmask2) ← findCTEAtLevel t a 2 capAllowRead

checkMask a 2 lmask2 checkPerms

return cteptr

It looks up the level 1 and level 2 entries separately; this is so checkMask will be able
to set the capability table level correctly if it encounters a permissions error.

Revocation

revokeWithMinDepth :: Int → CTEPtr → CTEPtr →
State KernelState CTEPtr

revokeWithMinDepth minDepth prevPtr ctePtr = do

cte ← getObject ctePtr

let mdb = cteMDBNode cte

if mdbDepth mdb < minDepth

then do

let mdb′ = mdb { mdbPrev = prevPtr }
setObject ctePtr $ cte { cteMDBNode = mdb′ }
return ctePtr

else do

setObject ctePtr (makeObject :: CTE)
revokeWithMinDepth minDepth prevPtr $ mdbNext mdb

This is a helper function used by cteRevoke. It traverses the MDB, invalidating each
CTE it reaches, until it finds a node that is above the minimum depth in the tree.
That node’s leftwards pointer is set to the given value, and a pointer to the node is
returned.

Constants

levelBits :: Int
levelBits = pageBits − objBits (⊥ :: CTE)

The number of bits of the address mapped by each level of the capability table.

74

cteSize :: Pointer
cteSize = 1 `shiftL` (objBits (⊥ :: CTE))

The size of a CTE.

A.5. Threads

module

Thread where

This module defines thread control blocks, and operations that act on them.

A.5.1. Data Types

type Priority = Word8

Threads have an 8 bit unsigned integer priority.

data ThreadState = TS { tsHalted, tsBlocked :: Bool }

The thread may be halted (using the ExchangeRegisters system call), and/or blocked
(waiting for completion of an IPC operation). Threads are runnable only if both of
these conditions are false.

data TCB = Thread { tcbText :: UserText,
tcbContext :: UserContext,
tcbState :: ThreadState,
tcbPriority :: Priority,
tcbFaultHandler :: CTE,
tcbException :: Maybe Exception,
tcbCTable :: CTE,
tcbFaultHandlerTable :: CTE,
tcbTimeSlice :: Int,
tcbIPCNext :: ThreadPtr,
tcbIPCEndpoint :: EndpointPtr,
tcbIPCBadge :: Int }

This is the thread control block structure. It contains various data about the state of
a thread, including its user-level context, runnable state, priority, CTEs for the fault
handlers and capability table, and its remaining time allocation. There is also an
Exception field, which is set while the thread is blocked sending a fault IPC; and
three fields which are used to store the IPC state when the thread is in an IPC send or
recieve queue.

75

The UserText value in the TCB contains a program that can be executed by the user-
level simulator. This is clearly specific to the Haskell model; in a standalone imple-
mentation the executed code is stored in the thread’s virtual address spoce.

A.5.2. Type Class Instance

The following is the instance of Object for thread control blocks. This defines how
TCBs are stored in the physical memory model. Refer to section A.7.3 on page 89 for
the definition of this type class.

instance Object TCB where

objBits = pageBits

makeObject = Thread [] newContext
(TS {tsBlocked = False, tsHalted = True})
100 makeObject Nothing makeObject makeObject timeSlice

nullPointer nullPointer 0

makeObjectPage = ThreadPage

getFromPage 0 (ThreadPage tcb) = tcb

getFromPage = typeError ‘‘cap table or tcb page’’

setInPage tcb 0 (ThreadPage) = ThreadPage tcb

setInPage = typeError ‘‘cap table or tcb page’’

A.5.3. System Call Implementations

threadControl :: ThreadPtr → ThreadPtr → Maybe UserText →
Maybe (CTEPtr, CapPerms) → Maybe (CTEPtr, CapPerms) →
Maybe Priority → Maybe (CTEPtr, CapPerms) →
State KernelState ()

This function implements the ThreadControl system call.

threadControl cur target text capTable faultHandler prio handlerTable = do

case text of

Just text → threadSet (λtcb → tcb {tcbText = text}) target
→ return ()

If a new value has been supplied for the TCB’s tcbText field, set it; otherwise do
nothing.

case prio of

Just prio → setPriority target prio

→ return ()

76

Do the same for the thread’s priority.

case capTable of

Just (src, srcpmask) → do

let dest = target + fromIntegral tcbCTableOffset

oldCTE ← getObject dest

unless (ctePointer oldCTE = 0) $
cteRevoke True dest

cteCopy srcpmask src dest

→ return ()

If a new cap table root has been supplied, call capCopy to copy the capability into the
TCB’s root CTE. If there was previously a valid root CTE, it is revoked first.

case faultHandler of

Just (src, srcpmask) → do

let dest = target + fromIntegral tcbFaultHandlerOffset

oldCTE ← getObject dest

unless (ctePointer oldCTE = 0) $
cteRevoke True dest

cteCopy srcpmask src dest

→ return ()
case handlerTable of

Just (src, srcpmask) → do

let dest = target + fromIntegral tcbFaultHandlerTableOffset

oldCTE ← getObject dest

unless (ctePointer oldCTE = 0) $
cteRevoke True dest

cteCopy srcpmask src dest

→ return ()

Do the same for the default fault handler and the fault handler table.

exchangeRegisters :: ThreadPtr → ThreadPtr → ThreadPtr → Int → Pointer →
State KernelState ()

This function implements the ExchangeRegisters system call.

exchangeRegisters cur src dest flags saveptr = do

haltThread src $ flags .&. 1 /= 0

haltThread dest $ flags .&. 2 /= 0

The first two bits of the bitfield argument determine whether the source and destina-
tion threads, respectively, should be halted after the call returns.

when (flags .&. 4 /= 0) $ do

77

If the third bit is set, we must copy the part of the integer register set that cannot be
directly transferred. The action to be taken depends on whether the current thread is
the source, the destination, or neither.

if cur = src

then do — copy from save area
mapM (λr → do

v ← getObject $ saveptr + intSize ∗
(fromIntegral $ fromEnum r + 1)

asUser dest $ setRegister r (v :: Int))
[SP .. AR7]

ip ← getObject saveptr

asUser dest $ setIP ip

If the current thread is the source, then the instruction pointer, stack pointer and
argument registers are copied from the save area into the destination thread’s state.

else if cur = dest

then do — copy to save area
mapM (λr → do

v ← asUser src $ getRegister r

setObject (saveptr + intSize ∗
(fromIntegral $ fromEnum r + 1)) (v :: Int))

[SP .. AR7]
ip ← asUser src $ getIP

setObject saveptr ip

Otherwise, if the current thread is the destination, the registers are copied from the
source thread’s state into the save area.

else do — copy directly
mapM (λr → do

v ← asUser src $ getRegister r

asUser dest $ setRegister r v)
[SP .. AR7]

ip ← asUser src $ getIP

asUser dest $ setIP ip

If neither source or destination is the current thread, then the registers are copied
directly from the source thread’s state to the destination’s.

when (flags .&. 8 /= 0) $ do

mapM (λr → do

v ← asUser src $ getRegister r

asUser dest $ setRegister r v)
[R0 ..]

return ()
where intSize = 1 `shiftL` objBits (⊥ :: Int)

78

If the fourth bit is set, the remaining integer registers are to be copied. This is always
done directly.

A.5.4. Public Functions

Bootstrapping

configureInitialThread :: ThreadPtr → UserText → CTEPtr → Priority →
State KernelState ()

This function is similar to ThreadControl, but is called from the bootstrap routine to
configure the initial thread.

configureInitialThread threadPtr text root prio = do

threadSet (λtcb → tcb {tcbText = text,
tcbPriority = prio}) threadPtr

cteCopy allPerms root

(threadPtr + fromIntegral tcbCTableOffset)

It sets the text and priority of the initial thread, and copies the root CTE.

activateInitialThread :: ThreadPtr → Pointer → State KernelState ()

This function is called from the bootstrap routine to activate the initial thread. The
Pointer parameter is a structure stored in a physical memory page, containing infor-
mation about the kernel’s configuration.

activateInitialThread threadPtr infoPtr = do

asUser threadPtr $ setRegister R0 $ fromIntegral infoPtr

The infoPtr should be passed to the user-level thread in some architecture-defined
way. In the Haskell model, it is placed in the first general purpose register.

oldSt ← getThreadState threadPtr

setThreadState threadPtr $ oldSt { tsHalted = False }
schedule

The thread state is then set to make the thread runnable, and the scheduler is called.

79

Thread State

The following two functions change the blocked or halted state of the thread, placing
them in or removing them from the ready queue as necessary.

blockThread :: ThreadPtr → Bool → State KernelState ()
blockThread tptr isBlocked = do

oldSt ← getThreadState tptr

setThreadState tptr $ oldSt { tsBlocked = isBlocked }

haltThread :: ThreadPtr → Bool → State KernelState ()
haltThread tptr isHalted = do

oldSt ← getThreadState tptr

setThreadState tptr $ oldSt { tsHalted = isHalted }

The following functions extract or set any data item in a TCB. They are used else-
where in the kernel to access data in the TCB which does not require any additional
processing (as opposed to, for example, the priority, which might require changes to
the ready queues).

threadGet :: (TCB → a) → ThreadPtr → State KernelState a

threadGet f tptr = liftM f $ getObject tptr

threadSet :: (TCB → TCB) → ThreadPtr →
State KernelState ()

threadSet f tptr = do

tcb ← getObject tptr

setObject tptr $ f tcb

IPC Transfers

setException :: Exception → ThreadPtr → State KernelState ()
setException ex = threadSet (λtcb → tcb { tcbException = Just ex })

Set the Exception structure being sent by a fault IPC.

doIPCTransfer :: ThreadPtr → ThreadPtr → Int → State KernelState ()
doIPCTransfer sender receiver badge = do

ex ← threadGet tcbException sender

case ex of

Just → setExceptionMRs badge sender receiver

Nothing → doMRTransfer badge sender receiver

Select between ordinary and fault IPC, and call the appropriate handler function.

80

User-level Execution

runThread :: ThreadPtr → State KernelState Event

runThread thread = do

text ← threadGet tcbText thread

time ← threadGet tcbTimeSlice thread

(time′, ev) ← asUser thread $ executeInstructions text time

threadSet (λtcb → tcb {tcbTimeSlice = time′}) thread
return ev

Execute a thread at user level until an event occurs.

asUser :: ThreadPtr → State UserContext a → State KernelState a

asUser tptr f = do

uc ← threadGet tcbContext tptr

let (a, uc′) = runState f uc

threadSet (λtcb → tcb { tcbContext = uc′ }) tptr
return a

Evaluate a function in the user-level context of a thread. Functions that can be used
as arguments to this function are defined in the UserState module.

A.5.5. Constants

These are the physical memory offsets into the TCB at which the three CTEs may be
found. These values are obviously artificial; in a real implementation they would
depend on the layout of the TCB structure.

tcbFaultHandlerOffset :: Word
tcbFaultHandlerOffset = 1

tcbCTableOffset :: Word
tcbCTableOffset = 2

tcbFaultHandlerTableOffset :: Word
tcbFaultHandlerTableOffset = 3

81

A.5.6. Private Functions

Thread State

getThreadState :: ThreadPtr → State KernelState ThreadState

getThreadState = threadGet tcbState

Trivial function to get the current thread state.

setThreadState :: ThreadPtr → ThreadState → State KernelState ()
setThreadState tptr st = do

tcb ← getObject tptr

setObject tptr $ tcb { tcbState = st }
q ← getQueue $ tcbPriority tcb

if not $ tsHalted st ∨ tsBlocked st

then setQueue (tcbPriority tcb) $ tptr : q
else do

setQueue (tcbPriority tcb) $ filter (/= tptr) q
curThread ← getCurThread

when (tptr = curThread) $ schedule

Set the state of a thread. Depending on the current and new values of the state, the
thread may need to be removed from or added to the ready queue.

Scheduler

setPriority :: ThreadPtr → Priority → State KernelState ()
setPriority tptr prio = do

tcb ← getObject tptr

let oldPrio = tcbPriority tcb

setObject tptr $ tcb { tcbPriority = prio }
let st = tcbState tcb

if not $ tsHalted st ∨ tsBlocked st

then do

q1 ← getQueue oldPrio

setQueue oldPrio $ filter (/= tptr) q1

q2 ← getQueue prio

setQueue prio $ tptr : q2

else return ()

Set the priority of a thread. If the thread is presently runnable, it must be moved from
the old priority’s queue to the new priority’s queue.

schedule :: State KernelState ()
schedule = schedule′ (maxBound :: Priority)

where

82

schedule′ prio = do

q ← getQueue prio

case (q, prio) of
(first:rest,) → do

setQueue prio (rest ++ [first])
setCurThread first

([], 0) → error ‘‘No runnable threads’’
([],) → schedule′ $ prio−1

Choose the next thread to run. This simply finds the first non-empty queue, and
returns the first item in it after moving that item to the end of the queue.

IPC Transfers

doMRTransfer :: Int → ThreadPtr → ThreadPtr → State KernelState ()
doMRTransfer badge sender receiver = do

mapM (λr → do

value ← asUser sender $ getRegister r

asUser receiver $ setRegister r value)
[AR1 .. AR7]

asUser receiver $ setRegister AR0 badge

Transfer the architecture-specific set of IPC message registers from the sender to the
receiver thread, and set the sender’s badge in one of the receiver’s other registers.

setExceptionMRs :: Int → ThreadPtr → ThreadPtr → State KernelState ()
setExceptionMRs badge sender receiver = do

Just ex ← threadGet tcbException sender

threadSet (λtcb → tcb {tcbException = Nothing}) sender
asUser receiver $ setRegister AR1 $ shiftL (fromEnum $ exType ex) 6
ip ← asUser sender getIP

asUser receiver $ setRegister AR2 $ ip

unless (exType ex = InvalidArgument) $ do

asUser receiver $ setRegister AR3 $ fromIntegral $ exAddress ex

asUser receiver $ setRegister AR4 $ fromIntegral $ exCTLevel ex

asUser receiver $ setRegister AR0 badge

Transfer a fault IPC. This reads the Exception value presently stored in the TCB, and
places appropriate parts of it into the receiver’s message registers. The exception is
then set to Nothing, so the next IPC will not re-send the fault.

A.6. IPC and Endpoints

module

83

Endpoint where

This module defines IPC endpoints, and operations that act on them.

A.6.1. Data Types

data Endpoint = IdleEP

SendEP ThreadPtr

RecvEP ThreadPtr

This type represents an IPC endpoint. Endpoints may be idle, or have a queue of
threads that are either all waiting to send, or all waiting to receive. In the latter two
cases the Endpoint stores a physical pointer to the first thread in the queue.

A.6.2. Type Class Instance

The following is the instance of Object for IPC endpoints. This defines how Endpoints
are stored in the physical memory model. Refer to section A.7.3 on page 89 for the
definition of this type class.

instance Object Endpoint where

objBits = pageBits

makeObject = IdleEP

makeObjectPage = EndpointPage

getFromPage 0 (EndpointPage ep) = ep

getFromPage = typeError ‘‘endpoint page’’

setInPage ep 0 (EndpointPage) = EndpointPage ep

setInPage = typeError ‘‘endpoint page’’

84

A.6.3. Public Functions

sendIPC :: ThreadPtr → EndpointPtr → Int → State KernelState ()

This function sends an IPC.

sendIPC thread epptr badge = do

ep ← getObject epptr

case ep of

There are three possible cases, depending on the state of the endpoint.

IdleEP → do

blockThread thread True

threadSet (λtcb → tcb { tcbIPCBadge = badge,
tcbIPCEndpoint = epptr})

thread

setObject epptr $ SendEP thread

If the endpoint is idle, it becomes a sending endpoint, with only the current thread
in the queue. The badge and endpoint are set in the thread’s TCB, to be used in the
message transfer and when cancelling the IPC operation, respectively. The current
thread is blocked while waiting in the queue.

SendEP next → do

blockThread thread True

threadSet (λtcb → tcb { tcbIPCNext = next,
tcbIPCEndpoint = epptr,
tcbIPCBadge = badge})

thread

setObject epptr $ SendEP thread

The send endpoint case is similar to the idle endpoint case, except that the current
thread is added to the existing queue.

RecvEP dest → do

next ← threadGet tcbIPCNext dest

threadSet (λtcb → tcb { tcbIPCNext = nullPointer,
tcbIPCEndpoint = nullPointer})

dest

setObject epptr $ if next = 0

then IdleEP

else RecvEP next

doIPCTransfer thread dest badge

blockThread dest False

schedule

85

If the endpoint is a receive endpoint, sending to it will immediately complete. To do
this, the kernel removes the first thread from the endpoint’s queue, unblocks it, and
transfers the message to it. The scheduler is then called to switch to the recipient.

receiveIPC :: ThreadPtr → EndpointPtr → State KernelState ()

Receives an IPC.

receiveIPC thread epptr = do

ep ← getObject epptr

case ep of

IdleEP → do

blockThread thread True

threadSet (λtcb → tcb { tcbIPCEndpoint = epptr}) thread
setObject epptr $ RecvEP thread

RecvEP next → do

blockThread thread True

threadSet (λtcb → tcb { tcbIPCNext = next,
tcbIPCEndpoint = epptr})

thread

setObject epptr $ RecvEP thread

SendEP sender → do

next ← threadGet tcbIPCNext sender

threadSet (λtcb → tcb { tcbIPCNext = nullPointer,
tcbIPCEndpoint = nullPointer})

sender

setObject epptr $ if next = 0

then IdleEP

else SendEP next

badge ← threadGet tcbIPCBadge sender

doIPCTransfer sender thread badge

blockThread sender False

The recieve and send functions are almost identical, other than the endpoint receive
and send states being swapped. Also, in this case the scheduler is not called after an
IPC operation completes, because the recipient is already running.

ipcCancel :: EndpointPtr → ThreadPtr → State KernelState ()

Attempt to cancel an operation on the given endpoint, being performed by the given
thread.

ipcCancel epptr tptr = do

ep ← getObject epptr

ep′ ← case ep of

IdleEP → return IdleEP

SendEP first → do

next ← ipcCancel′ first

86

case next of

0 → return IdleEP

→ return $ SendEP next

RecvEP first → do

next ← ipcCancel′ first

case next of

0 → return IdleEP

→ return $ RecvEP next

setObject epptr ep

Call ipcCancel′ (defined below) to find the new first item in the queue, and set the
endpoint appropriately.

asUser tptr $ setRegister AR0 (−1)
blockThread tptr False

Indicate to the thread that the IPC operation failed, and unblock it.

where

ipcCancel′ this = do

next ← threadGet tcbIPCNext tptr

if this = tptr

then do

threadSet (λtcb → tcb

{ tcbIPCNext = nullPointer,
tcbIPCEndpoint = nullPointer})

this

return next

else do

next′ ← ipcCancel′ next

when (next′ /= next) $
threadSet (λtcb → tcb {tcbIPCNext = next′}) tptr

return this

Iterate through all threads in the endpoint’s queue until the thread in question is
found; then remove it frome the queue.

epCancelAll :: EndpointPtr → State KernelState ()

Cancel all IPC being performed on a given endpoint.

epCancelAll ptr = do

ep ← getObject ptr

case ep of

IdleEP → return ()
SendEP thread → do

ipcCancel ptr thread

epCancelAll ptr

87

RecvEP thread → do

ipcCancel ptr thread

epCancelAll ptr

Repeatedly call ipcCancel until the endpoint is idle.

A.7. Kernel Objects

module Object where

This module contains the definition of the Object type class, which is used by the
physical address space model to define the characteristics of different data types
when stored in physical memory.

It also defines the PhysicalPage type, which is used for storing the contents of a
single physical frame.

A.7.1. Data Types

data PhysicalPage = KernelPage

EmptyPage

ThreadPage { pageTCB :: TCB }
EndpointPage { pageEndpoint :: Endpoint }
CapTablePage { pageCapTable :: Array Word CTE }
DataPage { pageData :: Array Word Int }

This type defines the contents of a frame of physical memory. It is discussed in detail
in section 4.3.2 on page 35.

data KernelData = KernelData

data UntypedData = UntypedData

These two data types define the contents of physical memory that is used by the
kernel, or currently unused, respectively. Neither of these types have any accessible
contents.

88

A.7.2. Public Functions

The following functions are convenience functions that are called when a type or
alignment error occurs in the kernel. They evaluate the error function; doing this
immediately exits the Haskell model with an error code.

typeError :: String → a

typeError t = error (‘‘Wrong page type - expected ’’ ++ t)

alignError :: Int → a

alignError n = error (‘‘Unaligned access - lowest ’’ ++
(show n) ++ ‘‘ bits must be 0’’)

A.7.3. Type Class

The Object type class is used for any type which may be stored in the modelled
physical memory. It defines a functions that are used for checking address alignment,
creating new objects and frames, and accessing the contents of a frame.

class Object a where

objBits :: a → Int

makeObject :: a
makeObjectPage :: a → PhysicalPage

getFromPage :: Word → PhysicalPage → a

setInPage :: a → Word → PhysicalPage → PhysicalPage

A.7.4. Type Class Instances

The following are instances for the Object type class for the two different “empty”
frame types. Accesses to these types always fail with a type error.

instance Object UntypedData where

objBits = pageBits

makeObject = UntypedData

makeObjectPage = EmptyPage

getFromPage EmptyPage = UntypedData

getFromPage = typeError ‘‘empty page’’

89

setInPage EmptyPage = EmptyPage

setInPage = typeError ‘‘empty page’’

instance Object KernelData where

objBits = pageBits

makeObject = KernelData

makeObjectPage = KernelPage

getFromPage KernelPage = KernelData

getFromPage = typeError ‘‘kernel page’’

setInPage KernelPage = KernelPage

setInPage = typeError ‘‘kernel page’’

This defines the instance of Object for the basic integer type, Int. Integers are de-
fined to be 4 bytes long, and are stored in an array inside their page. The following
functions create and access that array.

instance Object Int where

objBits = 2

makeObject = 0

makeObjectPage obj = DataPage $
listArray (0, (1 `shiftL` (pageBits − objBits obj)) − 1) $

repeat obj

getFromPage offset (DataPage array) =
if align = 0

then val

else alignError (objBits val)
where

val = array!index
index = offset `shiftR` (objBits val)
align = offset .&. (fromIntegral $ mask (objBits val))

getFromPage = typeError ‘‘int data page’’

setInPage val offset (DataPage array) =
if align = 0

then DataPage $ array//[(index, val)]
else alignError (objBits val)

where

index = offset `shiftR` (objBits val)
align = offset .&. (fromIntegral $ mask (objBits val))

setInPage = typeError ‘‘int data page’’

90

A.8. Physical Address Space

module

PSpace where

This module defines the physical memory model.

A.8.1. Data Types

type PSpace = Array Word PhysicalPage

The physical address space is simply an array of physical frames. The latter are rep-
resented by the type PhysicalPage, which is discussed in section 4.3.2 on page 35.

A.8.2. Public Functions

Initialisation

newPSpace :: Word → PSpace

newPSpace size = listArray (0, size − 1)
$ KernelPage : repeat EmptyPage

Creates a new physical memory model, containing a given number of frames. Note
that the first frame is a KernelPage; this must always be the case to ensure that ac-
cesses to null pointers fail immediately.

Accessing Objects

getObject :: Object a ⇒ Pointer → State KernelState a

getObject ptr = do

page ← getPage ptr

let offset = fromIntegral $ (ptr .&. mask pageBits)
return $ getFromPage offset page

Retrieves an object from physical memory. This is done by fetching the frame contain-
ing it, and returning the result of getFromPage applied to that frame. Note that this
function is polymorphic. Type checking is performed at run time by getFromPage,

91

which is defined by the Object type class; that function will fail if the frame does not
contain an object of the requested type.

setObject :: Object a ⇒ Pointer → a → State KernelState ()
setObject ptr obj = do

page ← getPage ptr

let offset = fromIntegral $ (ptr .&. mask pageBits)
let page′ = setInPage obj offset page

setPage ptr page′

Stores an object in physical memory. The operation of this function is analagous to
that of getObject.

Accessing Frames

The following two functions get and set physical frames in the frame array.

setPage :: Pointer → PhysicalPage → State KernelState ()
setPage ptr page = do

ps ← liftM ksPSpace get

let pageNum = fromIntegral $ ptr `shiftR` pageBits

if inRange (bounds ps) pageNum
then modify $ λks → ks { ksPSpace = ps//[(pageNum, page)] }
else error (‘‘setPage with bad pointer: ’’ ++ show ptr)

getPage :: Pointer → State KernelState PhysicalPage

getPage ptr = do

ps ← liftM ksPSpace get

let pageNum = fromIntegral $ ptr `shiftR` pageBits

if inRange (bounds ps) pageNum
then return $ ps!pageNum
else error (‘‘getPage with bad pointer: ’’ ++ show ptr)

A.9. Object Types

module PageType (retypePage, getPageType) where

This module contains functions that determine or change the type of object being
stored in a physical frame.

Note that this module refers to physical frames as “pages”. This is simply an error in
terminology that has not been corrected yet; it has no particular meaning.

92

A.9.1. Public Functions

retypePage :: ObjectType → Pointer → State KernelState ()

Change the type of object stored in a physical frame.

retypePage otype ptr = do

detypePage ptr

First, prepare the frame to have its type changed, by cleaning up any existing object
stored in it.

let page = case otype of

Untyped → makeObjectPage (makeObject :: UntypedData)
IntDataObject → makeObjectPage (makeObject :: Int)
TCBObject → makeObjectPage (makeObject :: TCB)
EndpointObject → makeObjectPage (makeObject :: Endpoint)
CapTableObject → makeObjectPage (makeObject :: CTE)

setPage ptr page

Create a frame containing a new initialised kernel object of the appropriate type, and
store it at the given physical address.

getPageType :: Pointer → State KernelState ObjectType

getPageType ptr = do

page ← getPage ptr

case page of

EmptyPage → return Untyped

DataPage {} → return IntDataObject

ThreadPage {} → return TCBObject

EndpointPage {} → return EndpointObject

CapTablePage {} → return CapTableObject

→ error ‘‘User accessed a kernel page’’

Fetch the type of the given frame, and return it. If a page reserved by the kernel is ac-
cessed, fail with an error — user-level threads should never possess a valid capability
pointing to such an address.

A.9.2. Private Functions

detypePage :: Pointer → State KernelState ()

Clean up the existing contents of a frame.

detypePage ptr = do

page ← getPageType ptr

93

case page of

Untyped → return ()
IntDataObject → return ()

The contents of untyped and integer data frames have no special meaning to the
kernel, so nothing needs to be done in these cases.

TCBObject → do

haltThread ptr True

ep ← threadGet tcbIPCEndpoint ptr

when (ep /= nullPointer) $
ipcCancel ep ptr

cteRevoke True

(ptr + fromIntegral tcbCTableOffset)
cteRevoke True

(ptr + fromIntegral tcbFaultHandlerOffset)
cteRevoke True

(ptr + fromIntegral tcbFaultHandlerTableOffset)

If the frame contains a thread, it must be halted to remove it from the ready queue,
have its IPC operations cancelled, and have all capabilities revoked.

EndpointObject → epCancelAll ptr

If the frame contains an endpoint, all outstanding IPC operations using it must be
cancelled.

CapTableObject → mapM_ (cteRevoke True)
[ptr,ptr+cteSize..ptr+pageSize−cteSize]

If the frame contains a capability table node, every CTE in it must be revoked.

where

cteSize = 1 `shiftL` objBits (⊥::CTE)
pageSize = 1 `shiftL` pageBits

These local constants are used when calculating addresses of CTEs to revoke.

A.10. Bootstrapping

module Init where

This module defines functions that configure the initial state of the kernel.

94

A.10.1. Public Functions

initKernel :: UserText → State KernelState ()

This function bootstraps the system; it creates the initial thread and its capability
space.

initKernel text = do

retypePage TCBObject threadPtr

retypePage CapTableObject rootPtr

mapM (retypePage CapTableObject) lptrs2

Create the initial thread’s TCB, and first and second level capability table nodes.

zipWithM (λptr cteptr →
createInitCap ptr cteptr >> cteSetData cteptr (−1))

lptrs2 $ map (+rootPtr) [0, cteSize..]

Create capabilities for the second level capability table nodes, and place them in the
first level node.

zipWithM createInitCap otherptrs $
map (+head lptrs2) $ map ptrToCap otherptrs

cteSetData (ptrToCap rootPtr + head lptrs2) (−1)

Create capabilites for all remaining memory in the second level nodes.

zipWithM (cteCopy allPerms)
(map (+rootPtr) $

[0, cteSize .. cteSize∗(fromIntegral lcount2−1)])
(map (+head lptrs2) $ map ptrToCap lptrs2)

Copy capabilities for the second level nodes into the address space.

configureInitialThread threadPtr userRootTask

(ptrToCap rootPtr + head lptrs2) 255

Configure the initial thread.

retypePage IntDataObject infoPtr

zipWithM setObject

[infoPtr,infoPtr+intSize..]
([fromIntegral memSize, fromIntegral kernelTop,

fromIntegral threadPtr, fromIntegral rootPtr,
fromIntegral $ head lptrs2, fromIntegral lcount2] :: [Int])

Create and fill a data page with information about the initial state of the system.

95

activateInitialThread threadPtr infoPtr

Activate the initial thread, and give it a pointer to the information.

where

Local variable definitions follow:

pageSize :: Pointer
pageSize = 1 `shiftL` pageBits

intSize :: Pointer
intSize = 1 `shiftL` (objBits (⊥ :: Int))
cteSize :: Pointer
cteSize = 1 `shiftL` (objBits (⊥ :: CTE))

Constants for the sizes of various object types.

lcount2 = ((memSize−1) `shiftR`
(pageBits − objBits (⊥::CTE)))+1

The number of level 2 page table nodes needed to map all physical memory in the
system.

lptrs2 = map (fromIntegral . (`shiftL` pageBits))
[memSize−lcount2 .. memSize−1]

A list of pointers to the second level page table nodes.

otherptrs = map (fromIntegral . (`shiftL` pageBits))
[kernelTop .. memSize−lcount2−1]

A list of pointers to every frame that isn’t used by either the capability table or the
kernel.

(rootPtr:threadPtr:infoPtr:) = reverse otherptrs

Place the CT root, TCB, and information page in the last three available frames.

ptrToCap :: Pointer → CTEPtr

ptrToCap = (flip shiftR) (pageBits − objBits (⊥::CTE))

A local function that converts physical pointers to offsets into the second level capa-
bility table nodes.

newKernelState :: KernelState
newKernelState = KState { ksPSpace = newPSpace memSize,

ksReadyQueues = listArray (minBound,maxBound)
(repeat []),

ksCurThread = ⊥ }

96

A function that creates a new system state structure.

A.11. User Level Machine Model

A.11.1. Instructions and Registers

module Instruction where

data Register =
SP

AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7

R0 R1 R2 R3 R4 R5 R6 R7

R8 R9 R10 R11 R12 R13 R14 R15

R16 R17 R18 R19 R20 R21 R22 R23

R24 R25 R26 R27 R28 R29 R30 R31

deriving (Enum, Ord, Eq, Show)

This is the set of registers accessible at user level. SP is the stack pointer; AR0 through
to AR7 are the system call argument registers; the remainder are general purpose in-
teger registers.

This register set is abnormally large, and an odd size. That has no effect on the be-
haviour of the model, however. On a typical real architecture, the stack pointer and
argument registers would be general purpose registers assigned to those tasks by the
ABI.

data Instruction = Arithmetic Register (Int → Int → Int) Register Register

ArithmeticI Register (Int → Int) Register
Compare Register (Int → Int → Bool) Register Register

CompareI Register (Int → Bool) Register
LoadImmediate Int Register

Load Int Register Register

Store Register Int Register

Push Register

Pop Register

Move Register Register

Branch Int

BranchLinked Int Register

BranchIf Register Int

Syscall Int

DebugPrintf String [Register]

This is the set of instructions supported by the simple simulated CPU. See section 4.7 on
page 40.

97

type UserText = [Instruction]

This is the type used to represent a user-level program. It is simply a list of instruc-
tions.

nullText :: UserText
nullText = []

An empty program.

A.11.2. User Level State

data UserContext = UC { ucRegisters :: Map Register Int,
ucIP :: Int }

This data type represents the state of a user-level thread. It contains an instruction
pointer (which is actually an index into the list of instructions, not a pointer to mem-
ory), and also a mapping from register names to integer values.

newContext :: UserContext
newContext = UC { ucRegisters = empty,

ucIP = 0 }

The initial instruction pointer is 0, and the register map is empty. The latter effectively
sets all registers to the default value in getRegister, which is also 0.

getIP :: State UserContext Int

getIP = gets $ ucIP

Get the current instruction pointer.

setIP :: Int → State UserContext ()
setIP ip = modify $ λuc → uc { ucIP = ip }

Set the instruction pointer.

advanceIP :: State UserContext Int

advanceIP = do

ip ← getIP

setIP (ip+1)
return ip

Advance the instruction pointer by one instruction.

rewindIP :: State UserContext ()
rewindIP = do

ip ← getIP

98

setIP (ip−1)

Move the instruction pointer backwards by one instruction.

getRegister :: Num a ⇒ Register → State UserContext a

getRegister r = do

uc ← get

let mvalue = Map.lookup r (ucRegisters uc)
case mvalue of

Just value → return $ fromIntegral value

Nothing → return 0

Fetch the value of the given register. If no value exists yet, return the default value
0.

setRegister :: Integral a ⇒ Register → a → State UserContext ()
setRegister r v = modify $

λuc → uc { ucRegisters = insert r (fromIntegral v) (ucRegisters uc) }

Set the value of the given register.

A.11.3. CPU Simulation

module CPU (executeInstructions) where

This module contains the interpreter for the simple assembler-like language. It is
documented in section 4.7 on page 40.

A.11.4. Public Functions

executeInstructions :: UserText → Int → State UserContext (Int, Event)

This function, given a program and a time limit, executes the program until an event
occurs or it runs out of time. It returns the amount of remaining time, and the event
that occurred.

executeInstructions 0 = return $ (0, TimerInterrupt)

If there is no time left, generate a timer interrupt.

executeInstructions text time = do

ip ← advanceIP

result ← executeInstruction (text!!ip)
case result of

Just event → return (time−1, event)

99

Nothing → executeInstructions text (time−1)

Otherwise, recursively execute instructions until one of them generates an event.

A.11.5. Internal Functions

executeInstruction :: Instruction → State UserContext (Maybe Event)

This function interprets a single instruction, and may return an event. There is one
definition below for each possible instruction type.

executeInstruction (Arithmetic ra f rb rd) = do

a ← getRegister ra

b ← getRegister rb

setRegister rd $ f a b

return Nothing

executeInstruction (ArithmeticI ra f rd) = do

a ← getRegister ra

setRegister rd $ f a

return Nothing

executeInstruction (Compare ra f rb rd) =
executeInstruction $ Arithmetic ra (λa b → fromEnum $ f a b) rb rd

executeInstruction (CompareI ra f rd) =
executeInstruction $ ArithmeticI ra (λa → fromEnum $ f a) rd

executeInstruction (LoadImmediate i rd) = setRegister rd i >> return Nothing

executeInstruction (Instruction.Load i ra rb) = do

a ← getRegister ra

return $ Just $ KernelAPI.Load (fromIntegral $ i+a) rb

executeInstruction (Instruction.Store ra i rb) = do

b ← getRegister rb

return $ Just $ KernelAPI.Store ra (fromIntegral $ i+b)

executeInstruction (Push ra) = do

sp ← getRegister SP

100

setRegister SP $ sp−intSize
return $ Just $ KernelAPI.Store ra (fromIntegral $ sp−intSize)

executeInstruction (Pop ra) = do

sp ← getRegister SP

setRegister SP $ sp+intSize

return $ Just $ KernelAPI.Load (fromIntegral sp) ra

executeInstruction (Move ra rb) = do

a ← getRegister ra

setRegister rb a

return Nothing

executeInstruction (Branch a) = do

ip ← getIP

setIP $ ip + a − 1

return Nothing

executeInstruction (BranchIf ra b) = do

a ← getRegister ra

if a/=0

then executeInstruction $ Branch b

else return Nothing

executeInstruction (BranchLinked a rl) = do

ip ← getIP

setRegister rl ip

executeInstruction $ Branch a

executeInstruction (Syscall n)
n≥0 ∧ n ≤ fromEnum (maxBound :: Syscall) =

return $ Just $ SyscallEvent $ toEnum n

otherwise = return $ Just $ UnknownSyscall n

executeInstruction (DebugPrintf msg regs) = do

values ← mapM getRegister regs

let string = formatError msg values

return $ Just $ DebugPrint string

formatError :: String → [Int] → String

formatError ‘‘’’ = ‘‘’’

101

formatError (‘%’:chars) (i:values) = (show i) ++ (formatError chars values)
formatError (x:chars) values = x : (formatError chars values)

intSize :: Pointer
intSize = 1 `shiftL` objBits (⊥::Int)

102

