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Chapter 1

Introduction

1.1 Overview

Device drivers low-level software code that interact with computer hardware. Essentially, they function
as software glue that binds the hardware and the rest of the operating system (OS) together.

The I/O Kit is an object-oriented device driver framework written to run on top of the Mach
microkernel. It is the core driver framework for the Darwin system, a UNIX-like operating system
which serves as a base for Mac OS X, a production-quality, general-purpose operating system that runs
on Apple’s line of personal computers. Drivers written for the I/O Kit are I/O Kit drivers, not Mach
drivers, in the sense that in general they do not directly depend on functionality and data structures
provided by Mach. The I/O Kit is feature-rich and provides a general framework that is common across
device drivers.

The Mach microkernel is becoming a performance bottleneck inside the Darwin system, of which the
I/O Kit is an integral component. Microkernel research has gone a long way since Mach was originally
designed, and the Darwin system could stand to gain considerable performance improvements if it were
ported to L4, a modern, state-of-the-art microkernel. On-going work is being made to port the BSD
portion of Darwin to L4, but device drivers are still required in order to have a usable system. As
part of an overall effort to have a working version of the Darwin system running on L4, I/O Kit and
I/O Kit drivers must also be ported.

The purpose of this thesis is to investigate the possibility of running I/O-Kit-based drivers on top
of an L4-based operating system. It aims to show that it is indeed feasible to migrate the I/O Kit
away from a Mach-based environment to an L4-based environment with reasonable effort, and to
migrate I/O Kit drivers away from a Mach-based environment to an L4-based environment with little
or no effort other than a rebuild of the driver software. If successful, it could pave the way for the
widespread adoption of an L4-based Mac OS X system with superior performance. A secondary aim
would be identifying the places were the I/O Kit is dependent on Mach. These could be removed in
favor of a generic interface so that any operating system which implements this interface can use the
I/O Kit as its driver framework, along with I/O Kit drivers.

1.2 Outline

This thesis is comprises of this following chapters.

Chapter 2 This chapter gives a background into the various software components that this project
involves, as well as the motivation and justification to port the I/O Kit and I/O Kit drivers from
a Mach-based environment to an L4-based environment.

9



10 CHAPTER 1. INTRODUCTION

Chapter 3 This chapter builds on the introductory description on the I/O Kit. It describes the
I/O Kit and I/O Kit drivers in detail.

Chapter 4 This chapter describes some related work and previous research that are of interest and
revelant to this project.

Chapter 5 This chapter gives an overview of the porting process. Porting consideration such as the
choice of the hardware architecture that the prototype is going to run on, and the exact L4-based
operating system to use are discussed.

Chapter 6 This chapter describes the work that is done to port the I/O Kit framework and core
related components from a Mach-based environment to an L4-based environment.

Chapter 7 This chapter describes the porting process of various device drivers from a Mach-based
environment to an L4-based environment.

Chapter 8 This chapter presents describes and presents performance benchmarks that were done
using drivers from an L4-based I/O Kit. The numbers obtained were compared to those obtained
from a native Linux implementation and a native Mach-based implementation.

Chapter 9 This discusses some of the future work that should be done in light of the work achieved
in this project. Both engineering work and further research opportunities are presented and
discussed.

Chapter 10 This chapter concludes this report.



Chapter 2

Background

2.1 Introduction

This chapter aims to provide the requisite background knowledge behind the key components involved
in this project.

This chapter will introduce the Darwin operating system and the L4 microkernel. A brief overview
of the I/O Kit will be given, followed by the motivation to migrate away from the Mach microkernel
to an L4-based system. A more complete description of the I/O Kit and I/O Kit device drivers will be
given in the following chapter.

2.2 Darwin

2.2.1 Overview

The Darwin operating system [Appd] is a UNIX-like operating system. It is descended from the
NeXTstep operating system [Lev]. With several exceptions, all components of the Darwin system are
open source software, and can be downloaded and redistributed under an open source license [Appa].
At the time of writing of this report, Darwin 8.3 is the latest publically released version of Darwin.

Figure 2.1 shows the general layout of the Darwin system.
The Darwin system can be mainly divided into two separate portions: the kernel environment and

the user environment.

2.2.2 User environment

The user environment contains standard UNIX programs and libraries which run with user-level priv-
ileges. These include UNIX command-line programs such as ls and find, and libSystem, which
provides the standard C library and math library.

2.2.3 Kernel environment

The kernel environment is the privileged part of the Darwin system. This privileged component in
the Darwin system is called XNU. The XNU component is actually a collection of several components,
namely, the Mach microkernel, the BSD subsystem, the I/O Kit, libkern, and the Platform Expert. It
is mostly the kernel component that this project is most concerned about. Hence, it makes sense to
describe each of these in more detail. Figure 2.2 shows an approximate layered block diagram of the
different components in the kernel environment. In practice, the boundaries are not so distinct.

11



12 CHAPTER 2. BACKGROUND

Because the same software forms the core of both Mac OS X and Darwin, developers can create
low-level software that runs on both Mac OS X and Darwin with few, if any, changes. The only
difference is likely to be in the way the software interacts with the application environment.

Darwin is based on proven technology from many sources. A large portion of this technology is
derived from FreeBSD, a version of 4.4BSD that offers advanced networking, performance, security,
and compatibility features. Other parts of the system software, such as Mach, are based on technology
previously used in Apple’s MkLinux project, in Mac OS X Server, and in technology acquired from
NeXT. Much of the code is platform-independent. All of the core operating-system code is available
in source form.

The core technologies have been chosen for several reasons. Mach provides a clean set of abstractions
for dealing with memory management, interprocess (and interprocessor) communication (IPC), and
other low-level operating-system functions. In today’s rapidly changing hardware environment, this
provides a useful layer of insulation between the operating system and the underlying hardware.

BSD is a carefully engineered, mature operating system with many capabilities. In fact, most of today’s
commercial UNIX and UNIX-like operating systems contain a great deal of BSD code. BSD also
provides a set of industry-standard APIs.

New technologies, such as the I/O Kit and Network Kernel Extensions (NKEs), have been designed
and engineered by Apple to take advantage of advanced capabilities, such as those provided by an
object-oriented programming model. Mac OS X combines these new technologies with time-tested
industry standards to create an operating system that is stable, reliable, flexible, and extensible.

Architecture

The foundation layer of Darwin and Mac OS X is composed of several architectural components, as
shown in Figure 3-3 (page 19). Taken together, these components form the kernel environment.

Figure 3-3 Mac OS X kernel architecture

Common services

Kernel
environment

Application environments

Mach

BSDFile system
Networking

NKE

Drivers

I/O Kit

Architecture 19
2005-02-03   |   © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R  3

Kernel Architecture Overview

Figure 2.1: Darwin architecture. Reproduced from [Appd]

BSD I/O Kit and drivers

Platform ExpertMach microkernel

Figure 2.2: XNU environment block diagram.
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Mach

The Mach microkernel [RJO+89] is a first generation microkernel initially developed at Carnegie Mellon
University, and later at the University of Utah. The Mach microkernel has its roots in the BSD UNIX
kernel [Lev].

The Mach microkernel provides threads, address spaces (called tasks), inter-process communication
(IPC), and a virtual memory (VM) subsystem. Despite its apparent simplicity at a glance, it is actually
a fairly complex piece of software. Apple’s version of Mach, as found in Darwin version 8.2, contains
over 180000 lines of source code, with 25657 lines of code and 53865 being architecture-specific code
for the IA-32 and PowerPC architectures respectively.1

Platform Expert

The Platform Expert is responsible for implementing platform-specific routines. It exports its func-
tionality via a portable C API in a platform-independent fashion. For example, routines used to reset
a machine would be implemented inside the Platform Expert.

BSD

The BSD component implements the kernel portion of the BSD UNIX environment. It implements
functionalities such as filesystems and networking. The BSD component is built on top of Mach, and
makes use of certain features of Mach to implement the BSD UNIX subsystem. For example, it makes
use of the VM subsystem and Mach tasks to implement UNIX processes.

I/O Kit

The I/O Kit is an object-oriented driver framework for the Darwin system. Though not explicitly
mentioned, it appears that the I/O Kit’s design was strongly influenced by, if not based on the driver
framework found in NeXTstep, called Driver Kit. Extensive information on the Driver Kit can be
found in the NeXT Developer Documentation [NeX]. Certain I/O Kit glue exist in driver stacks in
order export a UNIX-like interface to the BSD layer. For example, the IOMediaBSDClient class exists
to implement BSD-like block and byte I/O interfaces for storage devices.

Libkern

The libkern component implements the C++ runtime environment for the I/O Kit and I/O Kit device
drivers. It does not contain all the features from a standard user-level C++ environment, since some
features are deemed unsuitable for use in a multi-threaded kernel environment.

2.3 Mac OS X

The Mac OS X operating system builds on top of Darwin’s infrastructure. The additions that Mac OS X
provides are, unlike Darwin, mostly proprietary. Essentially, the Mac OS X operating system is a
number of extra user-level applications added on top of the open-source Darwin system. Mac OS X is
sold as a commercial software product, and is the de-facto operating system for Apple’s line of personal
computers and laptops. Figure 2.3 shows the architecture of Mac OS X.

At the time of writing, Mac OS X is available on Apple’s PowerPC-based computers. However,
Apple is currently making a transition from the PowerPC architecture to the IA-32 architecture in

1This was generated using David A. Wheeler’s SLOCCount program [Whe].
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Figure 2.3: Mac OS X architecture. Reproduced from [Appe]

its line of personal computers and portables. A pre-release version of Mac OS X exists for Apple’s
IA-32-based transition machine platform, but it is available only to developers.

2.4 L4

L4 [Lie95b, HHL+97] is the generic name for a family of microkernels that implements a standard
API, the latest of which is L4.X2. There currently exists an implementation of the L4.X2 API, known
as L4Ka::Pistachio. This kernel is available for a variety of hardware architectures, including Alpha,
AMD64, ARM, IA-32, IA-64, MIPS64, PowerPC (in both 32-bit or 64-bit mode) and and SPARCv9
(not yet released). It is mostly written in the C++ programming language, with certain frequently
accessed code paths and architecture specific code implemented in assembly.

L4Ka::Pistachio is a high-performance, minimalistic microkernel. It is approximately 10000 lines
of source code.2 It provides address spaces and threads message-passing mechanisms. Communication
between different threads is done either via shared memory, or via message-passing. The specification
for it is described in the L4 X.2 Reference Manual [L4K01].

One of the goals of L4 is to separate mechanism and policy. Policy governs how a system is intended
to behave, as opposed to mechanism, which provides the means to achieve an action inside the system.
With policy removed from the microkernel itself, an operating system writer is free to implement
whatever policy that is required for an operating system personality, that is, the policy that governs
how the system is to behave, utilizing the mechanisms provided by the microkernel. It allows for much
flexibility when implementing an OS personality on top of it.

More recently, National ICT Australia and the L4Ka team have announced the release of the L4-
embedded API [Hei]. It is based on the X.2 API and aims to provide better support for embedded
systems. The API is small, clean, and mostly compatible to X.2. There exists a conformant kernel,
NICTA::Pistachio, which is a slightly modified version of L4Ka::Pistachio. While not available as a
separate download at the time of writing, there already exists a version which very closely resembles
NICTA::Pistachio which is bundled with and used by the Iguana system [NICb].

For the purposes of this report, L4 shall be synonymous with L4Ka::Pistachio, except for instances
where L4 is regarded as the kernel for the Iguana system, in which case it means NICTA::Pistachio.

2The full source code is is around a factor of 10 bigger, however, a lot of it is architecture-dependent source code, and
hence are never used when compiling a specific kernel for a specific platform built on a specific architecture.
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2.5 Motivation

There is much to gain from having I/O-Kit-based drivers on an L4-based system. The following sections
discuss some of the benefits.

2.5.1 Performance

The performance problems associated with Mach are well-known, with high IPC costs being one of
them, as demonstrated by the Lites project [Hel94], and by Chen and Rashid [CB93]. This is an
especially damaging flaw for a microkernel: IPC plays an important part in passing information between
software components in a microkernel. In order to mitigate this, the BSD UNIX personality lives in
the privileged address space of Mach itself. Thus, making use of Mach functionality within the BSD
personality is normally just a simple function call, and it does not suffer from the high IPC costs of
Mach that it otherwise would have in a traditional operating system personality implementation.

Even with the performance tweaks such as the one described above, it is still problematic.
Wong [Won03] found that Mach IPC is used for communication between user processes in Darwin.
Furthermore, it appears that the Aqua windowing system and related libraries found in Mac OS X,
which is built on top of Darwin technologies, make extensive use of IPC.

Bearing in mind the high overhead of Mach IPC, using Mach IPC extensively is problematic, since
will incur a significant overhead. There is significant interest to port Darwin to a more recent and
high performance microkernel, such as L4. There has already been some limited success in porting the
BSD subsystem over to L4, but it is not enough. In order for Darwin to be useful as a general purpose
desktop or server operating system, various hardware devices such as disk controllers and network cards
must be supported. Hence, bringing the I/O Kit and its device drivers to L4 is crucial to any eventual
adoption of an L4-based Darwin system.

2.5.2 Robustness

Device drivers are known to be particularly prone to programming errors. According to private commu-
nication documented by Swift et al. [SABL04], misbehaving drivers cause 85% of Microsoft Windows
XP crashes, while Linux drivers have seven times the bug rate compared to other kernel code [CYC+01].

In the current Darwin system, the BSD subsystem, the I/O Kit and all of its drivers reside in the
privileged address space of Mach for performance reasons. This creates a very important trade-off in
terms of robustness. Since the BSD subsystem and all of the device drivers live in the same protection
domain as the Mach kernel, a bug in these components will likely cause a crash of the whole system.

In L4, almost all device drivers reside in user space, outside of the kernel’s address space3. Thus,
a misbehaving driver can at worst cause itself to crash, and not crash system as a whole4.

If the I/O Kit were to be ported to L4, it would be possible for the I/O Kit software and its drivers
to run completely in user space, that is, in an unprivileged and separate address space to the kernel
and the rest of the operating system in general.

3There are efforts to remove the remaining drivers from NICTA::Pistachio.
4Strictly speaking, this is not entirely true, because a driver doing a faulty DMA operation may still cause the system as

a whole to misbehave. Various methods have been proposed to solve this problem, such as using an input/output memory
management unit (IO-MMU) on systems that have such hardware to further limit a faulty driver’s impact. However,
discussion on this is outside the scope of the current discussion.
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2.5.3 Ease of porting

In general, I/O-Kit-based drivers do not directly depend on any functionality offered by the underlying
kernel.5 Instead, drivers depend on the the I/O Kit framework provide wrapper functions to shield
operating-system-specific details away from the driver. An important implication of this is that once the
I/O Kit component is extracted and ported, any drivers that were built for the I/O Kit will immediately
and automatically be extracted out along with the I/O Kit too. This is noteworthy, because in general,
a device driver built on top of a monolithic kernel will make use of OS-specific functionality directly.

There remains the questions of porting the I/O Kit itself. The I/O Kit is built directly on top of
Mach, and makes use of Mach data structures and function calls. In the initial stages, it will need
some sort of emulation layer to reproduce the required functionality that would normally be provided
by Mach.

Fortunately, in general, there are clear and well-defined interfaces for accessing functionality from
Mach. As well, in previous work, writing an emulation layer for Linux drivers, for instance, means
that in effect, all Linux drivers must be ported. In I/O Kit’s case, only the I/O Kit itself needs to be
ported. The porting of drivers happen immediately and automatically on completion of the I/O Kit
port.

2.6 Justification

Currently Darwin is powered by the Mach microkernel. Core system components such as the BSD
UNIX personality and device drivers reside in Mach’s protection domain, creating a relatively inflexible
system with none of the benefits that a microkernel is supposed to offer, in addition to the inherent
performance penalty of having the Mach microkernel there. Initial research into the feasibility of a port
of the BSD subsystem to the L4 microkernel has shown some positive results, but a port of the I/O Kit
to the L4 microkernel will also be crucial step to an eventual adoption of the L4-Darwin system. In
addition, device drivers source code in operating systems have been shown to account for an alarming
percentage of operating systems code. In systems where drivers run in the same privileged protection
domain as the kernel for performance reasons, like Darwin, whenever a device driver crashes, it is likely
to cause a crash of the whole system, requiring a restarting of the whole operating system. In using a
high-performance, minimalistic microkernel such as L4, it has the potential to provide isolated device
drivers running in unprivileged mode, with minimal overhead. Finally, while portability is an accepted
concept in user-level software, to this day it remains poor in device drivers. Because of the fact that the
I/O Kit forces device driver programmers to write in an almost operating-system-independent fashion,
it has the potential to pave the way for true driver portability across different operating systems running
on a wide range of different hardware.

5A notable exeception to this is network drivers. Network drivers use BSD mbufs for buffer managements rather than
I/O-Kit-abstracted buffers.



Chapter 3

The I/O Kit

This chapter aims to introduce the I/O Kit in more detail, building on top of the very brief overview
of I/O Kit given in the previous chapter.

3.1 An Overview of the I/O Kit

The I/O Kit [App04] is an objected-oriented framework that aims to simplify device driver development,
which appears to have been influenced, if not based on the Driver Kit found in the NeXTStep operating
system.

The I/O Kit is implemented in a restricted subset of C++. It disallows certain features of C++,
including:

• exceptions

• multiple inheritance

• templates

• runtime type information (RTTI)

These features were dropped because they were deemed unsuitable for use within a multithreaded
kernel environment. It should be noted that while it is illegal to use the standard C++ RTTI system,
the libkern library, which is a part of the XNU package, has its own RTTI system.

3.1.1 Driver layering

The I/O Kit adopts a modular, layered approach that captures the relationships between components
in the system. They can be viewed as a chain of provider-client relationships. Figure 3.1 and Table 3.1
gives one example of this relationship.

3.1.2 Families and drivers

An I/O Kit family is a level of software abstractions that is common across a range of device device
drivers of a particular type. It is implemented in I/O Kit as one or more C++ classes.

A driver becomes a member of a particular family through inheritance. It is in this way that a
driver gains access to the data structures and the routines that are common to the family. For example,
a disk controller that implements the Small Computer Systems Interface (SCSI) may require the SCSI

17
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When a driver is selected for a device, but before it is loaded into the kernel (as a kernel extension),
all required families—in terms of superclasses and their dependencies—are loaded to provide the
common functionality for the driver and others of its type. (Of course, if these families have already
been loaded, this step is not necessary.) After all requirements for the driver are met, the driver is
loaded and instantiated as an object. See “The Anatomy of an I/O Connection” (page 25) for an
illustration of this process.

A nub is an I/O Kit object that represents a communication channel for a device or logical service
and mediates access to the device and service. For example, a nub could represent a bus, a disk, a
disk partition, a graphics adaptor, or a keyboard. It might help to think of a nub as the software
representation of a device slot or connector. Nubs also provide services such as arbitration, power
management, and driver matching (see “The I/O Registry and the I/O Catalog” (page 29)).

Nubs act as bridges between two drivers and, by extension, between two families. A driver
communicates with a nub (and the nub’s family) as its client and may, through its family, publish a
nub which finds (by matching) a driver for which it is a provider. Usually a driver publishes one nub
for each individual device or service it controls; however, when a driver supports a specific piece of
hardware it can act as its own nub.

The Anatomy of an I/O Connection

The I/O Kit’s layered architecture models the chain of connections between the system’s hardware
buses and devices, gathering common functionality into classes your driver can interact with. Each
layer is a client of the layer below it and a provider of services to the layer above it. Broad groupings
of layers, defined by the I/O Kit families, define the functionality common to a general type of I/O
provider, such as networking or PCI bus devices.

Consider Figure 2-1 (page 25), which illustrates a typical layering of client and provider objects for
a PCI-based Ethernet controller driver in the Network family.

Figure 2-1 Driver objects as clients and providers
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As this diagram shows, your driver typically fits between two families, inheriting from a class in the
upper-layer family and using the services of the lower-layer family. In the case of the Ethernet
controller, the driver participates in a stack of C++ objects comprising instances of classes from the
networking and PCI families:
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Architectural Overview

Figure 3.1: Driver objects as clients and providers. Reproduced from [App04]

IONetworkStack (in-
terface managing
object)

Connects I/O Kit objects to the BSD networking facilities.

IOEthernetInterface
(nub)

Manages device-independent data transmission and recep-
tion.

Controller Driver
(driver)

Operates the Ethernet controller through the IOPCIDevice
object. This object inherits from a networking family class
called IOEthernetController.

IOPCIdevice (nub) Match point for the controller; provides basic PCI bus inter-
action in the controller.

IOPCIBridge (driver) Manages the PCI bus. (Other objects provide services to the
IOPCIBridge; the specific identities depend on the hardawre
configuration.)

Table 3.1: Description of the overall layout in Figure 3.1. Reproduced from [App04]
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bus to be scanned. This functionality would normally be implemented by the SCSI parallel family,
unless the particular disk controller requires the bus to be scanned in some driver-specific way.

A device driver typically works with two device families. One is the family that the driver is a
member of, such as the SCSI parallel family. The other is is a nub that is published by the family that
the device is attached to.

3.1.3 Drivers and nubs

In the I/O Kit, there are two types of driver objects. One is a specific driver which drives a particular
piece of hardware device. The other is a nub. A nub is an I/O Kit object that represents a communca-
tion channel for a device or logical service and medates access to the device and service. For example,
a nub could represent a disk, a disk partition, or a keyboard. Nubs are bridges between two drivers. A
driver communicates with a nub as its client. A driver may publish a nub which finds a driver for which
it is a provider. Nubs are also important for providing arbitration services, power management, and
driver matching. In other words, nubs can be thought of as connectors between two different drivers.

As a driver detects a new device, a nub is created and it proceeds to attempt to match the ap-
propriate driver. As an example, consider the case of a SCSI controller. The Peripherial Component
Interconnect (PCI) bus driver detects the presence of a new device on the bus. It then publishes a nub
for the new device. The nub identifies a suitable device driver for it. In this example, the appropriate
SCSI controller driver is loaded into memory. The controller driver then proceeds to scan the SCSI bus
for devices. Upon finding a device, it publishes as nub for the device. For example, if a SCSI disk is
attached, the nub created for the device will go through the driver matching procedure, and will load
the disk driver for it.

Figure 3.1 and Table 3.1 presents a more graphical explanation of how nubs and drivers are laid
out in device layering.

3.1.4 The I/O Registry and the I/O Catalog

The I/O Registry is critical for providing the dynamic driver features of the I/O Kit. For example, it
allows for a Firewire device to be plugged in to the computer, and be available immediately for use.

The I/O Registry tracks, dynamically, the client and provider relationships between devices con-
tinuously in time. Hence, if an external device were to be plugged into the system, for example, the
I/O Registry would be updated to reflect this new system configuration.

The I/O Catalog is another dynamic database that works closely with the I/O Registry. Whenever
a new device is discovered, the I/O Registry will request for a list of available matching drivers from
the I/O Catalog.

The I/O Registry maintains a list of active objects running in the system, and the I/O Catalog
maintains a list of available drivers installed on the system.

3.1.5 Work loops

A device driver must be able to act appropriately in response to events. This needs to be carefully
done, since a driver’s code could be run at any time in response to an event, whether it is due to a
hardware interrupt, timeout events, or client I/O requests. This high level of concurrency requires
proper protection of its data structures from concurrent access, as it may very well lead to data
corruption.

A work loop is basically a gating mechanism that ensures single-threaded access to the data struc-
tures used by the hardware. It is in essence an exclusive (mutex) lock associated with a thread. It can
be used as a gating mechanism that synchronizes the actions among different events. It is also used for
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With indirect interrupts, the interrupt controller dispatches the interrupt it reads off the interrupt line
to the appropriate interrupt event-source object of the target driver, effectively causing it to schedule
on the driver’s work-loop thread. The completion (or Action) routine defined by the event source is
then run on the work-loop thread to handle the interrupt. The priority of the work-loop thread,
although high compared to most client threads, is lower than the thread carrying the direct interrupt.
Thus the completion routine running in the work-loop thread can be preempted by another direct
interrupt.

The I/O Kit does not prohibit access to the direct-interrupt context, and in fact provides a separate
programming interface for this purpose (see “Using Interrupt Handlers With No Work
Loops” (page 82). However, use of direct interrupts is strongly discouraged.

A work loop can have several IOInterruptEventSource objects attached to it. The order in which these
objects are added to the work loop (through IOWorkLoop’s addEventSource function) determines
the general order in which interrupts from different sources are handled.

Figure 7-2 (page 79) illustrates some of these concepts. It shows events originating from different
sources being delivered to the corresponding event-source objects “attached” to the work loop. As
with any event-source object, each interrupt event source acts as a queue for events of that type; when
there is an event in the queue, the object signals the work loop that it has work for it. The work loop
(that is, the dedicated thread) awakes and queries each installed event source in turn. If an event
source has work, the work loop runs the completion routine for the event (in this case, an interrupt)
in its own protected thread. The previous thread—the client thread running the event-source code—is
blocked until the routine finishes processing the event. Then the work loop moves to the next interrupt
event source and, if there is work, runs the completion routine for that interrupt in its protected
context. When there is no more work to do, the work loop sleeps.

Figure 7-2 A work loop and its event sources
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void handleInterrupt()
{
    // code that
    // handles the
    // interrupt
}
  

Remember that the order in which you add interrupt event sources to a work loop determines the
order of handling for specific interrupt events.
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Handling Events

Figure 3.2: A work loop and its event sources. Reproduced from [App04]

interrupt handling to handle interrupts delivered by the interrupt controller. This mechanism serializes
the interrupt handling, preventing multiple access to driver data by multiple interrupts. A work loop
does not prevent concurrency: a driver can have multiple work loops, though extra care must be taken
to ensure that no race conditions can occur. Figure 3.1.5 shows a work loop being utilized for interrupt
handling.

An event source is an object that corresponds to a particular event that a driver is expected to
handle. In order for a driver to handle a particular event, the event source must be registered with the
corresponding work loop.

3.1.6 Direct memory access

Direct memory access (DMA) is a method that is present in certain bus controllers that involves directly
transferring data between a device attached to a bus to system memory and vice-versa. Using DMA
can provide significant performance gains, since it frees the processor from doing the data transfer.

Depending on the direction of the transfer, the source and destination can either be a DMA engine
(or a specific device), or, it can be client memory represented by an IOMemoryDescriptor.

In the I/O Kit, each bus has its own specific DMA engine, each with its own properties. In partic-
ular, each DMA engine can have its own alignment requirement, endian format and size restrictions.

In addition to this, memory coming from the system may be partially or fully backed by the Unified
Buffer Cache (UBC). The UBC is an optimization that combines the file-system cache and the virtual
memory (VM) cache. The underlying structure of the UBC is the Universal Page List (UPL). The
I/O Kit documentation terms an I/O request which are backed by the UPL a conforming request. In
the case that it is not, it is called a non-conforming request. A UPL memory segment has certain
characteristics, including:

• is at least page sized
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• is page aligned

• has a maximum segment size of 128 kilobytes

• is already mapped into the kernel’s address space

The I/O Kit uses the UPL because it is efficient for I/O transfers. It has the additional benefit of
being easy to batch I/O requests. A UPL-backed IOMemoryDescriptor inherits the characteristics of a
UPL segment as listed above. It is not explained anywhere why these rules are applied to conforming
requests, though it appears to be a policy decision made by the designers of the I/O Kit.

The general policy regarding DMA controller drivers is that it must be prepared to handle a
request of any alignment size, or other restrictions. If the request is a conforming request, it should
never allocate memory to process the request as it could lead to a deadlock. If it is a non-conforming
request, then the driver should try its best to process the request, including allocating resources if
required, and fail if it cannot execute the I/O request.

3.1.7 Asynchronous events

In the life of a device driver, it can be mostly expected to handle mostly well-defined events. Well-
defined events are those that a device driver is expected to handle. In general, these could include data
transfer, or notification of a condition by the device via an interrupt. There are mainly two exceptions
to this rule: power events and hot-plugging. They are unexpected events, because power state could
be altered at any time that is out of the driver’s control. Similarly, for hot-plugging, devices could be
plugged or unplugged at any time, but is out of the device driver’s control.

3.1.8 Power management

Darwin may run on hardware which may be power-constrained at times. An example of this would be
a laptop while it is running on battery power. The I/O Kit contains facilities for power management.

The basic entity in power management is a device. For the purposes of power management, a
device is defined to be a piece of hardware whose power consumption can be measured and controlled
independently of system power. For hardware where that is not the case, they can be indirectly
controlled through power domains. Figure 3.3 illustrates the concept of power domains.

There are at least two power states associated with a device, off and on. When a device is off, it
has no power and does not operate. When a device is on, it has full power and it operates with full
capabilities. A device may also have other intermediate states associated with it. For example, a device
in a reduced power state may be able to function with reduced power. It can also be an intermediate
state where it is unable to function, but maintains some state or configuration.

A power domain is a switchable source of power in the system. It provides power for devices that
are considered members of the power domain.

Power domains are hierarchical. A power domain may contain another power domain. The power
domain which contains all power domains is called the root power domain, which represents the main
source of power of the system.

Power domains have power controllers and policy makers associated with them. The policy maker
decides when to change the power state of a device, while the power controller executes the power
change. Figure 3.4 illustates concept of power controllers and policy makers.
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to the Power plane (IOPower) of the I/O Registry. (You can enter ioreg -p IOPower at the command
line to see the current power plane.) See Figure 9-1 (page 99) for a depiction of power domains in a
system.

The PC card system is an example of a power domain that is contained by another power domain. It
provides power to its member devices (the PC card slots) and is, in turn, a member of the root power
domain.

Figure 9-1 Power domains and devices
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Logic and Factors of Power Management

A major factor in power management is device idleness. Power management—considered as the sum
of all I/O Kit objects involved in this activity—works by monitoring devices and deciding whether
they are idle. If power management deems a device to be idle, it proceeds based on the type of device:

 ■ If the device’s power can be directly controlled, power management lowers it to the next lower
power state. If, after this action, the device is in its lowest power state, power management checks
the other devices in the same power domain to see if they are also in their lowest power state. If
they are, it lowers the power state of the domain.

 ■ If the device’s power cannot be directly controlled, power management reduces the power
consumed by the device by reducing power to the domain the device is a member of. If this device
and all other devices in this domain are in their lowest power state after this, power management
lowers the power state of the domain.

In both instances, after lowering the power state of the current domain, power management determines
if the power state of the parent domain can be lowered.

When a device in a reduced-power state needs to be functional again, power management raises the
power to the device to a usable level (generally, the “on” state). This step might require power
management to power up the power domain the device is a member of as well as any enclosing
domains.

After all power domains except the root domain have been powered down, power management puts
the system to sleep. When a user wakes the system, the system resumes running with all power
domains turned on.

Power Management 99
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Figure 3.3: Power domains and devices. Reproduced from [App04]

Figure 9-2 Power controllers and policy makers
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Power domains also have policy-maker and power-controller objects associated with them. The policy
maker decides when to change the power state of the domain and has the power controller carry out
its decision. However, there are a couple of differences between policy makers for devices and policy
makers for power domains. The first is that a power-domain policy maker does not alter the power
consumption of a device; instead, it alters the character of the power supplied to the members of the
domain. The character of power, in this regard, can involve factors other than voltage, such as adjusting
the frequency of the clock, or turning it off or on. The second difference is that a policy maker for a
power domain doesn’t base its decisions on idleness. It decides to raise and lower power in the domain
based on requests from its members. For example, when the power domain is in a state of lowered
power and one of its members requests more power, the policy maker tells the power controller to
raise power throughout the domain. When all members of the domain have requested low power,
the policy maker has the power of the domain lowered.

Both devices and power domains are affected by the power domains they are members of. Changes
in power induced by a power domain can bypass policy makers. By altering the electrical power to
a device, a power domain can alter its power state. Devices that cannot be directly controlled are
especially susceptible to changes in their power domain. When the power domain is brought up, the
device is turned on, and when the power domain is brought down, the device is effectively turned
off.

For guidelines on creating policy makers and power controllers, see “Implementing Policy-Maker
Objects” (page 104) and “Implementing Power-Controller Objects” (page 107).

Notification of Power-State Changes

Power management brackets a change to the power of a device or a power domain with a pair of
notifications to all interested objects to allow them to prepare for the change. Interested objects are
IOService driver objects that want to be informed of power-state changes for a variety of reasons. A
policy maker’s power controller is automatically included in the list of interested objects.

The notifications are delivered through invocations of powerStateWillChangeTo and
powerStateDidChangeTo methods, which interested objects must implement in order to receive the
notifications. The notified objects here have an opportunity to prepare for the change.

Power Management 101
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Figure 3.4: Power controllers and policy makers. Reproduced from [App04]
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In addition to information about system-wide power-state changes, applications can also get
information about both external and internal power sources using the I/O Kit’s IOPowerSources API
(located in /System/Library/Frameworks/IOKit.framework/Headers/ps/IOPowerSources.h).
Using the methods defined in the header file, an application can get a list of attached power sources,
receive notification when its power sources change, and determine how much power is left in an
internal or external battery.

Responding to Device Removal

Mac OS X is an operating system that includes hot-swapping as a feature. Users can plug in and
remove external devices (for example, mass-storage drives, CD-RW drives, modems, and scanners)
and the system immediately does what is necessary to make the device usable or, in the case of
removal, to register the absence of the device. No system restart or shutdown is necessary.

When a user plugs a device into the system, the I/O Kit responds to the event using the normal
process for discovering and loading drivers. A low-level driver scans its bus, notices a new device,
and kicks off the matching process to find a suitable driver. The I/O Kit then loads the driver into
the kernel and the device is usable.

When a user removes a device, however, the situation is different. A driver stack must be torn down
rather than built up. Before the drivers in the stack can be released, they must, in a coordinated
manner, stop accepting new requests and clear out all queued and in-progress work; this requires a
special API and procedure.

The I/O Kit performs an orderly tear-down of a driver stack upon device removal in three phases.
The first phase makes the driver objects in the stack inactive so they receive no new I/O requests.
The second phase clears out pending and in-progress I/O requests from driver queues. Finally, in
the third phase, the I/O Kit invokes the appropriate driver life-cycle methods on drivers to clean up
allocated resources and detach the objects from the I/O Registry before freeing them. Figure
9-3 (page 114) summarizes what happens during the three phases, including the calling direction within
the driver stack.

Figure 9-3 Phases of device removal
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Figure 3.5: Phases of device removal. Reproduced from [App04]

3.1.9 Hot-plugging

Hot-plugging, also known as hot-swapping, refers to the ability of the operating system to initialize or
safely detach a peripherial component, such as a Universial Serial Bus (USB) device, in reponse to a
user inserting or removing the peripherial component while the operating system is actively running.
Much like power change events, these are defined as unexpected, asynchronous events, since certain
devices such as USB memory flash sticks could be plugged and unplugged at any time.

The I/O Kit contains facilities for hot-plugging. When a user plugs a in device, the driver matching
mechanism kicks in and a suitable driver is found for it via the normal driver matching process.

When a device is removed however, the situation is different. The driver stack must be torn down
rather than built up. In order to ensure that this is done in an orderly fashion, it requires a special
API and procedure.

The I/O Kit performs this procedure in three phases. Figure 3.5 shows the three phases of driver
shutdown. The first phase makes the driver objects in the stack inactive so they do not receive new
I/O requests. The second one clears out pending and in-progress I/O requests from the driver queues.
Finally, the I/O Kit invokes the appropriate driver life-cycle methods so that allocated resources are
cleaned up.

3.2 An Overview of a Typical I/O Kit Driver

In previous sections, certain aspects of drivers that are related to the functioning of the I/O Kit were
touched upon. However, no details have been said about what exactly an I/O-Kit-based driver is like.
The following sections aims to retify this, by describing the anatomy of a typical I/O Kit driver in
detail.

An I/O-Kit-based driver can be described succintly as a fancy kernel extension. In order words,
there is nothing special about an I/O-Kit-based driver. It is essentially a kernel extension that depends
on the I/O Kit, typically with operating-system-specific details hidden by the I/O Kit.

In brief, an I/O Kit driver is actually made up of two components, the code component and the
property list component. In general, both are required in order for the correct functioning of an I/O Kit
driver.
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device. See “Device Probing” (page 45) for more information. During active matching, the I/O
Kit loads and probes all candidate drivers, then sorts them in order of highest to lowest probe
score.

The I/O Kit then chooses the remaining driver with the highest probe score and starts it. If the driver
successfully starts, it is added to the I/O Registry and any remaining driver candidates are discarded.
If it does not start successfully, the driver with the next highest probe score is started, and so on. If
more than one driver is in the pool of possible candidates, the more generic driver typically loses out
to the more specific driver if both claim to be able to drive the device.

Device Probing

During the active matching phase, the I/O Kit requests each driver in the pool of remaining candidates
to probe the device to determine if they can drive it. The I/O Kit calls a series of member functions
defined in the IOService class and overridden in some cases by the driver’s class. These functions,
and the order in which they are called, are

init()
attach()
probe()
detach()
free() /* if probe fails */

These functions comprise the first part of a driver’s life cycle (see “Driver Object Life Cycle” (page 59)
in the chapter “ “The Base Classes” (page 49)” for the full story). Note that four of these functions
form complementary pairs, one nested inside the other: init and free are one pair, and attach and
detach are the other.

During active matching, the code of a candidate driver is loaded and an instance of the principal class
listed in the personality is created. The first function invoked is init, which is the libkern equivalent
of the constructor function for the class. For I/O Kit drivers, this function takes as its sole argument
an OSDictionary object containing the matching properties from the selected driver personality. The
driver can use this to identify what specific personality it’s been loaded for, determine what level of
diagnostic output to produce, or otherwise establish basic operating parameters. I/O Kit drivers
typically don’t override the init function, performing their initialization in later stages.

However, if you do override the init function—or almost any other function of the driver life
cycle—you must take care to do two things. The first is to invoke your superclass’s implementation
of the function. When you do this depends on the function; for example, in implementing init you
should invoke the superclass’s implementation as the first thing, and in free you should invoke it
as the last statement of the function. The second general rule is that you should undo in the second
function of a pair what you’ve done in the first function; thus, if you allocate memory for any reason
in init, you should free that memory in free.

Next, the attach function (which is bracketed with the detach function) is called. The default
implementation of attach attaches the driver to the nub through registration in the I/O Registry; the
default implementation of detach detaches the driver from the nub. A driver can override the default
implementations, but rarely needs to do so.
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Figure 3.6: I/O Kit driver matching process. Reproduced from [App04]

3.3 The I/O Kit Driver Code

The code component of the driver is responsible for acting on events and servicing requests that are
directly related to the device itself.

A basic device driver is quite simple. It essentially reduces to several member functions in the
driver class, namely init(), attach(), probe(), start(), stop(), detach() and free(). During
driver matching, the I/O Kit requests each driver in the pool of candidate drivers to probe the device
to determine if they can drive it. The first function called is init(). The init() and free() member
functions form a complimentary pair, as do attach() and detach(). Init() and free() are essentially
libkern’s way of implementing constructor and destructor functions. The default action of attach()
is to attach the driver to the nub through registration in the I/O Registry, while detach() detaches it
from the nub. They may be overridden, but a driver rarely needs to do so.

After init() and attach() are called, probe() is called. This is always called if the driver’s
matching dictionary passively matches the nub in question. The probe() function returns a probe
score which determines how well suited a device driver is for running the device. After all drivers have
probed the device, the one with the highest probe score is attached and its start() function is called.
The start() function initializes the device and prepares it for operation. The stop() function is used
to stop the device.

3.4 The Driver Property List

Separate from the driver code, but still an integral part of the driver is the driver’s property list.
The property list is typically stored in a separate file serialized in the Extensible Markup Language
(XML) format. This properties file is necessary, because it captures important information such as the
matching parameters for the driver, the hardware that the device driver supports and the parameters
should be used to drive the device, and other extensions that the driver in question depends on. For
example, Figure 3.7 shows an exerpt of the XML property file from Apple’s implementation of a PS/2
controller driver shows that it expects to be matched when the string “ps2controller” is seen.

The information stored in these XML files are generally not used directly. The libkern library
contains functions that converts it from the XML representation into an internal representation before
the data is accessed.

There exists a simpler format that is used for the bootstrapping of in-kernel modules. This format
contains a subset of what would normally be found in its XML equivalent. It is stored as a string
named gIOKernelConfigTables. Although this format is incompatible with the XML representation,
both are converted into an internal representation before they are used by the I/O Kit. Hence, as far
as the I/O Kit and drivers are concerned, they are presented with one uniform representation that can
be accessed using C++ methods.

The separation of a driver into a code component and a data component is a little unusual, but it
is good design. It cleanly separates data that describes the features of a particular piece of hardware
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4.4 The I/O Kit Driver Code

The code component of the driver is responsible for acting on events and servicing requests that are
directly related to the device itself.

Essentially, the overall layout of the lifecycle of an I/O Kit driver is quite simple.

device. See “Device Probing” (page 45) for more information. During active matching, the I/O
Kit loads and probes all candidate drivers, then sorts them in order of highest to lowest probe
score.

The I/O Kit then chooses the remaining driver with the highest probe score and starts it. If the driver
successfully starts, it is added to the I/O Registry and any remaining driver candidates are discarded.
If it does not start successfully, the driver with the next highest probe score is started, and so on. If
more than one driver is in the pool of possible candidates, the more generic driver typically loses out
to the more specific driver if both claim to be able to drive the device.

Device Probing

During the active matching phase, the I/O Kit requests each driver in the pool of remaining candidates
to probe the device to determine if they can drive it. The I/O Kit calls a series of member functions
defined in the IOService class and overridden in some cases by the driver’s class. These functions,
and the order in which they are called, are

init()
attach()
probe()
detach()
free() /* if probe fails */

These functions comprise the first part of a driver’s life cycle (see “Driver Object Life Cycle” (page 59)
in the chapter “ “The Base Classes” (page 49)” for the full story). Note that four of these functions
form complementary pairs, one nested inside the other: init and free are one pair, and attach and
detach are the other.

During active matching, the code of a candidate driver is loaded and an instance of the principal class
listed in the personality is created. The first function invoked is init, which is the libkern equivalent
of the constructor function for the class. For I/O Kit drivers, this function takes as its sole argument
an OSDictionary object containing the matching properties from the selected driver personality. The
driver can use this to identify what specific personality it’s been loaded for, determine what level of
diagnostic output to produce, or otherwise establish basic operating parameters. I/O Kit drivers
typically don’t override the init function, performing their initialization in later stages.

However, if you do override the init function—or almost any other function of the driver life
cycle—you must take care to do two things. The first is to invoke your superclass’s implementation
of the function. When you do this depends on the function; for example, in implementing init you
should invoke the superclass’s implementation as the first thing, and in free you should invoke it
as the last statement of the function. The second general rule is that you should undo in the second
function of a pair what you’ve done in the first function; thus, if you allocate memory for any reason
in init, you should free that memory in free.

Next, the attach function (which is bracketed with the detach function) is called. The default
implementation of attach attaches the driver to the nub through registration in the I/O Registry; the
default implementation of detach detaches the driver from the nub. A driver can override the default
implementations, but rarely needs to do so.
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Figure 4.5: I/O Kit driver lifecycle. Reproduced from [5]

4.5 The Driver Property List

Separate from the driver code, but still an integral part of the driver is the driver’s property list.
The property list is typically stored in a separate file serialized in the Extensible Markup Language
(XML) format. This properties file is necessary, because it captures important information such as the
matching parameters for the driver, the hardware that the device driver supports and the parameters
should be used to drive the device, and other extensions that the driver in question depends on. For
example, the below exerpt from Apple’s implementation of a PS/2 controller driver shows that it
expects to be matched when the string “ps2controller” is seen.

<key>IOKitPersonalities</key>
<dict>

<key>ApplePS2Controller</key>
<dict>

<key>CFBundleIdentifier</key>
<string>com.apple.driver.ApplePS2Controller</string>
<key>IOClass</key>
<string>ApplePS2Controller</string>
<key>IONameMatch</key>
<string>ps2controller</string>
<key>IOProviderClass</key>
<string>IOPlatformDevice</string>

</dict>
</dict>

The information stored in these XML files are generally not used directly. The libkern library
contains functions that converts it from the XML representation into an internal representation before
the data is accessed.

There exists a simpler format that is used for the bootstrapping of in-kernel modules. This format
contains a subset of what would normally be found in its XML equivalent. It is stored as a string
named gIOKernelConfigTables. Although this format is incompatible with the XML representation,
both are converted into an internal representation before they are used by the I/O Kit. Hence, as far
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Figure 3.7: An exerpt of the properties file from the ApplePS2Controller driver. Reproduced from
[Appc]

and the code that is used to drive the hardware, while preserving the ability to read and modify this
information if necessary. It also allows for the ability to create a driver stack, because the matching
information is stored in the property tables and the matching is done implicitly by the I/O Kit, not
explicitly by the driver.
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Chapter 4

Related Work

This section intends to cover related work on device driver frameworks and related software systems
that have been ported to L4.

4.1 OSKit

OSKit [FBB+97] is a generic operating system framework for writing operating systems. It aims to
allow operating system writers to concentrate on writing the operating system itself, and not have
to worry about low-level systems code that is common across almost all operating systems. OSKit
incorporates source code from various open source operating systems for some of its operating system
components. Figure 4.1 illustates the architecture of OSKit.

In the context of device drivers, OSKit provides a simple generic device driver layer. The OSKit
has both FreeBSD drivers and Linux drivers, but they can both be accessed using the generic driver
glue layer present in the OSKit.

4.2 L4-Darwin

L4-Darwin [Won03] was the result of an attempt to port the Darwin system to a bare-bones L4
microkernel. The term L4-Darwin is a little misnamed, because strictly speaking, it does not involve
a straight port of the Darwin system to L4. It actually involves replacing Mach, which is an integral
part of the current Darwin architecture, with L4. Figure 4.2 shows a diagram of the design of the
L4-Darwin prototype.

Initial efforts on replacing the Mach kernel with L4 has focused on only the BSD UNIX personality
onto a 32-bit PowerPC-based machine. Wong [Won03] acknowledges that device drivers, and hence,
the I/O Kit should be considered, but it was decided that it was outside the scope of the project at
the time. Initial effects on the port as shown positive initial results. The system is able to boot and
run a simple user program, but much needs to be done in order to make it into a usable system. In
particular, it is obvious that the Mach emulation glue is a hack. For example, the almost non-existent
virtual memory system in Wong’s L4-Darwin prototype is particularly problematic.

Another attempt was made more recently to transform Darwin into L4-Darwin to a 64-bit PowerPC-
based machine [Roo04]. However, the project was never completed.

There is currently a new effort to migrate the BSD portion away from Mach to L4, with the initial
prototype running on IA-32-based machines. It is still a work in progress.
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Figure 4.1: Architecture of OSKit. Reproduced from [Flu]
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Figure 4.1: L4-Darwin design: system overview

4.2 Single-server vs multi-server

In other ports of monolithic kernels to microkernel systems, such as Mach-UX, Lites, MkLinux and
L4Linux, a single-server design was chosen to simplify the porting process. This is because the design
of monolithic kernels result in many dependencies within itself, with the result that to separate any one
component out as a separate server would require extensive modifications. The few multi-server systems
that do exist, for example Mach-US [16], are designed from the beginning to use multiple servers.

Because of the difficulty of splitting up monolithic kernels, it was decided that L4-Darwin is to be a
single-server system. It may be possible to put device drivers into a separate server, however this has not
been investigated since it is outside the scope of this project.

4.3 Server threads

A major decision in the design of L4-Darwin is whether the L4-Darwin server should should have
one thread or multiple threads servicing system calls. A number of issues arise due to the design of the
BSD code:

• Most of the BSD code is designed to be executed in the context of a user thread. This means that
the BSD code relies on the concept of there being a “current” thread and process. Also, the BSD
code expects to be able to block in such a way that other user threads are still able to make system
calls and enter the BSD code. Since significant modifications to the BSD code are to be avoided,
the chosen design for the server must support blocking in the BSD code.

• Most of the BSD code is not reentrant. Therefore if the L4-Darwin server is to be multithreaded,
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Figure 4.2: Early L4-Darwin prototype design. Reproduced from [Won03]
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3.1 Architecture
To reuse and isolate a device driver, we execute it and
its native OS within a virtual machine. The driver di-
rectly controls its device via a pass-through enhancement
to the virtual machine, which permits the device driver
OS (DD/OS) to access the device’s registers, ports, and
receive hardware interrupts. The VM, however, inhibits
the DD/OS from seeing and accessing devices which be-
long to other VMs.
The driver is reused by a client, which is any process

in the system external to the VM, at a privileged or user
level. The client interfaces with the driver via a transla-
tion module added to the device driver’s OS. This mod-
ule behaves as a server in a client-server model. It maps
client requests into sequences of DD/OS primitives for
accessing the device, and converts completed requests
into appropriate responses to the client.
The translation module controls the DD/OS at one

of several layers of abstraction: potentially the user-
level API of the DD/OS (e.g., file access to emulate a
raw disk), raw device access from user level (e.g., raw
sockets), abstracted kernel module interfaces such as the
buffer cache, or the kernel primitives of the device drivers
in the DD/OS. It is important to choose the correct ab-
straction layer to achieve the full advantages of our de-
vice driver reuse approach; it enables a single transla-
tion module to reuse a wide variety of devices, hopefully
without a serious performance penalty. For example, a
translation module that interfaces with the block layer
can reuse hard disks, floppy disks, optical media, etc., as
opposed to reusing only a single device driver.
To isolate device drivers from each other, we execute

the drivers in separate and co-existing virtual machines.
This also enables simultaneous reuse of drivers from in-
compatible operating systems. When an isolated driver
relies on another (e.g., a device needs bus services), then
the two DD/OS’s are assembled into a client-server rela-
tionship. See Figure 1 for a diagram of the architecture.
The requirement for a complete virtual machine im-

plementation is avoidable by substituting a paravirtual-
ized DD/OS for the unmodified DD/OS. In the paravirtu-
alized model [3,16], the device driver’s OS is modified to
interface directly with the underlying system. However,
most importantly, the device drivers in general remain
unmodified; they only need to be recompiled.

3.2 Virtual Machine Environment
In our virtualization architecture we differentiate be-
tween five entities:

• The hypervisor is the privileged kernel, which se-
curely multiplexes the processor between the virtual

DD/OSDD/OS
mapper

DD/OSDD/OSmapper

DD/OSDD/OSmapper

PCI

PCI

PCI
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network
subsystem

block
subsystem

kernel extensions
reused drivers

Figure 1: Device driver reuse and isolation. The kernel exten-
sions represent the components loaded into the DD/OS’s to co-
ordinate device driver reuse. The block and network DD/OS’s
recursively use the PCI DD/OS.

machines. It runs in privileged mode and enforces
protection for memory and IO ports.

• The virtual machine monitor (VMM) allocates and
manages resources and implements the virtualiza-
tion layer, such as translating access faults into de-
vice emulations. The VMM can be either collocated
with the hypervisor in privileged mode or unprivi-
leged and interacting with the hypervisor through a
specialized interface.

• Device driver OS’s host unmodified legacy device
drivers and have pass-through access to the device.
They control the device via either port IO or mem-
ory mapped IO and can initiate DMA. However, the
VMM restricts access to only those devices that are
managed by each particular DD/OS.

• Clients use device services exported by the
DD/OS’s, in a traditional client-server scenario. Re-
cursive usage of driver OS’s is possible; i.e. a client
can act as a DD/OS for another client. The client
could be the hypervisor itself.

• Translation modules are added to DD/OS’s to pro-
vide device services to the clients. They provide the
interface for the client-to-DD/OS communication,
and map client requests into DD/OS primitives.

The hypervisor features a low-overhead communica-
tion mechanism for inter-virtual-machine communica-
tion. For message notification, each VM can raise a com-
munication interrupt in another VM and thereby signal a
pending request. Similarly, on request completion the
DD/OS can raise a completion interrupt in the client OS.
The hypervisor provides a mechanism to share mem-

ory between multiple virtual machines. The VMM can
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Figure 4.3: DD/OS architecture. Reproduced from [LUSG04]

4.3 Device Driver OS

The device driver operating system (DD/OS) as described by LeVasseur et al. [LUSG04] is aimed at
achieving driver reuse and enhanced driver dependability via virtual machines with minimal overhead.
Figure 4.3 shows a diagram which describes the DD/OS architecture.

Instead of porting a particular device driver from a donor OS to the recepient OS, the whole OS
is ported to a hypervisor to run it its own protection domain. A client OS running on top of the
hypervisor contacts the DD/OS via a well-defined interface.

To improve performance, the same DD/OS image can be run concurrently. This can reduce memory
footprint. As well, as it is likely that the same housekeeping functions will be called in the same
image, frequently run DD/OS code will likely already be in the processor cache. Performance can be
improved even further by running multiple drivers in the same DD/OS protection domain, at the cost
of dependability, because should a misbehaving driver cause a crash, it will cause a crash of the whole
DD/OS that it was running in, including any drivers that may have been running in the protection
domain of that DD/OS.

Benchmarks have shown that using L4 as a high performance hypervisor, good driver performance
can be achieved with minimal resource and engineering overhead.

4.4 User-level Device Drivers

User-level device drivers are highly desirable, as they offer much flexibility and robustness that is
simply not possible with in-kernel device drivers, which is the norm in many of today’s general-purpose
operating systems. Previous research into user-level device drivers have largely not made a lasting
impact, due to the fact that they were often implemented on primitive microkernels with high overhead.
As second high-performance microkernels have emerged, there is renewed interest in user-level device
drivers.

Perhaps the most important in a real-world scenario is system stability. If a driver running at
user-level causes a crash, it may be possible to restart it, instead of bringing the whole system down,
as is normally the case with in-kernel drivers.

Another benefit of user-level drivers is language independence, as noted by Chubb [Chu04]. Tra-
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Figure 3: Architecture of a User-Mode Device
Driver

3. The driver handles the interrupt, calls out to
the control thread(s) to say that work is
completed or that there has been an error,
queues any more work to the device, and
then repeats from step 2.

The control thread queues work to the driver then
sleeps on a semaphore. When the driver, running
in the interrupt thread, determines that a request is
complete, it signals the semaphore so that the
control thread can continue. (The semaphore is
implemented as a pthreads mutex).

The driver has to do three system calls per I/O:
one to wait for the interrupt, one to set up DMA
and one to tear it down afterwards.

This could be reduced to two calls, by combining
the DMA setup and teardown into a single system
call.

The driver relies on system calls and threading, so
the fast system call support available in IA64
Linux, and the NPTL are very important to get
good performance. Each physical I/O involves at
least four system calls, plus whatever is necessary
for client communication: a read() on the
interrupt FD, calls to set up and tear down DMA,
and a futex() operation to wake the client.

6 Results

Device drivers were coded up by Leslie (2003) for
a CMD680 IDE disc controller, and by another
PhD student here for a DP83820 Gigabit ethernet
controller

6.1 IDE driver

The disc driver was linked into a program that
read 64 Megabytes of data from a Maxtor 80G
disc into a buffer, using varying read sizes.
Control measurements were made using Linux’s
in-kernel driver, and a program that read 64M of
data from the same on-disc location using the raw
device interface and the same read sizes.
At the same time as the tests, a low-priority
process attempted to increment a 64-bit counter as
fast as possible. The number of increments was
calibrated to processor time on an otherwise idle
system; reading the counter before and after a test
thus gives an indication of how much processor
time is available to processes other than the test
process.
The initial results were disappointing; the
user-mode drivers spent far too much time in the
kernel. This was tracked down to kmalloc();
so the usr_pci_map() function was changed
to maintain a small cache of free mapping
structures instead of calling kmalloc() and
kfree() each time. This resulted in the
performance graphs in figure 4.
The two drivers compared are the new CMD680
driver running in user space using both the NPTL
and the old LinuxThreads, and Linux’s in-kernel
SIS680 driver. As can be seen, there is very little
to choose between them when the requested
transfer size is above 16k. The new Posix threads
implementation is slightly faster than the old one.
The graphs show average of ten runs; the standard
deviations were calculated, but are negligible.
Each transfer request takes five system calls to do,
in the current design. The client queues work to
the driver, which then sets up DMA for the
transfer (system call one), starts the transfer, then
returns to the client, which then sleeps on a
semaphore (system call two). The interrupt thread
has been sleeping in read(), when the controller
finishes its DMA, it cause an interrupt, which
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Figure 4.4: Block diagram of a Linux user-level device driver. Reproduced from [Chu04]

ditionally, in an in-kernel driver implementation, the driver is tied to the language that the operating
system kernel was implemented in. In contrast, in user-level drivers, the driver may be implemented in
another language. One example is FitzRoy-Dale’s implementation of user-level drivers with the Python
programming language on the Mungi operating system [FD03].

The idea of user-level device drivers is certainly not new. However, user-level device drivers remain
the exception in mainstream systems. They are typically only used for peripherials where performance
is less critical, or the work that must be performed by the driver is much larger than the overhead of
an extra few context switches (the Linux X server is an example).

As fast system calls, good threading, and cheap context switches become available in modern
kernels, the idea of user-level drivers is no longer limited to microkernels. It is now possible to write
user-level drivers for a range of devices in traditional monolithic kernels as such Linux with negligible
performance penalty, as noted by Chubb [Chu04]. Figure 4.4 shows one such implementation for a
Linux-based system. It sho

There have been various attempts to design and evaluate user-level driver frameworks, either on top
of a monolithic kernel such as Linux as described by Elphinstone and Götz [EG05] and Chubb [Chu04],
or in an environment where the natural approach is to implement user-level device drivers as described
by Leslie [Les02].

Performance-wise, these user-level driver frameworks have shown promising results, meaning that
user-level device drivers are indeed feasible. Certain open problems still remain. In particular, these
frameworks do not address the issue of code reuse. Porting an existing driver to run at user-level may
require extensive emulation code to be written, and possibly the porting of other components which the
target device driver depends on. Also, on monolithic systems, these frameworks do not address issues
that are important in modern general-purpose device driver frameworks, such as power management,
or hotplugging. Due to its monolithic design, it is likely to be quite tightly integrated with the rest of
the kernel, and it is unclear what sort of engineering effort must be undertaken in order for user-level
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Table 1. Kernel extension safety approaches
Name Description Where Used
Kernel Wrapping Verify all parameters on calls between the kernel

and device drivers
Microsoft Driver
Verifier [15]

Hardware Memory Pro-
tection

Prevent device drivers from writing to kernel mem-
ory

Palladium [3],
Shinagawa [21]

Privilege Level Change Prevent device drivers from executing privileged
instructions and/or emulate privileged instruc-
tions

L4 [12], Exoker-
nel [6]

Software Fault Isolation Inject code into device drivers to ensure that ad-
dresses and instructions are safe

Vino [20]

Safe Languages Rely on the compiler/virtual machine to allow
only safe (non-faulting) drivers to be loaded

SPIN [2]

Table 2. Comparison of driver safety approaches
Kernel
Wrapping

Hardware
Memory
Protection

Privilege
Level
Change

Software
Fault Isola-
tion

Safe Lan-
guages

Requires rewriting driver No No No Maybe Yes
Easily supports recovery No Yes Yes No No
High performance for
small data volumes

Yes No No Yes Yes

High performance for
large data volumes

Yes Yes Yes No No

Isolates memory corrup-
tion

No Yes Yes Maybe Yes

Prevents most deadlocks Maybe No Yes Yes Yes

Operating System Kernel

Video Nook

Apache Web
Server

Navigator Web
Browser

Quake3D Video
Game

Ethernet Card Video Card SCSI Controller
Card

Memory
Management File System Networking

Nooks Kernel Runtime

Per-nook runtime

Nooks Kernel Runtime

Video Driver SCSI Driver
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Ethernet Driver

TCP/IP Driver
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Figure 1. Nooks architecture diagram

the combination of the Ethernet and TCP/IP drivers
within the network nook. Nooks interpose between de-
vices and device drivers by forwarding interrupts and,
depending on the level of safety required, emulating
access to memory-mapped device registers. Nooks also
wrap calls from the operating system kernel into device
drivers and from device drivers into the kernel, allowing
the operating system to track resource usage and verify
data that is passed into and out of the kernel. Rather
than fully isolate device drivers in a separate address
space, all drivers execute in the kernel address space,
but within different protection domains. Thus, a device
driver may use pointers supplied by the kernel without
copying the data or translating addresses. However,
the Nooks architecture prevents device drivers from
writing to memory outside their protection domain,
limiting the damage of an errant memory access. Ini-
tially we use virtual memory protection and lowered
privilege levels for isolating and recovering faulty code,
but we plan to experiment with Software Fault Isola-
tion (SFI) as well.

The Nooks architecture minimizes the number of

3

Figure 4.5: Nooks architecture. Reproduced from [SMLE02]

device drivers to become a general-purpose solution.

4.5 Nooks

The Nooks project [SMLE02] aims to improve operating system reliability based on the observation
that device drivers are the most common cause of operating system failures, despite years of extensive
research in extensible operating system technology. Figure 4.5 shows an architectual diagram of the
Nooks system.

The Nooks reliability system aims to enhance OS reliability by isolating the OS from device driver
failures. The Nooks project achieves this by isolating drivers inside lightweight protection domains
inside the kernel’s address space, so that hardware and software mechanisms can prevent drivers from
corrupting the kernel. This is done by using hardware and software mechanisms to provide read-
only access to certain portions of the kernel’s address space. The fact that these protection domains
are are globally visible in the kernel’s address space has the advantage that data-sharing is easy: no
marshalling is required. Swift acknowledges that this is not unlike the management of address space in
single address space operating systems [SBL03]. More recently, the Nooks architecture was extended
to include the notion of shadow drivers [SBL03]. A shadow driver is layer that stands in the middle of
applications and the driver. This layer allows the operating system to conceal driver failures and be
able to transparently restore a malfunctioning drivers into a functioning state.

The Nooks implementation suffers from poor performance. In particular, contrary to what Swift
et al. claims [SABL04], the Nooks system does not achieve what is advertised with minimal overhead.
Subsequent benchmarking done by Tsui [Tsu04] showed that in some cases, the Nooks kernel had twice
the CPU utilization than the vanilla Linux kernel. Clearly, this sort of overhead is unacceptable for
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everyday use. In addition to this, the whole Nooks system is very large. It contains approximately
23000 lines of code [SABL04]. The is not clear how this aims to solve the problem of reliability, as device
drivers will then itself depend on the Nooks system, which, being a complex piece of software, would
itself prone to errors. An application-level filesystem benchmark performed by Swift et al. [SBL03],
specifically, the time it took to untar and compile the Linux kernel on a local VFAT filesystem, showed
that with Nooks enabled, the compilation ran about 25native case. From the graph presented, having
Nooks enabled increased the time spent in kernel mode by approximately a factor of 5. The authors
note that this is due to both Nooks and the high number of translation lookaside buffer (TLB) misses
associated with switching across domains. The authors speculated that Nooks could be optimized but
does not make a convincing case of it. In particular, they note that one of the ways to reduce costs
associated with the TLB is to selectively flush the TLB on protection domain switch, which actually
is not possible with the architecture they benchmarked with (Pentium 4) because it has an untagged
TLB.1

Nooks incurs performance penalties that are commonly associated with poorly-designed user-level
drivers, without the benefits.

4.6 Mungi Device Model

The Mungi operating system [HERV93] is a distributed, single address space operating system written
by the DiSy group at the University of New South Wales, Australia. It currently runs on top of the
L4Ka::Pistachio kernel, but it has used previous versions of L4 as a base in the past. It is interesting
to investigate its device model in detail, because, it allows for the isolation of different device drivers,
and provides robustness by requiring device drivers to run at user-level.

Leslie’s [Les02] proposed solution for a Mungi device driver framework is an interesting one, since
it contains some similar properties to this project. In particular, device drivers are run at user-level
with mechanisms to to run them in isolated environments. The former property is important because
Leslie notes that extra support from the operating system is required in order to run device drivers at
user-level.

4.6.1 The Mungi PagePin system call

In order to support DMA-capable devices at user-level on machines which uses virtual addressing, it is
important for the OS to, given a protection domain and a virtual address, be able to translate it into a
list of physical address. This is needed, because while the OS and user-level programs in general deal
with virtual addresses, devices deal with physical addresses. Apart from this, it is important that the
buffer which is used for a DMA transfer remains valid for the duration of the transfer.

The PagePin system call was devised to solve these problems in one step. Given a virtual address,
it pins the page into memory, and returns the physical address that the virtual address in question is
mapped to. The current implementation is only able to return a single physical address and hence is
unable to translate virtual memory regions bigger than a page size in one iteration. The PageUnpin
system call may be used to unpin pages after a DMA transfer is complete.

1Technically this is not true, since a segmented model could be used to achieve this. However, Swift et al. dismissed
the use of such tweaks such as those proposed by Liedtke [Lie95a], because they claim in order to preserve compatibility,
a segmented model could not be used.
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4.7 WinDriver

Windriver and Windriver USB [Tec] are two commercial products that allows for development of user-
mode PCI drivers and USB drivers respectively. WinDriver and WinDriver USB retain some of the
advantages of pure user-level drivers, however, WinDriver contains provisions for allowing performance-
critical portions to run in kernel mode2. The product page of WinDriver claim that WinDriver products
can achieve performance comparable to a fully in-kernel implementation, but they do not substantiate
their claims with actual benchmark results. Also, it is unclear whether such a driver is completely
running in user-mode (not counting the extra operating support that is required to export necessary
interfaces in order to write PCI drivers), or whether the in-kernel/user-level hybrid approach is used.

4.8 Mach User-level Drivers

Work had been done previously at Carnegie Mellon University on user-level device drivers for Mach 3.0.
Interestingly, one of the motivations was performance due to excessive copying between the kernel and
user space. This problem can ve solved by mapping the device directly into the application’s address
space, obviating the need to copy to and from buffers. Other reasons for user-level device drivers
given were location transparency, preemptability, and easier code-sharing between related drivers. The
authors reported thoughput improvements for Ethernet and SCSI devices, but no CPU information
on CPU utilization was given (the CPU utilization might have a rough indication of the performance
overhead induced by IPC).

4.9 Windows NT User-level Drivers

An implementation of user-level drivers for Windows NT was done by Hunt [Hun97]. The motivation
was simplicity and ease of development. Under this model, the user-level drivers are supported by an
in-kernel proxy that redirects I/O request packets (IRPs) from the proxy to the user-level driver. It
suffers from poor performance, and does not support access to hardware.

4.10 Other User-level Drivers

The user-level drivers work listed above are by no means the only work done previously. Apart from
the work listed above, there exist other work done previously, either using purely software approach,
such as the Fluke user-level driver model [VM99], or using a combination of hardware and software
support such as that proposed by Pratt [Pra97] or Schaelicke [Sch01].

2This feature is not supported for WinDriver USB.
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Chapter 5

An Overview of the Design and
Implementation

5.1 Introduction

This chapter gives an overview of what needs to be considered in migrating the I/O Kit and its drivers
away from the Mach microkernel to L4.

5.2 Hardware

The Darwin operating system, and hence, the I/O Kit, currently supports two architectures, the
PowerPC architecture running in both 32-bit mode or 64-bit mode, and the IA-32 architecture.

Apple is currently in a state of transition to migrate away from the PowerPC architecture to the
IA-32 architecture. As one of the goals of this project is to demonstrate a Darwin on L4 prototype with
device drivers, in the long run, as the IA-32 architecture becomes increasingly important for Apple, it
is anticipated that having the initial prototype running on the IA-32 architecture will likely provide
the largest impact.

5.3 L4 Considerations

There are mainly two ways to port the I/O Kit to an L4-based system. The first method involves a
straightforward port to an existing L4-based system. The second involves a method of virtualization
called pre-virtualization.

5.3.1 Evaluation of Iguana

Introduction

Iguana [NICb] is a base for the provision of operating system services on top of the L4 microkernel.
It is primarily designed for use in embedded systems. Presently, Iguana is implemented on top of a
slightly modified L4Ka::Pistachio microkernel. This kernel has an API that is mostly conformant with
the NICTA::Pistachio specification [NICa]. Iguana is relatively portable, and has been ported to many
hardware architectures including Alpha, MIPS64, IA-32, and ARM.

Iguana contains design decisions that are adically different from regular general purpose operating
systems. In particular, it implements a single address space with protection for objects living inside
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this address space enforced by capabilities.
Iguana contains a feature called external address space (EAS) that provides legacy support for

components that require for multiple address spaces (MAS). One such example is Wombat, which is
a port of the Linux kernel onto Iguana. It allows unmodified Linux applications to be run inside the
Wombat environment.

Iguana driver model

The work of porting on porting I/O-Kit-based drivers to L4 will be closely tied in to the device driver
support that Iguana has.

Drivers in Iguana are implemented on top of the libdriver library. A device driver registers itself
with Iguana, the driver class that it belongs to, and a list of functions that should be called in order
to perform an operation on the hardware device that the device driver controls.

Iguana currently does not have a proper device driver model. In particular, the functionality that
libdriver provides is very simplistic, and is not even fully implemented. As such, it makes this driver
model unsuitable for general-purpose use.

The time and effort that is required to implement a proper device driver model for Iguana and to
write drivers for it is likely to be better spent on porting an existing, proven solution. Since Iguana
does not currently have a proper device driver model, it will be a good base to showcase a port of the
I/O Kit successfully running nearly unmodified I/O Kit drivers.

The case for using Iguana

Currently, there does not exist many operating systems or frameworks for operating systems which
operate on top of the L4 microkernel. Hence, it was not a difficult decision to use Iguana. As a bonus,
Iguana does contain a lot of libraries which may turn out to be potentially useful in the porting process.
In addition to this, Iguana’s already usable Linux environment may prove to be very useful, as it allows
the use of conventional, well-established benchmarks that are written for UNIX-like operating systems.
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5.3.2 Evaluation of L4-Darwin

The primary goal of this project is to provide device driver support for the L4-Darwin prototype
mentioned in Section 4.2.

The Darwin software that was used as a base for the L4-Darwin prototype is now severely outdated.
There is, however, currently an effort to bring this up to date with the current version of Darwin, but
is unlikely to be ready within the timeframe of this project.

The port is incomplete at this moment. Much of the Mach functionality which L4-Darwin tries to
emulate are either not implemented or have simply been replaced with simplistic code that does not
work for the general case. There is likely to be a huge flux of changes as this port is brought up to
date and its missing features implemented. L4-Darwin is likely to remain buggy and unstable for the
near future.

For the above reasons, it appears to be undesirable, at least for the time being, to use L4-Darwin
as a base for a port of the I/O Kit.

5.3.3 Evaluation of pre-virtualization

Pre-virtualization [LUC+] is a method of virtualization that involves virtualizing at compile-time and
boot-time. Simply speaking, it involves replacing sensitive instructions, that is, machine instructions
which depend on the privilege level of the processor, with an emulation version implemented in software.

Since the process of pre-virtualization is done automatically by the assembler and there already
exists a set of compiler toolchain which is able to generate pre-virtualized code for the IA-32 archi-
tecture using L4 as the hypervisor, pre-virtualization should be the easiest and quickest path to show
demonstrable results with running I/O-Kit-based drivers on top of L4.

The motivation and goals of running I/O-Kit-based drivers, and for that matter, L4-Darwin as a
whole, can be implemented on top of a virtual machine, but that does not come close to a primary goal
of this project. In particular, virtualization does not have the potential to give the performance gain
that may be possible from migrating away from Mach, nor does it offer the possibility of separating
out the the I/O Kit software so that it can be used as a generic device driver framework for different
operating systems.

A pre-virtualized XNU kernel will likely be worthy of investigation, and performance benchmarks
may be useful for comparison purposes. It is clear, however, that pre-virtualization would only satisfy
a subset of this project’s motivation and goals, and hence, should not be considered as a primary
direction that this project should head towards.

5.3.4 Porting Iguana

Using Iguana as the base for an L4-based I/O Kit prototype appeared to be a suitable approach from
preliminary evaluation.

At the time of the initial evaluation, Apple’s PowerPC-based computers were the hardware of
choice, because it was not until later that Apple announced its intention to switch to Intel-based IA-32
processors.

As Iguana did not support the PowerPC architecture at the time, work was undertaken to port
Iguana to Apple’s PowerPC-based computers.

Currently, Iguana is able to run on Apple’s 64-bit PowerPC computers. The system is able to run
to the point of being able to run the example programs that are included with the Iguana distribution.

Although it will not be used for the initial prototype, efforts undertaken to port Iguana to the
PowerPC architecture will likely become useful in the future. Firstly, the PowerPC architecture is
known to be used in the embedded world. It is likely that Iguana will benefit from support another
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Figure 5.2: A block diagram of the prototype system.

processor that is known to be used in the embedded market. In addition to this, Apple is not planning
on phasing out the use of PowerPC processors until the end of 2007, and it is likely that Mac OS X
need to be supported on Apple’s PowerPC-based computers for some time after that. Also, like what
was done with the IA-32 architecture previously, the PowerPC may be used in the future as a reference
architecture to ensure that the code base remains relatively portable. Hence, it will become important
that there is a PowerPC-based version of Iguana in the near future.

5.4 I/O Kit and Driver Porting

As a first step, it is important to show a working I/O Kit framework along with selected drivers
running on an L4-based system. This can be done porting the I/O Kit along with the selected drivers
as application libraries, which applications can link directly. Figure 5.2 shows a block diagram of the
prototype system.

The I/O Kit and its drivers reside in one protection domain, while other Iguana components, such
as Wombat, reside in their own respective protection domains. The shared buffer is a shared memory
region that allows data to be transferred between the I/O Kit protection domain and other Iguana
components. As the only client of I/O Kit drivers for the prototype is Wombat, it is simple and
convenient to have a shared, static memory region for data transfer.

The addresses in the shared region have a one-to-one correspondence between virtual and physical
addresses because it greatly simplifies device driver I/O in the prototype. Iguana deals with virtual
addresses, while devices deal with physical addresses. Iguana currently does not have an interface that
allows the conversion of a block of virtual memory into a list of physical addresses that can be handed
to a device. Having a one-to-one mapping between physical and virtual addresses effectively solves this
problem, since the addresses do not need to be converted in the first place. The address of the buffer
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can be handed directly to the device driver for I/O.
Although this preliminary design does not provide the security and robustness guarantees that this

project is ultimately aiming for, in that all drivers and the I/O Kit framework still all reside within one
single protection domain, doing a simple port is the quickest way to show something that is demon-
strable. In addition to this, Iguana does not yet have an implementation of a software component
framework. In light of this, work done in implementing protection boundaries between driver compo-
nents will likely become obsolete in the future in favor of the generalized component framework that
is to be offered by a future version of Iguana.
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Chapter 6

Porting of the I/O Kit Framework to
Iguana

6.1 Introduction

This chapter describes the process of porting the various components from the XNU kernel to an
Iguana-based environment. In addition, it documents the design and implementation of the XNU
emulation layer that was devised to provide the missing functionality required that would normally be
provided by the XNU kernel.

6.2 Analysis of the I/O Kit

The I/O Kit depends on several features inside the XNU kernel. In order for the I/O Kit to run, those
functionalities must either be disabled, if that can be done, otherwise, those functionalities must be
present. If it uses a large portion of the code in a particular component of the XNU kernel, it should
be ported along with the I/O Kit. Alternatively, if it only uses very specific parts, the effort to rewrite
those parts will likely be much smaller than taking the effort to pull in the complete component from
the XNU kernel.

The following sections aims to detail what is required and what was done to resolve the dependencies
of I/O Kit.

6.2.1 XNU-psecific functions and data structures

The exported I/O Kit API appears to be relatively clean of references to Mach data structures and
functionality. However, within I/O Kit itself, it does not make any attempt to hide the fact that it was
written on top of Mach. Mach functions and data structures are used directly within I/O Kit.

The I/O Kit was compiled into a standalone image. This is done so that the required data structures
can be determined at compile-time, and the required symbols that it references within XNU can be
determined at link-time. A list of the symbols that the I/O Kit depends on can be found in Appendix A.

6.2.2 Loadable kernel modules

The I/O Kit contains a large amount of device drivers. It is not reasonable for them to be statically
linked to the I/O Kit framework itself, because this makes the resulting executable file unnecessarily
large. Also, missing loader functionality means that extra third-party extensions and drivers cannot
be loaded on the fly during run-time.

41
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The I/O Kit makes extensive use of loadable kernel modules (LKMs). LKMs are machine executable
object files which can be dynamically loaded and unloaded by the operating system at run-time.

Dynamically loading device drivers on the fly from an object file is not the only way to initialize
device drivers in the I/O Kit. The I/O Kit can also load in-kernel modules. In-kernel modules are
those that are loaded and linked into the same executable image at compile-time. For all intents and
purposes, they are probed, matched and initialized like an LKM driver in the I/O Kit.

LKM is an extremely useful feature. However, LKMs do not add anything new to the discussion
regarding driver performance for an L4-based I/O Kit implementation. In addition, drivers could be
still be dynamically probed and loaded by using in-kernel modules. Hence, it was determined that an
LKM implementation was outside the scope of this project.

6.3 I/O Kit Port Details

6.3.1 Introduction

This section aims to go into the technical details of the actual Iguana-based I/O Kit prototype. It aims
to document the modifications made to both Iguana and related I/O Kit dependencies in the prototype
system.

6.3.2 General Issues

Some general issues were encountered in porting the I/O Kit and related components to an Iguana-
based environment. In particular, the C library offered by Iguana was a little problematic.

The C library included with Iguana does not have support for C++. In particular, C++ explicitly
requires that any C-compatible functions to be marked as such.

In addition, Iguana’s C library does not provide thread-safe access to its functions. That is to
say, in general, the safety of the C library’s internal data structures could not be guaranteed if two or
more threads were running in a protection domain at the same time. This is certainly the case for the
I/O Kit. Hence, explicitly locking was required whenever making calls that are directly or indirectly
dependent on C library functions which are not thread-safe. A future version of Iguana libraries is slated
to provide thread-safe libraries, which will eliminate the need for this temporary ad-hoc solution.

6.3.3 Porting Process

It is useful to know how the I/O Kit and its dependent components are being ported to the I/O Kit.
The I/O Kit, along with other components from the XNU kernel that are ported in whole are to be
ported as Iguana application libraries, which Iguana applications can link against. For those that are
emulated in the Mach emulation layer, they are included in the xnu glue Iguana application library.
In order for an Iguana application to make use of the I/O Kit framework, it must link in the I/O Kit
library, along with the libraries which it depends on.

6.3.4 Libkern

The libkern library implements the C++ runtime system for the I/O Kit and I/O-Kit-based drivers.
The libkern component is relatively easily to port, as by its very nature, it was designed to

be a standalone C++ runtime system, and thus does not depend on other operating-system-specific
functionality.

The changes that were required to be made for the libkern library to run on top of Iguana are
documented below.
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ABI changes

The current version of the GNU C++ compiler produces code that is binary-incompatible with code
produced with the 2.95 version. In order to provide backward compatibility, Apple ships with a C++
compiler that includes a flag that, when set, will cause the compiler to emit code that more closely
resembles the 2.95 ABI. This is quite problematic, as libkern depends on this in order to function
properly. A more detailed explanation of this may be found in the build ptrmemfunc1() function in
gcc/cp/typeck.c [Appb].1

For the purposes of showing a working I/O Kit demonstration, it is not necessary to provide
backward compatibility. In addition, modifying the compiler to suit libkern was deemed too difficult
to be worth the effort when libkern, which is a much simpler piece of software, can be modified
instead. It is anticipated that if, in the future, this work is to be integrated into a future release of
Darwin, then it would be possible to compile this work with Apple’s modified C++ compiler, obviating
the need for this modification.

Libkern initialization changes

As part of the C++ initialization process, the libkern initialization sequence parses the in-memory
executable image to locate the C++ constructors and runs them. The code made assumptions concern-
ing the format of the executable image, in particular, it expected the image to be in Mach-O format,
which is not the case for the prototype. This was modified so that the constructors were run correctly
in the prototype.

6.3.5 The xnu glue library

Xnu glue is the library which emulates much of the XNU-related functionality that is required for the
I/O Kit and I/O-Kit-based drivers to function. Figure 6.1 shows a block diagram of the xnu glue
library. The I/O Kit framework, I/O Kit drivers, libkern, and xnu glue are all linked together in a
single application to run in a single protection domain. The xnu glue library can be thought of as a
combination functions which the I/O Kit and drivers can call directly, and a number of threads for those
functionalities which requires a context of execution in order for them to be implemented. Currently,
when the xnu glue library is initialized, it starts three threads: l4intr, xnu sched, and threadcallserv.
They implement interrupt handling, synchronization, and thread callouts respectively.

The Platform Expert and BSD emulation code are perhaps not interesting, because they are just
library functions that does data copying, or functions to initialize the necessary data structures which
the I/O Kit expects to be in a well-defined state at when the I/O Kit is initialized. The Mach emulation
however, should be explained in more detail, because they actually implement actual operating system
functionality that would otherwise be provided by Mach. The following sections detail what exactly in
Mach were required.

Virtual memory

The I/O Kit uses Mach primitives to allocate and deallocate kernel virtual memory. Depending on
the type of allocation, they were either emulated using a generic implementation of malloc() and
free() for small allocations, or, for larger allocations, they were allocated using Iguana memsections.
For the purposes of Mach virtual memory emulation, memsections are blocks of memory that are page
sized or multiples of that, and are aligned on page boundary. Each memory address valid within a
memsection has the same protection. Memsections are also used for DMA operations, because it is

1There exists another ABI incompatibility, but it only pertains to the PowerPC-based platforms.
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Figure 6.1: Xnu glue block diagram.
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possible to allocate memory that has a one-to-one mapping between physical and virtual addresses.
This is required until Iguana implements functions similar to the PagePin and PageUnpin system calls
in Mungi, which was discussed in Section 4.6.

Interrupt Handling

L4 models interrupts as threads. Each interrupt has a unique global thread identifier. In order to
receive an interrupt, the handler must register the interrupt with the kernel. Afterwards, notification
of interrupts are delivered to the registered thread as an IPC call. The thread must then process the
interrupt and acknowledge the interrupt. The interrupt remains disabled until an acknowledgement
reply message is sent back to the interrupt virtual thread. Interrupt registration is a privileged op-
eration: it can only be done by Iguana. However, Iguana exports an interface which allows arbitary
threads to register itself as an interrupt handler for a particular interrupt with L4.

In the original Darwin system, the I/O Kit will first register a function which is to be called
whenever an interrupt occurs due to a device signaling a condition. The Mach kernel will then, on
receiving an interrupt from a device, call this function which the I/O Kit has registered with Mach.

Interrupt handling is done by the l4intr thread in xnu glue. When it initializes, it registers all
available system interrupts with Iguana. It then waits in an infinite loop for interrupt notifications.
Instead of registering the interrupt handler with the Mach kernel, however, the I/O Kit instead registers
it with xnu glue. The l4intr thread will then arrange for this interrupt handler to be run on receiving
an interrupt notification from the kernel’s virtual interrupt threads. This job is done by the platform-
specific interrupt controller I/O Kit driver.

Locking and synchronization

Locking and synchronization primitives are required in a multi-threaded environment like the I/O Kit.
The I/O Kit contains its own interface for locking. These are in turn implemented on top of the
locking primitives that Mach provides. There are mainly three types of locking and synchronization
primitives used by the I/O Kit and its drivers. They are spinlocks, mutexes, and semaphores. In terms
of scheduling, spinlocks differ from the latter two in an important aspect: a thread that acquires a
spinlock will never sleep due to the spinlock, while for the latter two, it is possible that the caller may
be put to sleep until the mutex or the semaphore becomes available again. Spinlocks simply require an
atomic test and set function be implemented, while for the latter two, more work as required, because
if the mutex or semaphore in question is not available, the requesting thread may have to be put to
sleep and another thread needs to be chosen to run. In other words, a simplistic user-level scheduler is
required in order to implement the semantics associated with mutexes and semaphores.

The sleeping and waking up of the emulated Mach kernel threads is done by the xnu sched thread.
The xnu sched thread runs in an continuous loop waiting for requests to put threads to sleep, or wake
them up. Sleeping and waking up threads is implemented in the following fashion. Each mutex or
semaphore operation that may potentially sleep is translated into an L4 IPC call operation. Such a
call operation involves sending a request to the server, and then sleeping until a reply is received from
the server. The call operation resembles typical remote procedure calls (RPC) where the client sends
a message to the other party, and waits for a response from the other party in response to the initial
message. This is useful, because it allows a thread to be implicitly blocked by not immediately replying
to the call operation.
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Mach kernel threads

Mach kernel threads are emulated using native Iguana threads, which are in turn implemented using
native L4 threads. There exists functions that emulate the Mach equivalent, which internally calls the
appropriate functions to spawn a new thread with the appropriate starting instruction address and the
appropriate arguments.

Thread calls

Thread calls are functions which a client may register with the operating system, requesting that a
certain function with certain user-supplied arguments be executed at some later point in time. The
I/O Kit, and certain drivers, use this feature to implement delayed function calls.

Thread calls can be created, destroyed, registered and cancelled using Mach API function calls.
The thread callout thread, threadcallserv, actually executes the callouts. The thread callout server
is woken up at periodic intervals to determine whether there are any outstanding callouts that need
to executed. If it is determined that there are, the thread callout server will execute the registered
function with the specified arguments in the thread server’s thread context. This process is iterated
until there are no more outstanding thread callouts that need to be executed. The thread call server
will then proceed to block until it is woken up again.

Evaluation of the xnu glue implementation

The size XNU emulation library is nearly 20000 lines of code, however, the coe that was actually
written is closer to 3000.2 The size of the code required to reimplement the required XNU functionality
appears to be quite reasonable, considering that a single implementation of the xnu glue library is able
to support the I/O Kit and its drivers.

6.3.6 I/O Kit Modifications

It was found that the I/O Kit could remain largely unmodified. The parts which did require modifica-
tions are documented below.

IOMemoryDescriptor modifications

The IOMemoryDescriptor class is essentially an interface to the Mach virtual memory system, catered
for device drivers. The XNU kernel and its applications operate on virtual addresses, however, devices
on the system expect to be presented with physical addresses. The role of the IOMemoryDescriptor is
to efficiently convert, when presented with an address space and a virtual address, into a scatter gather
list of physical addresses for device I/O.

I/O Catalog modifications

The I/O Kit, in particular, the I/O Kit’s I/O Catalog, expects loadable kernel modules to be a sup-
ported feature in the underlying operating system. This is currently not true for the prototype system.
Support for this feature was hence removed from the I/O Catalog.
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Figure 6.2: Iguana I/O Kit server operation.

6.3.7 The Iguana I/O Kit server

Since the I/O Kit and related components have been ported as application libraries, they cannot be
used in a standalone manner. An application, which makes use of these libraries, is required to listen
and reply to requests on the I/O Kit library’s behalf. This is done by creating an extra OS server
application in Iguana. This server listens for requests and passes them to the I/O Kit. After the
request is processed, it passes the results back to the client application. Figure 6.2 is a block diagram
that shows how these components interact with each other. This server runs in the same protection
domain as the I/O Kit and its drivers, because the drivers and the I/O Kit are linked into this server
application.

2Both of these numbers were generated with the help of David A. Wheeler’s SLOCCount program [Whe].
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Chapter 7

I/O Kit Drivers on Iguana

7.1 Introduction

This chapter aims to describe the steps involved in porting a typical device I/O Kit device dirver onto
the Iguana-based I/O kit prototype driver framework. Following this, issues with drivers that were
selected to be ported to run on an Iguana-based I/O Kit environment are discussed.

7.2 An Overview of the Porting Process

Given the Iguana-based I/O Kit framework as described in Chapter 6, the next logical step to take is
to understand what must be done in order port some given I/O Kit driver to the Iguana-based I/O Kit
framework. Similar to what was done with the Iguana-based I/O Kit and its dependencies, drivers are
ported as Iguana application libraries. The I/O Kit server needs to explicitly link against these drivers
to make use of them.

There are mainly two things that need to be done in porting an I/O Kit driver. These two are
porting the property list file1, and porting the driver source code.

7.2.1 The Property List File

As the current prototype has no mechanism to unserialize the XML data and the property list file
residing on the filesystem to the internal representation used by the I/O Kit, it is necessary to convert
the XML data into more rudimentary representation as described in Section 3.4 of Chapter 3. This
step is required as this data is read into the I/O Registry, so that based on this information, it can run
the driver matching process when required.

7.2.2 Source Code Porting

Due to the fact that that driver source code is typically mostly only directly dependent on the interface
exported by the I/O Kit, porting a driver is mostly a relatively simple process. Usually, it involves
a recompile in the prototype environment with very minor modifications due to limitations in the
prototype.

1This is only required because support for loadable kernel modules is non-existent in the current prototype. Future
versions which implement this feature should obviate the need to do this.
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Figure 7.1: Selected I/O Kit driver hierarchy.

7.3 The I/O Kit Driver Hierarchy

Directly following the question of how a driver is ported, the next logical question to ask is what must
be ported. After deciding on this, the next step is to undertand exactly what nubs and drivers the
selected drivers depend on, so that they can be pulled into the prototype too.

Figure 7.1 shows the list of selected drivers and their location within the driver hierarchy. The
specific drivers selected for peripherial devices are AppleAC97AudioIntelICH, AppleIntelPIIXATA,
and ApplePS2Keyboard.

7.4 The Platform Expert Device Driver

Each platform must have a platform driver. The platform driver, in essense, is the top-level root driver
of which all other drivers and nubs are children of (in the sense of a device layout hierarchy on a system,
not in terms of the C++ language).

In the case of generic IA-32-based personal computers, are two types of drivers which could be
used as the top-level platform driver. One is the AppleACPIPlatformExpert driver which utilizes the
Advanced Configuration and Power Specification (ACPI) [CCC+] found in newer personal computers,
or it can use the AppleI386GenericPlatform driver which is intended to work on older personal comput-
ers too. The AppleACPIPlatformExpert driver is a rare example of a proprietary Darwin component.
Given this, there was no choice other than to use the AppleI386GenericPlatform driver. A bonus reason
for choosing to use the AppleI386GenericPlatform driver over the AppleACPIPlatformExpert driver is
that the ACPI platform includes many features that are not required for the initial prototype. Even if
the AppleACPIPlatformExpert driver was open source, using it will likely complicate porting efforts.

This driver is obviously required, since it is at the top level of the device driver tree. Porting this
driver was a relatively simple and painless process, which simply involved a recompile of the driver in
the Iguana-based I/O Kit prototype environment.
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7.5 The Interrrupt Controller Device Driver

The interrupt controller is modeled in the I/O Kit as a separate driver. On generic personal computers,
the Intel i8259 programmable interrupt controller (PIC) chip is responsible for processing interrupts.

The AppleAPIC driver is actually a combination of two different drivers: the AppleIntel8259PIC
driver, and the AppleAPIC driver. Only one can be used at any one time. The AppleI386GenericPlatform
only expects the former to be matched and used.

Strictly speaking, the low-level interrupt-handling should be done by the L4 kernel. This merely
exists as a compatibility layer so that minimal modifications has to be done to the I/O Kit driver
architecture.

7.6 The PS/2 Keyboard Device Driver

PS/2 is a common interface on personal computers that is used to connect keyboard and mouse devices.
The PS/2 keyboard device is an ideal driver for the prototype because it is one of the simplist I/O Kit
drivers. Hence, it is useful for verifying the basic functionalties of the I/O Kit.

The PS/2 keyboard driver for the I/O Kit runs the keyboard device in interrupt-driven mode. The
keyboard is a very simple device. Ignoring the setup and initialization, essentially the keyboard only
ever needs to handle 2 types of events: key-press and key-release. Both of these events are signaled to
the driver through a device interrupt. When a key is pressed, the driver is signalled and the driver then
proceeds to read in a scancode. The scancode indicates to the keyboard driver what key was pressed.
When the key is released, another interrupt is sent to the device driver. This has the special scancode
of the scancode of the key that was pressed, with 0x80 added to the key’s scancode.

The keyboard is currently able to read in key-presses and key-releases via interrupt-driven I/O.
Usually, this information is sent to the BSD layer for further interpretation. As this is non-existent
in the current prototype, the driver was modified to print out the scancode received in response to a
device interrupt.

7.7 The PCI Device Driver

While there is only one PCI driver, it can be said that there is actually two parts to the PCI driver.
One is the PCI driver itself, and the other is the PCI device nub, which allows devices to be attached
to the PCI bus.

7.7.1 The I386 PCI driver

The PCI bus provides three separate 32-bit address spaces in which device registers may be mapped
[SA99]. The address spaces are:

• Configuration I/O address space

• I/O address space

• Memory address space

How these address spaces are mapped depends on which platform is used. On IA-32 platforms, the
I/O address space is directly mapped into the I/O address provided by the architecture, the memory
address space is mapped one-to-one with the physical address space, and the configuration address
space is accessed using a special set of registers.
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The PCI bus can be operated in two different modes. They are configuration mode 1 and config-
uration mode 2.2 The PCI driver detects whether PCI configuration mode 1 or mode 2 is requested,
and uses the appropriate mode when accessing the PCI bus. There is evidence to suggest that this
information is detected in the bootloader and then stored as a boot argument for the kernel, which in
turn gets stored into the property tables. The PCI driver retrieves this information from the property
table when it initializes itself. In the prototype, the driver was modified so that this information is
hardcoded, though there is no reason why this is so other than for the sake of convenience.

This driver is required in order to support peripherial devices that reside on the PCI bus. Porting
this driver to the Iguana-based I/O Kit prototype was a relatively simple process. Other than making
the modification mentioned above, nothing was done other than to recompile the driver against the
Iguana-based I/O Kit environment.

7.8 The Intel ICH5 ATA Device Driver

The Intel I/O Controller Hub 5 (ICH5) [Int] contains an ATA controller that can be used to drive
ATA-compliant devices such as ATA disk drives. This chip is widely used on many Intel Pentium 4
machines.

7.8.1 The AppleIntelPIIXATA Driver

The AppleIntelPIIXATA is the driver that is used to drive the ATA controller that is present on the
ICH5. It is capable of performing DMA operations. This driver was chosen because disk controllers
are essential on almost all personal computers and portables. A running disk controller driver in an
Iguana-based I/O Kit environment will likely provide some indication on the performance of devices
that would typically exist on a user’s system.

The AppleIntelPIIXATA driver was able to run unmodified, even with DMA enabled3. The driver
is able to handle both read and write requests to the disk using DMA.

7.9 The Intel ICH5 AC97 Controller Driver

The AC97 is a specification for implementing low-cost audio functionality in hardware. Hardware which
comply with the AC97 specification share common properties, but they still require a specific driver
tailored specifically for each individual device in order to function properly. IA-32-based computers
with AC97 compliant audio hardware are quite common. This driver was chosen because it is quite
representative of what would be found on personal computers and portables.

In the I/O Kit, all AC97 audio drivers are in one single source driver package called AppleAC97Audio.
It includes a driver, among others, for the AC97 audio controller found on the ICH5 hub. The specific
driver in question is named AppleAC97AudioIntelICH.

Currently, it appears clear from the device driver output that the device is able to initialize correctly.
However, no tests have been done to determine whether the device driver is indeed able to function
properly. Devising a test program to do this may be a little difficult, because the audio drivers tie in
closely with the user-level audio framework of Mac OS X. However, there is not much documentation
as to exactly what happens to a piece of sound data after it is passed into the audio framework, nor
does there appear to be any documentation on how the audio framework communicates with the audio

2Note that configuration mode 2 is obsolete. Since PCI 2.2, configuration mode 1 is the only configuration method
available.

3One line was changed, but it is believed to be a bug in the driver.
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drivers in order to produce sound at the output. In addition to this, even though having sound drivers
would certainly be a big step towards having device drivers in an Iguana-based I/O Kit, it does not
reveal much as far as the prototype’s performance is concerned. There are no benchmarks that exist
which can be used to test the performance of sound drivers and in turn estimate the performance of
the Iguana-based I/O Kit prototype.
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Chapter 8

Evaluation

This chapter describes the tests performed in order to evaluate driver performance on the I/O Kit
prototype. It discusses the results that arise from these tests and states the outstanding problems and
potential solutions that currently affect performance in the prototype.

8.1 LMbench

LMbench [McVa] is a well-established benchmark for UNIX-based operating systems written by McVoy
and Staelin [MS96]. The LMbench benchmark suite comes with many tests that test system perfor-
mance. It is those that are directly related to raw disk performance that of interest. In particular, the
lmdd benchmark is a disk benchmark that can be used for testing disk performance.

8.1.1 The lmdd benchmark

The lmdd benchmark [McVb] is a variant of the original UNIX dd command. It copies a specified
input to a specified output with possible conversions. It is particularly useful for timing I/O because
it has the ability to print out timing statistics after completing. One common usage is to measure disk
performance by reading or writing to a disk from the filesystem. In order to test raw disk performance,
care must be taken to ensure that the file is not already in the operating system’s buffer cache if it is
being read, because it could artificially inflate transfer rate significantly. For similar reasons, if the file
is being written to, then care must be taken to ensure that the file is flushed back to the disk after
completing.

8.1.2 The memsize program

The memsize program is a utility for determining the amount of memory should be used for benchmark-
ing purposes. In particular, for the lmdd benchmark, it determines the amount of data that should be
moved.

8.2 Evaluation Method

8.2.1 Hardware

For hardware, a Dell Optiplex G270 Pentium 4 at 2.8 GHz fitted with 512 megabytes of memory was
used. The disk is a 40 gigabyte Seagate Barracuda 7200RPM disk. The disk is plugged into the on-
board ICH5 ATA controller. Both the disk and the controller are capable of operating at ultra ATA
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mode 5 (ATA100). The choice to use the Dell machine over Apple’s IA-32-based transition platform
was because there was not enough time to get a functional DMA driver running on the transition
machine. A polling I/O (PIO) driver could not be used, because the hard disks on the transition
machines were connected via Serial ATA (SATA), which Apple’s generic PIO driver does not support.

8.2.2 Operating system and drivers

The version Wombat used for testing corresponds to the 2.6.10 version of the Linux kernel. For native
Linux, Knoppix version 3.9, which is a version of Linux that is able to boot off a CD-ROM device, was
used. Knoppix contained a 2.6.11 Linux kernel. Darwin 8.2 was used for benchmarking. In all cases,
HFS+ filesystem, which is the native filesystem for Darwin and Mac OS X, was used. In native Linux,
Linux’s native piix ATA driver was used, while for Darwin and Wombat, the AppleIntelPIIXATA
I/O Kit driver was used. Benchmarks using Wombat with the Linux piix driver is not possible as
Wombat does not currently have support for native Linux drivers. Finally, Linux was set not to
overcommit memory. This is done so that Linux does not try to hand out more memory than it claims
to be able to offer, which may affect the number returned by the memsize program.

The amount of memory usable by Wombat is fixed when the protection domain for it is created
by Iguana’s initialization program. In the current prototype, this is defined to be 32 megabytes. As
a measure to ensure fairness, the Knoppix was booted with the mem= argument which constrains the
amount of RAM to emulate a similar memory environment to that of Wombat, such that the memsize
utility from LMbench gives similar results. On Wombat, this yielded 14 megabytes, while for Knoppix,
mem=54M was used, which yielded 14 megabytes. The XNU kernel contains a similar boot argument
called maxmem= which provides similar functionality. The memsize program does not appear to behave
deterministically when used in conjunction with the maxmem= kernel argument. It was determined
experimentally that using a size of 48 megabytes will give roughly the same number (16 megabytes).

For this test, Wombat was modified in three ways. Firstly, the memcpy() function in Wombat is
unoptimized for the IA-32 architecture. This was replaced with a slightly more optimized version, since
the I/O Kit glue driver spends a significant amount of time copying to and from the shared data region.
Also, the stock implementation of Wombat’s interrupt loop1 was modified to stress the processor less,
because the stock implementation appeared to be woken up too frequently and performance suffered as
a result. Finally, the Wombat kernel build configuration file was modified to include built-in support
for the HFS+ filesystem.

The fact that different Linux versions were used for the evaluation deserves a short discussion. Using
different Linux versions represents a testing a slightly different code base, which may affect the results
measured. However, the transition from 2.6.10 to 2.6.11 is a revision point release. The benchmarks use
fairly well-tested kernel subsystems which did not substantially change during the transition. Hence, it
is anticipated that the difference in the data gathered due to the fact that two different Linux versions
are used should be quite negligible.

8.2.3 Benchmarks

The prototype was tested by reading a fixed amount of data (14 megabytes) into a buffer from the the
raw block device. Different block sizes were used in order to determine the effect of the block size on
driver throughput. No write tests were performed, as the Darwin operating system lived on the disk
that was being tested. A write to the raw device would mean that the filesystem would be destroyed.
Sufficient time and resources were not available to install a separate disk on the machine for testing
purposes.

1The interrupt loop in Wombat is a thread of execution which does interrupt handling.
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Figure 8.1: LMbench lmdd read benchmark with raw I/O Kit read benchmark.

Two different variations were used to measure disk throughput. First, test code was inserted into
the I/O Kit Iguana server to directly read in data from the disk using the BSD I/O interface functions
provided by the I/O Kit. This tests the performance of the I/O Kit prototype.

The same test was applied but with the client running in a separate protection domain to the
I/O Kit server. This was done as an attempt to instrument the effects of context-switching on the
performance of the disk driver.

The device was also read under Linux and Darwin using the lmdd command so that these results
can be used as a reference for comparing performance results. The exact commands that were used to
run the benchmarks can be found in Appendix B.

8.3 Results

Figure 8.1 shows the results obtained from the I/O Kit prototype. It shows that for small block sizes,
it suffers from poor throughput compared to the native Mach-based implementation. Performance is
also poor compared to Linux. However, at block sizes of 128 kilobytes or above, it shows comparable
performance compared to the reference data.

It is speculated that one of the major contributing factors to the poor performance when using
small block sizes may be attributed to the rudimentary Mach emulation layer in the prototype. This
can be seen from the very similar curves for both the intra-protection-domain case, which should be
fast since the I/O Kit is called into directly as a normal function call, and the inter-protection-domain
case, which should be slower since it has the overhead of context-switching.



58 CHAPTER 8. EVALUATION

Read Bandwidth

Darwin 8.2
Knoppix 3.9
Wombat I/O Kit

Transfer rate (Kilobytes/sec) x 103

Block size (Kilobytes)

10.00

20.00

30.00

40.00

50.00

60.00

1e+01 1e+02 1e+03 1e+04

Figure 8.2: LMbench lmdd read benchmark.

8.4 I/O Kit on Wombat

An effort was made to determine how the prototype might perform when plugged into a production
UNIX-like operating system. The Wombat environment provided a good test bed for this. The same
benchmark that was run on the native Linux and Darwin systems were re-run under the Wombat
environment. As a side-effect, having an operating system that supported HFS+ means that writes, not
just reads, could be tested too, since writes could be tested indirectly by going through the filesystem.
The results were plotted along with the numbers obtained from native Linux and native Darwin.

From the read and write tests from LMbench shown in Figure 8.2 and Figure 8.3 respectively, it
shows that the prototype in combination with Wombat exhibits poor performance. In addition to this,
the downward trend in throughput with an increasing block size is problematic, since in theory, the
reduced number of context-switches that are required to be made using larger block sizes to transfer the
same amount of data should imply that performance should increase with the block size, not decrease.

In order to determine whether the downward trend was due to a problem in the block size or that
lmdd programs were run in succession, the benchmark run was modified on Wombat to run only one
test per boot cycle. The numbers were gathered and replotted along with the previous results gathered
for native Linux and Darwin.

As can be seen from Figure 8.4 and Figure 8.5, the results show that it has been somewhat improved,
but its performance under Wombat is still very poor. There are too many different factors that may
affect the results of the benchmark that no real conclusion can be drawn from the graphs, except that
in conjunction with the results obtained from the raw benchmark, the performance gap is likely due to
interfacing problems with Wombat, or with Wombat itself.
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Figure 8.3: LMbench lmdd write benchmark.
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Figure 8.4: Modified LMbench lmdd read benchmark.
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Figure 8.5: Modified LMbench lmdd write benchmark.
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Future Work

9.1 Introduction

Much has been achieved in this project. However, there are still certain areas where there are research
opportunities and there are still questions which remain unanswered. This section intends to detail
what might be desirable to investigate into in the near future.

9.2 Total OS Independence

Porting the I/O Kit and drivers involved identifying places where it was dependent on the OS in some
way. One of the futher work on the I/O Kit would be to not only emulate Mach, but to completely
remove the Mach references within the I/O Kit source code. Rather than simply making the I/O Kit
source code L4-dependent instead of Mach-dependent, it is better to devise a generic, pluggable OS
glue layer that allows the I/O Kit to be plugged into an arbitary operating system.

9.3 Isolated Drivers

As part of porting the I/O Kit to an L4-based system, device drivers now do not run with full privileges
associated with the kernel’s protection domain. Instead, they now run at user-level. It is much harder
for a misbehaving driver to cause an unrecoverable operating system error.

For the sake of simplicity, in the current prototype, all drivers reside within the I/O Kit’s protection
domain. This is problematic, since a single device driver failure has the potential to corrupt anything
within its protection domain, in this case, it may corrupt other drivers or even the I/O Kit itself. It
would be useful to investigate into the possibility of isolating each device driver in its own protection
domain. This has great potential in further reducing the amount of damage that a given driver may
cause if it misbehaves.

9.4 Size Considerations

The I/O Kit was originally designed to run on computers where the code size was not so important. At
the same time, the I/O Kit contains many useful features such as hot-plugging and power management,
which may appeal to embedded devices that are resource-constrained. Future research could make the
I/O Kit more accessible to embedded devices as far as resource constraints are concerned.
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9.5 Performance Issues

The Iguana-based I/O Kit prototype is unoptimized. Throughput was shown to be poor when smaller
block sizes were used for disk transfers. It is possible that with an optimized implementation, the over-
head could further be reduced such that comparable performance to the Mach-based implementation
can be achieved, even for smaller block sizes. Also, additional work is required to benchmark other
classes of drivers, for example, network drivers, to show that good performance shown by the disk
driver is not the exceptional case.
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Conclusion

The I/O Kit is the device driver framework for the Darwin operating system. The present Darwin is
built on top of the Mach microkernel, which has design deficiencies related to IPC and has long been
known to exhibit poor performance. L4 is a high performance, minimalistic microkernel that solves
many of performance problems of Mach, and hence, there has been interest in migrating Darwin away
from Mach to L4. An initial port of the BSD UNIX subsystem has shown promising results, but in
order for an L4-Darwin port to gain widespread adoption, device drivers, and hence, the I/O Kit, must
be ported over to L4 as well.

Device drivers to this day exhibit poor code reuse. A device driver targeted for one specific op-
erating system will generally not run on another operating system, due to operating system specific
dependencies. The I/O Kit abstracts operating system dependencies away from the device driver pro-
grammer, and has the potential to pave the way for cross operating system driver compatibility. A
port of the I/O Kit should therefore be attempted to investigate the possibility of this.

Finally, the I/O Kit could potentially gain from having support for mechanisms to isolate device
driver faults if it were ran on a high-performance microkernel, because reasons for putting device drivers
in the same protection domain as the kernel, which are tightly related to performance, no longer apply.

A suitable L4-based system, called Iguana, was identified to be suitable base to port the I/O Kit
onto. The I/O Kit, and the C++ runtime environment which it depends on have been ported from
being XNU kernel components to Iguana-based application-level libraries. In addition, selected drivers
were ported to the Iguana-based I/O Kit prototype.

Disk benchmarks indicate that performance is comparable to the native implementations if the
block size used is sufficiently large. For smaller block sizes, performance is poor, most likely due to the
high costs associated with context switching. However, it is anticipated that with careful optimizations,
context switching costs in the current prototype could be much reduced, and as a result the Iguana-
based I/O Kit prototype could achieve comparable performance even for smaller block sizes. Work
remains to be done to show that the Iguana-based I/O Kit prototype shows good performance in the
general case, and not only for disk performance.
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Appendix A

Mach Symbol Listing

This chapter gives a listing of the symbols that need to be present in order to compile and link the
I/O Kit into a standalone executable image. These symbols were identified by the linker. A small
number of functions have already been implemented, and thus are missing from this listing.
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DoPreemptCall
IOBSDNameMatching
IODefaultCacheBits
IOOFPathMatching
LockTimeOut
MutexSpin
doprnt

absolutetime to nanoseconds
assert wait
assert wait timeout
clock absolutetime interval to deadline
clock get uptime
clock interval to absolutetime interval
clock interval to deadline
clock wakeup calendar
cnputc
conslog putc
copypv
current act
dbugprintf
debug mode
device pager deallocate
device pager populate object
device pager setup
flush dcache64
iokit alloc object port
iokit destroy object port
iokit lookup connect ref current task
iokit make send right
iokit release port
iokit retain port
iokit switch object port
kernel map
kernel pmap
kernel task
kernel thread
kernel upl abort
kmod create fake
kmod create internal
kmod load extension
kmod lookupbyname locked
kmod retain
kmod start or stop
lock alloc
lock done
lock free
lock write
mach msg send from kernel

master device port
ml static mfree
ml static ptovirt
mutex alloc
mutex free
mutex lock acquire
mutex lock wait
mutex preblock wait
mutex unlock wakeup
pmap find phys
printf
rootdevice
simple lock
simple lock init
simple unlock
snprintf
sprintf
sscanf
static memory end
sync internal
thread call allocate
thread call cancel
thread call enter1
thread call enter1 delayed
thread call enter delayed
thread call free
thread cancel timer
thread set timer deadline
thread sleep mutex
thread sleep usimple lock
upl get internal pagelist offset
upl offset to pagelist
vm map
vm map copyin common
vm map copyout
vm map deallocate
vm map get upl
vm map reference
vm region 64



Appendix B

Benchmark Script

The benchmark script used for all benchmark tests is essentially the same. The only difference
is the different device naming scheme for the device used in the read tests. For Darwin, the de-
vice is /dev/rdisk0s1, for Linux, it is /dev/hda1, finally, for Wombat with I/O Kit, the name is
/dev/iokitdisk0. In Darwin, the /dev/rdisk0s1 is actually a character device. This is unavoidable as
the root filesystem is mounted on that particular device and Darwin by administrative policy disallows
read access to it while the filesystem is mounted on a block device. The character device must be used
in order to circumvent this. It should be noted that it appears the I/O Kit makes no distinction of
whether it is reading from a block device or a character device, in that they are read or written to
in exactly the same manner. Hence, using the character device should not affect the results obtained.
Linux makes no such distinction, nor does Wombat with I/O Kit.

#!/bin/sh

echo 2 > /proc/sys/vm/overcommit_memory

mount /mnt

# copied from lmbench
MB=‘memsize 1024‘
HALF="512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1m"
ALL="$HALF 2m"
AVAILKB=‘expr $MB \* 1024‘
i=4
while [ $i -le $MB ]
do
ALL="$ALL ${i}m"
h=‘expr $i / 2‘
HALF="$HALF ${m}m"
i=‘expr $i \* 2‘
done
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echo "Running LMbench"

# Make sure that these are there first
mkdir -p /mnt/tmp
touch /mnt/tmp/fileXXX
FILE=/mnt/tmp/fileXXX

BLOCKSIZ="4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m"
BLOCKSIZREV="8m 4m 2m 1m 512k 256k 128k 64k 32k 16k 8k 4k"

# try write bandwidth.

# starts off as umounted.
umount /mnt

# try with different block size, starting from 4K
echo "WRITE BANDWIDTH, SEQUENTIAL BLOCKSIZE"

for i in $BLOCKSIZ; do
mount /mnt
lmdd label="File $FILE write bandwidth, bs=$i: " \
of=$FILE move=${MB}m bs=$i fsync=1 print=3
rm $FILE
umount /mnt
# can be used to verify things if you find things
# a bit dodgy.
#mount /mnt
#lmdd label="File $FILE write bandwidth, bs=$i, no fsync: " \
# of=$FILE move=${MB}m bs=$i fsync=0 print=3
#rm $FILE
#umount /mnt
done
echo ""

# try with different block size, reversed.
# This is commented out, but it can be used to verify things
# if you find the results a bit dodgy.

#echo "WRITE BANDWIDTH, REVERSED BLOCK SIZE"

#for i in $BLOCKSIZREV; do
# mount /mnt
# lmdd label="File $FILE write bandwidth, bs=$i: " \
# of=$FILE move=${MB}m bs=$i fsync=1 print=3
# rm $FILE
# umount /mnt
# mount /mnt
# lmdd label="File $FILE write bandwidth, bs=$i, no fsync: " \
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# of=$FILE move=${MB}m bs=$i fsync=0 print=3
# rm $FILE
# umount /mnt
#done
#echo ""

# try to read it back, using various blocksizes. Each time,
# we must unmount in order to get rid of the adverse effect
# of the cache on the benchmark.

OLDFILE=$FILE
FILE=/dev/hda1

echo "READ BANDWIDTH, SEQUENTIAL BLOCKSIZE"

for i in $BLOCKSIZ; do
mount /mnt
lmdd label="File $FILE read bandwidth, bs=$i: " if=$FILE \
move=${MB}m bs=$i fsync=1 print=3
umount /mnt
done
echo ""

# This can be used to verify dodginess, perhaps.
#echo "READ BANDWIDTH, REVERSE BLOCKSIZE"

#for i in $BLOCKSIZREV; do
# mount /mnt
# lmdd label="File $FILE read bandwidth, bs=$i: " if=$FILE \
# move=${MB}m bs=$i fsync=1 print=3
# umount /mnt
#done
#echo ""

# Reset the file.
FILE=$OLDFILE

# mount this back, as other tests may follow, and expect
# the filesystem to be mounted.

mount /mnt

# This tests the buffer cache mainly and is useful only
# for comparison purposes to make sure that you aren’t
# doing anything wrong.

#echo "read bandwidth"
#for i in $ALL; do bw_file_rd $i io_only $FILE; done
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#echo ""

#echo "read open2close bandwidth"
#for i in $ALL; do bw_file_rd $i open2close $FILE; done
#echo ""

echo "Unmounting."
umount /mnt

echo "All done."
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