
University of New South Wales

School of Computer Science and Engineering

Performance Limits of Darwin on L4
Thesis Part B

Tom Birch

Bachelor of Science (Computer Science)

May 2005

Supervisor: Prof. Gernot Heiser

Abstract

Darwin is a modern operating system that forms the basis of Mac OS X, yet there
are concerns about is performance due to its foundation on the Mach kernel. The
L4 microkernel has taken many of the original goals of Mach and implemented them
correctly, achieving high levels of performance. Darwin has been ported to run on
top of L4, in order to take advantage of L4’s high performance. This thesis details
several areas of Darwin that have been modified to take advantage of L4’s, and provides
recommendations for further increases in the performance of L4/Darwin.

2

Contents

1 Introduction 7

2 The L4 Microkernel 9
2.1 What is L4? . 9
2.2 L4/Linux . 10
2.3 Sawmill Linux . 10

3 Darwin 12
3.1 What is Darwin? . 12
3.2 BSD . 13
3.3 Mach . 13

3.3.1 IPC . 14
3.3.2 Remote Procedure Calls . 15
3.3.3 Virtual Memory . 16

3.4 Mach and BSD in Darwin . 17
3.4.1 System calls in Darwin . 18

4 L4/Darwin structure 19
4.1 The basic architecture . 19
4.2 Virtual Memory . 20
4.3 Threads . 20
4.4 Scheduling . 20
4.5 Tasks . 21
4.6 System calls . 21
4.7 IOKit . 22

5 Approach and methods 24
5.1 Darwin’s performance . 24
5.2 L4’s performance . 25
5.3 Taking advantage of L4 . 26
5.4 Benchmarking . 26

5.4.1 L4bench . 26
5.4.2 Test environment . 27

3

5.4.3 Analysis . 27

6 Optimised kernel entry 28
6.1 Background . 28

6.1.1 User/Kernel system call boundary 28
6.1.2 How Darwin implements system calls 29
6.1.3 Using L4 IPC for system calls . 30

6.2 Methods for optimisation . 31
6.2.1 Address-space layout . 31
6.2.2 L4 IPC . 31
6.2.3 Exception IPC . 32

7 L4-IPC-based RPC 34
7.1 Removing the MIG overhead . 35

8 Optimised POSIX threads 37
8.1 Mapping multiple pthreads onto one Mach thread 38
8.2 Fast mutex operations . 39
8.3 Current implementation . 40
8.4 Evaluation . 41

9 A new L4 convenience interface 43

10 Discussion 45
10.1 Limitations of Pistachio N1 . 45
10.2 The current status of L4/Darwin . 46

11 Future work 47
11.1 Experimentation with the Pistachio N2 version of L4 47
11.2 Extensions to POSIX threads . 47
11.3 Large-scale benchmarks . 48
11.4 Automatic generation of MIG stubs . 49
11.5 Up-to-date comparisons . 49

12 Conclusions 51

A Benchmark used for pthreads 52

B Userland stub for optimised task info 55

C Server-side implementation of optimised task info 57

4

List of Figures

2.1 Recursive address spaces in L4 [Lie95] . 10
2.2 Multiple servers in Sawmill Linux [GJP+00] 11

3.1 Mac OS X and Darwin architecture [App06b] 12
3.2 XNU Kernel Architecture [App06b] . 13
3.3 An example MIG function definition . 15
3.4 Mach VM structure . 16

4.1 Address space layouts of userland processes in L4/Darwin and native Darwin 22
4.2 Current syscall implementation . 23

6.1 A typical system call stub in Darwin . 30
6.2 Syscalls with an exception handler . 33

7.1 Call path of a function exported by MIG (left) and the optimised version
(right) . 35

8.1 Pthread mutex lock protocol in Darwin 38
8.2 Syscall redirection and a semaphore server for lightweight pthreads 40

9.1 Flow of execution when making an IPC call with the L4 convenience
interface . 44

5

List of Tables

3.1 Number of exported functions [App] . 15

6.1 Cycle costs of various system calls on a 1.8GHz iMac Core Duo 31
6.2 Cycle costs various system calls on a 1.83GHz iMac Core Duo 32

7.1 Cycle costs of MIG overhead on a task info call on a 1.8GHz iMac Core
Duo . 34

8.1 Overhead for system call redirection . 41
8.2 Cycle costs of pthread synchronisation . 41

9.1 Comparison of code generated by different compiler flags for Appendix B 44

6

Chapter 1

Introduction

Darwin is a POSIX-compliant operating system derived from NeXTSTEP. It is part of
Apple’s Mac OS X, one of the 3 major desktop operating systems today. OS X is a
closed source operating system, but Darwin is made available as an open source project
by Apple. OS X is used by millions of people, and is heralded for its impressive features
and ease of use. Despite this, there have been repeated concerns about the performance
of OS X in various benchmarks when compared to Linux and Windows [IBM04].

Performance has always been a matter of great importance when designing operating
systems. As with any engineering task, tradeoffs are required to achieve a balance
between multiple goals. There are many goals or requirements of a modern operating
system, namely convenience, abstraction, efficiency, ability to evolve and protection.
Balancing all these requirements is becoming increasingly hard with the ever-growing
demands of todays computers.

Many of the performance problems in Darwin are blamed on its foundation on Mach,
one of the first microkernel attempts. While popular in its own time, it is now consid-
ered sub-standard when compared to current microkernel projects such as L4 and even
monolithic operating systems such as Linux.

Recently Darwin was ported to the L4 Microkernel by the ERTOS group at NICTA [Emba].
It is still a work in progress, but is quite functional and able to run many existing Darwin
binaries. Currently the port is only targeted at x86-based systems.

The aim of porting Darwin to L4 is to make Darwin take advantage of L4’s improve-
ments over Mach in areas such as IPC performance and memory management. While
there is potentially much to be gained from porting to L4, care must be taken to pre-
serve the original interfaces presented by the Darwin kernel in order for existing Darwin
programs to function correctly.

Because Darwin has been ported with very little modification, there are many situa-
tions in which operations in L4/Darwin are more expensive than the same operation in
native Darwin. This is because in addition to performing all the work necessitated by
Darwin, there is also work that must be done by L4 or the glue code to tie everything
together. An example of this is that Darwin system calls now travel over L4 IPC (Sec-
tion 4.6), thus additional processing is required to pack and unpack the arguments to

7

the system call into an L4 IPC message.
There are three goals of this thesis:

• To study the performance characteristics of the L4/Darwin port and identify areas
where improvements can be made.

• To minimise any overheads introduced by L4 (e.g. for system calls) to ensure that
the ported system is not worse than native Darwin.

• To explore various means of significantly modifying parts of Darwin to take ad-
vantage of features of L4.

I plan to use a wide selection of benchmarks to achieve the first goal and to help under-
stand my progress in the second and third goals.

In the following sections I will cover

• The L4 Microkernel

• The motivation for porting Darwin to L4

• Darwin operating system and some its major components

• The design of L4/Darwin

• Implementation details and analysis of optimisations

8

Chapter 2

The L4 Microkernel

Before covering the specifics of the L4/Darwin port and the planned optimisations, it is
necessary to first understand what L4 is and why it makes a good basis for a modern
operating system. I will give a brief overview of the L4 Microkernel, and introduce two
existing L4-based operating systems: L4/Linux and Sawmill Linux.

2.1 What is L4?

The microkernel approach to operating system design is aimed at removing functionality
such as the file system and network stack from the traditional monolithic kernel and
running it in userland. The main functionality in a microkernel-based system lies in
user-level servers, and the microkernel simply provides a means for programs and servers
to communicate and protect themselves from each other.

L4 is a 2nd-generation microkernel. Having learned from the mistakes of previous
microkernel efforts [HHL+], the design of L4 emphasises a small trusted computing base
(TCB), high performance and scalability [Embe]. L4 is designed to have a low cache
footprint [Lie95] thus the overheads of trapping into L4 are reduced, which was just
one of the problems with Mach’s inter-process communication (IPC) primitive. L4 also
emphasises only implementing the necessary primitives required for security, such as
lightweight threads with unique identifiers and recursive address spaces.

Recursive address spaces in L4 are an interesting new concept. Processes may grant
(and relinquish control of) or map (i.e. share) regions of their address space to other
address spaces with L4 IPC. Processes can also downgrade previously mapped regions
of memory or discard them completely. In Figure 2.1 we see std pager mapping a page
to f1, which then maps this page to F . At this stage std pager, f1 and F all share the
same page data. When F performs a grant operation, it releases control of the page,
which is now shared between std pager, f1 and userA.

L4 provides a synchronous (i.e. a send operation will block until the destination
has received the message) IPC primitive to allow threads to exchange messages. IPC
messages have a maximum length of 64 words (word length defined by the architecture)
so in order to send long messages, shared memory must be used. The fact that L4 IPC

9

Figure 2.1: Recursive address spaces in L4 [Lie95]

is synchronous and has bounded message lengths means that the kernel can avoid any
buffering of messages, reducing overhead and complexity in the kernel.

Interrupts in L4 are modelled as IPC messages. A thread registers to handle a specific
interrupt number, and whenever that interrupt occurs, the kernel fabricates an IPC from
a thread with the same id as the interrupt number. This is one of the properties of L4
that allows for efficient implementation of drivers on L4-based systems.

2.2 L4/Linux

There are two main research projects aimed at porting Linux to L4: the L4Linux project
at TU Dresden [OSG] and the Wombat project by the ERTOS group at NICTA [Embf].
Both projects aim at minimal modifications to the Linux kernel, although Wombat is
aimed towards embedded devices.

The Linux kernel runs in one address space and userland programs run in their own
address spaces. IPC or exception handling is used for system calls (depending on which
version of L4 is used) and L4 mappings are used to control memory access.

The work on L4/Linux is very similar to the L4/Darwin project as they are both
POSIX [Ins05] operating systems with monolithic kernels, thus many challenges are
common to the two projects (e.g. signal handling, system call despatching, scheduling).
L4/Darwin borrows a lot form L4/Linux in terms of its approach to these problems.

2.3 Sawmill Linux

Sawmill Linux was a research project at the IBM T.J. Watson Research Center aimed
at constructing a multi-server operating system on L4. Whereas in traditional Linux,
all kernel functionality resides in the same address space, the Sawmill project has split
up the Linux kernel into various modules, e.g. Virtual File System (VFS) and Pluggable

10

User Task

VFS

PFS

Driver

User Task

VFS

PFS

Driver

User Task

VFS

PFS

Driver

openopen read/write

read/writelookup

read/write

lookup

block read block read block read

open read/write

mount fault

access fault

Figure 2.2: Multiple servers in Sawmill Linux [GJP+00]

File System (PFS) modules reside in different address spaces [GJP+00]. Sawmill also
places a strict set of protection and semantic requirements on servers, and one of the
goals is to implement these without significant performance degradation.

The different servers communicate via L4 IPC, and in order to solve the problem
of a long chain of servers required for tasks such as VFS operations, user libraries were
modified so that some operations communicate directly with the server responsible. For
example, following the traditional VFS interface in Linux, a user task would have to
contact the VFS server, which would in turn forward requests to the specific PFS server,
which would then communicate with the driver (left side of Figure 2.2). This can be
optimised however by modifying the user task to talk directly to the PFS server for
read/write operations (middle of Figure 2.2). A further optimisation on top of this is to
consult the VFS server only on mount operations, and talk directly to the PFS server
for everything else (right side of Figure 2.2).

While this work provides a good set of guidelines to consider when implementing
systems on top of microkernels, it is in contrast to the work on L4/Darwin as we are
only considering a monolithic server approach.

11

Chapter 3

Darwin

In order to understand the motivation for porting Darwin to L4, it is necessary to
understand exactly what Darwin is. Here I will introduce Darwin and discuss the two
major components — BSD and Mach — and how they are combined in Darwin. I will
also discuss some reasons why Darwin makes a good choice for a system to port to L4.

3.1 What is Darwin?

The Darwin operating system is an open-source subset of Apple’s Mac OS X, which is
derived from the NeXTSTEP operating system [App06c]. It is a full operating system
by itself, capable of running many applications including the apache web server, MySQL
and a whole host of other UNIX applications.

Because Darwin is a subset of OS X, it shares many components such as the kernel
— XNU, dynamic linker — dyld, support for the Mach-O binary format and the driver
framework — IOKit. Darwin is different in that it lacks many proprietary closed-source
components of OS X (Figure 3.1) such as the window server, some proprietary kernel
functionality (such as support for PowerPC binaries on i386), various user-level API’s,
and many drivers (although some are included in binary-only form). XNU, as shown in
Figure 3.2, is a combination of the 4.4BSD kernel, the Mach 3 microkernel and IOKit

In Mac OS X, processes do not normally share memory. Instead, the kernel assigns each process its
own address space, controlling access to these address spaces. This control ensures that no application
can inadvertently access or modify another application’s memory (protection). Size is not an issue;
with the virtual memory system included in Mac OS X, each application has access to its own 4 GB
address space.

Viewed together, all applications are said to run in user space, but this does not imply that they share
memory. User space is simply a term for the combined address spaces of all user-level applications.
The kernel itself has its own address space, called kernel space. In Mac OS X, no application can
directly modify the memory of the system software (the kernel).

Although user processes do not share memory by default as in Mac OS 9, communication (and even
memory sharing) between applications is still possible. For example, the kernel offers a rich set of
primitives to permit some sharing of information among processes. These primitives include shared
libraries, frameworks, and POSIX shared memory. Mach messaging provides another approach,
handing memory from one process to another. Unlike Mac OS 9, however, memory sharing cannot
occur without explicit action by the programmer.

Darwin

The Mac OS X kernel is an Open Source project. The kernel, along with other core parts of Mac OS
X are collectively referred to as Darwin. Darwin is a complete operating system based on many of
the same technologies that underlie Mac OS X. However, Darwin does not include Apple’s proprietary
graphics or applications layers, such as Quartz, QuickTime, Cocoa, Carbon, or OpenGL.

Figure 3-2 (page 18) shows the relationship between Darwin and Mac OS X. Both build upon the
same kernel, but Mac OS X adds Core Services, Application Services and QuickTime, as well as the
Classic, Carbon, Cocoa, and Java (JDK) application environments. Both Darwin and Mac OS X include
the BSD command-line application environment; however, in Mac OS X, use of environment is not
required, and thus it is hidden from the user unless they choose to access it.

Figure 3-2 Darwin and Mac OS X

BSDCocoaCarbon Java
(JDK)

BSDClassic

Core Services

Kernel environment

QuickTimeApplication Services

Application
environment

Darwin technology is based on BSD, Mach 3.0, and Apple technologies. Best of all, Darwin technology
is Open Source technology, which means that developers have full access to the source code. In effect,
Mac OS X third-party developers can be part of the Darwin core system software development team.
Developers can also see how Apple is doing things in the core operating system and adopt (or adapt)
code to use within their own products. Refer to the Apple Public Source License (APSL) for details.

18 Darwin

2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Kernel Architecture Overview

Figure 3.1: Mac OS X and Darwin architecture [App06b]

12

Because the same software forms the core of both Mac OS X and Darwin, developers can create
low-level software that runs on both Mac OS X and Darwin with few, if any, changes. The only
difference is likely to be in the way the software interacts with the application environment.

Darwin is based on proven technology from many sources. A large portion of this technology is
derived from FreeBSD, a version of 4.4BSD that offers advanced networking, performance, security,
and compatibility features. Other parts of the system software, such as Mach, are based on technology
previously used in Apple’s MkLinux project, in Mac OS X Server, and in technology acquired from
NeXT. Much of the code is platform-independent. All of the core operating-system code is available
in source form.

The core technologies have been chosen for several reasons. Mach provides a clean set of abstractions
for dealing with memory management, interprocess (and interprocessor) communication (IPC), and
other low-level operating-system functions. In today’s rapidly changing hardware environment, this
provides a useful layer of insulation between the operating system and the underlying hardware.

BSD is a carefully engineered, mature operating system with many capabilities. In fact, most of today’s
commercial UNIX and UNIX-like operating systems contain a great deal of BSD code. BSD also
provides a set of industry-standard APIs.

New technologies, such as the I/O Kit and Network Kernel Extensions (NKEs), have been designed
and engineered by Apple to take advantage of advanced capabilities, such as those provided by an
object-oriented programming model. Mac OS X combines these new technologies with time-tested
industry standards to create an operating system that is stable, reliable, flexible, and extensible.

Architecture

The foundation layer of Darwin and Mac OS X is composed of several architectural components, as
shown in Figure 3-3 (page 19). Taken together, these components form the kernel environment.

Figure 3-3 Mac OS X kernel architecture

Common services

Kernel
environment

Application environments

Mach

BSDFile system
Networking

NKE

Drivers

I/O Kit

Architecture 19
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Kernel Architecture Overview

Figure 3.2: XNU Kernel Architecture [App06b]

(Section 4.7). Whereas most Mach-based systems run the guest OS in userland (with
exception of Tru64 UNIX [OS] and NeXTSTEP [McC]), due to performance issues,
the BSD part of XNU runs alongside Mach in protected mode, a technique known as
‘colocation’.

Darwin is POSIX [Ins05] compliant and capable of running the majority of BSD
programs with a simple recompile. There are also a large collection of Linux applications
that have been ported to Darwin [Thea, Por].

3.2 BSD

The Berkeley Software Distribution (BSD) operating system was one of the first UNIX
implementations, originating from the University of California, Berkeley in the 70s.
Today there are many flavours of BSD including OpenBSD, NetBSD and FreeBSD which
all derive from 4.4BSD. The BSD kernel implementation used in Darwin is 4.4BSD, with
heavy modifications to run next to Mach (Section 3.4) while the userland components,
including most of the libraries and common utilities, are from FreeBSD.

3.3 Mach

Mach is one of the earlier microkernel attempts, first developed at Carnegie Mellon
University beginning in 1985. It was quite popular in its day, and there are many
operating system projects based on Mach [Hel94, RMGB91, dPSR96, GDFR90, OS ,
McC], all of which are monolithic guest OSes running on top of Mach in userland or
with colocation. In light of 2nd generation microkernels such as L4 however, it is clear
that Mach has performance problems [HHL+, Lie95].

Mach provides many facilities, including:

• an asynchronous, capability-based IPC primitive (Section 3.3.1)

• an Interface Definition Language (IDL) compiler (Section 3.3.2)

13

• a complex virtual memory (VM) system (Section 3.3.3)

In the following sections I will cover each of these in detail.

3.3.1 IPC

One of the most important features of Mach is its IPC functionality. Mach provides a
very complex mechanism for communicating with other threads, allowing for not only
data to be transferred, but also access rights to objects such as tasks and threads, drivers,
regions of virtual memory, etc. Mach’s IPC primitive is asynchronous and capability
based, a contrast to L4’s synchronous, thread-ID based IPC primitive (Section 2).

In Mach IPC, the most fundamental concept is a ‘port’. A port represents a message
box, to which messages can be written to and read from. Access to ports is capability
based, and the capabilities in Mach IPC are represented by ‘port rights’. There are three
types of port rights:

• Send: there may be multiple send rights for a given port. All send rights grant the
owner the ability to send an unbounded number of messages to the port.

• Send-once: a modified send right that becomes invalid once used. Send-once rights
grant the owner the ability to send at most one message to a port. They are
commonly used to implement replies.

• Receive: there is only ever one receiver for a port. Receive rights grant the owner
exclusive access to read messages sent to a port, and use any typed data contained
in such messages (such as port rights or out-of-line data discussed below).

Port rights are stored in a task-local namespace, thus copying a port right to another
task without using the Mach API is meaningless. The kernel checks port rights on every
IPC system call.

It is important to note that Mach IPC is asynchronous. Send calls return imme-
diately, and the message is buffered in the kernel until the receiver performs a receive
operation.

There are 3 types of data that can be sent through Mach IPC:

• port rights, which is how capabilities are transferred

• inline data that is contained within the message

• out-of-line data, represented by a pointer and a length in the message, which is
interpreted by the kernel.

All data transfers in Mach IPC use copy semantics, i.e. there there is simple way to share
a region of memory with Mach IPC. Memory sharing is possible however by creating a
memory object and sending a port right for that memory object to another task.

14

routine task_info(
target_task : task_name_t;
flavor : task_flavor_t;

out task_info_out : task_info_t, CountInOut);

Figure 3.3: An example MIG function definition

Call method Number
BSD trap ∼270
Mach trap 35
MIG RPC ∼346

Table 3.1: Number of exported functions [App]
Numbers may vary depending on kernel version, target architecture and compile-time

options

3.3.2 Remote Procedure Calls

One of the major uses of Mach IPC is remote procedure call (RPC). In a traditional op-
erating system, kernel functionality can only be exported through system calls, whereas
in Mach, another option is to export functionality as RPC over Mach IPC. The advan-
tage of RPC over system calls is that functionality can be transparently implemented
outside the kernel. For example, processes use Mach-IPC-based RPC to make calls to
the window server.

Mach facilitates the use of RPC through the Mach Interface Generator (MIG). MIG
is an IDL compiler that greatly simplifies the process of calling functions in other address
spaces. Functions can be described by a small interface definition file, which specifies the
arguments that function takes. An example stub for task info is shown in Figure 3.3.
MIG processes these files and generates client and server-side stubs.

The role of the client-side stub is to present a C function with the same prototype as
the exported function. This function marshalls its arguments into a Mach IPC message,
sends it to the appropriate port, gracefully handle any errors that may occur and returns
an appropriate return value.

The role of the server-side stub is to handle incoming requests, un-marshall arguments
and use them to call the actual implementation of the exported function, then pass return
values and/or error status back through Mach IPC to the caller.

Many kernel functions are exported to userland through MIG RPC. Table 3.1 shows
the number of these functions compared to system calls. Of particular note is the VM
subsystem interface, including functions to allocate and alter the properties of regions
of an address space. While adding to the cost of RPC when compared to system calls,
due to the indirection through MIG stub code, MIG provides a lot of flexibility when
defining cross address-space interfaces.

15

task

pmap

vm_map

vm_map_entry
vm_map_entry

vm_map_entry

vm_object vm_map

memory_object
(pager)

vm_object
(shadow)

Figure 3.4: Mach VM structure

3.3.3 Virtual Memory

Mach has a very complex VM system [RTY+88, App06b] as shown in Figure 3.4. Mach
VM is based around the idea that physical memory is a cache of the complete virtual
address space. It aims to manage everything to do with the virtual address space,
including paging functionality and shared memory. Mach VM in Darwin also provides
extensive copy-on-write functionality that is used throughout many areas of Darwin
(including IPC) in order to avoid unnecessary copying.

The Mach VM system is split up into its machine dependent (the pmap layer) and
machine independent parts (the vm interfaces) such that very little has to be modified
in order to adapt it to a new architecture.

Each task contains a single vm map which represents its address space, and this vm map
contains:

• a single pmap, the Mach structure for a machine dependent page table (which
maps virtual address to physical addresses)

• a list of vm map entry structures

A vm map entry may may reference either a vm object or another vm map (for the pur-
pose of sharing). This is commonly used for the shared text segment of a dynamic
library: there will be a vm map representing one or more shared libraries, and each task
that wants access to those libraries will contain a reference to that vm map.

16

Copy-on-write functionality is achieved through shadow vm objects. When a vm object
is copied, an empty vm object is created and its ‘shadow’ is set to point to the original
vm object. Read operations are forwarded to the shadow vm object, whereas write
operations cause data to be copied from the shadow and then modified. A shadow
vm object may itself have a shadow vm object, this is known as shadow-chaining.
Shadow chains can be arbitrarily long.

The actual data in vm objects is provided by memory objects, which are responsible
for transferring page data between memory and the physical backing store, such as a
hard disk or network. A memory object can represent a memory-mapped file or the VM
backing store.

The pmap layer manages all the hardware-specific details of virtual to physical and
physical to virtual (ptov) translation of memory addresses. A pmap contains a page
table and a ptov mapping, and provides an appropriate interface to modify these. The
pmap layer is also responsible for managing the translation look-aside buffer (TLB). All
TLB insertion and deletion operations are performed by the pmap layer, providing a
convenient abstraction differences in the highly machine-specific TLB. Pmap removal
and protection operations for example, translate directly into TLB remove operations.

When a pagefault occurs, the tasks pmap is first consulted. If it does not contain a
mapping for the faulting virtual address, the corresponding vm map entry is looked up,
and depending on whether it references a vm object or vm map, the object is consulted or
the search starts again in the submap. If a vm object is referenced, the search continues
through the shadow vm objects to find a translation, or if one isn’t found, the referenced
memory object is used to retrieve the page data from disk.

3.4 Mach and BSD in Darwin

Mach and BSD are both free-standing operating systems, each implementing their own
solutions to many issues that come up when implementing an operating system, such
as abstracting threads and address spaces. When these two operating systems were
combined in a monolithic kernel in Darwin, there were several cases where both Mach
and BSD implemented abstractions or policy for the same concept, and each of these
had to be merged in order to make a functional system.

One example of this is that the Mach and BSD kernels both have their own concept
of an address space (Mach task vs BSD process) and a thread (Mach threads vs BSD
kernel threads). In order for BSD and Mach to cooperate, each BSD process is mapped
to exactly one Mach task, and the kernel threads are replaced with Mach threads.

Scheduling policy is another example, as both Mach and BSD implement their own
schedulers. Since BSD threads and processes are mapped onto Mach threads and tasks
respectively, the choice was made to use the Mach scheduler, and modify the BSD
scheduler to make calls into Mach when it needs to change the priority of a thread or
modify the run queue.

Another similar problem is that of paging and caching policy: Mach implements
its own page cache, which is used to cache memory mapped files, whilst BSD has its

17

own filesystem cache to speed up file accesses through read and write operations. The
potential exists for a page to be cached in both the Mach and BSD caches, effectively
wasting a page of physical memory. The solution in Darwin is the unified buffer cache
(UBC) and the universal page list (UPL) interface [App06a]. The BSD filesystem cache
and the Mach VM cache are combined in the UBC. Modifications to the UBC are
achieved through the UPL interface. For example, VFS operations use the UPL interface
to allocate pages for read and write operations.

There is a history of other projects involving a guest OS running on Mach (ei-
ther as a user-level server or with colocation) that have had problems with match-
ing policy implemented in Mach with the policy of the Guest OS, these include the
MkLinux project [dPSR96], the Lites Server project [Hel94] and the DOS on Mach
project [RMGB91]. Darwin has managed to resolve these problems by colocating Mach
and BSD and heavily modifying both of them in order to resolve the duplication of
abstractions. This colocation however prohibits any advantages derived from using a
microkernel.

3.4.1 System calls in Darwin

XNU publishes both the full set of BSD system calls (read, write, fork, exec, etc.) and
the full set of Mach system calls (mach msg, thread self, task self, thread switch,
etc.) plus some extra system calls for managing the mix of Mach and BSD, e.g.
task for pid for looking up a Mach task given a BSD process id. Both types of system
calls are implemented as traps through the same exception handler (Mach traps all have
a negative system call number, BSD traps are all positive) and are dispatched to the rel-
evant routine in the Mach or BSD system call table. There are also about 350 other ker-
nel functions exported to userland through RPC stubs generated by MIG(Section 3.3.2),
including host page size, thread resume and memory object data request. The dis-
tribution of published kernel functions is shown in Table 3.1.

18

Chapter 4

L4/Darwin structure

Before covering methods of optimisation for L4/Darwin, I will first cover various im-
plementation details that need to be understood in order to appreciate some of the
optimisations. Here I will cover the basic design, and touch on various important areas
in Darwin that were modified to work on top of L4.

4.1 The basic architecture

Darwin has been ported to run on top of L4 such that the modified XNU runs as a
userland program in its own address space. Because Darwin running on L4 has the same
privileges as any other user program and cannot directly control any hardware, it is now
much easier to run multiple instances of it on the same machine. There are plans to
do just this, as well as plans to run instances of the Wombat [Embf] server at the same
time. This would allow clean separation of userland environments into separate virtual
machines, and permit fast communication between a Darwin and Linux environment
running on the same machine. There is still much work to be done on this however and
it is not within the scope of this thesis.

Changes have been made to many of the architecture-specific parts of Darwin (mostly
XNU and libc) in order for it to run on top of L4. Most of the changes are fairly straight-
forward, but there are some interesting problems when it comes to thread interaction
that have proven challenging. Almost all of the modifications to XNU were made to
the Mach component, as there were very little architecture specific parts of BSD that
needed changing.

The following sections detail the most important areas of Darwin that needed mod-
ification to work on L4. Throughout the rest of this document, kernel refers to the
L4/Darwin kernel server, i.e. the modified XNU kernel running in a single user-land
address space on top of L4.

19

4.2 Virtual Memory

The Mach VM subsystem is very portable. All of the architecture dependent code lives
in the pmap layer - an abstraction layer in Darwin to hide hardware-specific memory
address translation discussed in Section 3.3.3. All that was needed to make Mach VM
operational was to rewrite this code for L4’s memory primitives.

The pmap operations map quite cleanly onto L4 primitives: a pmap remove causes an
L4 Unmap, pmap protect and pmap page protect both cause an L4 Unmap of the revoked
permissions, and a pmap enter just inserts into the page table and ptov mapping, and
the page table is looked up on a pagefault IPC, which causes an L4 Map Item to be sent
to the faulting thread. The operations on the kernel pmap translate to L4 Flush as
pages must be unmapped/protected in the current address space. In order to save the
cost of calling vm fault on every page fault, we added a pmap fault routine that checks
if there is an entry in the pmap that satisfies the given permission, and returns that.
We call this routine before vm fault on every pagefault.

Mach VM is not fully functional on L4 yet, as reference/dirty bits are not yet imple-
mented and paging in/out is not operational.

4.3 Threads

Darwin uses Mach threads as the fundamental thread abstraction, and managas all
scheduling in the context of Mach threads. Darwin assumes that Mach threads run
on raw hardware and be managed by the Mach scheduler. Since L4 provides its own
abstraction of threads that run directly on hardware, Mach threads must be modified
to accommodate this.

Each userland Mach thread maps onto exactly one L4 thread. In the kernel however,
all threads share a single L4 thread and stack switching is used to change between them.
This is due to the way interrupts are handled in an L4-based system. Interrupts have
to be sent as L4 IPC messages to a particular thread, as opposed to interrupts being
handled by the exception handler regardless of the current thread. Having multiple
Mach threads hosted by a single L4 thread greatly simplifies the interrupt handling logic
in L4/Darwin.

4.4 Scheduling

Darwin makes strong assertions about which thread is running at any given time. This
makes sense as the Mach scheduler can enforce control over all switching between threads
through its exclusive access to hardware. These assertions fail when Darwin is running
on top of L4, which provides its own thread abstraction. To prevent unexpected events
occurring, the Mach scheduler has been modified to keep every userland thread in a
stopped state until it is chosen to run. This ensures that only the Mach scheduler’s
current thread may be running on an L4 thread at any point in time.

20

This implementation is sub-optimal however, as the L4/Darwin kernel server must
be consulted for every scheduling decision. It would be preferable to take advantage of
L4’s own scheduler and allow it more freedom to choose the next thread to run. This
is very difficult as L4 has a very simplistic fixed-priority round-robin scheduler, whereas
Mach employs a much more complex scheduler policy. There is current (though yet
unpublished) work on a more extensible scheduler for L4 however, and it is hoped that
we will be able to get more efficient scheduling in the future by expressing the complex
the policies of the Mach scheduler using L4’s scheduling primitives.

4.5 Tasks

In L4/Darwin, Mach tasks are complemented by L4 address spaces, but some modifica-
tions to Darwin were required to make everything work correctly. Each Mach task maps
onto exactly one L4 address space. The pager for each address space is set to be the
L4/Darwin kernel server, and the L4 user thread control block(UTCB) area is decided
by the kernel server. The number of threads in an L4 address space is currently limited
by the size of the L4 UTCB area (i.e. the maximum number of threads is the size of the
UTCB area, divided by the size of a UTCB, which for a given architecture is a fixed in
size).

The address space layout of a task in L4/Darwin is shown in Figure 4.1. Currently
significant portions of the address space are reserved by L4. The kernel interface page
(KIP) and UTCB area are small enough to be insignificant in a virtual address space
with 220 pages, but the more than 10% of the address space used for the L4 kernel is
unacceptable. It is hoped that future work on L4 will greatly reduce this, possibly even
a transition to a physically-addressed L4 kernel [Nou05] to completely free up the virtual
address region reserved by L4.

4.6 System calls

System calls require special attention in L4/Darwin in order for them to function cor-
rectly. The L4 model for dealing with events such as system calls and interrupts is vastly
different from the traditional approach used in many other operating systems. As men-
tioned in Section 2.1, L4 models these events as L4 IPC messages. This is in contrast to
the trap-handler model used in Darwin where system call execution in the kernel begins
at the exception handler. In L4/Darwin a system call loop is used to handle all incoming
interrupts and system calls. This loop accepts L4 IPC messages, processes them and
replies accordingly. Currently system calls, pagefaults, timer ticks and console input all
handled this way by the same thread.

Mach and BSD system calls in L4/Darwin are provided through L4 IPC. As shown
in Figure 4.2, the system call stubs in libc have been modified to call a C function. This
function packs all necessary information (including system call number and stack pointer)
into an L4 IPC message which is sent to the L4/Darwin kernel server and handled by
the system call loop. The system call number and stack pointer are unpacked, the

21

UTCB area

Kernel Interface Page

commpage area

0xb0011000

0xb0010000

0xb0000000

0xaffec000

commpage area

0xfffec000

0xdf000000

L4 Kernel

16 pages

1 page

20 pages

20 pages

528mb

L4/Darwin user address space Darwin user address space

Figure 4.1: Address space layouts of userland processes in L4/Darwin and native Darwin

arguments are copied in from the stack and the appropriate call is made. A reply is sent
back containing the return value and a flag indicating the error status.

There is a system call used by pthreads(described in Chapter 8) to set the thread-
specific storage pointer. In Darwin this pointer is stored in a special IA32 segment
register %gs:0. Since this register is reserved for use by L4, the pthread thread-specific
storage pointer is stored in the USER DEFINED HANDLE field of the thread’s UTCB.

4.7 IOKit

IOKit is the driver framework in Darwin and Mac OS X. It is separate from both the
Mach and BSD parts of Darwin, is written in a stripped-down version of C++, and does
not depend on any specific features of the Darwin kernel. All drivers in Darwin and
OSX are provided through IOKit.

IOKit has been ported to L4 by Geoffrey Lee, and his undergraduate thesis covers its
implementation [Lee05]. IOKit runs directly on top of L4, and makes use of L4 IPC for
communication with the L4/Darwin kernel server. IOKit in L4/Darwin is able to load

22

L4/Darwin ServerUserland program

L4 Kernel

void

syscall_loop(void) {

 while(1) {

 wait for IPC

 get syscall_no from message

 get args from message

 process syscall

 reply to IPC

 }

}

L4 IPC L4 IPCUserland

Kernel

int

l4_ipc_stub(void *args) {

 marshall arguments into IPC

 make IPC call to L4/Darwin server

 un-marshall arguments

 perform error handling

}

_read:

push SYS_READ

call _l4_ipc_stub

ret

Figure 4.2: Current syscall implementation

and use binary drivers that ship with Mac OS X so supporting new Apple hardware as
it comes out does not pose any significant problem in this respect.

23

Chapter 5

Approach and methods

In the following chapters I will cover the strategies I have chosen to optimise L4/Darwin,
but first is necessary to discuss the overall strategy for optimisation. In the sections
below I will discuss the areas where Darwin has performance problems, the areas where
L4 excels in terms of performance, and the reasons for optimising certain parts of Darwin
by taking advantage of L4. I will also detail the benchmarking methods used throughout
this thesis.

5.1 Darwin’s performance

One of the most notable features of Darwin is that it is based on the Mach kernel.
Mach was originally designed as a microkernel, with a memory subsystem and an IPC
primitive to provide all the abstraction required to support a guest operating system
running in userland. In light of new research on operating systems, Mach’s VM and
IPC subsystems are very complex and inefficient. Mach’s VM system is very complex,
and its use is too pervasive throughout Darwin to consider modifications to it within the
scope of this thesis. Mach IPC however is more suitable for modification as it is used in
relatively isolated instances throughout Darwin.

Mach’s IPC primitive is very complex and expensive. There are approximately 18,000
lines of code [App] devoted to processing Mach IPC requests in the kernel, 1200 of which
make up the “HOTPATH” for the trap handler. Because it is capability based, checking
must be performed in the kernel to authenticate each IPC operation, and in Mach this
is an expensive operation. Being an asynchronous IPC primitive, if the receiver is not
blocked waiting for a message, the message is stored in the kernel until is requested,
which adds even more overhead and complexity.

Mach IPC allows data to be sent inline — the message contains the data, or out-of-
line — the message contains a pointer and length that is understood by the kernel. Data
can be copied up to 4 times between the sender making the trap and the receiver being
able to access the data [GDFR90]. This is a gross inefficiency, especially when sending
large amounts of data inline, which is possible in OS X. The Mach IPC abstraction in
the CoreFoundation framework(a library in OS X that provides a common interface to

24

much system functionality, as well as a collection of common data structures) will inline
up to 10 pages of data before switching to use out-of-line transfers in Mach IPC.

The high cost of Mach IPC has been noted many times [Hel94, RMGB91, dPSR96,
GDFR90], and in most attempts to port a guest OS to Mach, the authors have resorted
to many techniques to avoid using Mach IPC. An example of this is implementing kernel
functionality of the guest OS in userlevel libraries in order to not have to contact the
kernel nearly as often [Hel94]. This type of optimisation is not limited to microkernel-
based systems, it would bring performance benefits to any system — while at the same
time introducing more complexity and security issues [dPSR96]) — but the fact that it
has been used in many Mach projects shows just how prohibitively expensive Mach IPC
is in practice.

The use of MIG RPC in Mach-based systems is also cause for concern. Traditionally,
RPC is a synchronous operation, emulating the function-call semantics of a program-
ming language, but in Mach this synchronous operation can only be implemented with
asynchronous primitives, which adds extra overhead. The fact that so much of Mach’s
functionality is exported to userland via MIG RPC stubs means that there is a high cost
for most interaction with the kernel.

5.2 L4’s performance

In contrast to Darwin and Mach, L4’s IPC primitive is one of the major reasons why L4
is considered so efficient [HHL+]. L4 IPC is far from feature-compatible with Mach IPC,
and it is fundamentally different in several ways, but due to its simplicity, it is possible
to efficiently emulate Mach IPC with a layer on top of L4 IPC.

One of the critical differences of L4 is that it is synchronous — an attempt to send
a message to another thread will block until the receiver performs a receive operation.
This ensures that no messages are buffered in the kernel, and thus keeps the overhead
of sending messages with L4 IPC relatively low.

Another difference in L4 IPC is that it is not capability based — the destination
for an IPC message is specified only by the thread-ID for that thread. As a result, any
thread may send an IPC message to any other thread in the system, and L4 does not
have to perform any security checks to ensure that such an operation is valid. Security
mechanisms can of course be built on top of L4 IPC and there is work on security
mechanisms built into L4 itself [Embd].

One of the important features of L4 IPC is that it has a very tight restriction on
what can be transferred in a message. Messages are limited to a total of 64 words, with
the word size dependent on the underlying architecture. This restriction ensures that
very little is copied on an IPC operation by the L4 kernel itself, and enforces the use of
shared memory for copying large amounts of data.

25

5.3 Taking advantage of L4

Because of the overwhelming evidence in favour of L4’s IPC primitive, the clear way to
increase the performance of Darwin running on top of L4 is to take advantage of L4 IPC
as much as possible. I have chose three distinct areas to examine the potential of L4
IPC in L4/Darwin, each for different reasons.

The cost of crossing traditional kernel/userland boundary is fundamental to overall
system performance, thus exploring the use of L4 IPC as the means for crossing this
boundary is an important step in achieving maximum performance for the whole system.
I discuss the kernel/userland boundary and how it fits in with L4 in depth in Chapter 6.

Using L4 as a replacement for Mach IPC would give an insight into how much
advantage can be gained by completely replacing all uses of Mach IPC with L4 IPC in
L4/Darwin. I discuss this in the context of remote procedure calls and provide some
insight into the where the costs of Mach IPC actually come from in Chapter 7.

Finally, as L4 allows new efficiencies such as IPC transfer between threads in the
same address space without an address-space switch, it is necessary to explore methods
to take advantage of this. In Chapter 8 I discuss the use of intra-address-space IPC as
the foundation for thread synchronisation primitives.

5.4 Benchmarking

In order to examine the performance of various optimisations, it is necessary to have a
precise benchmarking approach that can show with as much accuracy as possible the
true cost of performing a given task. I have ensured that each benchmark is run multiple
times and that the results from these runs are combined correctly to arrive at an accurate
estimate of the true cost of the benchmark, this is explained below.

5.4.1 L4bench

For all benchmarks used throughout this thesis except those in Table 7.1, I have applied
used L4bench [Embb] — an extensible benchmarking framework — to generate the
numbers. L4bench combines multiple ‘tests’ and ‘counters’, and automatically runs
large batches of benchmarks, outputting the results in the form of python commands for
post-processing.

Tests represent the actual benchmark workload to be executed, and are specified by
a set of functions for setup, teardown and execution of the benchmark, as well as a set
of parameters. Each parameter is specified by a lower and upper bound, a step size and
a step function. L4 bench then takes this parameter specification and executes the test
with each possible value of the parameter. For example, if the lower bound is 10, the
upper bound is 10,000, the step size is 10 and the step function is 10, then L4bench
will execute the test with parameter values of 10, 100, 1000 and 10,000. This concise
representation of parameters allows for a large multi-dimensional parameter space (i.e.
multiple parameters) to be specified and then tested with the specified test function.

26

Counters represent the way to measure the numbers generated from running a bench-
mark. They are specified by start and stop functions, plus a function to return the value
of the counter. I implemented two counters to use for all benchmarks: one to count cpu
cycles and on one to use gettimeofday to show an output in microseconds.

5.4.2 Test environment

All benchmarks in this thesis were performed on a 1.83GHz Apple iMac with a dual-core
Intel “Core Duo” processor. Because L4/Darwin only utilises a single core on the iMac,
benchmarks performed in OS X were done so using the “cpus=1” kernel boot argument
to limit the number of utilised cores to one.

5.4.3 Analysis

The python commands output by L4bench contain all the raw number values returned by
the counters for each run. These are input into a python script that puts the values into
a table and then uses linear regression to arrive at a unit-cost for each test. Currently
linear regression is used when there is only one parameter, as there are many models
that may fit a 2-variable equation. Despite this, however, all benchmarks used for this
thesis were able to be constructed as 1-parameter tests. Using linear regression, running
a test with multiple values for each parameter can produce an accurate estimate for the
cost of a test with a parameter value of one.

27

Chapter 6

Optimised kernel entry

In Darwin, as in Windows, Linux, Solaris and many other operating systems, services
are provided to userland applications by means of system calls. System calls allow
application control flow to enter the kernel in order to accomplish certain tasks. These
system calls provide an interface to file-system operations, network connections, the
virtual memory subsystem and many other parts of the kernel. Because access to these
services is a necessary part of normal program execution, the time taken to make system
calls directly affects the running time of the program making those calls. Therefore, in
striving for high overall system performance, it is important to minimise the cost (in
terms of time) of making system calls.

6.1 Background

In order to understand the different techniques for optimising system calls on L4/Darwin,
it is important first to understand how they work in general, how they are implemented
in Darwin, and they can be implemented in an L4-based system.

6.1.1 User/Kernel system call boundary

To userland programs, system calls are just like any other standard library function,
except that they perform some privileged task that can’t simply be reimplemented in
userland in the way a maths library could be. System calls are executed by the kernel
in order to provide encapsulation of services, and since only the kernel can perform
secure resource management and privileged operations such as interacting with hardware.
Because of this elevated responsibility of the kernel, a method of transferring control from
the userland to the kernel is needed. In addition to transferring control to the kernel,
enough information must also be transferred to specify exactly what operation must be
performed, for example, which file to write to, where to get the data from and how much
to write.

Traditionally, system calls are implemented by small assembler stub functions that
are the entry point for userland programs making the calls. These stub functions store

28

the arguments and system call number either in registers or on the stack, and then
trap into the kernel. There are three popular methods on the IA32 architecture to
trap into the kernel: call gates, software interrupts and sysenter. Call gates are call
instructions to a predefined address which, when executed, cause the CPU to switch
to kernel mode before executing code at the address. Software interrupt are just like
hardware interrupts, but generated by the int instruction. They handled by the kernels
exception handler. A relatively new instruction, sysenter is specifically designed to
bypass the interrupt descriptor table required to handle software interrupts, and provides
a slightly faster means of invoking system calls.

Once control has been transferred to the kernel, the userland register state is usually
inspected to extract the system call number and arguments. If the arguments are all
in registers, they are just copied from the saved register file. If the arguments are on
the stack however, they are retrieved through a copyin operation, using the userland
stack pointer as the address to start copying from. With the system call number and
arguments ready, the kernel can perform any checking, and invoke the actual system call
implementation.

When the work of the system call is finished, either due to successful completion
or an error, execution is returned to userland. This is achieved through modifying the
userland register state to hold the return value or error code. Once control as returned
to userland, it is the job of the assembler stub to decode any return or value, and
take appropriate action. On UNIX systems, system call errors are stored in the errno
variable, which is a special thread-local variable accessed through a C macro.

6.1.2 How Darwin implements system calls

The way Darwin implements system calls is relatively straightforward. Userland pro-
grams call an assembler stub function which stores the system call number in the EAX
register and traps into the kernel. In early versions of Darwin on IA32, call gates were
used but in the latest version, sysenter is the mechanism by which control is transferred
to the kernel. Arguments are passed on the stack, since IA32 has very few registers,
and because the C calling convention in Darwin passes function arguments on the stack,
nothing needs to be copied by the stub to prepare arguments for the kernel.

The assembler stubs are implemented through C preprocessor macros that expand
out to assembler that stores the system call number, generates the trap, etc. An example
of such a stub is shown in Figure 6.1.

Once in the kernel, checks are performed to make sure the system call number is
valid, a kernel funnel used to serialise access to the BSD part of the kernel is locked, and
trace information is recorded. The arguments are then copied in to the kernel and the
system call is made. The return value is stored in EAX, and EDX as well for 64-bit return
values according to the IA32 C calling convention. If an error occurs at any point, the
error code is stored in EAX and the carry bit in the status register is set. Once this is
completed, control returns to the exception handler which switches back to userland.

The assembler stub in userland uses the JNB instruction to branch on the value of the
carry bit. If it is set, code will be called to copy the value from EAX to errno, otherwise

29

#define UNIX_SYSCALL_TRAP lcall $0x2b, $0

#define UNIX_SYSCALL(name, nargs) \
.globl cerror ;\

LEAF(_##name, 0) ;\
movl $ SYS_##name, %eax ;\
UNIX_SYSCALL_TRAP ;\
jnb 2f ;\
BRANCH_EXTERN(cerror) ;\

2:

_read:
UNIX_SYSCALL(SYS_read, 3)
ret

Figure 6.1: A typical system call stub in Darwin

the function just returns as return value is right where it should be according to the C
calling convention.

6.1.3 Using L4 IPC for system calls

As mentioned in Section 4.6, system calls are implemented slightly differently in an
L4-based system. The kernel-side implementation is vastly different as it requires a
synchronous event loop as opposed to the traditional asynchronous exception handler.
The userland implementation requires fewer changes, however, and it is possible on some
systems for userland stubs to work transparently. This technique is used to implement
system calls in the Wombat project.

There are two facilities available in L4 to transfer control to a kernel server: L4 IPC
and exception IPC. Both use L4 IPC to communicate with the kernel server, but the
way they are invoked from userland is different.

L4 IPC is just the standard IPC interface discussed in Section 2.1. System calls over
L4 IPC have userland stub functions that pack the system call number and arguments
into an IPC message and call the kernel server. A reply IPC message contains the return
value and error status.

Exception IPC works much the same way as a traditional kernel trap. Once the
trap instruction is executed, an IPC message is sent to the thread’s exception handler
with the thread’s register file contained within the message. From this the process of
extracting arguments is the same, and modifying the register state on return is achieved
though the IPC reply to the exception message.

30

System call Darwin L4/Darwin Delta Linux
mach msg(0) 2523 3038 515 (20.4%) -
pid for task 4328 4749 421 (9.7%) -
flock(no args) 3678 4239 561 (15.3%) 674
mach msg send/recv 5898 6582 684 (11.6%) -
L4 IPC call - 1830 - -

Table 6.1: Cycle costs of various system calls on a 1.8GHz iMac Core Duo

6.2 Methods for optimisation

There are several techniques available for optimising system calls, some of which apply
to all systems, and others which apply only to L4. I will discuss these in turn and then
evaluate the methods suitable to L4.

6.2.1 Address-space layout

In Linux, like most other operating systems on 32bit IA32 machines, a “3:1 split” is
used to save the cost of kernel entry. The kernel is mapped into 1GB of the 4GB
userland address space, but only accessible when in kernel mode. This is in contrast to
a “4:4 split” where both the kernel and userland applications each have their on 4GB
address space. On a kernel call in with a 3:1 split, an address-space switch is not needed
because the kernel region is already mapped into the current address space. A 3:1 split
can bring major speed improvements as shown by the relatively low figure for the flock
system call shown in Table 6.1. Given that the difference between the Linux and Darwin
implementations is over 3000 cycles, and this is well above the cost of an L4 IPC call
(which approximates the cost of two address-space switches), it is clear that there is no
address-space switch overhead for Linux system calls. Since Darwin and OSX use a 4:4
split and assume a full 4GB userland address space on 32bit systems, this approach is
not suitable as it would break binary compatibility.

6.2.2 L4 IPC

IPC is one of the most heavily-optimised facilities of L4 as it is also one of the most
highly used. The cost of L4 IPC for x86 is shown in the last row of Table 6.1. This is
significantly lower than the cost of normal system calls, but is still relatively expensive
compared to L4 IPC on other modern architectures such as IA64, where the cost can be
as low as 36 cycles [GCC+05]. Optimising system calls for L4 IPC guarantees that as
L4 improves, so will system call performance.

The first attempt at using L4 IPC to perform system calls involved rewriting the
UNIX SYSCALL macro to call a C function. This function used the L4 convenience in-
terface to pack they system call number and arguments into an L4 IPC message to the
L4/Darwin kernel server. While this C function proved to be very easy to maintain

31

System call Darwin L4/Darwin using L4 IPC
mach msg(0) 2523 2393
pid for task 4328 3886
flock(no args) 3678 3509
mach msg send/recv 5898 5761

Table 6.2: Cycle costs various system calls on a 1.83GHz iMac Core Duo

and extend, it significantly increased the time required to make system calls and was
therefore not a viable option.

The second attempt was a function written entirely in assembler, manually filling
in an L4 IPC message before invoking the L4 IPC trap into L4 itself. Each message
contained the system call number and the stack pointer, allowing the L4/Darwin kernel
server to “copyin” the system call arguments from the user program’s stack. This method
proved to be much more efficient that using the L4 convenience interface, but was still
slower than native system calls on a pure Darwin system.

In order to further reduce the cost of system calls, I modified the assembler stub to
take advantage of L4’s message registers when transferring the system call arguments.
The assembler function copies arguments off the stack into L4 message registers in the
userland address space, which are then copied by L4 to the L4/Darwin kernel server.
The number of arguments copied is determined at compile time by the second argument
to the UNIX SYSCALL macro. Having the arguments copied by L4 avoids having to make
a relatively expensive “copyin” call inside L4/Darwin. The results of this optimisation
are shown in Table 6.2.

6.2.3 Exception IPC

The way in which exception IPC would be used in L4/Darwin is shown in Figure 6.2.
The process is summarised below:

1. Userland process saves system call number in a register and raises a software
interrupt.

2. L4 handles this interrupt and generates an exception IPC to the L4/Darwin kernel
server.

3. L4/Darwin kernel server extracts system call number and stack pointer from the
register state in the exception IPC.

4. System call arguments are retrieved via copyin.

5. The requested operation is performed.

6. L4/Darwin kernel server replies to the exception IPC with the new register state,
containing the return value.

32

L4/Darwin Server
Userland program

_read:

save SYS_READ in %EAX

int80

check error flag

set errno

ret

void

syscall_loop(void) {

 while(1) {

 wait for exception IPC

 extract register state

 copyin arguments

 process syscall

 reply with new register set

 }

}

L4 Kernel

int80 exception

Exception IPC

Userland

Kernel

Figure 6.2: Syscalls with an exception handler

7. Userland stub sets errno

The options for speeding up exception IPC are relatively limited, as the interface
for both the userland stubs and the kernel server handler are almost exactly the same
as in native Darwin, and thus any possible optimisations would have hopefully been
employed. The advantage of exception IPC however is that userland system can be
supported without modification. As the process of building Darwin’s standard library,
libSystem, is quite complex, upgrades to newer source versions are much easier when
system calls are delivered via exception IPC.

The fact that no available version of Darwin uses software interrupts for system
calls proves difficult, as call gates and the sysenter trap are not reflected back up to
userland by by L4. It is hoped that with future work on L4, the sysenter trap will
be able to be virtualised, and thus system calls based on it will be able to be tested on
L4/Darwin. The performance of system calls via exception IPC is not expected to be
any greater than those using L4 IPC because the relatively expensive copyin operation
must be performed on each system call.

33

Chapter 7

L4-IPC-based RPC

The use of Mach-IPC-based remote procedure calls is prevalent in Darwin. Approxi-
mately 90% [Won03] of the calls to Mach IPC in Darwin are MIG-based remote pro-
cedure calls to services in XNU. Much of the VM subsystem, for example, can only be
controlled through MIG RPC. The usage patterns of different exported RPC calls is
detailed in [Won03].

These functions are essentially system calls, but instead of being provided by the
traditional trap mechanism, they are exported through MIG generated stubs. With
MIG, the message passing overhead of Mach IPC still applies even if all the features are
not required. Such tasks as checking capabilities to send to the globally accessible MIG
kernel port must be performed on all RPCs, even though the same level of security can
be achieved with a system call style interface. On a 1.8GHz iMac Core Duo, the MIG
overhead was measured to be 3896 cycles as shown in Table 7.1. It is important to note
that all measurements are taken in the L4/Darwin kernel server, at the points marked
A, B, C and D in Figure 7.1, and that no address-space switch takes place that would
possibly distort the measurements.

Number of Cycles
from: start of mach msg

to: start of task info 2655
from: start of task info

to: end of task info 68
from: end of task info

to: end of mach msg 1241
total time spent in MIG code 3896

Table 7.1: Cycle costs of MIG overhead on a task info call on a 1.8GHz iMac Core Duo

34

L4/Darwin kernel server

L4/Darwin kernel server

Userland process

client MIG stub

mach_msg handler

A D

MIG server

task_info

Userland process

client L4 stub

server L4 stub

task_info

server MIG stub

B C

Figure 7.1: Call path of a function exported by MIG (left) and the optimised version
(right)

7.1 Removing the MIG overhead

As an experiment to to see how much of the overhead on task info could be removed,
I traced through its execution to find the critical operations. It turned out the only
operations necessary to the execution of task info within the kernel were the conversion
from a Mach port name to a task t structure, and the copyout of the info structure
filled in by task info itself. These operations were easily replicable without the entirety
of mach msg being executed. The marshalling of data into and out of a Mach message
structure and the lookup of the kernel MIG port are the two most costly operations
which can be avoided. There is no reduction in security by shortcutting the kernel MIG
port, as every task has a send right to this port.

I implemented a new userland stub (‘client L4 stub’ in Figure 7.1) shown in Ap-
pendix B to pack the arguments of task info into an L4 IPC message and make the

35

call. The server side implementation (‘server L4 stub’ in Figure 7.1) is shown in Ap-
pendix C. The code path to call task info is shown in Figure 7.1, with the original
implementation on the left and the optimised version on the right. The cost of the
optimised implementation was measured to cost 3970 cycles. Compared to the original
implementation costing 6023 cycles, this is a significant improvement. Note that both
these were obtained using the benchmarking process described in Section 5.4.

The runtime saving of re-implementing MIG RPC in this way could have significant
benefits for overall system performance, as a significant proportion of exported kernel
functionality is available only through MIG. Particular services such as the Mach VM
system and Mach port allocation and inspection are only available through MIG. It
would be interesting to see the change in overall system performance if the overhead of
MIG-based RPC was significantly reduced.

As further work I would like to develop an automated process to read MIG definition
files and generate these optimised stubs. Work at ERTOS in the summer of 2005/2006
showed this to be quite difficult due to the type system supported by MIG and the way
this is used throughout various RPC’s. A partial implementation to solve the trivial
cases may be an appropriate solution if overcoming the type system problems proves
too hard. After completing this I plan to run system-wide benchmarks to evaluate the
change overall system performance with these optimised RPC calls.

36

Chapter 8

Optimised POSIX threads

The majority of UNIX operating systems provide the pthreads (POSIX Threads) library.
Pthreads provides a set of functions for creating threads within a process, manipulating
them and synchronising them. It is available on Darwin/OSX, Solaris, Linux, FreeBSD,
OpenBSD, NetBSD and even Windows [Mic], and thus is a convenient abstraction layer
for writing portable multi-threaded applications.

One of the fundamental synchronisation primitives provided by pthreads is the
mute: a basic lock used to achieve mutual exclusion. A mutex is locked by calling
pthread mutex lock, and while a mutex is locked, any thread that tries to lock it will
be suspended until the mutex is unlocked with pthread mutex unlock. Mutexes are
used throughout Darwin to guarantee mutual exclusion. For example, a pthread mutex
is attached to each FILE structure. This mutex is locked whenever an operation such as
fprintf is performed on that file, and unlocked when the operation is complete. Mu-
texes are also heavily used in non-library code to control access to data structures that
are shared between threads.

In Darwin, when there are more than two threads needing access to a mutex, the pro-
cedure followed to acquire the mutex becomes quite complex. The process in Figure 8.1
summarises the steps required to lock the mutex. Note that the semaphore operations
in steps 2 and 4 are system calls, and thus require a costly address-space switch from the
current thread to the kernel. The order semaphore is used to ensure that when multiple
threads are contending for a mutex, it will be granted to threads in the order they re-
quest it. This avoids starvation in cases where one thread performs pthread mutex lock
at the start of a loop and pthread mutex unlock at the end. Although the mutex is
unlocked frequently, the time from the unlock at the end of the loop to the lock again
at the start of the loop is very short. Without any semaphores the thread could unlock
and then lock again without being preempted, thus any competing threads would never
acquire the mutex.

The cost (in terms of time) of thread synchronisation is an important factor for multi-
threaded applications. Shared resources act as bottlenecks preventing further execution,
so the faster a thread can gain exclusive access to a resource, perform its operation and
then release access, the faster the overall program will run. In the following sections I

37

1. Acquire the spinlock for the mutex

2. Wait on the ‘order’ semaphore for that mutex.

3. Release the spinlock for the mutex

4a. Wait on the ‘waiters’ semaphore.

4b. Signal the ‘order’ semaphore.

Note that 4a and 4b are performed in one atomic call

4. Acquire the spinlock

5. Set the mutex owner to itself

6. Release the spinlock

At this point, pthread mutex lock returns successfully

Figure 8.1: Pthread mutex lock protocol in Darwin

will discuss my solution to speeding up pthread synchronisation primitives.

8.1 Mapping multiple pthreads onto one Mach thread

In L4/Darwin, each Mach thread maps to exactly one L4 thread. Because the under-
lying Mach thread for each pthread is transparent for all UNIX applications and most
Darwin/OSX-specific applications, the possibility exists to map each pthread to its own
L4 thread without allocating a Mach thread. Doing this makes possible several per-
formance optimisations, but also raises a number of issues which are discussed in this
section.

There are extensions to pthreads in Darwin that allow conversion from a pthread t
reference to a Mach thread t reference, and there is also the mach thread self system
call which can be called by any thread. Therefore in order to provide complete com-
patibility with the existing APIs, these interfaces must present each pthread as being
backed by its own Mach thread.

If multiple pthreads share a single Mach thread, the current implementation of the
Mach scheduler requires a Mach thread to only ever be executing at most one system
call at any one time. Without modifications to the scheduler, deadlocks may occur. For
example, if two threads are using a UNIX socket to communicate, a blocking receive
operation on the socket will prevent that Mach thread from executing another system
call until the socket operation finishes. If the only threads sending to that socket are
pthreads sharing the same Mach thread, the process will cease to make progress.

Another complication is how signals are delivered. The BSD implementation in
Darwin allows signals to be sent to a particular Mach thread. There are also pthread

38

APIs to facilitate changing the signal mask on a per-thread basis. If multiple pthreads
were multiplexed onto a single Mach thread, there would be ambiguity as to which signal
mask was being modified on per-thread signal mask changes, and also ambiguity as to
which thread to deliver a signal to.

From these issues it is clear that much work is involved in hosting multiple pthreads
on top of a single Mach thread. A solution to all these problems is to still allow each
pthread to have its own Mach thread, but allocate the Mach thread structures dynam-
ically when they are needed, and relax the Mach scheduler to allow L4 to make more
scheduling decisions. I have investigated doing this, but there is a significant amount of
understanding of the Mach scheduler required to make this modifications. As a result,
there is currently only one Mach thread allocated no matter how many pthreads are cre-
ated. Further work is required to address the issues with the Mach scheduler described
above, this is discussed in Section 11.2.

8.2 Fast mutex operations

Due to pthread mutex operations requiring at least 4 full address-space switches in a
contentious environment, a performance boost can be achieved by eliminating the need
for these switches. By completing all semaphore operations within the same address
space, it would possible to achieve mutual exclusion for many threads sharing a resource
without ever having to switch address spaces. This is achieved with L4 by running a
special thread in each address space that handles all semaphore operations. What were
system calls are now redirected to this semaphore server thread, and since it is running in
the same address space, L4 can allow communication with pthreads and the semaphore
server via L4 IPC without incurring a costly address-space switch.

I have implemented a semaphore library with the same semantics as Mach semaphores
to explore the advantages of fast mutex operations. This semaphore library is currently
only used by the pthread mutex lock/unlock operations, thus the only operations re-
quired are:

• semaphore create

• semaphore destroy

• semaphore wait

• semaphore signal

• semaphore wait signal (atomic wait and signal)

As mentioned before, the crucial difference of this semaphore library is that a dedi-
cated ‘semaphore server’ thread runs in the same address space, and all operations are
achieved through L4 IPC calls to this thread. This is shown in Figure 8.2. Blocking on
a call to semaphore wait is achieved through the semaphore server not replying to the
IPC call until a corresponding semaphore signal on the same semaphore is received.

39

L4 Kernel

L4/Darwin kernel server

Userland

Kernel

Userland process

Thread 1

Semaphore
thread

Syscall
redirection

Thread 2

read()

semaphore_signal()

read()

mach_msg()

Thread 3

semaphore_wait()

Figure 8.2: Syscall redirection and a semaphore server for lightweight pthreads

The advantage of this dedicated semaphore thread running in the same address space is
that no address-space switch is required to perform semaphore operations, thus the four
address-space switches required by a mutex lock operation can be reduced to zero.

8.3 Current implementation

To test the performance benefits of lightweight pthreads, I modified the pthread creation
routine to bypass the Mach internals and create a new L4 thread without an associated
Mach thread. While this shortcut does not allow many applications to run, it does give
great insight into the possibilities of allowing L4 to make scheduling decisions.

For multiple pthreads to share one Mach thread, their system calls must be syn-
chronised. I achieved this by redirecting all system calls through a dedicated system call
thread within the same address space, as shown in Figure 8.2. Whenever a thread makes
a system call, it uses L4 IPC to call the system call thread, which forwards the mes-
sage to the L4/Darwin kernel server and forwards the reply back to the original calling

40

System call L4/Darwin L4/Darwin(redirection) Overhead
mach msg(0) 2393 4012 68%
pid for task 3886 5735 48%
flock(no args) 3509 5243 49%
mach msg send/recv 5761 8020 39%

Table 8.1: Overhead for system call redirection

Thread count Darwin L4/Darwin Relative cost
2 12089 6426 53%
3 13944 6433 46%
4 15878 6479 40%
5 16582 6522 39%
6 16957 6515 38%
7 17113 6544 38%
8 17362 6535 38%
9 17256 6531 38%

Table 8.2: Cycle costs of pthread synchronisation
All benchmark code was compiled with gcc -O2 and run on a 1.8GHz iMac Core Duo

with one core disabled in both Darwin and L4/Darwin

thread. This ensures that only one pthread is making a system call at any time. The
overhead of indirecting through this system call thread is shown in Table 8.1. While this
overhead is significant, redirection is only a temporary measure and will not be required
in any final design.

8.4 Evaluation

To evaluate this library, I wrote a benchmark to stress the pthread mutex lock and
pthread mutex unlock operations. A specified number of threads are created, and each
thread increments a shared counter until the counter reaches a predetermined maximum.
The source code for this benchmark is shown in Appendix A. This benchmark uses only
pthread library calls, so it can be compiled to run on native Darwin to achieve a fair
comparison.

Results of this benchmark are shown in Table 8.2. From the table it is clear that
reducing the number of address-space switches required to acquire a mutex greatly re-
duces the time to run this benchmark. It is also interesting to note that as the number
of threads contending over the shared counter increases, the relative cost of running
on L4 decreases. This suggests that the Mach scheduler is optimised for handling 2-3
threads contending over a critical chapter, but is not capable of handling a large number

41

of threads concurrently.
While these results are substantial, there is still room for improvement. As discussed

in Section 10.1, the version of L4 currently used by L4/Darwin lacks an implementation
of the IPC fastpath for the IA32 architecture. It also lacks an implementation of Local
IPC, which could bring a significant speedup to the large amount of IPC messages
transferred between threads in the same address space on semaphore operations.

42

Chapter 9

A new L4 convenience interface

Throughout the course of my work I have noticed that speed improvements can be gained
through not using the L4 convenience interface. Throughout this section I will discuss
the reasons behind the poor performance of the convenience interface and propose a new
interface.

While IDL compilers can provide the necessary optimisation for making userland
IPC stubs fast, they require extra development time to utilise, as stubs must be written
and the IDL compiler must be factored into the build process. The convenience inter-
face should be just as its name implies — easy to pick up and use straight away, thus
any performance increase that can be gained by modifying the convenience interface is
worthwhile.

The typical flow of execution when using the L4 convenience interface is summarised
in Figure 9.1. One of the important items to note is the copying of message data in
steps 4 and 5 before the trap, and in steps 8 and 9 after the trap - all message data
is copied twice. This may be unavoidable with a stack-based calling convention as in
IA32, but with function inlining and a register-based calling convention in x86-64, it is
possible to avoid this indirection of copying to a buffer first and just copy directly to the
UTCB. There are other inefficiencies in using many functions to assemble the message.
Even with function inlining, a compiler cannot do as good a job as hand-coded assembler
optimisation.

A typical L4 IPC operation is shown in Appendix B. The lines of assembler generated
for this function with various compile flags is shown in Table 9.1, along with the number
of cycles required to execute.

There are several benefits of hand-coded stubs. The first is memory usage: the
smaller the code size is, the more memory is free for other data. This effect is exaggerated
when IPC calls are invoked from many different parts of the program. Since the L4
convenience interface relies on function inlining for its performance, code size quickly
bloats. Optimised assembler stubs however, can be generalised to accept an arbitrary
number of arguments. These generalised functions can then be stored in shared libraries
and reduce the memory overhead of calling IPC in multiple places. Instead of bloating
code with inlined functions for every IPC operation, user applications will only store the

43

1. A message structure is allocated

2. The message structure is cleared

3. The message label is set

4. Data is copied to the message from local variables

5. The message is copied to the UTCB

6. The L4 IPC syscall stub copies data from the UTCB to registers

7. The IPC trap is made

8. The L4 IPC syscall stub copies data from registers to the UTCB

9. The message is copied from the UTCB to a message structure

10. Data is extracted from the message structure.

Figure 9.1: Flow of execution when making an IPC call with the L4 convenience interface

stubs once in a shared library.
Another benefit is cache locality: as all 254 lines of assembler must be executed in

the optimised case, each of these instructions will be cached. The much smaller 41-line
stubs will have a smaller cache footprint, and will thus have much less chance of evicting
other frequently used code from the cache.

The final benefit is of course raw speedup. In the last column of Table 9.1, the
difference between the implementations become apparent — the convenience interface
costs almost 4 times as much as optimised stubs. An 8% reduction in the total cost of
IPC operations system-wide is not insignificant, and with an implementation of the L4
IPC fastpath and Local IPC(both discussed in Section 10.1), the relative cost of userland
stubs will become greater. It is also important to note that the

GCC flags Lines of asm Cycles to execute % slower Stub cost
-DUSE ASM STUBS=1 41 2054 1.8% -
-DUSE ASM STUBS=1 -O2 41 2017 0% 60
-DUSE ASM STUBS=0 427 2546 26% -
-DUSE ASM STUBS=0 -O2 254 2181 8% 221

Table 9.1: Comparison of code generated by different compiler flags for Appendix B

44

Chapter 10

Discussion

10.1 Limitations of Pistachio N1

There are several limitations of the version of L4 used by L4/Darwin. Currently an older
incomplete version implementing the NICTA N1 API is used. This version of L4 has
been modified to support the L4/Darwin project. The two major changes are:

• Support for the Mach-O binary format, to simplify compilation and booting.

• EFI support to allow L4 to run on modern Intel-based Apple hardware.

The Darbat version of L4 however lacks two very important features: an implementation
of the L4 IPC fastpath, and an implementation of the Local IPC system call.

The L4 IPC fastpath is a highly optimised piece of hand-code assembler that replaces
the generic IPC implementation when certain conditions are met. These conditions
include:

• the receiving thread is blocked waiting to receive

• the message only contains untyped words i.e. no map/grant items

Most of the time, these conditions are met for communication between userland processes
and the L4/Darwin kernel server. A speedup is therefore expected once a version of L4
with the IPC fastpath is used for L4/Darwin.

Local IPC (LIPC) is similar in many ways to the fastpath, as it gives a speedup
when certain conditions are met. LIPC is different however in that it optimises only for
IPC transfers between threads in the same address space by eliminating the need for
L4’s intervention. From the L4 reference manual, LIPC can give a performance benefit
when:

• a send phase is included

• a blocking receive phase is included

• the destination is a thread in the same address space

45

• the destination thread is running on the same processor

• the message contains only untyped words

A send phase simply means that a message is being sent from the thread calling LIPC.
A blocking receive phase implies the thread wishes to receive a message, and will block
if there is no thread waiting to send to it rather than returning an error.

LIPC would be of particular benefit to the dedicated semaphore server in Section 8.3,
as all of these conditions, except the same processor condition, are guaranteed to be met.
The speedup of performing semeaphore operations without even having to negotiate with
L4 is expected to be significant.

10.2 The current status of L4/Darwin

Originally I had planned to evaluate my optimisations with large scale benchmarks such
as LMbench [MS] and the AIM Multiuser Benchmark [Sak]. It became apparent that
this was impossible due to the incomplete status of the L4/Darwin project. Many system
calls do not function properly due missing kernel functionality, and several fundamental
features such as signals, job control and preemption are only partially implemented.
LMbench and AIM both rely heavily on signals and a wide variety of system calls to
work correctly, and thus it is impossible to run them on L4/Darwin. The lack of support
for paging out means that once physical memory is exhausted, nothing can be done to
reclaim it. This is also compounded by the fact that the L4/Darwin kernel server does
not have access to all physical memory, only a subset granted to it by L4. Paging is
particularly important for large-scale benchmarks as they tend to stress the system by
consuming large amounts of memory.

46

Chapter 11

Future work

11.1 Experimentation with the Pistachio N2 version of L4

The NICTA N2 API for L4 brings some significant changes. One particularly important
change is the lack of recursive address spaces, which are described in Section 2, and the
new MapControl API which replaces them. The MapControl API is different in two
important ways:

The first is that address spaces are now populated by providing mappings from
virtual addresses to physical addresses, rather than mappings from a virtual address in
one space to a virtual address in another. This has two clear advantages: it is now
much easier to support architectures where the physical address space is larger than
the virtual address address space, and pagers such as the L4/Darwin kernel server are
not required to have its virtual address space crowded by every page required by every
userland process.

The second advantage of the MapControl API is that it is now possible to query L4’s
internal page tables to retrieve virtual to physical translations and protection bits. This
makes redundant all of the page tables used by the pmap interface in Darwin. Since these
page tables are no longer required, the space that would previously be allocated to them
is now free for other uses. The pmap implementation would then be rewritten to perform
insertion and lookup of virtual to physical translations using the MapControl API. On
the x86 architecture with 32-bit virtual and physical address spaces, each processes page
table can be anywhere from 4KiB to 4MiB in size. On a system with many processes, the
removal of these page tables represents a significant saving. After L4/Darwin is ported
to the latest version of L4 in the coming months, I plan to evaluate the performance
increases gained from freeing up the memory used by the pmap layer.

11.2 Extensions to POSIX threads

Given the success of my current optimisations for the pthreads library, I plan to extend
this work in two ways: modifying the Mach scheduler to give L4 more control over

47

scheduling decisions as described in Section 8.1, and transferring all synchronisation
primitives provided by pthreads to use my semaphore library from Section 8.3.

Modifying the Mach scheduler is a requirement for providing API binary compat-
ibility to existing applications that use pthreads. The current system call redirection
system described in Section 8.3 is a temporary measure and will lead to deadlocks that
cannot be resolved in userland programs. This Mach scheduler currently has a rigid
policy where the current thread is only changed when a thread is preempted and a new
one is scheduled. The current thread is the only thread allowed to make system calls at
any time. I would like to relax the concept of current thread in Mach, allowing userland
threads to make system calls at any point in time, and having the value of current thread
modified when system calls do occur. Relaxing the Mach scheduler would allow the more
agile L4 scheduler to schedule threads from an available pool of runnable threads sup-
plied by the Mach scheduler, without having to consult the Mach scheduler on every
timer tick, increasing the overall performance of the system.

Modifying the pthread library to take full advantage of the fast semaphore library
will also bring significant performance improvements. Currently only trivial semaphore
operations are supported as these are all that is required for pthread mutex operations.
There are another set of semaphore operations that allow timeouts - these are used by
the pthread condition-variable primitives. Adding timeouts to the semaphore server
would add complexity, but would also complete the implementation of the semaphore
library, making it fully compatible with Mach semaphores.

With a fully implemented semaphore library, it would be possible to replace the
existing implementation of the semaphore operations in libc with my library. This would
allow mutexes for libc resources as well as user-created mutexes to take advantage of
the speedup possible with a local semaphore server. Resources in libc that use mutexes
include FILE structures - a data structure used to store metadata about an open file, and
used as a file reference for operations such as fprintf. There is one design issue with
this however - mutexes can be placed in shared memory regions and used to synchronise
threads in two different address spaces. Since all operations on a semaphore must be
negotiated with the semaphore server thread that was used to create it, a means of
contacting the semaphore server thread for a given semaphore is needed when it is used
outside the address space within which it was created. This can possibly solved by
encoding the L4 thread id of the semaphore server and the semaphore id into a single
32bit value to conform to the current semaphore t representation.

11.3 Large-scale benchmarks

In Section 10.2 I mentioned that it was currently impossible to run large scale bench-
marks on L4/Darwin. As the project becomes more stable, I plan to run some large
scale benchmarks to gain better insight into the affect of my optimisations on overall
system performance. Two benchmarks I plan to use are LMbench and AIM

LMbench [MS] is a suite of UNIX benchmarks for measuring system performance
of various tasks such as file system operations, context switching, process creation, and

48

system calls. I plan to use LMBench extensively to measure the cost of these various
operations on L4/Darwin with and without various optimisations, and on native Darwin
to serve as a baseline.

The AIM Multiuser Benchmark [Sak] is a system-wide benchmark designed to mea-
sure the performance of multi-user systems. It runs many tasks that are common on a
system with many users, and puts the system under quite a significant load I plan to use
this to understand how my optimisations affect the overall performance of the system.

11.4 Automatic generation of MIG stubs

In Section 7.1 I showed that it was possible to reduced the cost of RPC by approximately
2000 cycles when not using MIG. The engineering effort in manually converting all
existing MIG stubs to L4-based stubs would be significant, and this manual conversion
would have to be applied with each new version of XNU. A better solution would be to
automate the process of generating stubs.

There already exist two interface definition language (IDL) compilers for L4: IDL4 [Sys]
and Magpie [Embc]. Neither of these support the archaic MIG syntax. IDL4 supports
CORBA [Obj] and DCE IDL [Theb] definition languages, thus in order for to work cor-
rectly, a layer would have to be written to translate MIG definition files into either the
CORBA or DCE IDL languages. Magpie however has an extensible front and back end,
allowing a module to be written that allows Magpie to read MIG definition files and
output optimised stubs for L4.

I plan to investigate the writing such an extension to Magpie, although there are
several design issues to overcome. One major problem is MIG’s heavy reliance on the
Mach IPC primitive - all complex types such as tasks, threads and memory regions
are represented in MIG with Mach ports. In addition, the mach msg primitive used by
MIG to invoke RPCs performs special error-handling functionality when, for example,
an operation on a task port is performed when that task no longer exists. In order for
Magpie to correctly handle MIG definition files, all of these complexities would need to
be handled in a transparent way.

11.5 Up-to-date comparisons

While best efforts were made to compare L4/Darwin to an equivalent version of Darwin,
this has been impossible to do. When L4/Darwin was developed, the Darwin source
available was far behind any current binary release from Apple. Further source releases
have been made however, and thus it is now possible to obtain the source code for the
version of Darwin that corresponds to the most recent release of Mac OS X. Unfortu-
nately, significant effort is required to modify L4/Darwin to update to this new source
code.

Given this difference in source code versions, some benchmark numbers may not
accurately reflect how L4/Darwin compares to native Darwin. Although the numbers in
Table 6.2 show L4/Darwin to be faster, they may be misleading due to the differences

49

in source code. An accurate comparison would involve updating L4/Darwin to use the
latest sources, though these numbers still show that L4/Darwin is competitive.

50

Chapter 12

Conclusions

Several modifications have been made to L4/Darwin that increase its performance and
show where more performance can be gained. All of these modifications leveraged the
highly optimised L4 IPC primitive.

System calls over L4 IPC were shown to be more efficient than the native implemen-
tation in Darwin. This was due primarily to the speed of L4 IPC and the use of L4
message registers to transfer system call arguments, avoiding a copyin operation.

POSIX thread synchronisation was shown to take as little 38% of the time when
the semaphore operations were modified take advantage of L4 IPC, compared to the
native implementation. While the current implementation of optimised pthreads is not
suitable for deployment, it does show the magnitude of the speedup that can be achieved
by modifying all of the pthread synchronisation primitives to take advantage of L4 IPC.

Modifying a MIG-based RPC stub to use L4 IPC has shown that a significant speedup
can be achieved by not using the Mach IPC primitive to transfer arguments and control
information. This result can be extrapolated to assume that the majority of MIG-based
RPC calls in Darwin will gain a similar speedup from using L4 IPC. The L4 convenience
interface was shown to be lacking in terms of raw speed and a large cache footprint. An
alternative, hand-written stubs for all possible numbers of arguments, was shown to be
advantageous both in terms of raw speed and a small cache footprint, and the fact that
it can be stored in a library to avoid bloating code size with repeated use of L4 IPC.

51

Appendix A

Benchmark used for pthreads

void *thread_func(void *);
pthread_mutex_t mtx;
pthread_mutex_t *sharing;

int number_max = 0;
int number = 0;
int nthreads;

int can_die[9];

void
pthread_teardown(struct bench_test *test, int args[])
{

number_max = number;
number++;
int i;
for(i=0;i<nthreads-1;i++)
{

can_die[i+1] = 1;
}

pthread_mutex_unlock(&mtx);
pthread_mutex_unlock(&sharing[1]);
pthread_mutex_lock(&sharing[0]);
free(sharing);

}

void
pthread_tester(struct bench_test *test, int args[])
{

52

number = 0;
thread_func(NULL);

}

void
pthread_init(struct bench_test *test, int args[])
{

nthreads = args[0];
number_max = args[1];
sharing = malloc((nthreads)*sizeof(pthread_mutex_t));
pthread_mutex_init(&mtx, NULL);

number = 0;

int i;
for(i=0;i<nthreads-1;i++)
{

pthread_t thread;
pthread_mutex_init(&sharing[i+1], NULL);
pthread_mutex_lock(&sharing[i+1]);
pthread_create(&thread, NULL, thread_func, (void *)(i+1));

}

pthread_mutex_init(&sharing[0], NULL);
}

void *
thread_func(void *arg)
{

while(number <= number_max || can_die[(int)arg])
{

pthread_mutex_lock(&sharing[(int)arg]);
pthread_mutex_lock(&mtx);
if(arg == (void *)0x0 &&

number >= number_max - ((number_max-1) % (nthreads)+1))
{

return NULL;
}
number++;
can_die[(int)arg] = 0;
pthread_mutex_unlock(&mtx);
pthread_mutex_unlock(&sharing[((int)arg + 1)% (nthreads)]);

}

53

return NULL;
}

54

Appendix B

Userland stub for optimised
task info

kern_return_t task_info(task_t task, int flavour, integer_t *out,
mach_msg_type_number_t *count)

{
kern_return_t retval;

#if USE_ASM_STUBS
__asm__ __volatile__(

"pushl %%ebx;\n"
"pushl %%ebp;\n"
"pushl %%esi;\n"
"pushl %%edi;\n"
"movl %%gs:0, %%ecx;\n"
// Load the args
"movl (0x0)(%%eax), %%esi;\n"
"movl %%esi, (0x04)(%%ecx);\n"
"movl (0x4)(%%eax), %%esi;\n"
"movl %%esi, (0x08)(%%ecx);\n"
"movl (0x8)(%%eax), %%esi;\n"
"movl %%esi, (0x0c)(%%ecx);\n"
"movl (0xc)(%%eax), %%esi;\n"
"movl (0)(%%esi), %%esi;\n"
"movl %%esi, (0x10)(%%ecx);\n"
"movl (-40)(%%ecx), %%eax;\n"
"movl %%eax, %%edx;\n"
"movl $0x0547C004, %%esi;\n"
"movl %%esi, (0)(%%ecx);\n"
"movl (4)(%%ecx), %%edi;\n"
"movl (8)(%%ecx), %%ebp;\n"
"call 1f;\n"

55

"jmp 2f;\n"
"1:\n"
"popl %%ebx;\n"
"int $0x30;\n"
"2:\n"
"movl %%ebp, %%eax\n"
"movl %%edi, %%edx\n"
"popl %%edi;\n"
"popl %%esi;\n"
"popl %%ebp;\n"
"popl %%ebx;\n"
:
"=d" (retval), "=a"(*count)
:

"a" (&task)
);

return retval;
#else

L4_Msg_t msg;
L4_MsgTag_t tag;

L4_MsgClear(&msg);
L4_Set_MsgLabel(&msg, 0x547);
L4_MsgAppendWord(&msg, task);
L4_MsgAppendWord(&msg, flavour);
L4_MsgAppendWord(&msg, (L4_Word_t)out);
L4_MsgAppendWord(&msg, (L4_Word_t)count);
L4_MsgLoad(&msg);
tag = L4_Call(L4_Pager());
L4_MsgStore(tag, &msg);
*count = L4_MsgWord(&msg, 1);

return L4_MsgWord(&msg, 0);
#endif
}

56

Appendix C

Server-side implementation of
optimised task info

int
handle_task_info(L4_ThreadId_t tid, L4_MsgTag_t tag, L4_Msg_t *msg)
{

L4_Word_t task_name, output_ptr;
task_name = L4_MsgWord(msg, 0);
task_flavor_t flavour = (task_flavor_t)L4_MsgWord(msg, 1);
output_ptr = L4_MsgWord(msg, 2);
integer_t count = (integer_t)L4_MsgWord(msg, 3);
integer_t old_count = count;

integer_t *array = kalloc(count*sizeof(*array));
assert(array);

ipc_space_t space = darbat_current_space();
darbat_space_lock(space);
struct ipc_entry *entry =

ipc_entry_lookup(space, (mach_port_name_t)task_name);
darbat_space_unlock(space);
ipc_port_t task_port = (ipc_port_t)(*((void **)entry));
task_t task = convert_port_to_task(task_port);

kern_return_t retval = task_info(task, flavour, array, &count);

if(retval == KERN_SUCCESS)
{

copyout(array, (user_addr_t)output_ptr, count*sizeof(*array));
}
kfree(array, old_count*sizeof(*array));

57

L4_MsgClear(msg);
L4_MsgAppendWord(msg, (L4_Word_t)retval);
L4_MsgAppendWord(msg, (L4_Word_t)count);
L4_MsgLoad(msg);
return 1;

}

58

59

Bibliography

[App] Apple Computer Inc. Darwin source code.
http://www.opensource.apple.com/darwinsource/.

[App06a] Apple Computer Inc. I/O Kit Fundamentals.
http://developer.apple.com/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/,
2006.

[App06b] Apple Computer Inc. Kernel Programming Guide.
http://developer.apple.com/documentation/Darwin/Conceptual/KernelProgramming/,
2006.

[App06c] Apple Computer Inc. Porting Unix.
http://developer.apple.com/documentation/Porting/Conceptual/PortingUnix,
2006.

[dPSR96] Francois Barbou des Places, Nick Stephen, and Franklin D. Reynolds.
Linux on the OSF Mach3 microkernel. First Conference on Freely
Redistributable Software, Cambridge, MA, 1996.

[Emba] Embedded, Real-Time and Operating Systems Program, NICTA. Darbat.
http://www.ertos.nicta.com.au/software/darbat/.

[Embb] Embedded, Real-Time and Operating Systems Program, NICTA. L4bench.
http://www.ertos.nicta.com.au/software/kenge/l4bench/devel/.

[Embc] Embedded, Real-Time and Operating Systems Program, NICTA. Magpie.
http://www.ertos.nicta.com.au/software/kenge/magpie/latest.

[Embd] Embedded, Real-Time and Operating Systems Program, NICTA. seL4 -
Secure Microkernel Project. http://www.ertos.nicta.com.au/research/sel4/.

[Embe] Embedded, Real-Time and Operating Systems Program, NICTA. The L4
Microkernel. http://www.ertos.nicta.com.au/research/l4/.

[Embf] Embedded, Real-Time and Operating Systems Program, NICTA. Wombat.
http://www.ertos.nicta.com.au/software/kenge/wombat/latest/.

60

[GCC+05] C. Gray, M. Chapman, P. Chubb, D. Mosberger-Tang, and G. Heiser.
Itanium — a system implementor’s tale. In Proc, 2005.

[GDFR90] David B. Golub, Randall W. Dean, Alessandro Forin, and Richard F.
Rashid. UNIX as an Application Program. In USENIX Summer, pages
87–95, 1990.

[GJP+00] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. Elphinstone, V. Uhlig,
J. Tidswell, L. Deller, and L. Reuther. The sawmill multiserver approach. In
SIGOPS European Workshop. ACM, September 2000., 2000.

[Hel94] J. Helander. Unix under Mach: The Lites Server. Helsinki University of
Technology, Master’s Thesis, 1994.

[HHL+] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian Schönberg,
and Jean Wolter. The Performance of µ-Kernel-Based Systems.

[IBM04] IBM Inc. Yellow Dog Linux on Power Mac G5.
http://www-128.ibm.com/developerworks/library/l-ydlg5.html, 2004.

[Ins05] Institute of Electrical and Electronics Engineers. POSIX.
http://standards.ieee.org/regauth/posix/, 2005.

[Lee05] Geoffrey Lee. I/O kit drivers for L4. BE thesis, School of Computer Science
and Engineering, University of NSW, Sydney 2052, Australia, November
2005.

[Lie95] Jochen Liedtke. On µ-kernel construction. In Proceedings of the 15th ACM
Symposium on OS Principles, pages 237–250, Copper Mountain, CO, USA,
December 1995.

[McC] Thomas McCarthy. Intro to NEXTSTEP.
http://www120.pair.com/mccarthy/nextstep/intro.htmld/.

[Mic] Microsoft Corpo-
ration. Pthread Support in Microsoft Windows Services for UNIX Version 3.5.
http://www.microsoft.com/technet/interopmigration/unix/sfu/pthreads0.mspx.

[MS] Larry McVoy and Carl Staelin. LMbench.
http://www.bitmover.com/lmbench/.

[Nou05] Abi Nourai. A physically-addressed L4 kernel. BE thesis, School of
Computer Science and Engineering, University of NSW, Sydney 2052,
Australia, March 2005.

[Obj] Object Management Group. CORBATM/IIOPTM Specification.
http://www.omg.org/technology/documents/formal/corba iiop.htm.

[OS] OS Data. Digital UNIX/Tru64. http://www.osdata.com/oses/decunix.htm.

61

[OSG] TU-Dresden Operating Systems Group, Dept of Computer Science. L4Linux.
http://os.inf.tu-dresden.de/L4/LinuxOnL4/.

[Por] Darwin Ports. http://darwinports.opendarwin.org/.

[RMGB91] Richard F. Rashid, Gerald R. Malan, David B. Golub, and Robert V.
Baron. DOS as a Mach 3.0 Application. In USENIX MACH Symposium,
pages 27–40. USENIX, 1991.

[RTY+88] Richard Rashid, Avadis Tevanian, Jr., Michael Young, David Golub, Robert
Baron, David Black, William J. Bolosky, and Jonathan Chew.
Machine-independent virtual memory management for paged uniprocessor
and multiprocessor architectures. IEEE Transactions on Computers,
C-37:896–908, 1988.

[Sak] Jonathan Saks. The AIM Multiuser Benchmark.
http://sourceforge.net/projects/aimbench.

[Sys] System Architecture Group, University of Karlsruhe. IDL4 Compiler.
http://l4ka.org/projects/idl4/.

[Thea] The Fink Project. Fink. http://fink.sourceforge.net/.

[Theb] The Open Group. OpenDCE. http://www.opengroup.org/dce/.

[Won03] Ka-shu Wong. MacOS X on L4. BE thesis, School of Computer Science and
Engineering, University of NSW, Sydney 2052, Australia, December 2003.

62

