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Abstract

Operating systems use kernel stacks to support the execution of threads. A typical
multi threaded operating system uses one kernel stack per thread. This stack per thread
model consumes a significant amount of kernel memory.

An alternative model is the use of a single kernel stack that is shared between all
threads. This reduces the opersating systems memory consumption.

This thesis implements the single stack kernel architecture in the L4 microkernel to
evaluate the performance and memory tradeoffs. It is shown that significant memory
savings can be achieved without degrading the kernels performance. Preliminary re-
sults show improvement in the kernels performance due to the single stack architecure,
however more experiments are required to verify this result.
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Chapter 1

Introduction

Operating system kernels are required to manage complex concurrency issues arising
from the need to manage the execution of multiple programs and multiple pieces of
hardware simultaneously. Historically, two programming models have been developed
to manage concurrency; the event based model and the thread based model.

Traditionally, most operating systems have been based on the thread model. The
thread model has the advantage of presenting concurrent systems as sequential flows
of control. This allows concurrent systems to be programmed in a similar manner to
simple sequential programs. Additionally, the thread model allows external hardware
events to be processed as they occur, whereas the event model requires the current event
to complete processing prior to processing the hardware event. These significant ad-
vantages have led major operating systems such as Linux, Windows NT and Macintosh
OS X to use the thread model [6].

The thread model requires each thread to have its own stack, that is a continuous
area of memory where a thread can store its temporary state. Although the amount
of memory consumed by the stack of each thread is moderate, systems with a large
number of threads may consume a large proportion of available memory due to the use
of an individual stack for each thread. In contrast, the event model requires the use of
a single stack thereby using less memory.

Memory is a precious commodity in many computer systems, especially in embed-
ded systems. Operating Systems developed for embedded systems must utilise memory
efficiently. As a result these embedded operating systems often use the event model to
save memory through the use of a single stack. If a single stack could be used in a
thread model, it would lead to a significant reduction of the memory usage by the op-
erating system. This would allow the thread model to be used in systems with limited
memory.

This theses aims to evaluate the impact of the use of a single stack in a thread based
model. It examines the impact of both the performance and memory usage of such an
operating system by implementing a single stack version of the L4 Pistachio micro-
kernel. The L4 Pistachio micro-kernel uses the thread based model and was selected
for its small size and highly optimised nature. It therefore serves to be a good candidate
for evaluating the impact on the performance of the single kernel stack architecture on
operating systems, particularly for micro-kernels.

The most interesting areas of impact are memory usage and performance. It is
expected that using a single stack kernel will greatly reduce the amount of memory
required per thread, however it is also expected to decrease the performance of the
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micro-kernel. That is, the extra work necessary to use a single stack rather than multiple
stacks is expected to increase the time required to perform any given workload. This
performance decrease is contrary to previous research [4] that was carried out on the
Mach micro-kernel. The optimisations made possible by the use of a single stack in the
Mach micro-kernel have already been implemented in the multi stack Pistachio kernel.
Thus the performance gains achieved in this research are not expected to be duplicated.
This thesis investigates the performance impact of a single stack kernel with the goal
of minimising any penalties inherent in the approach to a negligible proportion of total
system execution time.
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Chapter 2

Background

The examination of the differences between the single stack kernel and the multi stack
kernel require an understanding of concepts such as virtual memory and caches. Addi-
tionally, much of the implementation of the single stack kernel is necessarily tied to the
existing implementation of the L4 Pistachio kernel. This section therefore provides the
neccesary background information on relevant architectural and micro-kernel concepts.

2.1 Kernel Mode
Computer architectures designed to support modern operating systems are capable of
operating in at least two modes: kernel mode and user mode, alternatively known as
privileged and unprivileged mode respectively. In kernel mode the operating system
kernel forms the majority of the code executed whereas in user mode most of the exe-
cuted code belong to user programs.

Kernel and user mode allows the concept of a trusted computing base to be imple-
mented. The trusted computing base in a computer system is the part of the system
that implements the security policies of the system, and hence falls outside of all se-
curity policies within the system. Generally the trusted computing base is comprised
of the operating system and some hardware drivers. In the event that the trusted com-
puting base contains incorrect or malicious code, the security of the entire system is
compromised. Kernel and user mode form the basic mechanism by which the trusted
computing base implements its security policies. The processor is switched from user
to kernel mode by exceptions, and

Code that is executed in kernel mode has complete access to the system and is part
of the trusted computing base. Kernel mode is necessary to perform certain actions
such as communicating with hardware and manipulating restrictions placed on the user
mode. Traditional or monolithic operating systems execute almost all of their code in
kernel mode.

Code executed in user mode is subject to restrictions with respect to the actions it
is able to perform. These restrictions are set by the code executing in kernel mode. The
restrictions are designed to prevent code executing in user mode from interfering with
the execution of any other part of the system. These restrictions include virtual memory
which limits the memory accessed by code executed in user mode. Due to being subject
to security restrictions, code running in user mode does not automatically become part
of the trusted computing base.
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Figure 2.1: Exception Steps

An exception can interrupt the normal operation of the processor at any time. Possi-
ble causes of exceptions include hardware signals, calculation errors, and virtual mem-
ory page faults. An exception causes the processor to halt the processing of the current
code and change to kernel mode. The processor then starts executing code at a special
address, known as an exception vector. There is usually a different exception vector
for each possible type of exception. The exception vectors can be set by the operating
system, so that the operating system is notified of all exceptional circumstances in the
system. The operating system is able to respond to exceptions as it sees fit.

Under most circumstances the user thread that was executing prior to the exception
will need to be continued in the future. For this reason, the threads state must be saved
in memory in such a way as the thread can be later restored to the same state. The code
that performs the storing of the state is known as the kernel entry code. After the user’s
state is saved, the kernel entry code calls another function in the kernel to handle the
actual exception.

The code that resumes the user thread once the kernel completes processing the
exception is known as the kernel exit code. The kernel exit code is responsible for
the restoration of the user thread to the same state it was prior to being paused. After
restoring the thread’s state the kernel exit code performs an exception return, switching
the processor back in to user mode and jumping to the threads next instruction. The
kernel entry and exit code are very tightly bound to the processor hardware, and are
therefore similar in all operating systems for the same processor.

To perform input and output (IO), user program needs to communicate with the
kernel. This communication takes place via a system call. A system call is an instruc-
tion that raises an exception therefore crossing the user-kernel boundary. The kernel
can then examine the state of the user program and perform the requested action. The
kernel can later resume the user program with the results of the action.

Changing between user and kernel mode takes time. This time includes the time
taken by the processor to switch modes, and the time taken for the kernel entry and
exit code to save and restore the user’s state to and from memory. Because each mode
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Figure 2.2: Kernel stacks in the single and multiple stack kernel

switch takes time without performing any work, system designers attempt to avoid
system calls where possible. For instance the kernel may provide more data to the user
than the user requests in order that the user’s next request for data will not result in a
system call. Optimisations such as these can amortise the performance cost of system
calls.

2.2 Kernel Stacks
A stack is a fundamental data structure used in the execution of programs. The stack
is used to store temporary data as a program is executed. This consists of data that
is needed for the execution of a single function, known as local data, and the address
used to return to execution once the function completes. The stack is represented by a
register that points to the current bottom element of the stack. When a new function is
called, the function subtracts the amount of space it needs on the stack from the stack
pointer. The function is then free to use this stack space to support its execution. When
the function returns it moves the stack pointer back to the place it occupied prior to the
invocation of the function. This mechanism provides for the efficient allocation and
deallocation of data on a per function basis.

Each thread in a system requires a stack in order to store the data associated with
the sequential flow of its instructions. For parallel flows of instructions, one stack is
needed for each thread. Context switching, or switching between threads requires the
stack pointer to be switched to point to the current place in the new threads stack. Thus
the new thread can resume from the point at which it was paused.

Errors can arise due to the incorrect use of the stack in a program’s execution.
The first type of error is stack overflow, which occurs when the program tries to use
more stack space than the total size of the stack. Because the stack is of a finite size,
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Figure 2.3: The memory heirarchy diagram

care must be taken not to allocate too much memory from the stack. This error is
often detected in user threads by use of virtual memory techniques. If the error is not
detected, important data may be overwritten as the stack pointer continues to descend
into areas of memory that are used for other purposes. It is difficult to locate stack
pointer errors in the kernel, as the kernel often does not use virtual memory techniques
to detect such errors due to memory concerns.

Stack corruption errors is another source of possible error. These errors can occur
when a program modifies it’s stack pointer in a non-standard way, to point to some
other area of memory. This may occur unintentionally, or intentionally with a malicious
purpose. Again, important data may be overwritten due to stack pointer corruption.

When a user thread makes a system call to the kernel, it must not be able to bypass
the security policies of the kernel. This means that the kernel must carefully validate
every piece of data from the user thread in order to maintain security. The current
stack pointer is one such piece of data. In the event that a user program has a corrupt
stack pointer when a system call occurs, and the kernel uses the user’s stack pointer,
the kernel would then have an invalid stack. In order to avoid this scenario, the kernel
needs to maintain a trusted stack and stack pointer for each thread and use this instead
of the user’s stack and stack pointer. The trusted stack is known as a kernel stack.

When referring to a single stack kernel it means precisely that it has only a single
kernel stack. Similarly a multi stack kernel is a kernel that contains one kernel stack
for each thread. Both kernels provide user stacks as required by the user program. A
single stack kernel therefore reduces reduces the number of kernel stacks in a system.

2.3 Caches
Caches significantly increase the performance of a computer system. Programs written
to take advantage of the cache can often achieve almost 10 times better performance
than programs that fail to take advantage of the cache [16]. Therefore an understanding
of cache architecture is highly important for the optimisation of any computer system.
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Figure 2.4: A 4 way set associative cache with 8 lines and a line size of 4 words

Caches form part of the memory hierarchy. The memory hierarchy exists due to
the fact that an increase in the speed of memory is matched by and increase in its price.
Since it is desirable to have computers with fast memory that are also inexpensive, a
small amount of fast memory is used to hold copies of frequently used data from the
larger, slower memories. The fastest memory in a computer system are the processor
registers, all of which can be accessed in a single processor cycle. The next level
of memory are the caches. There may be more than one level of caches, each being
larger but slower than the previous level. The next level is RAM, also known as main
memory. After this there may be several secondary storage devices such as magnetic
disks or tape.

When a memory address is accessed, each level of the memory hierarchy is checked
in turn to see if it contains a valid copy of the requisite data. If the level contains a copy
of the data, it can supply the data to the higher levels of the hierarchy and processing
can continue. If the level does not contain a copy of the requested memory, processing
is stalled until the required data can be retrieved from the lower levels of the memory
hierarchy. Retrieving the data from the lowest levels of the hierarchy can take millions
of processor cycles. Therefore it is important to keep data that may be used in the near
future as high in the memory hierarchy as possible.

If the requested item of data is not present in a cache, this is known as a cache
miss, if it is present it is referred to as a cache hit. Retrieving the data from a cache
only takes a few processor cycles as opposed to the retrieval of data from main memory
which may take hundreds of cycles. In other words a cache miss is a very expensive
operation. The ratio of cache hits to cache misses is called the cache hit ratio and is
an important determinant of system performance. Modern computer systems typically
have cache hit ratios of over 95% [16].

Cache design is based upon two principles: Spatial locality: If an item is referenced,
items whose addresses are close by will tend to be referenced soon [16].

Temporal locality: If an item is referenced, it will tend to be referenced again
soon [16].

To take advantage of spatial locality, caches fetch several adjacent pieces of data at
a time. In order to take advantage of temporal locality, caches retain the most recently
used data and discard old data.

A cache design is summarised by three parameters, these being line size, the num-
ber of lines, and associativity.
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The line size is the number of bytes that make up a cache line. Upon a cache miss,
an entire line is fetched, not just the byte being accessed by the processor. This design
takes advantage of spatial locality, as well as the fact that accessing adjacent memory
locations in main memory is faster if they are accessed at the same time. A larger cache
line may decrease the number of cache misses if the program has strong spatial locality,
however each cache miss takes longer as more data must be transferred. The cache line
size is therefore a tradeoff between data transfer time and spatial locality.

The number of lines in the cache determines the total amount of data the cache
can store. The more lines in the cache the greater advantage can be taken of spatial
and temporal locality. Unfortunately cache memory is expensive and therefore limited
in size. The number of lines in the cache is therefore a tradeoff between cost and
performance.

The associativity of the cache is related to how data in the cache is addressed. In
a direct mapped cache, every block in memory has a single cache line in which it may
be stored. Because the cache is smaller than memory, multiple memory blocks map to
the same cache line. If another of these memory blocks is used, the original will be
evicted. This can lead to many conflict misses. Alternatively each block of memory
can be made to map to a number of cache lines. This is known as n associativity. For
example in a 2 way associative cache, each block can map to two cache lines, so two
memory blocks that have the same mapping can be cached at the same time. In a fully
associative cache, each block of memory can be mapped to any cache line. Caches are
typically 1, 2, or 4 way associative as greater associativity increases the time a cache
takes to respond to queries for data, thereby slowing processing. [16].

Cache misses can cause significant delays in processing. Cache misses can be
classified into three categories, these being compulsory, capacity and conflict misses.

Compulsory cache misses occur the first time a piece of data is accessed. Com-
pulsory misses are unavoidable as the only way in which the number of compulsory
misses can be reduced is to use less memory.

Capacity cache misses occur because more data than the size of the cache has been
accessed since the last time the initial data was used. That is the initial data has since
been evicted from the cache. These misses can be reduced either by increasing the size
of the cache or by reducing the amount of memory used by the software at any one
time.

Conflict misses occur when multiple separate pieces of data map to the same loca-
tion in the cache. Accessing one block of memory evicts another, creating a see-sawing
effect that can slow down the system. In order reduce conflict misses either the asso-
ciativity of the cache can be increased or the data can be moved in memory to map to
different cache locations.

The difference between a capacity miss and a conflict miss is that a conflict miss
can only occur in a non-fully associative cache. A conflict miss occurs when there
is not enough associativity to keep the data in the cache, but if the associativity was
increased the miss would not have occurred. A capacity miss is when the miss would
have occurred even if the cache was fully associative.

The main implication of caches for software performance is that cache misses slow
the software. All types of cache misses are related to the amount of memory used by
software. Ideally the less memory used the faster software due to less cache misses.
Each cache miss avoided saves another cache miss when the original data has to be
loaded back in.
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2.4 Virtual Memory
Virtual memory is one of the fundamental security mechanisms available in modern
computing architectures. The purpose of virtual memory is to isolate user programs
from physical memory. By providing a virtual address space, the user program is
unable to access memory that it should not, whereas unrestricted access to physical
memory allows the program to access all data in the system.

The operating system is responsible for mapping virtual addresses to physical ad-
dresses. This map is then used by the processor to determine the physical memory
address to query. This mapping is performed on a block basis. Blocks of memory
are known as pages if referring to virtual memory, or as frames if referring to physi-
cal memory. the current relationship between pages and frames is described by a data
structure in memory known as the page table. A page table includes mappings for a
complete virtual address space. Each virtual page in the address space can be either
mapped to a particular physical frame or have no mapping.

The page table also specifies the operations that may be performed on each page.
That is whether the page can be read from, written to, or code can be executed from
this page by the user process. Many processors treat execute permission as read permis-
sion and therefore have only two types of pages, that is read only and writable pages.
The ability to specify permissions for each page allows more flexible restrictions to be
placed on user processes.

When a program attempts to access an address in memory, the system will look up
the page corresponding to that address in the page table. If the page is mapped to a
frame, and the attempted operation is allowed, the operation will be performed on the
appropriate address in the physical frame. If there is no frame, or the operation is not
permitted, the hardware will generate a page fault, and the operating system will be
invoked. The operating system can then decide the appropriate action to take based on
the conditions of the page fault.

Virtual memory is used for several purposes. It is used to detect errors in programs,
that is if a program accesses a memory address that it should not, there is an error.
Another use is to allow more than one user process to be executed. By using different
page tables for each process, the processes are unable to interfere with each others
memory. Finally, virtual memory can be used to make secondary storage such as hard
disks become a lower level of the memory hierarchy. Pages that have not been used
for some time can be copied to storage such as a hard disk. When the page is needed
again, the program will page fault on the address. The operating system can then copy
the page back into physical memory, establish the appropriate mapping, and resume
execution of the program.

The advantages of virtual memory can incur a significant speed penalty due to the
fact that the page table is stored in main memory. However, specialised hardware can
be used to quickly translate virtual addresses into physical addresses. This hardware
known as the translation look aside buffer, or TLB works as a cache of the page tables.
The TLB caches the last few pages accessed, working on the principles of spatial and
temporal locality. If a translation is found in the TLB, the virtual address is translated
to the physical address immediately. If the page is not found, the page tables must
be referenced to fill the TLB with the correct entry. The delay for this operation may
range from a few cycles to several thousand cycles. Thus an important performance
enhancement to any program is to access data on as few pages as possible.

Each TLB miss avoided will eliminate two TLB misses, one to load the new entry,
and one to reload the old entry that was removed to store the new entry. With each TLB
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miss costing multiple cycles any reduction in TLB misses may improve performance
noticeably.

2.5 Interrupt Latency
Interrupts are exceptions caused by a signal from a hardware device indicating the
occurrence of an event. Interrupts as the name suggests, interrupts the currently exe-
cuting program and invokes the operating system to handle the event as for any other
exception. Interrupts are a frequent occurrence in the normal operation of a computer
system.

Interrupt latency is the time period between hardware generating an interrupt and
the processor invoking the operating system to respond. This can be a problem with
devices that have a high frequency of interrupts such as gigabit network cards, as an-
other interrupt may be generated before the first is processed. In this case the two
interrupts will be combined into one, leading to errors or inefficiencies in dealing with
the hardware.

Interrupt latency is also important in real time systems. A real time system is a
system in which time is an element of the correctness of the system. That is even if the
correct result is calculated, it is of no consequence if it is not calculated by a certain
time. Typical examples of real time systems are air traffic control systems and medical
systems. Many embedded systems are also real time systems.

For a system to be use for real time problems, it must be able to provide guarantees
on the worst case execution time for each of it’s operations. These worst case times
can then be used to calculate the worst case execution time of the program. This can
then provide a guarantee of the correctness of the program. Interrupt latency is one of
the guarantees that a real time system must provide. Many deadlines are set from the
time a sensor device raises an interrupt therefore a long interrupt latency could cause
the deadline to be missed.

Interrupt latency is primarily caused by software disabling interrupts. The operat-
ing system will disable interrupts if allowing the interrupt during an operation would
place the system in an inconsistent state. User programs are not able to disable inter-
rupts, only code executing in kernel mode is able to disable interrupts. It is important
for systems to minimise the amount of time for which interrupts are disabled, if they
contain hardware that generate a large number of interrupts, or are to be used to solve
real time problems.

2.6 L4
L4 is a second generation micro-kernel Application Programming Interface. By second
generation, it is meant that the L4 API [20] follows the classical design of a micro-
kernel, but compliant kernels typically have much better performance than any of the
first generation of micro-kernels. The L4 project was originally conceived by Jochen
Liedtke, and is now developed by teams at the University of Karlsruhe, the University
of New South Wales and the University of Dresden.

The L4 API [20] defines operations that an L4 compliant kernel must implement.
The L4 API is written in a platform independent manner, and is supplemented by an
Application Binary Interface for each specific computing platform. The current version
of the L4 API is the L4 experimental version X2 API [20]. There are a number of
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micro-kernels that implement the L4 API. The leading L4 micro-kernel in terms of
performance and platform independence is the L4Ka::Pistachio kernel [19].

This section discusses the differences between L4 and other micro-kernels, and the
key abstractions of the L4 API. It then discusses the internal implementation specific
details of the Pistachio kernel that are relevant to this thesis.

2.6.1 Micro-kernels
The term kernel refers to the part of an operating system that executes in kernel mode.
Traditional operating systems were written as monolithic operating systems, providing
most operating services from kernel mode. This monolithic design typically leads to
a large kernel as many services such as file systems are included in the kernel. The
performance of monolithic systems is typically very good because the number of user-
kernel mode changes and context switches is minimised by the inclusion of all operat-
ing services in the kernel.

In contrast, a micro-kernel attempts to minimise the size of the kernel. It achieves
this by only including services that must be provided from kernel mode in the kernel.
Other services such as device drivers, file systems and networking are provided by
user processes. As a result of minimising the size of the kernel, micro-kernels benefit
from a number of software engineering advantages. These include improved flexibility,
extensibility, reliability and security [13].

2.6.2 Performance
The first generation of micro-kernels, including Amoeba [18], Chorus [17] and Mach
[7], were notorious for their slow performance. Ultrix (a UNIX implementation) run-
ning as a user level server under Mach was shown to be up to 66% slower than Ultrix
running alone [1]. Extensive investigation was conducted into the reasons behind the
poor performance of micro-kernels.

It is immediately apparent that running operating system services at user level
rather than inside the kernel causes additional user-kernel mode switches as well as
context switches that are not needed in a monolithic kernel. However further investiga-
tion revealed that inter-process communication (IPC) was the principal reason for the
poor performance of these systems [9, 13].

In fact micro-kernel system performance is essentially limited by IPC performance
[11]. Hence reducing the cost of IPC is paramount to system performance. Research
into the poor performance of Ultrix on Mach showed that 73% of the overhead was
attributable to IPC related activities. Further it was demonstrated that there were 20%
more cache misses when running Ultrix on top of Mach, due to competition between
the user and kernel for cache space. IPC performance had to be improved.

The second generation of micro-kernels were designed around the goal of minimis-
ing IPC overhead. Micro-kernels such as L4 [20], Exokernel [5] and QNX [10] have to
a large extent achieved this goal. For example, L4 has been shown to run Linux under
the AIM multiuser workloads to within 5-8% of native Linux performance [9] whereas
Linux under Mach suffered an average performance penalty of almost 50% [2].

2.6.3 L4 Abstractions
L4 provides very minimal services in the kernel to reduce size and improve perfor-
mance. Specifically, L4 provides the abstractions of virtual memory address spaces
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and threads within those address spaces. Additionally it provides a way for threads to
communicate by sending messages to one another, known as interprocess communi-
cation (IPC). Other traditional operating system services such as file systems can be
provided through the use of these abstractions by user level processes.

Threads

A thread is the basic abstraction of execution in L4. A thread executes a sequential
stream of instructions, and can interact with the kernel through system calls. Every
thread executes within an address space that defines the memory that the thread can
access. Threads have other state associated with them, such as current status and a
scheduling priority. Some of this state is accessed through system calls, and other
items of this state reside in a data structure known as the user thread control block .
The UTCB is an area of memory shared between the L4 kernel and the thread which
contains state that is able to be modified by the user thread.

Threads are represented in user processes by thread identifiers. There are two types
of thread identifiers, global ids and local ids . local thread ids are only valid within the
threads own address space, whilst global thread ids are valid globally in the system.
Local ids are not often used in systems under L4. Throughout this thesis the generic
term thread id refers to a global thread identifier.

Address Spaces

An L4 address space is a mapping of virtual memory to physical memory. This map-
ping is built up recursively by the means of mapping operations. This is intentionally
different to the virtual memory systems of most operating systems to enable virtual
memory systems to be run as user processes.

A mapping operation maps memory from one address space to a different address
in another. The memory can be either given to the new address space of shared after
the mapping operation. There is a special address space, sigma0 which is a one to one
mapping of virtual to physical memory. By mapping memory from the sigma0 address
space to other address spaces, address spaces with arbitrary layouts can be created.
There is also an unmap operation, as memory is limited and may need to be reclaimed
for another purpose.

L4 also includes special handling of page-faults to support this address space scheme.
When a thread causes a page-fault in L4, the kernel interprets the page fault as a special
IPC to the threads pager . The pager is another thread which is registered to receive
the current threads page faults. The pager thread can reply with a mapping of memory
to the thread that page-faulted, and the thread will be resumed.

Interprocess Communication

Interprocess Communication is the principle method of communication between threads
in L4. IPC is a synchronous message based communication system. That is data is
communicated as messages, and the messages are only delivered when both the source
thread is ready to send, and the destination thread is ready to receive.

L4 IPC messages can contain up to 64 words of data. four types of data can be
conveyed by L4 IPC. The receiver can specify the types of data they are willing to
accept, to ensure security in the case of a malicious IPC partner.
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Untyped data Untyped data is treated by the kernel as binary information. No special
interpretation of this data is performed. Untyped data is the most common data
transferred by IPC.

String items String items are typed data items that instruct the kernel to copy data
from the source threads address space to the destination threads address space.
Up to 4 kilobytes of data can be copied from buffers in the senders address space
to buffers in the receivers address space per string item. In practice this form of
IPC is rarely used.

Map items Map items are typed data items which instruct the kernel to map a section
of virtual memory from the senders address space to the receivers address space.
After the mapping operation the sender and receiver share access to the memory.
Map items are most commonly used in response to page faults.

Grant items Grant items are typed data items that instruct the kernel to perform a
grant operation between the sender and receiver. A grant operation is similar
to the map operation, except the section of virtual memory is removed from the
senders address space after the grant operation. Thus the virtual memory is not
shared as in a map operation, but transferred between the sender and the receiver.
The memory is only removed from the senders address space, not the address
space that originally provided the memory to the senders address space. Grant
items are not commonly used, but have applications in user level device drivers.

2.6.4 L4 internals
The single stack kernel needs to make modifications to the thread control blocks and
kernel stacks in the pistachio kernel. In addition, care needs to be taken not to slow the
performance of IPC in the kernel. This section discusses the existing implementations
of these structures in the pistachio kernel.

Thread Control Blocks and Kernel Stacks

A thread control block is a data structure which contains information about a particular
thread. In L4, there are two types of TCBs, the user TCB and the kernel TCB. The
user TCB contains the thread state that the user is permitted to modify, while the kernel
TCB contains the thread state that is not able to be modified by the user. This thesis is
principally concerned with the kernel TCB, when TCB is used unqualified it refers to
the kernel TCB.

In pistachio, the kernel stack and TCB are located in the same region of memory.
The TCB starts at the lowest address in this region of memory, whilst the kernel stack
starts at the top of this region of memory. By combining the two data structures in the
one region of memory, the two structures can be located on the same virtual memory
page. Thus a kernel operation involving a thread will only cause one TLB miss per
thread.

TCB/kernel stacks are located in an array in virtual memory. This array is very
large, and uses a good proportion of the virtual address space. However, as the array
is in virtual memory, memory only needs to be used for those threads that actually
exist, so actual memory consumption is reasonable. TCBs are stored in this manner
because it allows easy indexing based on thread ids. The thread id contains an index
into the virtual array of TCBs, and a thread id can therefore be turned into a TCB
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address in very few instructions and with no references to memory. This is important
in performance critical areas of the code, such as IPC.

TCBs and kernel stacks are the main data structure that is modified to convert pis-
tachio into a single kernel stack.

IPC Fast-path

IPC limits the performance of micro-kernels such as the pistachio micro-kernel. Pista-
chio therefore treats IPC as the central focus of the kernel design. The principle method
the pistachio kernel uses to speed up IPC operations is to treat the most common case,
untyped only IPC, in a special section of highly optimised code known as the IPC fast-
path . IPC operations that cannot be handled by the fast-path are handled by the fall
back IPC slow-path which is able to perform all types of IPC, albeit less efficiently
than the IPC fast-path.

To provide maximum performance the IPC fast-path is written in assembly code.
Assembly code saves much of the overhead of compiled code, and allows register han-
dling and instruction scheduling optimisation not possible in compiled code. It is im-
portant that the single stack kernel modifications are compatible with some version of
the IPC fast-path, as otherwise the single stack kernel will not be able to match the
performance of the multi stack kernel.
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Chapter 3

Single Stack Kernel

The single stack kernel architecture is fundamentally different from the multi stack
kernel architecture. This section explains the architectures in detail, and discusses the
important differences and tradeoffs between the two architectures.

3.1 Stack Architecture
The single stack kernel uses a single kernel stack that is owned by the currently execut-
ing thread. When the currently executing thread changes in a context switch, ownership
of the stack is transferred to the new thread. The new thread has no use for the infor-
mation contained in the stack, so it treats the stack as a new blank stack. Consequently,
in a single stack kernel a thread effectively discards it’s stack, as it can never again
access the information that was contained in the stack. In contrast, each multi stack
kernel thread owns a separate kernel stack. Upon a context switch in a multi stack
kernel stack ownership is not affected. The thread being switched to simply loads its
own stack from before. Hence a thread in a multi stack kernel can retrieve information
contained in it’s stack even after a context switch has been performed.

Due to the fact that a thread in the multi stack kernel retains it’s stack upon a context
switch, it is possible to provide blocking context switches. A blocking context switch
models a context switch as a function call. The function switches to the specified
thread, and waits to be switched back to. When the thread is eventually switched back
to the function will simply return, and all state and return address information will still
be available. Blocking context switches provide a convenient programming interface
for kernel programmers.

Single stack kernel threads lose any data stored in their stack upon a context switch.
Therefore any local data and return addresses on the stack are lost during a con-
text switch. This makes it impossible to provide blocking context switches. Context
switches in a single stack kernel may still be modelled as a function call, however the
function will never return. This behaviour is not usually expected from a function and
can be a source of confusion when writing a single stack kernel. Also due to the loss of
the state stored in the stack across a context switch, function return addresses and local
state that will be needed after the context switch must be stored in an alternate location
such as the TCB explicitly. This explicit state management is the bulk of the work that
needs to be performed in converting a multi stack kernel to a single stack kernel.
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Figure 3.1: Single and Multi Stack Kernels

3.2 Alternative Models
There are a few major design choices that can affect the kernel’s performance. These
include whether to place the stacks in virtual or physical memory, and the possible use
of an architecture where the number of stacks varies with need.

3.2.1 Virtual/Physical memory stacks
Whether to place kernel stacks in physical or virtual memory is an important design
consideration. We define physical memory in the same way as Abi Nourai [15]. That
is that architectures may use a super-page to simulate physical addressing. Because a
single super-page is used there can be at most one TLB miss caused by the super-page,
which will probably be incurred by other parts of the kernel in any normal operation.

On architectures that support physical addressing, placing the stack in physical
memory relieves pressure on the TLB. If the stack is in physical memory, there can
never be a TLB miss. Hence the kernel will not suffer a TLB miss penalty, and the
user will not suffer from a TLB miss penalty to reload the evicted entry. Depending on
the cost of TLB misses, placing the stack in physical memory and hence reducing the
number of TLB misses can provide a significant performance advantage; particularly
in calculations where the TLB is heavily used by the user program between kernel
invocations.

Stacks in virtual memory may cause additional TLB misses, but they have the ad-
vantage of being able to provide a guard page. A guard page is a page of memory
immediately below the stack that has no mapping to physical memory. Guard pages
provide the ability to detect stack overflow errors. The first access from a stack over-
flow error will be on the guard page, because the guard page has no mapping a page
fault will be raised. This page fault informs the kernel of it’s own internal error, and
appropriate action can be taken.

The L4 Pistachio multi stack kernel uses the same virtual memory page to hold the
TCB and the kernel stack of a thread. In this way, each thread used will never cause
more than one TLB miss. In the single stack kernel however, each thread control block
used may still cause one TLB miss. In addition the use of the stack may cause an
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additional miss if the stack is in virtual memory.
It was decided to use physical memory stacks in the implementation, primarily be-

cause the pistachio kernel has never used stack guard pages. The potential performance
improvement is more important than the error detection for the current work.

3.2.2 Variable Stack Architecture
The two architectural models under consideration so far are the multi stack kernel and
the single stack kernel. The multi stack kernel has one kernel stack per kernel thread,
whilst the single kernel stack has a single kernel stack per processor. There is a third
alternative which is very similar to the single stack kernel. This architecture that has
dynamically allocates and deallocates stacks as needed, and hence has as many stacks
as neccesary at any given time. Due to the varying number of stacks this architecture
is referred to as the variable stack architecture.

Additional stacks may be neccesary for various reasons, such as handling in-kernel
page-faults. In L4 an in-kernel page-fault may result from a page-fault in a user area
during a string IPC operation. If a page-fault occurs, the kernel must send a page-fault
message to the users pager. However, once the pager thread is invoked, the current
threads state will be lost because there is only a single stack. With a variable stack
architecture the page-faulting thread can retain it’s stack, and a new stack can be allo-
cated for other threads to use until the page-fault is resolved. When the page-faulting
thread is switched back to the extra stack will be deallocated and the current thread will
resume using its old stack, thus resuming exactly where it left off. This architecture is
more flexible than the single stack kernel, but uses less memory than the multi stack
kernel, as long as only infrequent operations require the use of an extra stack.

The variable stack model requires the kernel stack to be loaded through indirection.
That is, because there is not a single stack, the address of the stack cannot be hard
coded into the kernel. The current stack must be loaded from a pointer of some sort,
implying an additional load operation per kernel entry that is not required in the single
kernel stack. However, to expand the single kernel stack to a multiprocessor system,
the stack must be loaded for each processor. This also implies a load operation per
kernel entry, so the variable stack model has no extra cost over the single stack model
in a multiprocessor system.

The variable stack model is very similar to the single stack model. If there is no
special situation requiring an additional stack, the kernel operates with a single stack.
Therefore it gains the memory benefits of a single kernel stack whilst maintaining more
flexibility. For this reason the variable stack kernel architecture has been implemented
in this thesis. However there are no situations in the implementation that use more than
one stack, so the kernel is a single stack kernel with the ability to be easily expanded
with extra stacks for particular operations as neccesary.

Since there are no operations requiring additional stacks, the code enabling vari-
able stacks is easily disabled. For the purposes of performance testing there are three
versions of the kernel, a multi stack kernel, a variable stack kernel and a single stack
kernel. The single stack kernel is simply the variable stack kernel with the extra code
in the context switch and fast-paths removed. That is the single stack kernel still ad-
dresses the kernel stack through indirection, so it is not as fast as is possible for a single
stack kernel on a single processor system.

19



3.3 Trade offs
Many factors affect differentiate the performance of the single and multi stack kernel.
Each factor treated separately below, as the relevance of these factors to performance
differs with the underlying computer architecture.

3.3.1 Memory Usage
Since a stack is associated with a thread, traditionally there is one kernel stack per
thread in the system. Since each kernel stack in Pistachio is more than 1k of memory,
this can represent a significant toll on the memory of the system. In a system with
hundreds of threads, Megabytes of memory can be used in providing the kernel stacks
for these threads. To make matters worse, kernel stack memory cannot usually be paged
to disk for security and performance reasons. There has been research into swapping
this data to disk [8], but it is generally not implemented in L4 kernels, certainly not in
L4 Pistachio.

A single stack kernel only uses memory for a single kernel stack. As such, a threads
local data is discarded upon each context switch. This implies that each threads control
block must be expanded to hold additional state. This additional state however does
not use as much as the per thread kernel stack, and thus a great deal less memory is
used per thread. This is why the single stack kernel uses less memory per thread than
the multi stack kernel.

Thread control blocks are located in virtual memory by treating the thread id an
index into a virtual array. Therefore to actually save memory, the thread id’s of threads
in the system must be essentially consecutive. If thread ID’s are allocated in a sparse
manner, such that no two thread control blocks are located on the same page, each
TCB will have a full page allocated for it and thus use the same amount of memory as
the multi-stack kernel. This problem can be solved in a kernel that addresses TCB’s
indirectly, such as the physically addressed L4 kernel [15]. If thread control blocks are
addressed indirectly, the kernel can allocate them such that they are always consecutive,
and hence do not waste space.

3.3.2 Kernel Entry and Exit
There are several differences in kernel entry and exit between a single and multi stack
kernel.

The first difference is that the single stack kernel stores the user context in the TCB,
whilst the multi stack kernel stores the user context on the stack. This difference only
has minor performance implications however. The only difference is that the single
kernel stack needs to derive the stack pointer from the TCB pointer or vice versa on
every kernel entry and exit, whilst the multi-stack kernel can use the stack pointer
exclusively. This means that there is an additional load operation for each single stack
kernel entry and exit that is not present in the multi stack kernel.

The second difference is the code for handling an exception that occurs while the
kernel is in kernel mode. In the multi stack kernel there is no special condition to
be handled, the stack pointer is just decremented as for a normal user to kernel mode
switch. However in the single stack kernel, there is a need for different handling of
exceptions from user mode or kernel mode. If an exception is taken in kernel mode,
the state cannot be stored in the TCB, as it will overwrite the user state that is stored
there. The kernel state must be stored on the bottom of the stack. Thus the mode
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of the exception must be determined so that the state can be stored in the appropriate
location. This determination takes an extra few instructions that slow down the kernel
entry. On kernel exit, the mode that is being returned to must be determined so that
the appropriate state can be loaded. Again, this takes a few instructions that are not
neccesary in the multi stack kernel.

The last difference between the kernel entry code for the single and multi stack
kernel is only apparent in system calls. In a multi stack kernel, system call kernel entry
is optimised by only saving part of the user context. The programming interface for
most processors defines that certain registers are to be saved by the called function in
the event that the function needs to use these registers. The C compiler performs this
register saving automatically. A kernel which maintains a kernel stack per thread can
therefore allow the compiler to save these registers implicitly. The registers will be
saved on the stack, and later automatically restored by the compiler at the appropriate
time. However a kernel which does not retain each threads stack must store these
registers to the TCB, incurring additional overhead because there is no way to stop the
compiler from also saving the contents of these registers. Thus the single stack kernel
must store and load additional registers that the multi stack kernel does not. This slows
down system calls.

In summary, a multi stack kernel will generally have faster system entry and exit
costs than a single stack kernel. This is because of various small optimisations possible
in a multi-stack kernel that are not possible in a single stack kernel. The difference is
particularly pronounced in a system call kernel entry and exit.

3.3.3 Context Switch
There are four possible cases to consider due to stack differences during a context
switch. The multi stack kernel need deal only with the stack retention case, whilst the
single stack kernel need deal only with the stack hand over case. The variable stack
kernel must deal with all four cases, indeed it is this ability which defines it as a variable
stack kernel. Each of the cases is outlined below, along with a description of how the
context switch is performed.

Stack Retention

When both threads involved in a context switch have their own stack, the current stack
needs to be switched. This is always the case in the multi stack kernel, and occasionally
the case in a variable stack kernel. To perform the context switch some context infor-
mation from the source thread is saved to the source stack, the stacks pointer is loaded
from the destination stack, and context information is loaded from the other stack. Fi-
nally the return address on the newly loaded stack is used to resume the destination
threads execution.

Stack Hand over

The only case in the single stack kernel and the most common case in the variable stack
kernel is stack hand over. In this case the source thread no longer requires it’s stack,
and the destination thread does not have a stack. The stack pointer is reset to the top of
the stack to give the new thread the illusion of a new empty stack, and the destination
threads processing is resumed by using the stored continuation. Stack hand over is a
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very fast method of thread switching because there is little work to be done to support
the context switch.

Stack Allocation and Deallocation

The last two cases only occur in the variable stack kernel. These cases are the slowest
of the four cases because they involve the allocation and deallocation of memory. They
are performed as an appropriate combination of the other two cases, along with the
requisite memory allocation operation. These two cases are the cases that truly give
the variable stack kernel its flexibility.

In summary, the single stack kernel is expected to have the fastest context switch
time due to the smaller amount of work it is required to do. However, the difference is
not a large proportion of time, and context switches are infrequent enough in the system
that this small difference should not affect overall system performance. Additionally,
context switch costs are dominated by hardware costs on most architectures, so it is not
known whether this performance difference will actually be measurable.

3.3.4 IPC Fast-path
The IPC fast-path is acknowledged as the most performance critical code in the L4
micro-kernel [11]. Thus the impact of the single kernel stack on the fast-path is of
central importance to the overall performance of the single stack kernel.

The basic difference between the single kernel stack kernel and the multi kernel
stack kernel is in the way they handle the stack during both kernel entry/exit and the
context switch in the IPC. The multi stack kernel must deal with two stacks, however
the single stack kernel must deal with extra state involved in the single stack architec-
ture.

During kernel entry and exit the differences are much the same as for normal kernel
entry and exit. However, an IPC fast-path call is always invoked by the user, and does
not need to save user context as a normal system call does. In addition, it does not
need to save all of the user context because these registers in the processor are used to
hold part of the message to be transferred. Therefore the principle difference in kernel
entry/exit occurs because the single stack kernel needs to load the current stack from a
pointer in the TCB. This involves a single extra load instruction. However, the single
stack kernel may additionally be able to reduce the number of instructions slightly
because it is easier to calculate both TCB addresses. On the ARM architecture, this
saves 2 instructions per IPC fast-path.

During the context switch in the IPC fast-path, The single stack kernel has slightly
more work to do. This is because it needs to update the stack pointers in the two TCBs
and update the TCB pointer in the stack. These extra stores can slow down the fast-
path, but should usually be performed with minimal latency by the processors write
buffer. The processors write buffer allows a program to continue to be executed while
memory stores have not yet completed. On most architectures these stores will be
placed into the write buffer and therefore have a negligible impact on performance.

A kernel with a variable number of stacks needs an additional check in the fast-
path. This check is to ensure that the destination thread does not already have an
associated stack. If the destination thread does have an associated stack, the full context
switch code must be used, not the abbreviated version in the fast path. Therefore if the
destination thread does have an associated stack, the IPC is delivered through the slow
path. This check involves one load and a few extra instructions. It may slow the IPC
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fast-path a few percent of the total time taken. This check is not necessary in the single
stack implementation, as no other thread will have an associated stack.

The main impact on the fast-path performance will be the additional load during
kernel entry, and any cache effects. Other than these, the fast-path of the single and
multiple kernel stack should perform very similarly.

3.3.5 Cache Usage
During a kernel operation that involves more than one thread, the single kernel stack
will use less of the cache than the multi stack kernel. This is because the multi stack
kernel needs to access memory in two stacks, whilst the single stack kernel reuses the
same stack. Re using the same stack the cache entries for the stack memory are still
valid, thus causing less cache misses due to the kernel stacks.

In addition, the multi stack kernel is more likely to cause conflict cache misses, as
the different stacks will more than likely map to the same cache lines. This empties
two of the associative places in the cache, whereas a single stack kernel will only empty
one of the lines. This implies less conflict cache misses in the single stack kernel.

Using a single kernel stack enables the kernel to use less of the cache. This leads
to better performance through fewer cache misses. In fact, each cache line not used by
the kernel causes two less cache misses - one by the kernel, and the other by the user
reloading the data that the kernel evicted. This improved cache locality should lead to
a performance enhancement in the single stack kernel over the multi stack kernel.

3.3.6 TLB Usage
Depending on the computer architecture, TLB misses due to virtual memory accesses
can be expensive. Thus consideration of the number of TLB misses due to kernel
architecture is important. In the following discussion we assume that upon kernel entry
the TLB does not contain any kernel entries.

The Pistachio multi stack kernel uses a virtual linear array in memory to represent
it’s threads. That is each thread id is used as an index into an array in virtual memory.
Each element of this array consists of a threads control block and it’s kernel stack. Thus
accessing a threads control block or kernel stack will cause a TLB miss. In a typical
kernel operation involving two threads such as an IPC there will be two TLB misses
due to kernel stack/TCB activity.

In the single stack variant of the L4 kernel, a virtual linear array is again used
to represent TCBs, however the stack is separate to the TCBs. Thus in any kernel
operation each TCB accessed will cause one TLB miss. Additionally if the stack is
in virtual memory it will also cause a TLB miss. However as the stack is in physical
memory it will not cause a TLB miss.

The single stack TCBs are smaller than the multi stack combined TCB/kernel
stacks, so more TCBs fit into one page of virtual memory. Thus if a kernel opera-
tion involves two or more TCBs that are stored on the same page in virtual memory,
there will only be one TLB miss, as only one page is accessed. As an example, on
the ARM architecture there are two multi stack threads per page of virtual memory,
whereas there are 8 single stack threads per page of virtual memory. Thus there is a
greater chance of multiple threads being on the same page in the single stack kernel.
This chance is strongly influenced by the manner in which the system running on top
of L4 allocates thread ids.
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In summary, a single stack kernel which has a stack in physical memory will cause
no more faults than the multi stack kernel in the worst case. In addition the single stack
kernel has a greater chance of multiple threads being on the same page, and as such
may incur less TLB misses than the multi stack kernel. Each TLB miss saved in the
kernel will prevent another TLB miss in the user, so the single stack kernel may receive
a small performance boost from causing less TLB misses, depending on the allocation
of thread IDs.

A kernel which uses indirection to address TCBs physically such as [15] rather
than as a virtual linear array does not suffer any TLB misses. This design, which is
orthogonal to the design choice of single or multiple stack kernel, will eliminate the
relevance of TLB to the different kernels comparative performance.

3.3.7 Interrupt Latency
A single stack kernel has longer interrupt latency than a multi stack kernel. This is
because the single stack kernel must disable interrupts for all processing in the kernel.
The multi stack kernel can leave interrupts enabled for most of the time it spends in the
kernel.

When an exception such as an interrupt is taken in kernel mode, the previous kernel
state is stored on the stack for both the single and multi stack kernels. An interrupt
entails a context switch to another thread to handle the interrupt. Since a multi stack
kernel retains its stack in the event of a context switch, it can later be resumed at the
point where it was interrupted. However, a single stack kernel discards its stack in the
event of a context switch, so the thread could not later be resumed. Thus a single stack
kernel must disable interrupts whilst it is executing in kernel mode, as an interrupt
would cause a context switch that would destroy part of the systems state.

The worst case interrupt latency for the multi stack kernel is thus the time that
it takes to enter kernel mode, save the users/kernels state, and re-enable interrupts.
However, the single stack kernel cannot re-enable interrupts, so it’s worst case interrupt
latency is the time taken to execute the longest kernel operation. Thus the single kernel
stack kernel has significantly longer latency than the multi stack kernel.

It may be possible to enable interrupts in kernel mode in a variable stack kernel.
This would involve allocation of a new stack in the event of a context switch where
the stack contains information that cannot be discarded. This would potentially reduce
interrupt latency to near the levels of a multi stack kernel, while retaining most of
the memory benefits of the single stack kernel. This idea has not been extensively
investigated in this thesis.

In the Pistachio kernel for ARM, interrupts are disabled while in kernel mode even
in the multi kernel stack. This is because it simplifies many areas of the code, and to
the present interrupt latency has not been an important measure of importance. Thus
even though in theory the single stack kernel should have longer interrupt latency than
the multi stack kernel, the difference is not expected to be pronounced in this particular
implementation.

3.4 Related Work
This is not the first work investigating the single kernel stack concept. In fact there
have been two previous implementations which are similar in concept to the single
stack kernel.
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3.5 Mach
Richard P. Draves converted Mach 3 to use what I refer to as a variable stack archi-
tecture in his PhD thesis in 1994 [3]. Draves was able to achieve significant memory
savings, as well as significant performance improvements in the Mach kernel. However
it was not clear which of the performance improvements were due to the single stack
architecture, and which of the performance improvements were due to his optimisation
of the original kernel code.

Mach is generally acknowledged to be a slow kernel [1], so it is interesting to
investigate the effects of the single stack architecture on the faster L4 micro-kernel.
Finally, L4 has a much smaller cache footprint than Mach, which the single kernel
stack is expected to further reduce. It will be interesting to see if this further reduction
has a similar impact to the cache footprint reduction which motivated the design of
L4 [13].

3.6 Fluke
Ford et al. [6] implemented the Fluke kernel API to make every kernel operation
atomic . They define an atomic operation as an operation that is fully interruptible
and restartable. This kernel API allowed them to implement the kernel as both event
based and thread based with changes to only a small section of the code. They then pro-
ceeded to compare the performance of the different kernel types. This work is similar
to the single kernel stack, but not the same. They achieved the different models (which
use a different number of kernel stacks) by removing all blocking from within the ker-
nel. Thus this work differs from the single stack kernel which retains blocking within
the kernel, but achieves the reduction in memory use proceeding from using a single
stack. The approach used in Fluke could not be used in L4, as the API is previously
specified and cannot be arbitrarily modified to include only atomic operations.
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Chapter 4

Implementation Issues

This section discusses the details of the implementation. The architectural change from
a multiple kernel stack to a single kernel stack involves changes to many areas of the
kernel. The major abstractions and methods used are outlined in this chapter.

4.1 Abstractions
Several abstractions were developed to ease development of the single stack kernel.
These include continuations, finish functions and continuation accepting functions.
The original single stack implementation also used the continuation stack abstraction,
but this was not used in the final single stack implementation.

4.1.1 Continuations
A continuation is an abstraction of where execution should be continued when a certain
condition is met. The most obvious condition is that the thread is resumed in a context
switch, in which case a continuation will be used to restart execution of the thread.
However continuations are not limited to being used in thread switches, and are in fact
most often used in recreating chain of functions that have been called before a context
switch.

A continuation is an address containing the first instruction to execute when this
continuation is activated. When a continuation is activated, the stack pointer is reset
to the top of the stack, and no further information is supplied to the code that will
be executed. However, because the code is able to retrieve a pointer to the current
TCB, it is able to determine all of the information neccesary for its execution. Hence a
continuation is a function pointer to a function that accepts no arguments and is never
expected to return.

The macro ACTIVATE CONTINUATION allows continuations to be invoked. This
macro is very efficient, on ARM it consists of only 3 instructions and does not reference
memory.

4.1.2 Finish Functions
A finish function is an abstraction for a function that will be called after a context
switch to finish the work of the current function. These functions are often named by
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prepending finish to the name of the function they are intended to complete. The
functions normally pointed to by continuations are finish functions.

A finish function has a regular structure. All finish functions take no arguments and
have no return value. The typical first action of a finish function is to load a pointer
to the current TCB and reload any state needed to finish the functions work. After the
functions work is complete, the finish function will invoke another continuation that
was stored for this purpose by the function that registered the finish function. Finish
functions are a design pattern that occurs often in the single stack kernel.

4.1.3 Continuation Stack
The continuation stack is a stack data structure (not a threads execution stack) whose
data elements are continuations. I used a continuation stack in my original implemen-
tation to store the functions that would need to be executed upon the threads return
from a context switch. The last in first out nature of the continuation stack is similar
to the way return addresses are stored on the threads execution stack. This made it
convenient to handle nested function calls that could lead to a context switch.

Unfortunately the continuation stack obscured the flow of control in the kernel. In
many places in the kernel it is difficult to determine when a value should be pushed
onto or popped from the continuation stack. In addition the continuation stack was not
a very efficient data structure. Thus the continuation stack was dropped from the single
stack kernel in the final implementation.

4.1.4 Continuation accepting functions
To replace the continuation stack, functions that accept continuations were used. These
functions have a special type signature that must be used for all continuation accept-
ing functions. A continuation accepting function may not return a value, and the last
argument to the function must be a continuation. These functions are defined to return
by calling the continuation given, or performing a normal return if a null continuation
argument is supplied.

Continuation accepting functions allow the compiler to check that continuations are
correctly handled between functions. If a function is called without the extra argument,
the compiler will report an error. This ensures that the programmer cannot forget to
modify functions that depend upon the function that is being modified. This was the
chief source of errors with the continuation stack model. Using continuation accepting
functions the programmer only need worry about the handling of continuations within
each function he writes. This eases the programming of the single stack kernel.

Continuation accepting functions also enable incremental testing. Functions in the
kernel can be modified one at a time to use continuations. After each function modifi-
cation, the kernel is in an executable state. Therefore a test can be run on the function
modified, and any errors can be easily pinpointed in the code. Incremental develop-
ment and testing of the single stack kernel makes bugs in the kernel much easier to
find.

It should be noted that the compiler checking and incremental testing advantages
are only useful when converting existing multi stack kernel code to single stack kernel
code. When writing entirely new code in the single stack kernel these advantages are
not important. However since the actively maintained version of Pistachio is a multi
stack kernel, most new code to be incorporated in the kernel will need to be converted
to use a single kernel stack and continuations.
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4.2 Control Modification
The bulk of the work in converting the multi stack kernel into a single stack kernel was
modifying the functions in the kernel to use continuations rather than blocking context
switches. The functions that needed to be modified were easily identified through
compiler errors, because each function was converted into a continuation accepting
function in turn. Each function that needed to be modified was modified and tested in
turn.

The biggest difference between the multiple stack kernel and the single stack kernel
is that state is not able to be stored on the stack. To this end all state required by a
function across a context switch needs to be stored in the TCB. There is usually not
more than a few words of state per function that needs to be preserved across context
switches.

The modification of the control flow for a function involves creating a new function
to finish the work after the context switch, storing any needed state in the TCB, and
restoring this state in the finish function. In addition it is neccesary to change the func-
tion type to add a continuation argument and change the return type to void. The code
in the finish function often needs to be modified in structure due to context switches
embedded in if statements and while loops. This modification can take considerable
time per function.

The above modification procedure applies to 90% of functions, the other functions
must be treated on an individual basis. Several functions that have complicated con-
trol flow patterns were broken into several smaller functions. It is neccesary to break
them into multiple functions around each context switch, and perform state saving and
restoration about this split. Unfortunately the control often flows in complicated ways
which make this deconstruction hard to perform. The IPC slow-path was the most
complicated function to convert to use a single stack due to the large number of con-
ditions under which a context switch may be taken, as well as the need to maintain
good performance. One technique used in the IPC slow-path is to restart the function
in certain conditions rather than to splitting the function around a context switch. This
comes at a performance penalty, but the reduction in complexity is well worth it for the
infrequently used IPC redirection operation.

System calls also posed a problem for conversion to a single stack kernel. Certain
system calls need to take a continuation argument because they may cause a context
switch, yet their arguments cannot be modified due to the way that the system calls are
invoked from assembly code. This problem was solved by placing the continuation in
the return address register and using the appropriate gcc macro to retrieve this value.
This has the advantage of being automatically architecture independent in the system
call code.

4.3 Porting Architectures
As the Pistachio kernel runs on multiple architectures, it is important that this work be
as easily portable as the kernel itself. To this end the changes were kept architecture
independent where possible. Any architecture dependent code was places in the pista-
chio architecture dependant directories of the kernel, to avoid introducing conditional
compilation into the architecture independent sections of the kernel. The majority of
the control flow changes are architecture independent, whilst the kernel entry and exit,
context switch and fast-path code are architecture dependant. Thus there is only a
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small amount of work to port the code to a new architecture. I believe the work could
be ported to each architecture supported by pistachio within a couple of weeks by
someone experienced on that architecture.
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Chapter 5

Analysis

This chapter details the tests that were performed to investigate the performance of the
single stack kernel. It is important to test the kernel performance thoroughly in both
average and worst case scenarios. Without both of these cases, the performance data
could not be used as a solid basis to draw conclusions about the single stack kernel.

5.1 Methodology
The goal of the thesis is to measure and understand the tradeoffs in performance and
memory between the single stack and multi stack kernel architectures. To this end the
pistachio kernel has been modified only as much as neccesary to implement the single
stack kernel. Because all code not related to the stack architecture is left unmodified,
there is a strong basis for comparing the two kernels side by side. All optimisations
have been implemented in both kernels or neither of the kernels to minimise bias and
error in the results. This gives the results that can reasonably be compared. There
may be further optimisations possible to increase the performance of the single stack
kernel, such as merging the thread state and continuation fields in the TCB, however
these optimisations have not been implemented as they would change too much of the
kernel code to enable a fair comparison.

In determining the comparative performance of the overall system it is important
to simulate a typical system workload. This can give an average case performance
for the single stack vs. multi stack kernel. It is also important to find the worst case
performance difference. The kernel stack architecture only affects kernel operations,
not normal user calculations, so the worst case performance is achieved by code that
performs no calculations other than invoking kernel operations. To measure the worst
case performance penalties a series of micro-benchmarks have been developed to test
common kernel operations.

The micro-benchmarks were developed based on the expected performance differ-
ences outlined in section 3. Each benchmark has been included for a specific purpose
outlined below.

5.2 Test Environment
All benchmarks were carried out on a littlechips LN2410SBC single board computer
[14]. This single board computer contains a Samsung S3C2410 arm processor clocked
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at 200 MHz, a 32 kilobyte, 64 way associative cache, and 64 megabytes of ram. The
board has additional peripherals such as a VGA touch screen, however these periph-
erals are not used in any of the performance tests. The littlechips board is capable of
running Windows CE and Linux, and as such provides a useful test system similar to
many advanced embedded systems which also run these operating systems.

The littlechips board’s cache is highly associative, so not many caching benefits
are expected in the code due to the single kernel stacks reduction of conflict misses.
Additionally, because the ARM architectures TLB is refilled by hardware, TLB miss
costs are not high, so any reduction in TLB miss rates by the single stack kernel is not
expected to yield major performance improvements. Therefore the single stack kernel
is expected to perform similarly to or worse than the multi stack kernel.

5.3 Micro-benchmarks
All of the performance micro-benchmarks are based around a similar design. They
read the current system time, perform a kernel operation in a tight loop a large number
of times, and then read the system time again. There is a small amount of overhead in
reading the system time, as well as page faults that may occur the first time through
the loop. However, the operation is performed at least 50000 times in each benchmark,
so the error introduced by these overheads is very small. In any case the error in these
overheads is common to all three kernels, so in a performance comparison it does not
matter. In addition two memory benchmarks are conducted to observe the effect of the
single stack kernel on the kernels memory usage.

5.3.1 Base Memory
The first test conducted is to use the systems memory tracing architecture to measure
the amount of memory the kernel uses in a normal quiescent state immediately after
boot-up. Two figures here are interesting for comparing kernel architectures: How
much memory is used for kernel stacks/, and the proportion of total memory usage
that this comprises. These figure are measured for each of the kernels, with the single
and variable stack kernels expected to have lower memory usage than the multi stack
kernel. The memory saving in this benchmark is expected to be small, as there are
initially few threads in the system.

5.3.2 High Thread Count Memory
This benchmark gives the memory usage when there are a large number of threads
active in the system. By creating one hundred threads, and then measuring the memory
usage of the kernel, the true memory impact of the single kernel stack can be observed.
The same figures are reported as for the base memory micro-benchmark. Obviously
the single and variable stack kernels are expected to use a great deal less memory than
the multi stack kernel in this situation.

5.3.3 Ping-Pong
IPC is the most important kernel operation of a micro-kernel [13]. Many of the IPC
operations in L4 are handled by the fast-path, hence it is important to understand the
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effect of the kernel stack architecture on the IPC fast-path. This is measured through
the ping-pong micro-benchmark.

The ping-pong micro-benchmark consists of two threads communicating back and
forth via IPC. The threads do no work other than that required for communication, so
the time reported is essentially the time required for a basic IPC operation. Transferring
memory registers incurs memory copying costs, which are the same all three kernels.
Hence to measure the worst case performance, no message registers are transferred.
This minimises the IPC time, and hence exposes any overhead as a greater proportion
of the total IPC time.

The single stack kernel is expected to be slightly slower than the multi stack kernel
in the ping-pong benchmark. However, as discussed in chapter 3, there are very few
differences between the single stack kernel and the multi stack kernel in the IPC fast-
path. Any observed increase in IPC time is expected to be due to the increased number
of memory locations that the single stack kernel must access on the fast-path.

The variable kernel stack is expected to be slower again than the single stack ker-
nel. This is because the variable stack kernel is required to check that IPC’s destination
thread does not have an associated kernel stack. This check is expected to slow execu-
tion of the IPC fast-path by a further few percent.

5.3.4 Null Syscall
A null syscall is a system call that does no work in the kernel but returns immediately
to the user. The cost of a null system call is the inherent overhead of a system call. This
overhead is incurred in all system calls, in addition to the cost of the work performed
by the system call. System calls are made frequently, so the system call overhead is an
important factor in system performance. The null system call can be approximated in
L4 a thread switch system call, where the supplied argument is the currently executing
thread. The kernel returns immediately to the user rather than attempting a context
switch where the source and destination thread are the same thread.

It is expected that the single stack kernel will take longer to perform the null system
call than the multi stack kernel. This is because the single stack kernel must save
additional user registers compared to the multi stack kernel, as discussed in chapter 3.
Additionally, the single stack kernel must load the kernel stack from a pointer in the
TCB. It is expected that the single kernel stack will take marginally longer to perform
a null system call than the multi stack kernel due to these extra operations.

5.3.5 Context Switch
A context switch changes the currently executing thread. It involves saving and loading
register state and switching page tables. The currently executing thread can voluntarily
invoke a context switch to allow another thread to make additional progress. A vol-
untary context switch is invoked by the thread switch system call, where the argument
supplied is the thread to activate. The context switch micro-benchmark measures the
time two threads take to switch back and forth a large number of times. This time mea-
sure operation yields an approximation of the context switch time. The EAS context
switch benchmark is the same as the context switch benchmark, except that the threads
are located in different address spaces. This benchmark yields the context switch time
between address spaces, expected to be higher than the context switch within an ad-
dress space.
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It is expected that the context switch take approximately the same amount of time
as the work performed is very similar in all three kernels.

5.3.6 Exception IPC
L4 allows user level exception handling by transforming exceptions into a simulated
IPC message. Since system calls are an exception, user level exception handling en-
ables the simulation of operating systems that rely on the use of the system call excep-
tion in user space. Since one of the current uses of L4 is to support the Wombat Linux
server, implemented using user level exception handling, the performance of exception
IPCs is important. The Wombat Linux server uses exception IPCs to convey system
calls from Linux user processes to the user level Linux kernel. As such exception IPCs
are very common in the Wombat Linux server. The exception IPC benchmark reports
the cost of these exception IPCs when delivered within the same address space, whilst
the EAS exception IPC benchmark reports the cost of exception IPCs delivered across
address spaces. The cross address space exception IPC costs are expected to be higher
then the intra address space exception IPCs by the same margin as the context switch
and EAS context switch operations.

Exception IPCs are usually delivered by the exception IPC fast-path on ARM. This
code is very similar to the IPC fast-path code, so the performance of the single stack
kernel is again expected to be slightly worse than that of the multi stack kernel, al-
though this is not expected to be a significant problem. Once again, the variable
stack kernel must perform an additional check for an associated stack in the desti-
nation thread, so the variable stack kernel is expected to have the worst performance of
the three kernels.

5.4 AIM7 Macro-benchmark
The AIM7 benchmark is a measures system performance by simulating workload on
a multiuser system. The AIM7 benchmark was modified slightly so that it could run
on Wombat. The modifications included disabling the network operation simulations
because Wombat does not support the GetHost function, and disabling the file system
operation simulations, because Wombat runs from a ram disk, and the ram disk is
not large enough to support the benchmarks. The AIM7 benchmark is believed to be
representative of a typical system workload, so it should be a good measure for the
average case performance of the three kernels.

The precise benchmark used was 2 clients with the normal workload file, with the
disk and network tests removed. All three kernels are expected to perform similarly, as
the slightly longer kernel operations of the single stack kernel should be compensated
for by a smaller cache and TLB footprint.
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Chapter 6

Performance Results

The results of the benchmarks are supplied in this chapter in a concise format to allow
easy reference. The implications of the results will be discussed in the next chapter.

Single number results have been given for the micro benchmarks. These bench-
marks behaved in a deterministic manner, probably due to their small size and highly
repetitive nature. As such there is no need for a statistical analysis of the results of the
micro-benchmarks. See the previous chapter for a description of each of the tests.

Micro-benchmark Single Stack Multi Stack Variable Stack
Base Memory (kb) 16/278 32/290 16/278

Memory For 100 threads (kb) 68/358 232/518 68/358
Ping Pong (µS) 2.08 2.06 2.12

Null System Call (µS) 1.828 1.612 1.828
Context Switch (µS) 2.266 2.273 2.36

EAS Context Switch (µS) 103 98 103
Exception IPC (µS) 2.861 2.843 2.889

EAS Exception IPC (µS) 103.4 99.6 103.5

The AIM7 benchmark scores varied slightly on each run of the benchmark set.
Therefore the average and standard deviation have been given for 5 runs of the test. The
particular AIM7 workload used was the standard workload with the disk and network
tasks removed. This workload was run in two user tasks.

Quantity Single Stack Multi Stack Variable Stack
Average Time 157.69 197.22 157.78

Standard Deviation 0.015 0.344 0.019
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Chapter 7

Discussion of Performance

The results of the AIM7 benchmark are very unexpected. The three kernels were ex-
pected to perform similarly, or the single stack kernel was expected to perform worse
due to the extra work it must perform. However, the single stack and variable stack
kernels outperformed the multi stack kernel by an astonishing 20

Meanwhile, the micro-benchmarks showed the expected performance differences
between the kernels. That is, the single kernel stack uses less memory than the multi
stack kernel, but is slightly slower, while the variable stack kernel uses the same mem-
ory as the single stack kernel and is slightly slower again. The micro-benchmarks are
treated below first to give a solid foundation for discussion of the surprising AIM7
result.

7.1 Memory Micro-benchmarks
The motivation for using a single kernel stack is to save memory. A static analysis
of the code shows that the TCB size in the single stack kernel is 424 bytes, expanded
from 196 bytes in the multi stack kernel. Thus there is an extra 228 bytes of memory
needed to maintain the single kernels state without the stack. However, because the
multi stack kernel combines its TCB and kernel stack, each thread uses 2 kilobytes of
memory. The single kernel stack uses only the 424 bytes of memory per thread for its
TCB. Due to the method by which TCBs are addressed by the fast-path, it is neccesary
to align TCBs on 512 byte boundaries. The fast-path calculates the address of any
TCB by shifting the bits in the thread identifier to obtain the address of the TCB. This
calculation requires the TCB size to be a power of two. Therefore the effective TCB
size in the single stack kernel is 512 bytes.

The single stack kernel therefore achieves a saving of 75% of the memory used per
thread for TCBs and kernel stacks. This is a significant theoretical saving, but needs
to be measured in practice. As shown in the Base memory benchmark, this saving
accounts for an immediate saving of 16 kilobytes of memory due to TCBs in the kernel
after initial boot-up. since 4 kilobytes is used for the shared kernel stack, this represents
a total saving of 12 kilobytes of memory. This is an immediate saving of four percent
of the total memory in use by the kernel.

After creating 100 threads, the memory saving is much greater as expected. In this
case 164 kilobytes of memory is saved, in relation to the TCBs, with 160 kilobytes of
memory saved in total. The total memory saving of over 30% is worthwhile for em-
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bedded systems. It should be noted that this figure is essentially a best case figure, as it
is unlikely any embedded system requires this many threads. In addition these threads
have all been created in the same address space, so the memory used by the page ta-
bles and mapping database has only been increased by 4 kilobytes for one hundred
threads. Thread creation in a normal system could be expected to increase other kernel
memory usage such as page tables by more than this amount. This reduces the per-
centage memory saving, but not the overall memory saving. Hence, the single kernel
stack represents a method for significant kernel memory use reduction for embedded
systems.

7.2 Performance Micro-benchmarks
The other important goal of this thesis was to achieve comparable single stack ker-
nel performance to multi stack kernel performance. Micro-benchmarks were used to
measure the worst case performance of common kernel operations. The results were
largely as expected, that is the single and variable stack kernels are slightly slower than
the multi stack kernel. Each benchmark is discussed in turn below.

The ping-pong micro-benchmark establishes the systems performance in the IPC
operation. As previously noted, IPC performance is the most important determinant
of micro-kernel performance. Therefore the results of this test are critical. It is im-
mediately apparent that the multi stack kernel performs IPC faster than the single and
variable stack kernel, as expected by the analysis in chapter 3. However, the perfor-
mance difference between the single and multi stack kernel is only 0.02 microseconds.
This is only 10 processor cycles of the 200 MHz ARM processor, approximately 1%
of the time required for an IPC operation. This performance penalty is acceptable in
my view, if IPC performance is truly comparable to system performance, then there
will only be a 1% slowdown in the overall system. However, since IPC is not the only
operation performed in the system, this cost should be amortised to less than 1% of
overall system performance. In my view the performance of IPC in the single stack
kernel is not a hindrance to the use of the single stack kernel.

The null system call benchmark measures the overhead of a system call. The results
show that the single kernel stack takes longer to make a system call than the multi stack
kernel. This difference was expected as discussed in chapter 3. The 0.21 microsecond
difference equates to approximately 105 processor cycles. This performance difference
between the single and multi stack kernel is slightly higher than anticipated, but is a
cost of the single stack kernel that cannot be avoided. The difference is caused by the
necessity of storing the extra registers when making a system call, and reload them
when returning to the user. These figures show the advantage of the multi stack kernel
optimisation for system calls to give a speed gain of almost 10%. This performance
penalty is not expected to excessively impact the single stack kernels overall system
performance, as the extra 0.21 microseconds is expected to be a small percentage of
the execution time of any system call that performs work in the kernel.

The two context switch benchmarks again bear out the expectations set forth in
chapter 3. The single stack kernels context switch is actually marginally faster, even
before subtracting the extra overhead involved in a single stack kernel system call.
Subtracting system call costs reveals a speedup of approximately 0.21 microseconds
for the single stack kernel as opposed to the multi stack kernel. This represents a
significant saving on the cost of a context switch in a single stack kernel. This saving is
not apparent in a cross address space context switch. In fact there is a large performance
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penalty for the single stack kernel, requiring 2500 additional processor cycles for a
context switch than the multi stack kernel. Because there is a complete cache and TLB
flush when changing address spaces on ARM, the EAS context switch benchmark runs
essentially uncached, the reason for its high cost. This makes the additional instructions
used in single stack kernel system call entry and exit very expensive, as they are no
longer cached in the instruction cache. This is believed to be the main determinant of
this performance discrepancy.

The Exception IPC benchmarks are important for the performance of the Wombat
Linux server, one of the main current uses for the L4 micro-kernel. The difference
between the single stack and multi stack kernel is approximately the same as for the IPC
Fast-path, as expected. Again the difference is almost insignificant, so it is not expected
to greatly impact on overall system performance. Once again, the EAS exception costs
are incredibly high due to the need to flush the cache and TLB. Again the single stack
kernel suffers in the EAS benchmark due to the additional instructions it must load into
the cache that are not used in the multi stack kernel.

It can be seen from the micro-benchmarks that the performance of the single stack
kernel is quite close to the multi stack kernel. In no instance is there more than a 10%
performance difference, and these are the operations expected to be most expensive
on a single stack kernel. Therefore in overall system performance we should see no
more than a 10% performance degradation, and ideally much less as the costs are not
incurred constantly as they are in the micro-benchmarks.

7.3 AIM7 Macro-benchmark
To measure the complete system performance, the AIM7 benchmark was used. This
was designed to show the difference in performance of the system in an actual usage
scenario. The test was expected to show a slight performance penalty for the single
and variable stack kernels due to the results from the micro-benchmarks. However the
benchmark returned a very surprising 20

As with any experimental result, this needs to be treated with scepticism until it can
be satisfactorily explained. Because the benchmark is not very stable and crashes on
some runs, I initially doubted the results. Additionally, I had received advice that the
timer in th Wombat Linux server may not be reliable.

I reran the benchmarks and timed the results with a wall clock to ensure that Wom-
bat timers were not the reason behind the performance discrepancy. The wall clock
agreed with the wombat timers to within a second in every case. This was not the
reason for the performance discrepancy.

If the result is accurate, it must be due to reductions in the cache and TLB footprint
of the single stack kernel. I did not expect that this reduction would make such a mas-
sive difference in performance, even though this is one of the reasons L4 outperforms
Mach [12]. To determine the validity of this result a simulation of the cache impact of
the kernels must be performed. There was not enough time to complete this simulation
in the course of this thesis, due to external events.

7.4 Future Work
Further research into the single stack kernel is required. Specifically, it needs to be de-
termined how the single stack kernel affects interrupt latency. Time did not permit the
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modification of the multi stack kernel to make it interruptible, so any testing of inter-
rupt latency in this thesis would not have produced reliable results. It is an interesting
area of investigation, how does the single stack kernel affect interrupt latency, and can
the variable stack kernel improve the interrupt latency performance.

Additionally, it is necessary to run more macro benchmarks on the system. Be-
cause the AIM7 benchmark showed a surprising result, another benchmark needs to be
performed to try to refine the picture of performance under different workloads. Time
constraints once again prevented this.

There is additional optimisation of the single stack kernel that can be performed.
The space can be optimised by combining the state in the TCB into appropriate union
data structures so that variables that are never used at the same time are written to
the same place in memory. It is not known whether this optimisation will be able to
reduce the TCB to 256 bytes, although it would represent a further significant memory
saving if this were possible. An idea for a performance optimisation is to pass the
current TCB as an argument to functions called from continuations. This is because
these functions first operation is invariably to load the current TCB, and this could be
passed more efficiently in a register than accessed from memory again. The impact on
the performance of the kernel from this optimisation is not expected to be large, as the
TCB value is heavily used, so it is usually cached.

Finally, this work needs to be expanded to other architectures, as well as multipro-
cessor machines. The tradeoffs involved with a single kernel stack have not previously
been investigated on multi processor systems, and hence the performance effect is un-
known. It is not expected to significantly affect the performance of these systems.
Porting the kernel to other architectures will provide a more interesting basis for ex-
amining the architectural features that influence the performance of the single stack
kernel. For instance, it is expected that the possible TLB miss savings will greatly en-
hance comparative performance on the MIPS architecture, where TLB misses are very
expensive.
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Chapter 8

Conclusions

To conclude, the single stack kernel has largley met expectations. The original motiva-
tion was to reduce kernel memory usage without significantly affecting overall system
performance. It has met both of these goals.

The single stack kernel uses 75% less memory per thread than the multi stack ker-
nel. This represents a total kernel memory saving of up to 30%.

The single stack kernel at least matches the performance of the multi stack kernel,
as shown by the microbenchmarks, and in fact improves it by a great deal if the AIM7
benchmark is taken at face value.

Therefore it is concluded that the single stack kernel architecture provides an at-
tractive alternative to the traditional threaded and event based kernel architectures. It
is expected to be most useful in embedded systems where memory is at a premium.
It allows embedded systems to use more threads without worrying about kernel mem-
ory limitations. If the performance difference shown in the AIM7 benchmark can be
attributed to the single stack kernel architecture, It is also relevant to any system in
which L4 is used.

Further investigation into these suprising results is needed, both on the ARM archi-
tecture and other architectures that L4 supports. The future looks bright for the single
kernel stack architecture in L4.
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