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Abstract
The L4 microkernel is used as the basis for several operating systems but was built  on the 
assumption of virtual memory.  This thesis examines general design issues for constructing a 
high performance port of L4 without virtual memory but with memory protection.  It also aims 
to provide a concrete implementation by porting L4 to the Blackfin processor.

The results of our research were found to be general, and not just Blackfin-specific.   Therefore, 
we enable L4 to support an additional category of processors – those without virtual memory.

Our L4 implementation on Blackfin verifies the validity of the design.  While it outperforms 
ucLinux, at least on context switching time, there is still  much work to be done before it is 
deployable.
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Chapter 1

1 Introduction

The L4 microkernel [Lie96] is used as the basis for several operating systems but currently only 
supports processors with virtual memory.

The main advantages of virtual memory is that it provides application isolation and demand 
paging.  However, the use of virtual caches, for performance reasons, creates extra complexity 
such as synonyms and homonyms.

Virtual memory is a two-edged sword – without virtual memory, these complexities are gone 
but others take their place.  L4 was built on the assumption of virtual memory so the suitability 
of its primitives must be re-evaluated.  We therefore examine the issues in supporting L4 on 
architectures with memory protection units (MPU).

The Blackfin  [Ana05] is a popular embedded processor and a specific instance of an MPU 
architecture so we examine the problems in its context.

The remainder of this chapter defines the goals of this thesis and then presents the structure of 
the rest of this report.
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CHAPTER 1 INTRODUCTION

1.1 Goals

This thesis will identify the microkernel construction issues that arise out of supporting L4 on 
MPU-based  processors,  specifically  Blackfin.   The  findings  will  be  generalised  to  other 
architectures without virtual memory, such as the ARM1156T2-S MPU-based processor, and 
even to architectures without memory protection, such as the ARM7TDMI.

We shall  construct a port of L4 to Blackfin whose performance will  compare favourably to 
ucLinux, whose minimum context switch time is approximately 2,485 cycles [Hen06].  We will 
even attempt to match the speed of other L4 ports to RISC architectures, whose context switches 
complete in the low hundreds of cycles.

In doing so, we will identify a number of Blackfin-specific optimisations as well as general 
techniques for constructing high performance kernels.

Finally, our work will mean that Blackfin will become the 4th mature, public port of NICTA L4-
embedded  after  ARM,  x86  and  MIPS64.   This  will  strengthen  the  applicability  and 
competitiveness of L4 in a wider part of the embedded market.
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CHAPTER 1 INTRODUCTION

1.2 Report Structure

This section describes the structure of the remainder of the thesis.

Our thesis begins by providing the necessary background for our work:

• Chapter 2 analyses the features and performance of the Blackfin processor.  It also compares 
Blackfin to the variants of ARM without virtual memory, to provide a more general feel for 
the thesis.

• Chapter 3 discusses the benefits of a microkernel approach to operating system construction, 
the L4 microkernel and recent, relevant L4 developments.

• Chapter 4 reflects on a “quick and dirty” implementation of the kernel on Blackfin that 
ignored design.  The subsequent chapters in the thesis are primarily devoted to addressing 
the design and performance issues identified here.

We then provide 5 chapters on design:

• Chapter 5 identifies the assumptions in the design of our kernel.

• Chapter 6 discusses the effects of a lack of virtual memory.

• Chapter  7  analyses  the  implications  of  protected  kernel  addressing,  a  feature  of  some 
processors.

• Chapter 8 considers ways of reducing the amount of memory used by UTCBs, a particular 
kernel data structure.

• Chapter 9 explores choices in the system call ABI.

Our thesis then implements and critiques some related work:

• Chapter 10 describes the implementation of Warton's single stack kernel [War05].

• Chapter 11 investigates the implementation of Nourai's physically addressed thread control 
blocks [Nou05].

We then shift our focus largely onto general implementation issues:

• Chapter 12 describes a small  number of issues regarding IPC.  Other IPC performance 
bottlenecks are also dealt during the coverage of more general issues in Chapters 7, 13 and 
14.

• Chapter 13 presents micro-optimisations that dramatically improve kernel performance.

• Chapter  14  runs  experiments  that  aim  to  improve  the  kernel's  performance,  through 
changing the way it manipulates the Blackfin's protection unit and considers address space 
switching in this context.

Finally we reflect on, and evaluate, the work we have done:
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CHAPTER 1 INTRODUCTION

• Chapter 15 describes some peripheral  observations we made the implementation of this 
thesis

• Chapter 16 presents problems with the L4 microkernel, that we met along the way.

• Chapter 17 evaluates the entire thesis.

• Chapter 18 reflects on what goals have been achieved and what remains to be done.
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Chapter 2

2 The Blackfin 
Architecture

The  chapter  describes  the  characteristics  and  performance  of  the  Blackfin  architecture, 
providing a qualitative and quantitative foundation on which we will be able to make informed 
decisions  regarding  kernel  design  trade-offs.   We  perform  measurement  experiments  and 
analyse aspects of the architecture.  Relevant parts of the Blackfin reference manuals [Ana05, 
Ana05c,  Ana05b] are  also  summarised  to  provide  the  minimal  background  required  to 
understand this thesis.  We begin by providing some light Blackfin and architecture background 
before moving on to describe the structure of the rest of this chapter.

The Blackfin is an embedded DSP processor from Analog Devices [Ana05].  It is a 32-bit RISC 
processor whose striking feature is that it has no virtual memory but it does have a memory 
protection unit.  We shall concentrate on the Blackfin 533 and 537 due to gcc toolchain support 
[Bla05] and because they have identical cores.  ucLinux [Bla06d] runs on this processor and is a 
key competitor to L4-based operating systems.

During the last decade, CPU frequency has slipped away from being the primary determinant of 
system performance.  Other aspects such as caching, TLB coverage and pipelining have become 
equally, if not more, important.  As a result, these issues must be analysed in some depth.

We now describe the structure of the remaining parts of this chapter:

1. The section Basic Operations will measure the cost of key, basic Blackfin instructions.

2. Interrupts,  Exceptions  and  Traps will  describe  aspects  of  entering  and  exiting  the 
kernel.

3. It  is  followed  by  the  Memory section  with  extended  discussions  on  caching  and 
protection mechanisms, as well as performance implications. 

15



CHAPTER 2 THE BLACKFIN ARCHITECTURE

4. Instruction Pipeline will examine instruction pipelining on the Blackfin.

5. The  Possible  Blackfin  Security  Bug section deals  with  a  potential  exploit  due  to a 
instruction set design flaw.

6. Finally,  we look at  the similarities  between Blackfin and other  virtual-memory-less 
architectures in the  Comparison to ARM section, in order to make our findings more 
general.  
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CHAPTER 2 THE BLACKFIN ARCHITECTURE

2.1 Basic Operations

So that proper architecture trade-offs could be determined, the  cost of basic operations were 
measured:

Operation With D-cache & I-cache Uncached

Cycles Initial cycles Cycles

NOP 1 7 13

Register copy 1 7 13

Register addition 1 7 13

Read word from RAM 1 1 8 49

Write word to RAM 1 8 28

Read from Core MMR 2 4 7 13

Write to Core MMR 4 7 13

Call to empty function 3 18 21 417

CSYNC 4 10 10 71

SSYNC 5 16 23 86

Table 1: Speed of basic Blackfin operations

We firstly discuss how these results were measured and then provide an analysis of these costs. 
The speed of branches is considered in another section [p144, Chapter 13.4].

1 RAM = main memory (SDRAM) write-back cached by L1.
2 Core MMR = uncached Memory Mapped Register storing CPU state.  The innocuous DTEST_DATA0 

(0xffe0 0400) was used for both tests.  It is believed that reads and writes to this register do not have side-
effects that could cause extra computation.  Other registers (e.g. for changing memory protection) were 
expected to cause actual computation.

3 The function was:
00 e8 00 00     LINK 0x0;  // Create stack frame
01 e8 00 00     UNLINK;    // Tear down stack frame
10 00           RTS;       // Return to caller

4 CSYNC = pipeline flush and CPU buffer synchronisation with L1.
5 SSYNC = CSYNC followed by synchronisation of L1 with the rest of the system.

17



CHAPTER 2 THE BLACKFIN ARCHITECTURE

2.1.1 How they were measured

The statistics were measured by executing the operations in question 256 times:

// Flush pipeline & CPU buffers, sync L1, sync with SDRAM
ssync;
// Guarantee pipeline flush (pipeline is only 10 long)
nop; [256 times]

.align 32:  // Align on cache boundaries

r0 = cycles;  // Read 64­bit cycle counter
r1 = cycles2;

// All instructions are at least 2 bytes.
// Therefore, at least 256 * 2 / 32 = 16 I­cache lines will be 
allocated.

<the operation in question>; [256 times]

// Unfortunately, this will cause another I­cache line to be
// allocated.  This is not a big problem as the above operation
// causes 16x more allocations and the total cycle count will be
// divided by 256 anyway.
r4 = cycles;  // Read 64­bit cycle counter
r5 = cycles2;

nop; [256 times]  // Ensure no pipeline speculation warping results

50 runs of this were executed.

For the values for caching off, Cycles is the average of the cycles counts of all 50 runs, divided 
by 256.   The standard deviation of the 50  runs  divided  by 256 (the number of  times the 
operation was repeated) was 0, rounded to the nearest integer, in all cases.

For the values with caching on, Initial Cycles represents cycle count of the first run, with a cold 
D-cache and I-cache, divided by 256.  Cycles is the average of the cycle counts of the last 49 
runs divided by 256 on a warm D-cache and I-cache.  The standard deviation of the last 49 runs 
was always 0, rounded to the nearest integer.

2.1.2 Analysis of costs

In this section, we discuss the measured instruction costs.

Under normal circumstances, the processor is capable of executing 1 basic computation per 
cycle.  Note that access to L1 – or equivalently, cached main memory – is just as fast as register 
access!

However, memory mapped registers (MMRs) require 4 cycles to access even though they are in 
L1  memory,  albeit  in  a  different  section.   Firstly,  this  may  be  because  interrogating  and 
manipulating CPU state cannot come completely for free or that testing.  Secondly, by running 
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CHAPTER 2 THE BLACKFIN ARCHITECTURE

the accesses back-to-back, we have introduced pipeline dependencies.  In further testing, where 
we placed 16 NOPs (enough to flush the pipeline) between MMR writes, we found that the cost 
of MMR writes drops to 3 cycles, on average.  However, given that we do tend to place MMR 
writes very close to each other, we quote the figure with pipeline dependencies – 4 cycles – in 
the table.

The  function  call  exposes  the  cost  of  flushing  the  pipeline  on  both  the  call  and  return 
unconditional jumps.  The cost of CSYNC pipeline flush is 10 which is surprisingly fairly cheap 
and equal to the length of the (short) pipeline.  However, the values for both CSYNC and SSYNC 
are expected to be larger in real code due to extra required buffer synchronisation.  The initial 
CSYNC cycle cost is the same as the cycle cost on a warm I-cache – this is an anomaly with the 
data that should be investigated.

The initial L4/Blackfin port was uncached so for completeness, the uncached values have been 
provided.  The CPU store buffer can be seen to absorb the cost of 256 writes to the same RAM 
address but  there is  no similar “load buffer” for the more expensive reads.   The uncached 
performance  is  dominated  by  instruction  loads  from  SDRAM  as  can  be  seen  from  2 
benchmarks:

1. Call to empty function: The repeated function calls cause constant pipeline flushes, on both 
the jump into the functions and the returns, resulting in a high rate of instruction refetch.

2. CSYNC/SSYNC: We see the cost of refilling the pipeline, from SDRAM, for each of the 256 
CSYNC/SYNC instructions (normally, 64-bits of instructions can be read in at a time but every 
instruction is a pipeline flush).

In summary, we ran experiments to measure the speed of basic operations on the Blackfin.  The 
Blackfin, with no cache misses, can execute a basic instruction or memory access in a single 
cycle.   Memory  Mapped  Registers  can be  accessed  in  4  cycles.   Function  calls  are  very 
expensive, at 18 cycles.  Finally, flushing the pipeline takes at least 10 cycles.
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CHAPTER 2 THE BLACKFIN ARCHITECTURE

2.2 Interrupts, Exceptions and Traps

In this section, we describe the program sequencing in the context of entering and exiting the 
kernel.  There are 16 interrupt/exception levels.  The important ones are:

1. General-purpose,  asynchronous  hardware  interrupts  7-15:  These  are  generated  by 
hardware or synthesised by the kernel mode RAISE instruction.

2. Synchronous exceptions “posing” as interrupt level 3: These are caused by events such 
as accesses to unmapped memory and illegal instructions.  System call exceptions can 
be invoked by using the user and kernel mode EXCPT instruction.

Low priority interrupts (high numbered ones) can be preempted by equal or higher priority ones 
(low numbered).

However,  exceptions  are  not  allowed to occur  when servicing  an exception and cause  the 
processor to event a double fault state.  To bypass this problem, one simply needs to switch the 
processor to an interrupt  mode on the initial  exception,  as exceptions are permitted during 
interrupts.

Interrupts are automatically  disabled on kernel  entry.   Interrupts in kernel mode can be re-
enabled by exploiting a bizarre instruction side effect – pushing the register containing the 
address of the user instruction (RETI) onto the kernel stack.  So if one wishes to save  RETI 
without re-enabling interrupts in kernel mode, one must copy it to another register first:

R0 = RETI;
[­­SP] = R0;

Interrupts can be masked using the IMASK memory-mapped register.  If userspace is, for some 
reason, given access permissions to the IMASK register, it can also mask interrupts.  Regardless 
of processor mode, exceptions cannot be masked.

Trapping can be done without reserving userspace registers for the kernel (like MIPS32's k0 and 
k1).   This  is  because  there  are  separate  userspace  and kernel  space  stack  and instruction 
pointers.

A readonly memory-mapped IPEND register contains bits set for each interrupt level currently 
being serviced in order to keep track of nested interrupts/exceptions.  Usermode is defined as 
the state of the CPU when it is not serving any interrupts.  But since IPEND cannot be directly 
written to, it is difficult to return to usermode when serving nested interrupts.  This is in contrast 
to the writeable CPU status register, found on other chips, which normally contains a single bit 
stating whether the chip is currently in kernel mode.

In summary, the Blackfin supports nested interrupts and different interrupt priorities but it is 
difficult to return from usermode in the presence of nesting.  Exceptions cannot be nested so if 
we wish to allow exceptions while serving a first exception, we must switch to an interrupt 
mode on the initial exception.
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CHAPTER 2 THE BLACKFIN ARCHITECTURE

2.3 Memory

We will  now analyse  the  all  the  memory  aspects  of  the  Blackfin  –  layout,  caching  and 
protection.

It is important to emphasise that the Blackfin is a pure physical memory system.  Virtual cache 
issues  [Uns05] that plague virtual  memory architectures,  such as cache synonyms (multiple 
virtual addresses per physical addresses) and homonyms (a virtual address referring to different 
physical addresses depending on the current address space) are therefore non existent.

2.3.1 Memory layout

The Blackfin has a flat  4GB 32-bit  address space  and supports  a maximum of 128MB of 
conventional, SDRAM [Bla06, Ana05b]:

0 - up to 128MB conventional memory

128MB - 0xffc00000 memory mapped registers (MMRs) for devices(there are many 
reserved holes in this region)

0xffc00000 - 0xffe00000 CPU’s system MMRs

0xffe00000 - 4GB CPU’s core MMRs

Table 2: Blackfin memory layout

The system MMRs access “on-chip peripherals outside of the core” [Ana05 p1-6] and run at the 
system clock frequency (99MHz on the STAMP board).  Conventional memory is therefore 
capped as this speed but this overhead is absorbed by cache.

The core MMRs run at the CPU clock frequency (497MHz on the STAMP board).

2.3.2 Memory caching

In this  section,  we provide  a  general,  architecture-neutral  motivation for  caching  and then 
discuss it in terms of the Blackfin.

Motivation for caching

The speed of main memory has not improved as quickly as the speed of CPUs.  As a result, the 
CPU may stall waiting for memory to be copied to and from registers, when it could be serving 
literally hundreds of instructions.  One way to reduce the impact of this is to have a small but 
very fast amount of memory cache near the CPU.  The hope is that because of locality, most 
accesses can be served directly by the cache (a  cache hit) instead of needing to access slow 
main memory (a  cache miss).   As a result,  cache hits have a dramatic beneficial  effect  on 
system performance.  To amortise memory access costs, on a cache miss, the cache copies to 
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and from memory the size of a cache line (“typically 16-32 bytes” [Uns05]).

An associative cache is split into a number of sets of cache lines.  The bits in a memory address 
are viewed as and split into the following (the number of bits for each varies from cache to 
cache) [Uns05]:

1. Tag (most significant bits)

2. Set number

3. Byte within the cache line’s data (least significant bits)

The set number determines which cache set a particular memory address is in.  The hardware 
performs a parallel (also known as associative) lookup of all lines in the set and determines 
whether the memory address is in the cache by matching the  tag bits of the address.  A way 
consists of all of the same numbered lines from each set i.e. it cuts across all sets.

Higher associativity – more cache lines per set – results in complex and expensive hardware 
due  to the parallel  lookup.   However,  this  leads to fewer  cache conflicts because different 
memory addresses with the same set number have a number of lines to choose from.  One 
extreme is a fully associative cache, where there is only one set.  The other extreme is  direct  
mapped where each set contains only one line.

From a programmer's point of view, in order to minimise the number of cache misses:

1. Minimise the size of code and data so that our working set is more likely to fit into the high-
speed cache.

2. Do not unnecessarily cross an alignment boundary.  For instance, if the cache lines are 32 
bytes each and an 8 byte variable is stored at the address  n * 32 + 28 (for arbitrary  n), 
accessing this variable would result in 2 cache misses – a line for n * 32 and the line for
(n + 1) * 32 – as the variable is split between 2 cache lines.

In summary, caching uses the principle of locality to hide the latency of memory.  Given the 
size of the memory-CPU speed gap, caching is essential for system performance.  However, this 
only works if we optimise our code and data for size so that the working set fits into cache.

Blackfin's caching

We now consider different aspects of the  Blackfin's caching features, building on top of the 
caching background we just provided.  The topics that will be covered include L1 memory, data 
and instruction caches, store buffer, cache coherency and the cost of cache misses.

L1 memory

L1 memory runs "at  the full  processor speed with little  or no latency"  [Ana05 p1-4] so is 
approximately 5 times (497 / 99) faster than the main SDRAM memory.

The Blackfin 53x series of chips contain [Bla06, Ana05c]:
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• 16 KB of instruction SRAM/Cache

• 16 – 32 KB of data SRAM/Cache (32 KB for the 533)

• 16 – 64 KB of instruction SRAM (64 KB for the 533)

• 0 – 32 KB of data SRAM (32 KB for the 533)

• 4 KB of scratchpad data SRAM

SRAM/Cache means that part or all of the respective memory block can be configured as cache 
– we have highlighted these in bold.  A cache is bypassed if it is disabled or if a newly fetched 
line is not deemed "important" enough (see our Instruction Cache discussion below) to replace 
an existing line [Ana05 p6-16].

All other SRAM can potentially be used for locking in kernel code and data without polluting 
the caches.  Instruction SRAM can only be filled using DMA ([Ana05c p307]) which means 
code that is to be placed there must be specially linked to the right address or be relocatable.

The Blackfin 53x's have no L2 memory [Bla06].

Instruction cache

This is a 16KB 4-way associative cache with each line containing 32 bytes of data.  Tags and 
line attributes are stored separately from each line.

The processor keeps track of 2-bits per line for an LRU replacement policy.  The operating 
system can state an LRU "importance" bit in each cache line's tag so that "unimportant" lines 
cannot evict "important" ones.

On an instruction cache miss, the CPU begins reading 32 bytes (the size of a cache line) from 
the line fill buffer, which consists of four 64-bit entries [Ana05 p6-15].  The line fill buffer will 
read from external memory.  The CPU restarts as soon as the line buffer returns a word as "the 
line fill buffer allows the core to access the data from the new cache line ... [before] the line has 
been written".

It is possible to flush and modify lines of the cache.

Data cache

The data cache is 32KB 2-way associative cache with each line containing 32 bytes of data. 
Again, tags and line attributes are stored separately from each line.

Data  cache  lines  can be  configured  to  either  "write-through"  or  "write-back"  and the  line 
replacement policy is determined by the Cache Controller [Ana05 p6-29].

A line fill buffer similar to the instruction cache's one exists.  An SSYNC instruction is required 
to flush the write buffer [Ana05 p6-35].

It is possible to prefetch, flush and invalidate lines.
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Store buffer

A 6 * 32­bit store buffer sits between L1 and the CPU core [Ana05 p6-28].  The CPU can 
read two 32-bit words simultaneously from the store buffer and or write 32-bits.

Cache coherency

Modifying  cached instructions requires  invalidating  the  respective  cache lines  to guarantee 
cache coherence [Ana05 p6-16].

Similarly, the data cache lines must be invalidated before a DMA operation [Ana05 p17-2].

Cache misses

Consistent values for I-cache and D-cache misses and refills could not be obtained.  The value 
appears ranges from 47-226 but seems to hover around 113-134 cycles.  This section describes 
some our experiments in attempting to measure cache miss costs and attempts to justify the 
measurement variability.

D-Cache refill cost

We attempted to measure D-cache costs by flushing the D-cache and then using this  code 
(different to the previous test [p17, Chapter 2.12.1]):

// Flush pipeline & CPU buffers, sync L1, sync with SDRAM
ssync;
// Guarantee pipeline flush (pipeline is only 10 long)
nop; [256 times]

.align 32:  // Align on cache boundaries

r0 = cycles;  // Read 64­bit cycle counter
r1 = cycles2;

p1.h = <arbitrary_cplb_mapped_address>;
p1.l = <arbitrary_cplb_mapped_address>;
r6 = [p1];

r4 = cycles;  // Read 64­bit cycle counter
r5 = cycles2;

nop; [256 times]  // Ensure no pipeline speculation warping results

The code was run with and without the statement that caused a D-cache line pull  r6 = [p1] 
(D-cache line pull) and we concluded that the cycle difference of 66 was the cost of a D-cache 
miss.  Adding the  r6 = [p1] could not have caused an extra I-cache line pull  as the total 
instruction size between the cycle counter reads inclusive is 14 bytes including it.
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I-Cache refill cost

Similarly,  I-cache  misses  were  measured  at  approximately  113.5  per  line  by  adding  and 
removing the italicised  nop; [256 times] below.  This was  based on the claim that there 
would be an addition or removal of  256 * sizeof(NOP) / 32 = 16 lines (ignoring the 
comparatively insignificant cost of executing the NOPs themselves):

// Flush pipeline & CPU buffers, sync L1, sync with SDRAM
ssync;
// Guarantee pipeline flush (pipeline is only 10 long)
nop; [256 times]

.align 32:  // Align on cache boundaries

r0 = cycles;  // Read 64­bit cycle counter
r1 = cycles2;

// Each NOP instruction is 2 bytes
nop; [256 times]

r4 = cycles;  // Read 64­bit cycle counter
r5 = cycles2;

nop; [256 times]  // Ensure no pipeline speculation warping results

However, we found that of values of 66 cycles for a D-cache miss and 113.5 cycles for an I-
cache miss were not consistent, as described in the following section.

Inconsistent results

At other times, D-cache has been measured to be slower than we initial measured (e.g. 134 
cycles instead of 66) and I-cache faster (e.g. 60 cycles instead of 113.5).  For instance, we ran 3 
tests, with different chip configurations, that flushed the D-cache and touched the first 32-bit 
word of every 32 aligned bytes of 32KB (the size of the D-cache).  It resulted in the following 
cycle  counts  and  suggest  that  D-cache  misses  take  about  114  cycles  (not  our  previously 
measured 66):

Chip Configuration Cycles per D-cache Line (32 bytes)

1. D-cache and I-cache enabled 114

2. I-cache only 48

3.  I-cache  only  baseline  (our  D-cache 
line touches were replaced with NOPs) 9

Table 3: Blackfin D-cache miss cycles

This involved 1024 repeated instances of:

r2 = [p0];  // Changed to NOP for the 3rd case in the table
r4 = p0;
r5 = 32;
r4 = r4 + r5;
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p0 = r4;

The results in the table above are given for the second run so that the I-cache is warm.  I-cache 
conflicts for this code (1024 copies * 5 instructions = 5KB) are assumed to be small. 
The cost of executing these instructions is assumed to be much smaller than the D-cache misses.

Because the 1st test executed the worst case for caching – causing 32 bytes to be loaded for 
every 4 bytes read – this 2nd test case performs expectedly better when D-cache is off.

To double check that the bulk of the costs we are measuring in the 1st test can be attributed to D-
cache refills, we performed a 3rd test which replaced the memory access with a NOP.  The 3rd 

test executed in far fewer cycles (9) so we can conclude that the cost of the 1st test is largely due 
to D-cache lines being faulted in, in approximately 114 cycles.  But this is almost double the 
figure of 66 we arrived at previously.

Possible reasons for inconsistent cache miss measurements

The inconsistent values that we are getting for D-cache and I-cache line fills are worrying. 
Evidently, there is something happening inside the CPU that we were not expecting

One possibility is the line fill buffers (between L1 & SDRAM) enabling CPU access to the data 
before the entire cache line is filled.   Because the refill  protocol stipulates that the pipeline 
restarts as soon as the word, to be accessed, is loaded (and the rest of the line is refilled in the 
background),  the  matter  is  made more complicated.   There  may be  following instructions, 
accessing the same cache line, proceeding in the pipeline while the cache line is being filled. 
Depending on the offsets of the accesses within the cache line and timing,  these following 
accesses could potentially succeed without stalling the pipeline if the fill buffer is sufficiently 
filled.

A “back of the envelope” calculation suggests that for D-cache, the cost of copying a line from 
SDRAM into the fill buffer is:

497 / 99 * 32 / 4 = approximately 40 CPU cycles

where:

497 = CPU frequency
99 = system frequency i.e. SDRAM upper bound
32 = cache line size
4 = word size (assuming word size bus transfers [Ana05c]).

An extra 32 / 4 = 8 cycles would then be used to copy from the fill buffer to L1.  The total of 
40 + 8 = 48 cycles is fairly close to the 60 odd cycles sometimes seen for I-cache and D-
cache misses (also given the variability and impact of SDRAM refreshes).

In any case,  we can conclude  that I-cache and D-cache misses cost at  least  60 cycles and 
sometimes take more than 100.
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Memory caching conclusions

System performance is strongly linked to cache footprint.  The Blackfin's split L1 instruction 
and data caches can be accessed as almost quickly as registers, amortised, and assuming no 
cache misses.  We ran experiments but could not determine precise costs for D-cache and I-
cache misses but we do know that they are in the order of 100 cycles each.
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2.3.3 Memory protection

In this  section,  we will  firstly  discuss  the  Translation Lookaside  Buffer  used  for  memory 
protection.  Then we will analyse the Blackfin's version of this mechanism.

Translation Lookaside Buffer

Most CPUs contain a  Memory Management Unit (MMU) which provides virtual to physical 
translation and checks memory accesses by looking up permissions from a Page Table stored in 
main memory.  Unfortunately, if the CPU were to access the page table (memory) on every 
memory access, this would double the number of memory transactions resulting in suboptimal 
performance.  Therefore, CPUs contain a small (e.g. 16 entries) but very fast (fully associative) 
cache of page table entries [Uns05], called a Translation Lookaside Buffer (TLB).

MMUs are far more common than the  Memory Protection Unit (MPU) used on architectures 
without virtual memory.  MPUs contain all the protection functionality of MMUs without the 
translation.

If the memory address of the access to be checked is not in the TLB, a TLB miss occurs and the 
TLB must be filled from the entry in the Page Table corresponding to the address.  This is 
performed by either hardware or the kernel depending on the architecture.

If it is not in the page table, a page fault exception is sent to the kernel.  The kernel must either 
insert  an entry into the Page Table  or if  the faulting thread does not have the appropriate 
permissions to access the faulting address, killing the offending thread.

We will now consider TLB replacement policies and other operating system considerations.

TLB replacement policies

As with cache lines, in order for a TLB refill to occur, an existing line must be evicted to make 
room for the new one, unless there are free lines.  Ideally, the line that will not be used for the 
longest should be removed.  Three policies are First In First Out (FIFO), Random and Least 
Recently Used (LRU).

FIFO is fast and simple to implement but fails to exploit locality as occasional accesses to other 
addresses evicts commonly used pages.  Random is almost as fast and simple but also avoids 
the pathological worst case of cyclical access to a working set slightly larger than the TLB 
coverage.  Random is the most popular method for TLB replacement.

LRU assumes prior behaviour is suggestive of future behaviour i.e. that line used least recently 
will not be used for the longest period of time.  Without an oracle, LRU is as close as practical 
for optimal exploitation of locality.   Unfortunately,  tracking which line has been used most 
recently  would  require  updating  state  on  every  memory  access  resulting  in  unacceptable 
performance.

An approximation of LRU is  the  2nd chance or  Clock eviction policy.   Clock maintains a 
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pointer to a “current” line.  Whenever a line needs to be evicted, the clock increments its pointer 
(wrapping around to the first line), evicts the first line with the reference bit clear and finishes. 
For all lines it encounters along the way, the Clock clears the reference bit.  Accesses to lines 
with zero reference bits results in a fault (TLB readonly exception).  The kernel will respond by 
setting the reference bit of the faulting line.  In this way, the reference bit simulates a “least-
recently-used” bit.  Lines which are in use are less likely to be evicted.

However, each run of the Clock algorithm may mark many pages as readonly.  The subsequent 
protection violations, on writes to these many pages, usually outweighs the benefit of avoiding 
the refill  cost of the accidental eviction of a single page.   Simple and fast policies such as 
Random are much better.

Other operating system considerations

The size of memory has been growing rapidly but the TLB, and the memory coverage of the 
TLB, has not [Uns05].  Therefore, TLB pressure is increasing.  In order to reduce the overhead 
of TLB misses, an operating system should minimise the number of TLB misses by ensuring 
that each entry covers the largest address range possible (as long as each address in the range 
shares the same protection attributes).  Therefore, the TLB may support a number of page sizes. 
“Large” page sizes such as 1MB and 4MB are often referred to as superpages.

Tagged TLBs contain Address Space IDs (ASIDs) in order to avoid leaking protection between 
address spaces.  Untagged TLBs without ASIDs normally require that the operating system 
flush the TLB on each address space switch.  This performance penalty is compounded by the 
extra cost of serving the TLB misses that occur immediately after the switch.

Blackfin

As Blackfin does not support virtual memory, it has MPUs instead of TLBs.  We now describe 
the details of its MPUs.

The Data Cacheability Protection Lookaside Buffer (DCPLB) is a 16 entry, untagged and fully 
associative MPU for data accesses.  Each entry controls caching attributes and enforces user 
read and write access permissions.

The Instruction  Cacheability Protection Lookaside Buffer (ICPLB) is a similar MPU but for 
controlling instruction fetches.  It operates totally independently of the DCPLB.  It is therefore 
possible to execute instructions (ICPLB) but not be able to read them (DCPLB).

Both  are  refilled  in  software  by  the  kernel  and therefore,  suffer  from pipeline  and cache 
pollution.  This means that system performance depends more heavily on reducing the number 
of MPU entry refills, compared to a hardware-refilled MPU.

1KB, 4KB, 1MB and 4MB pages are supported.  There are bits for locking a line and marking a 
page as kernel accessible  only.   Pages cannot overlap so they can only be shared between 
userspace and kernel space at the same fine or coarse granularity.

The MPUs are optional and are off by default.  If you enable them for memory protection, even 
kernel  accesses must  go through the MPUs.   MPU pressure is  therefore increased and we 
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discuss further implications of this protected kernel addressing later [p86, Chapter 7].

The MPU must be disabled before changing any MPU entries.  This requires an SSYNC to flush 
the  pipeline  and propagate  the  protection disable  notification.   After  changing  some MPU 
entries,  one must  re-enable  protection and  SSYNC again.   These 2  SSYNCs alone mean that 
protection changes require at least 2 * 10 = 20 cycles [p17, Chapter 2.1].

Protection can be turned on without caching.  However, caching requires protection.  Therefore 
turning off protection to bypass the MPU for accessing memory in kernel mode should not be 
done for long periods of time due to the performance hit of no caching.

Summary of memory protection

The TLB is a hardware cache of the page table, providing virtual to physical translation and 
protection.   TLB  misses  are  either  served  by  the  kernel  or  hardware  depending  on  the 
architecture.  A simple and effective TLB replacement policy is Random.  The operating system 
should attempt to use large superpages for greater TLB coverage and to reduce TLB pressure. 
Untagged  TLBs  cannot  allow  for  entries  from  different  protection  domains  so  mandate 
expensive flushes on address space switches.

The Blackfin  has  software-refilled,  split  data  and instruction protection units  that  offer  no 
translation – the DCPLB and ICPLB.  Kernel addressing is also subject to the CPLB protection 
mechanisms.   Changing CPLB entries  is  expensive,  as is  leaving them off as they control 
caching as well.

2.3.4 Conclusions about memory and Blackfin

The Blackfin does not have virtual memory so has a single 32-bit address space, with many 
CPU memory-mapped control registers at the top.  Accessing cached data in the split instruction 
and data caches is just  as fast  as register accesses.   The Blackfin has software-refilled and 
separate data and instruction CPLB protection units.
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2.4 Instruction Pipeline

In this section we discuss the features of CPU instruction pipelines.  We then delve into the 
details of the Blackfin's pipeline.

2.4.1 Pipelining

Modern RISC processors split instruction execution into multiple stages.  Therefore, multiple 
instructions can be “in flight” at different stages of execution, maximising the usage of different 
CPU units, as long as the instructions are independent.

The pipeline is stalled in the presence of data dependencies i.e. “when an instruction depends on 
the results of a previous instruction” [CNC00] but that previous instruction has not yet written 
its output.

Branch hazards can occur because the processor speculatively executes instructions based on a 
prediction of whether a branch will be taken.  If this prediction is wrong, the pipeline must be 
flushed of such instructions and refilled – expensive with a long pipeline.  Speculative reads or 
writes from I/O devices may cause unexpected behaviour.

2.4.2 Blackfin

The processor contains a 10 stage pipeline which stalls automatically in several places so that 
software  does  not  have  to  deal  with  hazards  in  order  to  guarantee  correctness   [Ana05]. 
Assuming no stalls, the Blackfin can perform at least 1 instruction per cycle [p17, Chapter 2.1].

Write operations write to the store buffer [p24, Chapter 2.3.2] and complete before "the data is 
actually written to an external memory or I/O location".  Reads may be satisfied from the store 
buffer.  

Read instructions, placed after a branch instruction, may be speculatively executed before the 
branch instruction is  committed.   This is  unexpected for an I/O devices  and so the  CSYNC 
instruction must be used before I/O reads to flush the store buffer and to ensure "any pending 
interrupts, speculative states (such as branch predictions), or exceptions" are completed.  The 
SSYNC instruction  performs  a  CSYNC and  then  "flushes  any  write  buffers  between  the  L1 
memory and the  system domain and generates  a  sync  request  to  the  system that  requires 
acknowledgement”.

Interrupts  can cause  I/O accesses  to be  aborted,  possibly  after  a  “memory-read cycle  was 
initiated”.  In this case the access will occur again after the interrupt, which off-chip devices do 
not guard against.  Therefore, interrupts should be disabled before such accesses.

Static branch prediction is used for conditional branches and we discuss the performance of this, 
on the Blackfin, in another chapter [p144, Chapter 13.4].
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2.4.3 Conclusions on instruction pipelining

Modern chips execute multiple instructions simultaneously at different stages of a potentially 
long  pipeline.   Branches  decrease  performance  because  they  prevent  effective  instruction 
readahead into the pipeline.

On the Blackfin, the pipeline is only 10 stages long and can normally execute 1 instruction per 
cycle.  Speculative execution and work store ordering mean that I/O device accesses must be 
surrounded by  CSYNC/SSYNC barriers and depending on the situation, require interrupts to be 
disabled.
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2.5 Possible Blackfin Security Bug

We strongly believe that  the Blackfin contains a security  hole so this  section describes  an 
exploit  in detail and also workarounds.  The hardware feature that enables this exploit,  zero 
overhead loops, will be explained followed by a presentation of the code and an analysis.

2.5.1 Zero overhead loops

The  Blackfin  enables  this  exploit  through  its  support  for   zero  overhead  loops  [Ana05]. 
Normally, one points an LT (Loop Top) register to the start instruction address of a loop.  LB 
(Loop Bottom) will point to the last address in the loop.  LC (Loop Count) will be set to the 
number of iterations of a loop.  These registers can only setup loops a short distance away from 
the setup code.

However, if user loop setup code is placed sufficiently close to the kernel trap or untrap code 
and executed, a zero overhead loop may be setup in the kernel code.  The kernel would then 
loop when trapping in (or out) which would corrupt the kernel stack.  Worse still, possible stack 
overflows (or underflows) would either corrupt other kernel memory and/or cause a in-kernel 
faults due to unexpected accesses to unmapped memory.

On the following page, we present the code for the exploit that sent to Analog Devices on 2006-
03-02.  This will be followed by a subsequent analysis of the attack.
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2.5.2 Exploit code

Userspace

// Point the loop registers to kernel code.
// For whatever reason, the user is aware of the position of the
// kernel untrap code ("untrap_middle" & "untrap­end").
r0.h = untrap_middle; r0.l = untrap_middle; lt0 = r0;
r0.h = untrap_end; r0.l = untrap_end; lb0 = r0;
r0.h = 0x7fff; r0.l = 0xffff; lc0 = r0;  // >2*10^9 loop iterations.

// Loop forever waiting for an interrupt to fire.
l:
        jump.l l;

Kernel space

untrap_from_interrupt:
        usp = [sp++];
        fp = [sp++];

        [... restoring of more registers ...]

        // Loop registers get restore here, forming a loop!
        lt0 = [sp++];
        lb0 = [sp++];
        lc0 = [sp++];

// This label is here just to make it clear as to what userspace is
// pointing to.
untrap_middle:
        b3 = [sp++];
        b2 = [sp++];
        b1 = [sp++];
        b0 = [sp++];
        l3 = [sp++];
        l2 = [sp++];

        [... restoring of more registers ...]

        a0.w = [sp++];

// This label is here just to make it clear as to what userspace is
// pointing to.
untrap_end:
        a0.x = [sp++];

        // Return to usermode.
        rti
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2.5.3 Analysis of exploit code

We firstly describe the sequence of events, arising from the previous exploit code, followed by 
a discussion on how to defeat the attack.

Sequence of events

1. Userspace sets up malicious loop registers that point to kernel code.

2. Userspace spins in a loop waiting for an interrupt to fire.

3. An interrupt fires.

4. The kernel saves all registers on the trap in.

5. The kernel serves the interrupt.

6. The kernel attempts to exit back into usermode via untrap_from_interrupt.

7. The kernel begins restoring registers.

8. As part of 7. it restores the loop registers lt0, lb0, lc0 (just before untrap_middle).  But 
the user pointed these registers to kernel code (specifically to loop between  untrap_middle 
and  untrap_end and for more than 2 billion iterations).  Therefore a hardware loop is now 
active in kernel mode.

9. The kernel continues restoring registers between untrap_middle and untrap_end.

10. But before it reaches the rti instruction, it decides to loop back to untrap_middle due to 
the hardware loop.  This is repeat 2 billion times until the kernel stack is underflowed.

Can we defeat this exploit?

While this could be defeated by masking the LB0 and LB1 registers, which are stored on stack, 
to ensure that they only point to userspace, a similar exploit that forms a hardware loop before 
the kernel trap is entered, at first, seems certain to be triggered by helpless kernel entry code. 
But this too can be defeated by making use of a feature of hardware loops – they can only cause 
code at most 30 bytes away to loop.  Therefore, ensuring that there is enough padding between 
user code and the kernel trap code is sufficient to ensure the exploit will fail.

Nevertheless, we had significant difficulty in getting either exploit to work.  Analog Devices 
only provided canned responses.

2.5.4 Blackfin bug conclusions

The zero overhead hardware loop feature of the Blackfin opens up the possibility of a malicious 
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userspace  process  creating  loops  in  the  kernel.   However,  we  are  experiencing  difficulty 
verifying whether it is a genuine exploit and in any case, it can be worked around.
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2.6 Comparison to ARM

Recall that our focus is on supporting L4 efficiently on architectures without virtual memory, 
by drawing conclusions based on an implementation on the Blackfin architecture [p12, Chapter 
1.1].   So while  our focus will  be on Blackfin,  most of the results  will  generalise  to other 
architectures without virtual memory.

In this  section, we introduce two such architectures – ARM1156T2-S [Arm05,  Wig99] and 
ARM7TDMI [Arm04] – and compare them with the Blackfin to provide a broader context for 
our research.  We find that ARM1156T2-S is a very similar MPU-based chip to the Blackfin 
and that ARM7TDMI is similar to ARM1156T2-S but has no memory protection at all.

Throughout this document, all our conclusions should generalise to these chips except for the 
areas where we point out Blackfin-specific problems or features.

2.6.1 ARM1156T2-S

This is a 32-bit RISC architecture with 37 registers, with 16 visible at any one time.  There are 
different privileged modes for different types of exceptions and some registers are banked (e.g. 
The stack pointer and the link register) between usermode and kernel mode.  The ARM features 
DSP instructions and a separate Thumb-2 16/32-bit instruction set for improving code density. 
The pipeline has 9 stages and features global branch prediction.  This is all fairly similar to the 
Blackfin except that Blackfin has fewer protected modes and only has static branch prediction.

Both the ARM and Blackfin have trouble dealing with nested exceptions.  Recall that Blackfin 
disallows  exceptions  within  exceptions,  so  exception  handlers  must  defer  their  work  into 
interrupt handlers (which support a nested exception) [p16, Chapter  2.2].  With ARM, in the 
event that an exception occurs during the handling of the  same type of exception,  the link 
register is trashed.  Therefore, the kernel must ensure that this situation never occurs – or switch 
modes just as Blackfin kernels are forced to.

Like the Blackfin, the ARM has separate instruction and data caches, which are both usually 4-
way  associative  (like  the  Blackfin  instruction cache).   The  line  length  is  also identical  to 
Blackfin with eight 32-bit words.

The ARM also has separate instruction and data untagged MPUs, each containing 16 entries.  It 
also features protected kernel addressing, in which kernel accesses are constrained by the MPUs 
[p86, Chapter 7].  These aspects are identical to the Blackfin.

However, there are significant differences between the 2 chips.  The ARM supports page sizes 
of every power of 2 from 32 bytes to 4GB while the Blackfin only supports 1KB, 4KB, 1MB 
and 4MB.   MPU entries  are  permitted to refer  to pages  that  overlap,  unlike  the Blackfin. 
Furthermore the ARM has hardware-loaded MPUs (based on a 2 level page table), while the 
Blackfin suffers from slower software MPU refills.

Recall  that turning off the Blackfin MPU completely disables caching [p30, Chapter  2.3.3]. 
ARM is similar except that it reverts to a memory layout where the bottom 1.5GB or 2GB of the 
address space –  according to a runtime configuration option – is cacheable.
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The  ARM supports  changing  of  protection entries  without  disabling  the  MPU,  unlike  the 
Blackfin.  However, disabling or enabling the MPU, for whatever motivation, requires flushing 
both caches.  In contrast, disabling or enabling the MPU on the Blackfin only requires SSYNC 
pipeline flushes.

2.6.2 ARM7TDMI

The ARM7TDMI is a simpler ARM chip with no virtual memory but its main difference is that 
it does not have memory protection.  It used in Apple's extremely popular iPod music player so 
supporting L4 on this architecture would create the potential for massive, global L4 microkernel 
use.  L4 would also provide an alternative to iPodLinux – a port of ucLinux to the iPod [Ipo06].

We aim to provide a unified L4 API for all  non-virtual-memory architectures regardless of 
whether the architecture has an MPU, to reduce the porting effort for applications built on top of 
the microkernel.  Ideally, to migrate applications to an MPU-less architecture, all we would 
need to do is simply need to disable the protection mechanisms.

2.6.3 ARM comparison conclusion

Our goal is to support L4 on architectures without virtual memory.  While our focus is on the 
Blackfin,  we  realise  that  another  popular  MPU-based  architecture  –  ARM1156T2-S  –  is 
extremely similar so our results will  generalise.   The important differences are that ARM's 
MPU is hardware-loaded, supports a much broader set of pages sizes and that MPU entries can 
refer to overlapping pages.  We can also trivially support architectures without even MPUs, 
such as the ARM7TDMI (and also very similar), by simply turning off the protection.
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2.7 Blackfin Architecture Summary

The following characteristics of the Blackfin were discussed:

• No virtual memory

• 32-bit architecture and 32-bit address space

• Exceptions  cannot  be  nested  so  if  we  wish  to  allow exceptions  while  serving  a  first 
exception, we must switch to an interrupt mode on the initial exception

• Software-refilled  Data  Caching  Protection  Lookaside  Buffer  and  Instruction  Caching 
Protection Lookaside Buffer as MPUs.

We ran experiments to measure the speed of basic operations and cache misses.  The important 
results we found were:

• Primitive instructions can be executed in 1 cycle

• Cached word accesses are just as fast as register accesses and also complete in just 1 cycle

• Cache misses cost in the order of 100 cycles so a key to good kernel performance is to 
minimise cache footprint

A  potential  kernel  exploit  utilising  Blackfin's  zero  overhead  hardware  loop  feature  was 
described and workarounds suggested.

We also compared the Blackfin to other architectures without virtual memory so that our work 
can generalise:

1. ARM1156T2-S  is  a  very  similar  chip,  also  with  split  instruction  and  data  MPUs. 
However, its MPU is hardware-loaded and supports overlapping pages.

2. ARM7TDMI has an instruction set  similar  to ARM1156T2-S but  does not have an 
MPU.  We hope to support such MPU-less architectures using the same L4 API as for 
MPU architectures but with the protection functionality ignored.
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3 L4 Background

Traditional monolithic operating systems, such as Linux or Windows, have millions of lines of 
operating system code running in the privileged  kernel  mode.  A single  bug – security  or 
otherwise – in the kernel is likely to compromise the entire system.

This implies that the only way to develop reliable systems is to restructure operating systems to 
minimise the amount of privileged code.  The centrepiece of this radically different structure is 
the L4 microkernel  [Lie96] foundation, on which operating systems can be built to execute 
safely and efficiently in userspace.  

In this  chapter, we analyse  The Microkernel Approach and motivate the need for operating 
systems to be built this way for reliability.

We then describe the various Versions of L4.

Finally, Recent Developments will cover relatively new, related work that will be incorporated 
into our thesis – namely, the N2 API, Single Stack Kernel and Physical TCB Arrays.
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3.1 The Microkernel Approach

In an L4-based system, only the small microkernel (tens of thousands of lines of code) runs in 
kernel mode.  A well-known claim is that a small “trusted computing base” [Nic06a] is much 
more likely to be correctly implemented and lends itself  to formal verification.  Traditional 
operating systems services are instead run as servers in usermode and should they fail, they can 
be restarted.

In this  section,  we introduce  basic  L4 abstractions and then provide  further  motivation for 
microkernel-based operating systems.

3.1.1 Abstractions

The  main  L4  abstractions  are  address  spaces,  threads  and  Inter-Process  Communication 
messages (IPC) [Nic05a].

Address Spaces

Each address space can be viewed as a traditional “process” whose memory is isolated from 
other address spaces.  Each address spaces contains 1 or more threads and maintains, in kernel 
space, a page table.

Address spaces provide for bug isolation as memory corruption from unrelated processes cannot 
occur.

Threads

L4 threads are the same as lightweight kernel threads in traditional operating systems.

Threads’ IDs, kernel stacks, and other such information are stored in  Thread Control Blocks 
(TCBs) in kernel space.  Thread state shared between userspace and kernel space (e.g. message 
registers for IPC) is stored in User Thread Control Blocks (UTCBs).

IPC

Threads synchronise and communicate with each other via IPC and potentially, shared memory. 
This provides a strict,  well-defined interface between different threads and processes in the 
system – in contrast to the ad-hoc structuring of monolithic systems such as Linux,  where 
device drivers manipulate page table structures apparently directly [RC01 ch. 13].

As the primary communication mechanism in a microkernel-based operating system, IPC must 
be very fast even across address spaces.  Ideally, this should be completed in tens of cycles but 
on most architectures, this can only be implemented in the order of hundreds of cycles or at 
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worst, the low thousands.  A distinguishing characteristic between L4 and previous generation 
microkernels, such as Mach, is in IPC performance [Lie96].

3.1.2 The microkernel advantage

Process isolation with address spaces and well-defined interfaces using IPC means that each 
process can be individually engineered and mathematically verified.  This is not possible in a 
monolithic system where a memory bug in say, a driver, could compromise an unrelated system 
such as the virtual memory manager (unless a protection system hack such as Nooks is used 
[SML+02]).

But microkernels come at a cost.  Firstly, proper object-orientated operating system design is, in 
the short term, more difficult than ad-hoc implementation.  However, in the long term, it tackles 
the problem of increasing data and control flow complexity in traditional operating systems. 
Secondly, well-defined interfaces that happen to depend on address space switches are slower 
than simply accessing a variable or calling a function.  It remains to be seen whether a real-
world system can be constructed using a pure microkernel architecture and exhibit comparable 
performance to a traditional operating system.

42



CHAPTER 3 L4 BACKGROUND

3.2 Versions of L4

In this section, we describe the foundation for our work, NICTA L4-embedded, and previous 
work on porting different versions of L4 to other architectures.

3.2.1 NICTA L4-embedded

NICTA L4-embedded [Nic05a] is NICTA’s version of L4 with a focus on embedded systems. 
Based on the Pistachio tree, it is largely written in C++ so the code for any single architecture is 
between ten thousand to fifteen thousand lines of code.  It is commercially relevant – more 
recently,  Qualcomm  has  started  developing  chipsets  based  on  L4-embedded  [Nic05b]. 
Therefore,  this  thesis  focuses  on NICTA L4-embedded  due  to  its  active  development  and 
support within the ERTOS research group.

3.2.2 Ports

The L4-embedded [Nic06b] source tree contains working ports to other architectures – namely, 
ARM, IA32 and MIPS64.  Their code served as reference implementations that guided the 
development  of  the  Blackfin  port.   The  MIPS64  port  was  referred  to  because  it  was 
straightforward and the IA32 port was used because it has the same word size and endian as the 
Blackfin.

Alpha [Pot99,  Sch96], MIPS32  [Bla06e] and SPARC-V9  (by Philip Derrin but report is not 
published) ports of L4 – to name a few – are well-documented outside of the source code. 
However, as the discussions are very architecture-specific and given that they describe versions 
of the API that differ greatly from NICTA's  [Nic05a], they are of limited use.  Ports prior to 
Pistachio, of which L4-embedded is based upon, were written in assembler and are even less 
useful as references.
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3.3 Recent Developments

The Blackfin port was based on an “N1.5” (between  N1 and  N2) version of the NICTA L4- 
embedded kernel.  Recent research and development within the ERTOS group has steered the 
port  in additional  directions.   We consider  N2,  the single  stack kernel  and the physically-
addressed TCB changes.

3.3.1 N2

We wrote an initial port of L4 to Blackfin to get a feel for the issues involved in microkernel 
construction [p47,  Chapter  4].   However,  in  the  meantime,  the  L4  N-series API  [Nic05a] 
underwent  continual  refinement  and  progressed  to  the  N2 version.   In  order  to  pick  up 
architectural changes, the Blackfin port was updated.  This was so that performance analyses 
would still be valid for the current architectural state of the kernel rather than one long gone by.

This was time-consuming because there were many breaking changes on an implementation 
level but luckily,  it  was found that nothing significant – other than the addition of a cache 
management API – had actually been done.

3.3.2 Single Stack Kernel

When the initial port of L4 to the Blackfin was written, there was a kernel stack for every user 
thread, making context switches transparent to the majority of kernel code.  However, reserving 
a stack for every thread in the system consumes a lot of memory and cache footprint.  As a 
result, L4 is now moving to a continuation model with a single kernel stack [War05].  We will 
implement this and report our findings in this thesis [p113, Chapter 10].

3.3.3 Physical TCB Arrays

On virtual memory architectures, the TCB array is normally a large virtual array.  Individual 
entries are only physically backed on demand.

This virtual allocation permits a large thread ID space, avoiding thread ID reuse.  On top of 
version numbers, reducing thread ID reuse increases the difficulty for threads to masquerade as 
dead trusted threads that happened to have the same thread IDs.

Note the necessity for the L4 microkernel to provide a large thread ID space.  It is tempting to 
move this responsibility up to the operating system,  layered on top and in userspace.  The idea 
would be that the OS would provide its own thread ID abstraction, that maps to L4 thread IDs, 
with the goal of providing a much larger thread ID space.  However, this is flawed because it 
could be bypassed by malicious processes by using L4 system calls (which only accept L4 
thread IDs).

Nourai  [Nou05] describes different ways of storing TCB arrays in physical  memory in the 
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interests of simplicity and performance.  For virtual memory systems, he cites the following 
advantages:

1. Physically addressing the TCB array reduces the use of virtual address space which is 
scarce on 32-bit systems.

2. TLB misses no longer occur on TCB accesses.  The TLB refill cost is eliminated and 
TLB pressure is reduced.  Linear kernel execution is achieved and this simplifies formal 
verification.

Furthermore,  some architectures  clobber  registers  on nested  exceptions,  such  as  in-
kernel TLB misses, requiring workarounds [p37, Chapter 2.6.1].  If we eliminate such 
nested exceptions, we simplify the kernel as we do not have to consider this register 
trashing possibility.  With additional, usable registers, the fastpath can be more efficient.

Blackfin, ARM1156T2-S (MPU) and ARM7TDMI (no memory protection) [p37, Chapter 2.6] 
do not have virtual memory so for us, Physical TCB Arrays are not a matter of performance but 
rather something we must implement.  Our actual implementation is later described in  detail 
[p125, Chapter 11].
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3.4 Summary

The L4 microkernel can be used to build potentially more reliable operating systems, compared 
to traditional systems, as only a small amount of code is privileged.

L4-based operating systems will consist of servers in separate address spaces, providing for bug 
isolation.  Threads communicate primarily using IPC so this must be fast.

We are basing our work on NICTA L4-embedded and will implement the recent Single Kernel 
Stack and Physical TCB Array developments.
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4 An Initial Blackfin 
Port

Having developed the necessary Blackfin and L4 background in the previous 2 chapters, we 
wrote an “quick and dirty” implementation to gain a feel  for the issues  in  writing  a high 
performance  kernel,  without  virtual  memory,  and  to  provide  a  base  for  experimentation. 
Specifically, it implemented a full pre-N2 API to the Blackfin 533 Revision 0.3 architecture on 
an ADDS-BF533 STAMP REV 1.2 board [Bla06c].

A naive implementation, and as the first ever port of L4 to a physical-only memory architecture, 
it performed badly as it was written quickly and ignored design issues.  This chapter analyses 
its shortcomings and introduces design and implementation changes to improve its performance.

As  our  kernel  was  mature  enough  to  run  the  pingpong microbenchmark,  which  will  be 
described shortly, we start by providing performance figures.  We then analyse different aspects 
of the kernel – the kernel entry and exit path, system calls, IPC, all aspects related to memory, 
thread ID space and UTCBs.
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4.1 Pingpong Microbenchmark

No serious  –  not  toy  and contrived  –  macrobenchmarks  were  available  so we  could  take 
advantage of Linux-based benchmarks as ucLinux had not yet  been ported to L4/Blackfin. 
Instead, we made a straightforward port of the pingpong microbenchmark to the N2 API.  We 
also fixed a bug that resulted in the reported cost of non-IPC tests being half of what they 
should have been.

Pingpong measures operations by executing them 10,000 times (outer loop of 2, inner loops of 
5,000).  

The NOP test measures the baseline loop overhead of the benchmark.

Kernel  entry  and exit  measures  the  speed  of  entering  and exiting  the  kernel,  without  any 
shortcuts.  This is the baseline overhead for all kernel operations.  A System call is the speed of 
essentially the null system call.  These are our special additions to pingpong and the difference 
between Kernel entry and exit and System call will be discussed shortly [p55, Chapter 4.3].

The IPC tests repeatedly bounce a message between 2 threads.  This has a very small working 
set – and therefore small MPU and cache footprint – so represents best case performance.  There 
is  a  real  danger  that,  in  the  absence  of  macrobenchmarks,  drawing  conclusions  based  on 
microbenchmarks will result in suboptimal design decisions for real workloads.  Intra-AS IPC is 
the cost of an IPC from one thread to another in the same address space.  Inter-AS IPC is across 
address spaces.

On the next page, we present the performance figures for our initial kernel, with cache enabled 
and disabled.
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Operation With D-cache &
I-cache

Uncached

Cycles us Cycles us

NOP 9.2 0.2 141.1 0.2

Kernel entry and exit 4,049.2 9.4 68,407.6 137.6

System call [*] 7,775.3 15.6 128,987.8 259.6

Intra-AS IPC

0 MRs 17,566.3 35.0 271,083.8 545.0

4 MRs 17,218.7 35.0 272,283.3 548.0

8 MRs 17,272.2 35.0 273,160.2 549.0

60 MRs 17,890.7 36.0 285,650.0 575.0

Inter-AS IPC

0 MRs 39,203.1 79.0 633,899.7 1,275.0

4 MRs 38,907.2 78.0 635,059.7 1,278.0

8 MRs 38,962.8 78.0 636,004.9 1,280.0

60 MRs 39,582.0 79.0 648,468.4 1,305.0

Table 4: Performance of the initial L4/Blackfin port

The above numbers are the cycle and microsecond costs divided by 10,000 (the number of 
iterations) and rounded to the nearest .1 (just so that the microsecond column didn't show 0 for 
NOP).   The timer  interrupt  was enabled  and fired  every  2ms to simulate  a more realistic 
working environment.  This would only have perturbed the much larger uncached results.

The kernel was uncached by default  as we feared that,  with a lack of testing,  it  would be 
unstable.   However,  these fears were unfounded as,  without  virtual  memory, the ordinarily 
troubling aspects of caching – virtual cache issues – were non-existent.  Turning on both I-cache 
and D-cache consistently gave 1 or 2 orders of magnitude improvement in cycle costs.  As this 
was  virtually  for  free,  the  subsequent  discussion  will  only  analyse  statistics  with  caching 
enabled.

We see that even with caching enabled,  the performance of the kernel was atrocious.   For 
instance, the IPC figures are approximately 2 orders of magnitude worse than other L4 ports. 
Therefore, the following sections analyse the initial port's kernel entry and exit path, system 
calls, IPC and memory issues.

[*] The system call was the Blackfin-specific L4_KDB_SystemClock() which merely looks up a 64-bit value 
from the scheduler class.
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4.2 Kernel Entry and Exit

The initial port implemented the majority of the trap code in C++.  Nevertheless, 4,049.2 cycles 
is an extremely high cost for merely entering and exiting the kernel and this cost is part of all 
kernel operations such as IPC and protection unit refills.  Therefore, we had a strong motivation 
to instrument the kernel to find out where the cycles were going.

We begin by looking at the cache performance of the whole code path, excluding the saving and 
restoring  of  the  trapframe (due  to  technical  difficulties).   We then  analyse  the  trapframe 
overhead, followed by an analysis of the remaining code written in C++.

4.2.1 Cache performance of the whole path

We measured the warm cache performance of entering and exiting the kernel – the number of I-
cache and D-cache misses and the number of cycles lost to them:

Run I-cache D-cache

Misses Cycles Misses Cycles

1 27 544 - -

2 - - 74 175

Table 5: Cache performance of the initial L4/Blackfin port

Due to a limitation in our instrumentation, these figures exclude the cost of saving and restoring 
the trapframe.  Two separate runs were required to switch the 2 performance monitor registers 
from measuring I-Cache to D-Cache.

The performance monitoring unit is known to give impossibly high I-cache and D-cache cycle 
counts – in some tests, even higher than the total number of cycles for the entire operation!  So 
the values in the table are probably higher than they should be and should be interpreted with 
caution.  On top of this, the indirect cache effects of our instrumentation code have not been 
measured.  Nevertheless, we do believe these figures can provide a very rough insight into the 
kernel port's cache behaviour.

These figures suggest that I-cache misses cost only 544 / 27 = 20.1 cycles on average and 
D-cache misses take an incredibly small  175 / 74 = 2.4 cycles.  Note that this is a far cry 
from our measured hundred cycle cache refill costs [p24, Chapter 2.3.2] so again, we should be 
cautious.

The cache misses were only analysed briefly.  The D-cache cost is insignificant as it is only 175 
/ 4049.2 = 4.3% of the total cycle cost.  The I-cache miss rate is higher at 544 / 4049.2 = 
13.4% of the total cycle cost and warrants further investigation.

As these runs were on warm caches, there could not be compulsory misses.  Capacity misses 
were also not possible because, in this test, userspace was a very small loop that touched almost 
no data and the kernel would not be able to blow 16KB of instruction cache, nor 32KB of data 
cache.
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So we can only conclude that we are witnessing conflict misses.  Although the instruction cache 
is more associative than the data cache (4-way compared to 2-way) [p22, Chapter  2.3.2], the 
larger number of cycles lost to I-cache misses can be attributed to a kernel entry and exit path 
that executes code far more frequently than accessing memory.  Conflict misses can be reduced 
by minimising the amount of sparsely distributed kernel code and data by firstly reducing the 
size and memory access footprint of the kernel and secondly, by packing together code and data 
into aligned cache lines.

4.2.2 Trapframe cost

As our previous analysis excluded the cost of saving and restoring the trapframe, we investigate 
it here.  The trap into the kernel saves 45 words representing the entire user state:

[­­sp] = (r7:0, p5:0);
[­­sp] = a0.x; [­­sp] = a0.w;
[­­sp] = a1.x; [­­sp] = a1.w;
[­­sp] = i0; [­­sp] = i1; [­­sp] = i2; [­­sp] = i3;
[­­sp] = m0; [­­sp] = m1; [­­sp] = m2; [­­sp] = m3;
[­­sp] = l0; [­­sp] = l1; [­­sp] = l2; [­­sp] = l3;
[­­sp] = b0; [­­sp] = b1; [­­sp] = b2; [­­sp] = b3;
[­­sp] = lc0; [­­sp] = lc1;
[­­sp] = lb0; [­­sp] = lb1;
[­­sp] = lt0; [­­sp] = lt1;
[­­sp] = astat;
[­­sp] = rets;
[­­sp] = fp;
[­­sp] = usp;
[­­sp] = retx;  // or “[­­sp] = reti;” if we're handling an interrupt

It was measured to take 45 cycles in the absence of cache misses, which is optimal for the 
Blackfin as it  executes a maximum of 1 instruction per cycle,  in almost all situations [p17, 
Chapter 2.1].  So we are not doing anything wrong here.

The cache footprint is as follows:

I-Cache:  31 instructions * 2 bytes for each instruction (even push multiple) /  32 bytes per 
cache line = 2 cache lines

D-cache: 45 registers * 4 bytes for each on the stack / 32 bytes per cache line = 6 cache lines

The I-Cache footprint is optimal as we could not possibly express these register saves in a 
smaller amount of code.  The D-cache footprint is optimal as we could not possible pack the 
registers into a smaller space.

If we want to be pessimistic and assume that these 2 + 6 = 8 cache lines will always miss, 
then we can expect a penalty of more than 800 cycles [p24, Chapter 2.3.2].  However, unless 
the system is under an extreme working set, one would expect most of these cache lines to be in 
the cache.  Nevertheless, placing the trap code, and storing user context, outside of ordinary 
memory and in L1 SRAM [p22, Chapter 2.3.2] would minimise the kernel's cache footprint.

Trapping out of the kernel performs a similar set of operations to trapping in, which we just 

51



CHAPTER 4 AN INITIAL BLACKFIN PORT

measured,  so the analysis should be identical for trapping out.

4.2.3 Performance of the C++

In this section, will illustrate the importance of micro-optimisations.  An analysis of the cost of 
kernel entry and exit path revealed that most of the cost comes from the C++ called between the 
assembler  trap  and  untrap  code.   As  just  a  taste  of  the  problems  we  describe  the 
l4bfin_interrupt_level() call,  inefficiencies  with  regards  to  returning  to  userspace, 
assertions and consistency checks.  These issues motivate the need for micro-optimisations not 
just for the simple kernel entry and exit case but also for system calls, the DCPLB refill handler 
and the like.

l4bfin_interrupt_level()

This function determine whether we came from user mode or kernel mode and is frequently 
called.  We came from kernel mode if the  BFIN_IPEND register shows that two interrupts or 
exceptions are currently nested:

int
l4bfin_interrupt_level (bool *was_in_kernel_mode) {

if (was_in_kernel_mode)
*was_in_kernel_mode = false;

int ilevel = ­1;
for (int i = 0; i < 16; i++) {

// Global Interrupt Disable is not an interrupt.
if (i == 4)

continue;

if (*BFIN_IPEND & (1 << i)) {  // Memory Mapped Register
if (ilevel == ­1) {

ilevel = i;
if (!was_in_kernel_mode)

break;
} else {

ASSERT (NORMAL, was_in_kernel_mode);
*was_in_kernel_mode = true;
break;

}
}

}

return ilevel;
}

Unfortunately, it is hopelessly inefficient. The above loop usually executes 16 times and on 
each iteration, performs at least (except for bit 4 of BFIN_IPEND):

1. 3-4 conditional branches (1 test for the for loop and 2-3 if statements)

2. 1 unconditional branch (end of the loop)
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3. 1 access to an uncached memory mapped register,  BFIN_IPEND

This was measured to take approximately 400 cycles and is executed 2-3 times depending on 
the particular code path used to enter or exit the kernel (exception or interrupt).  In other words, 
800-1,200 cycles is being spent in this function, per kernel entry and exit.

However, if we were to set the kernel entry points to different addresses for each interrupt level, 
the trap code could easily write the current interrupt level (and whether we came from usermode 
or kernel mode) to a variable that could be looked up.  We would not even need to loop 16 
times nor use tricky bit manipulation optimisation tricks.  To handle nested exceptions (e.g. 
CPLB misses in kernel mode), we would simply need to maintain the current and previous 
interrupt levels, in a similar spirit to the MIPS32's status register.

Returning to userspace inefficiencies

There was some very inefficient code that manipulated Data CPLB protection unit entries on the 
trap out:

// Either have current space XOR on IDLE thread.
ASSERT (NORMAL, !!get_current_space () ^

!!(get_current_tcb () == get_idle_tcb ()));
// TODO: walking page table is really bad performance.
const bool user_can_access_mmrs = get_current_space () ?

get_current_space ()­>lookup_mapping ((addr_t) BFIN_MMR_START,
0/*no output*/, 0/*no output*/) :

false;
l4bfin_dcplb_mmr_entry_enable_user (user_can_access_mmrs);

l4bfin_dcplb_set_utcb_entry (*((addr_t *) UTCB_PTR_START));

This code cost approximately 1,400 cycles as:

1. It walks the page table (lookup_mapping()) to determine if the thread is permitted to access 
the memory mapped registers.  We underestimated the importance of inlining the page table 
entries' accessors, which are frequently called by this and so result in massive branching.

Furthermore, we could have avoided this page table walk entirely by simply kept track of 
this special permission as a single bit in the TCB.

2. The code sets 2 DCPLB protection unit entries, which involves a total of 4 pipeline flushes 
and synchronisations [p29, Chapter 2.3.3].

Furthermore,  it  turns  out  that  if  we  change  our  memory protection regime,  we  can avoid 
executing all of the above code entirely [p60, Chapter 4.5.2].

Assertions and consistency checks

We assumed that assertions and sanity checks would only take a small number of cycles and 
that their cost would be insignificant.  Here we analyse just one such check used to determine if 
the kernel has accidentally tricked a processor double fault:
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void
l4bfin_if_double_fault_panic (const char *trip_point)
{

u32_t seqstat;
BFIN_SEQSTAT (seqstat);
if (exception_cause (seqstat) == 0x25/*Unrecoverable event*/)
{

l4bfin_double_fault_panic (trip_point);
}

}

This costs approximately 46 cycles and is executed approximately 8 times for a total of 8 * 46 
= 368 cycles.  There are many other assertions and checks that should not have been compiled 
in.

4.2.4 Conclusions about the kernel entry and exit

Our initial kernel took too many cycles (thousands) to enter and exit the kernel.  A preliminary 
cache analysis, although perhaps skewed by a buggy performance unit, suggested that conflict 
misses are occurring.

Our code for saving and restoring the trapframe, at least, is optimal and should exhibit good 
performance except under high cache pressure.  Therefore, most of the cycles in the kernel entry 
and exit path come from the C++ due to the simply inefficient implementation and the enabling 
of assertions.  We believe other kernel operations, such as DCPLB refill, suffer from the same 
problems and can be fixed in the same way.

Our inefficient implementation can be improved using micro-optimisation techniques, which we 
touched on briefly, and later discuss in great detail [p137, Chapter 13].  Some code can also be 
thrown out, saving valuable cycles,  if  we were to correct the design,  as we noted with the 
memory protection unit manipulation on the untrap path.

We later find that disabling assertions alone results in more than a doubling of performance 
[p138, Chapter 13.1].  The smaller code size would also reduce the number of conflict misses 
we believe we observed (the less code,  the less chance of a conflict,  not to mention fewer 
capacity misses).

What we have learnt is  a lesson in optimisation.   The kernel  entry and exit  paths may be 
invoked hundreds of times per second (for IPC) so even the cost  of operations that take a 
millionth of a second (500 cycles at 500 MHz) add up.
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4.3 System Calls

In this section, we discuss the mechanism for system calls, the calling convention and revisit a 
Blackfin problem with nested exceptions, that creates extra inefficiency. 

4.3.1 System call mechanism

System calls were implemented as exception numbers 0 (KDB debugging system calls) and 1 
(L4 system calls) and triggered by the Blackfin  EXCPT instruction.  Recall  that system calls 
must be implemented as exceptions as the user cannot generate interrupts [p20, Chapter 2.2].

4.3.2 System call convention

Out of laziness, the system call convention was made to match the Blackfin gcc function calling 
convention  [Bla05] i.e.  the first  3 arguments are register  backed and further arguments are 
placed on the user stack.  However, placing arguments on the user stack results in extra page 
table manipulations inside the kernel, resulting in unnecessary complexity.

The C calling convention already preserves too many registers, namely 10 of them.  But our 
system calls were even worse than this – because they shared the trap code with interrupts and 
MPU miss exceptions, they saved and restored the full  set of registers instead of the just C 
calling convention.

4.3.3 Nested exceptions

Because  in-kernel  CPLB protection unit  miss  exceptions might  occur  (on UTCB memory-
backed message registers) during a system call and system calls can only be implemented as 
exceptions,  we  must  switch  the  processor  to  an interrupt  mode on the  initial  system call 
exception [p20, Chapter  2.2].  The kernel achieves this by raising a reserved interrupt line, 
masking  all  other usermode interrupts  and exiting the kernel.   The masking is  required to 
prevent  an  interrupt  –  timer  or  otherwise  –  triggering  an unexpected  kernel  entry.   After 
entering the kernel but before the CPU executes any user code, the processor realises that an 
interrupt is active and re-enters the kernel immediately.  Hence, the system call exception has 
caused a mode switch and deferred its work into an interrupt handler.  This trick is also used by 
ucLinux but this mode switch is a waste of cycles so we later investigate ways to avoid in-
kernel CPLB misses, by moving UTCBs, so that it is not required [p91, Chapter 7.3].

To make matters worse, we restore the full trapframe when exiting from the initial system call 
exception and then save it again on the entry into the interrupt.  But no user code has been 
executed – the user context is unchanged and so these steps are pointless.

As usermode CPLB misses are exceptions, just like system calls, they too must defer their work 
to an interrupt handler.
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4.3.4 System call summary

System calls are implemented as exceptions.  However, they save and restore too many registers 
– too often – and involve the complexity of the kernel accessing the user stack.

System calls and usermode CPLB exceptions must waste cycles deferring their work into an 
interrupt handler due to the possibility of in-kernel CPLB miss exceptions.  We will investigate 
eliminating such in-kernel exceptions by considering different UTCB schemes.
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4.4 IPC

We noted that the IPC performance is 2 orders of magnitude worse than other L4 ports [p48, 
Chapter 4.1].  Recall that IPC is a very important part of L4's performance [p41, Chapter 3.1.1] 
so it is critical that we analyse the cause of this.

Recall  that  in  the  pingpong  microbenchmark,  2  threads,  ping_thread and  pong_thread, 
bounce a message using 2-phase L4_Call() IPCs.  Here, we present the sequence of events in 
Intra-AS IPC and Inter-AS IPC, before and after the thread switch.  Take special note of the 
number  of  times  the  kernel  is  entered  (italicised).   We  then  follow  with  analysis  and 
conclusions.

4.4.1 Before the thread switch

1. System call: The thread begins send using the L4_Ipc() system call.  The kernel is entered 
via  an exception.   The  kernel  defers  the  call  to  a  lower-priority  interrupt  (to  cater  for 
potential  DCPLB misses  in  kernel  mode  [p55,  Chapter  4.3.3]).   The  kernel  returns  to 
usermode.

2. Deferred system call:  Immediately,  the  kernel is entered on the interrupt and begins the 
send phase of the IPC:

a) The kernel is re-entered in kernel mode on a DCPLB miss on the receiver's UTCB MRs. 
The miss is resolved.  Note that no exception deferring is required as a kernel-mode 
DCPLB miss will never cause a nested DCPLB miss or other exception (unless there is 
a kernel bug).

b) The send phase is completed.  The thread blocks in the kernel for the receive phase. The 
kernel switches to the receiver.

c) If it is an Inter-AS IPC, the DCPLB is flushed, for the address space switch.

d) Usermode is returned to.

4.4.2 After the thread switch (for Inter-AS IPC only)

Because,  Step  2c  flushes  the  DCPLB for  Inter-AS IPCs,  we  immediately  incur  usermode 
DCPLB misses.  The following steps only apply to Inter-AS IPC and are skipped for Intra-AS 
IPC.  

3. Stack miss: Usermode triggers a DCPLB miss on writing a variable to the stack.  The kernel 
is  entered and defers  the  exception to a lower-priority  interrupt.   The kernel  returns to 
usermode.

4. Deferred stack miss: Immediately, the  kernel is entered on the interrupt and resolves the 
DCPLB miss. The kernel returns to usermode.
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5. Data segment miss: Same as 3. but due to a global variable access.  As a result, the kernel is 
entered.

6. Deferred data segment miss: Same as 4. but due to 5's global variable access.  As a result, 
the kernel is entered.

4.4.3 Analysis

After step 6., usermode then loops back to 1. regardless of whether it's the ping_thread or the 
pong_thread (as they both do they same thing but alternate from being the receiver to the 
sender).  Steps 3. & 4. and 5. & 6. may be swapped around depending the stack locations of the 
2 threads.

For each Inter-AS, we enter the kernel 7 times (see italicised text in above sequence of steps). 
The kernel entry and exit cost multiplied by 7 (4,049.2 * 7 = 28,344.4) is approximately 
10,000 cycles short of the figure for Inter-AS IPC (39,203.1),  according to our benchmarks 
[p48, Chapter  4.1].  We can safely assume this to be the overhead of the kernel code which 
refills  the DCPLBs for the multiple  misses – and other computation costs (e.g.  IPC kernel 
code).  After all, if a kernel entry and exit, which by itself achieves nothing, costs more than 
4,000 cycles, a missing 10,000 cycles – lost to actual computation – should not be surprising.

Intra-AS IPC is the same as Inter-AS IPC except that it does not switch address spaces so does 
not flush the DCPLB (skipping steps 2b and 3-6).  Therefore, for each Intra-AS IPC, we only 
enter the kernel 3 times (in steps 1, 2 and 2a).  Multiplying the kernel entry and exit cost by 3 
(4,049.2 * 3 = 12,147.6) reveals approximately 5,000 missing cycles from the figure for 
Intra-AS IPC (17,566.3).  Again, this assumed to be computation and overhead on top of the 
kernel entry costs.

4.4.4 Ways to speed up IPC

Having identified the IPC performance is heavily dependent on kernel traps and DCPLB refills, 
we draw conclusions on how to make the IPC perform well.

For Inter-AS IPC, recall that as the Blackfin DCPLB protection unit is untagged, we need to 
flush the DCPLBs on address space switches [p29, Chapter 2.3.3].  As we can see from steps 3-
6, this results in compulsory and expensive DCPLB misses.  However, if we saved and restored 
address spaces' DCPLB entries on address space switches, we could avoid these 4 traps.  We 
later investigate this possibility [p153, Chapter 14.1].

We could speed up both types of IPC in the following ways:

1. Optimise the kernel trap, as previously described [p54, Chapter 4.2.4]

2. Eliminate in-kernel DCPLB misses  [p91, Chapter 7.3] and therefore, the need to defer 
system calls and usermode DCPLB handling into interrupts, halving the number of traps 
or otherwise, speed up the DCPLB refill handler

3. Use register-backed message registers [p132, Chapter 12.2]
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4. Write an assembler fastpath [p187, Chapter 18.2.2]
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4.5 Memory

In this section, we begin by looking at the initial port's instruction protection.  We then follow 
with a discussion of  the  port's  data protection and DCPLB unit  usage.   The page  table  is 
discussed and we analyse the port's memory layout.  Finally, we combine all this to propose a 
new memory layout.

4.5.1 No instruction protection

Instruction protection was disabled as Blackfin seemed to have buggy support for this when 
caching was off.

This is a potential security hole although it is hard to imagine a meaningful attack with being 
able to execute another address spaces’ code but not being able to read or write its code nor 
data. Despite this, Kevin Elphinstone suggests that a secret algorithm could be used without 
authorisation or its internal structure could be discovered by observing its inputs and outputs. 
However, for this to work, the secret code could only access registers and data in the attacking 
address space (not the address space where the code resides).  Nevertheless, it would be better 
to cover this potential security hole.  

Instruction protection was later implemented and found to work when caching was enabled.

4.5.2 Data protection

Out of convenience, 6 pages are locked into the 16-entry DCPLB.  We discuss why this too 
many for good performance and then analyse which pages do not have to be locked.

TLB and MPU pressure is an increasing performance bottleneck, especially on slow software-
refilled architectures like Blackfin.  As general rule, the kernel should not make assumptions 
about what kind of data the user is  likely to access.  For instance, should the kernel lock in a 
particular page, a program that primarily accesses its own data but not that locked page, would 
not be able to take advantage of that MPU entry, increasing MPU pressure.  On the other hand, 
unlocking that page will not substantial penalise tasks that do access that page frequently as it 
will simply be loaded into the CPLB via the ordinary refill mechanism, and maintained there if 
the replacement policy respects temporal locality.  Therefore, an almost always optimal policy 
for the kernel is to reserve as few MPU entries as possible.  

The following entries were locked into the DCPLB:
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Index Purpose Page Size

0 page containing UTCB pointer 1KB

1 Kernel Interface Page 4KB

2 kernel image 4MB

3 kmem heap 4MB

14 0xffc00000 CPU MMRs (user accessibility set on untrap) 4MB

15 UTCB of current thread (set on untrap) 1KB

Table 6: Locked DCPLB entries in the initial L4/Blackfin port

Clearly, locking almost half of the 16 DCPLB entries is denying data-bound processes optimal 
performance.  We now investigate which entries do and do not have to be locked.

0 : page containing the UTCB pointer

This entry is for a fixed page (so that userspace can access it easily) whose first word contains a 
pointer to the current thread's UTCB, which is locked in entry 15.

The UTCB pointer could be moved into the KIP to free up a DCPLB entry.

1: Kernel Interface Page

The Kernel Interface Page (KIP) contains information about the architecture and the kernel, 
such as supported page sizes, as well as system call wrappers.

There is  no need to lock this  page into the DCPLB.  If  a thread wants to access the KIP 
frequently, it will be mapped into the DCPLB using the ordinary DCPLB refill  mechanism. 
Otherwise, an extra DCPLB entry will be free for data-bound processes.

2: Kernel image and 3: kmem heap

The kernel image contains all the kernel-mode code and global variables.  The kmem heap 
contains all of the dynamically allocated data structures in L4 – TCBs, threads' kernel stacks 
inside those TCBs, address spaces and page tables.

Blackfin and ARM1156T2-S suffer from protected kernel addressing in that all kernel accesses 
go through the protection unit [p86, Chapter 7].  Therefore, at least one of these pages must be 
locked into the DCPLB so that our trap code has a place to save the context.  We cannot leave 
this page unlocked and hope that the trap code can load this page into the DCPLB for the 
purposes of having a place to save the context.  This is because it would need to perform the 
DCPLB fill  without  clobbering the context – impossible on Blackfin due to an insufficient 
number of banked registers.
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Once instruction protection is enabled,  the kernel image must definitely  be locked into the 
ICPLB for the trap code, as well as the DCPLB.

Note that the kernel image only occupies 200KB at worst.  A 1KB or 4KB superpage is too 
small so our remaining choices of a 1MB or 4MB means that a lot of space is left unused.  It 
therefore makes perfect sense to put the kmem heap at the end, saving a DCPLB entry and 
memory.

14: Memory Mapped Registers

The CPU's Memory Mapped Registers (known as  MMRs) are located in the top 4MB of the 
4GB address space.  These are largely protection, caching and event vector registers used by the 
kernel.   There  are  also  registers  for  controlling  hardware  devices,  debugging  and  the 
performance unit, which should be accessible by user level.

Due to protected kernel addressing [p86, Chapter 7], kernel memory accesses are still subject to 
the DCPLB protection unit.  We need the MMRs to configure the DCPLB protection unit so 
one would expect that the MMRs would need to be locked into the DCPLB, else we would lose 
the ability to reconfigure the DCPLB.

As a result, we locked the 4MB superpage into the DCPLB.  Fine grained sharing of the MMRs 
with  userspace  was  impossible  given  that  the  Blackfin  protection  unit  does  not  allow for 
overlapping mappings (ARM1156T2-S does however).  So sharing the MMR superpage with 
userspace was an all or nothing matter.   As a consequence,  device drivers had to have full 
access to all MMRs instead of a small section (e.g. 1KB) resulting in reduced reliability since 
some MMRs can be used to crash the whole system.

However,  after  some experimentation,  we  found  that  the  MMRs  do not  act  like  ordinary 
memory where a DCPLB miss would occur if the relevant page was not in the DCPLB.  The 
actual behaviour is alluded to by the CPU manual [Ana05] but not properly documented:  

During Usermode

1. If the address is covered by a CPLB entry with the appropriate permissions, the access 
goes ahead.  This is just like ordinary memory.

2. Otherwise,  a  protection violation  occurs  –  never a  DCPLB miss.   This  is  unusual 
behaviour.

During Kernel Mode

1. If the address is covered by a CPLB entry with the appropriate permissions, the access 
goes ahead.  This is just like ordinary memory.

2. If it is covered with inappropriate permissions, a protection violation occurs.  Again, this 
is like ordinary memory.

3. In this last case, the address is not in the CPLB but a “default CPLB descriptor” [Ana05] 
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will allow the access.  This is unusual behaviour but means that we do not need to lock 
the MMRs into the DCPLB.

Therefore,  we  do  not  need  to  lock  in  the  MMR  superpage  for  the  kernel  and  with  the 
overlapping entry problem gone as a result, userspace could be given MMR access with the 
granularity of the minimum page size (1KB).

15: Current UTCB

This entry is for the page of the current thread's UTCB.

There is no need to lock this in as the application may be computation bound instead of IPC-
bound (and utilising memory-backed message registers).  If the thread, on the other hand, is 
involved in many IPCs, it is likely that this page is already in the DCPLB.

Data protection conclusions

Too many pages are arbitrarily locked into the DCPLB for good performance.  On architectures 
with protected kernel addressing kernel addressing, at least one kernel page needs to be locked 
for the trap.  In our case – Blackfin –  only the kernel image entry needs to be locked.

DCPLB entries can be saved by moving the UTCB pointer into the KIP and placing the kmem 
heap at the end of the kernel image.

Memory-mapped register pages require special handling by the DCPLB refill path.
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4.5.3 CPLB replacement policy

Our replacement policy for the DCPLB was crazily inefficient and this would also have been 
the case for the ICPLB, had we enabled it.  In this section, we describe our scheme and consider 
different design alternatives.

The policy probed the entire DCPLB for a free line.  Recall that there are 16 lines in a DCPLB 
and that each DCPLB register read is 4 cycles [p17, Chapter 2.1], giving a total of 16 x 4 = 
64 cycles in the worst case, excluding the actual tests and loop overhead.  If it failed to find a 
free line, it returned the first unlocked line it encountered.  It began scanning from the line after 
the last victim in an attempt to simulate FIFO.

Recall that FIFO fails to exploit locality – occasional accesses to different parts of memory 
evict commonly used lines – but this is far better than Clock LRU's overhead [p28, Chapter 
2.3.3].

Psuedorandom allocation fixes the pathological FIFO worst case – cyclical access of a working 
set larger than the CPLB coverage.  A fast algorithm for 32-bit processors is described by Carta 
[Car90] and a MIPS32 reference implementation can be found in the lottery scheduling paper 
[WW94].

However, an even simpler and slightly faster scheme is to use the lower bits of the instruction 
counter register (called CYCLES).  Let us consider a general, hypothetical problem caused by this 
with a unified TLB (does not distinguish between data and code pages).   Assume that the 
current instruction's code page is in the TLB.  If the instruction were to access a data operand 
whose page is not in the TLB, this would generate a TLB miss.  We must be careful that the 
cycle cost of our TLB refill  path is not a multiple of the number of TLB entries or else our 
replacement strategy, based on the lower bits of  CYCLES, would replace the instruction page 
with the data page.  On the return to userspace, the instruction opcode would now cause a TLB 
miss and the reverse would now occur.  We would then be stuck in a loop continually swapping 
the data TLB entry with the instruction TLB entry and vice-versa.  However, as the Blackfin has 
split instruction and data CPLB protection units, this cannot occur.

To simplify debugging, we opted to simply optimise our initial FIFO scheme.  Instead of an 
expensive probe of the CPLB for a free line, we simply did not care if we evicted a line that 
was in use, even when another was free.  This is a fairly reasonable strategy given that if there 
are many CPLB misses occurring, the CPLB is already likely to be full.  In the future, we could 
avoid this problem by maintaining a low overhead queue of free CPLB entries, implemented as 
a simple array.

Once the kernel is very stable, we could trivially switch to psuedorandom scheme using the 
lower  bits  of  the  instruction  counter  but  at  the  risk  of  being  unable  to  reproduce  “non-
deterministic” bugs.  On an attempt to reproduce such a bug, the psuedorandomness would be 
affected, for example, by a change in the number of cycles that the user waits at a prompt or if a 
hardware interrupts fires with a slightly different period.

In summary, the initial replacement policy was a FIFO one that wasted too many cycles probing 
the CPLB.  We should use a much faster psuedorandom scheme based on the lower bits of the 
instruction counter.  However, to guarantee determinism in the early stages of developing and 
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debugging the kernel, we will simply micro-optimise our FIFO variant and remove the CPLB 
probe.

4.5.4 Page table

The Blackfin port uses the L4 Linear Page Table Walker to manipulate a two level page table.

The first level is indexed by the most significant 10 bits of the address.  It can either be a 4MB 
superpage mapping or a pointer to the second level.

The second level is indexed by the next most significant 12 bits of the address.  It is searched 
multiple times (similar in style to what is described in Philip Derrin's unpublished L4/SPARC 
report) to determine whether the mapping is a 1MB, 4KB or 1KB page (in that order) so it is 
effectively 4 levels deep.

Unfortunately, the Linear Page Table Walker is too general – it walks virtually any kind of page 
table.  More specialised code for our particular two level page table structure would be more 
efficient, as it would avoid unnecessary tests.
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4.5.5 Initial memory layout

In this section, we present and critique the initial memory layout.  Note that some of the pages 
we list here are locked into the DCPLB as described in the previous section on locked DCPLB 
entries [p60, Chapter 4.5.2].

1. Null pointer catcher

0 to 1KB unmapped

This is permanently left unmapped to ensure that user and kernel null pointer bugs are trapped 
by the MPU.  1KB covers far much than a single word at address 0 but we could not do better 
as it is the smallest supported page size.  On the bright side, this allows us to catch more than 
just simple null pointer accesses – it catches array accesses where the base of the array is at null 
but the array subscript is not.

2. Kernel Area 0 – shared with userspace

1KB to 2KB [user readonly] UTCB pointer

2KB to 3KB [user executable] idle thread user code

4KB to 8KB [user executable and readonly] Kernel Interface Page (KIP)

8KB to 8KB + 256 threads * 1KB = 264KB 
[current thread's UTCB is user readable and 

writeable]

global UTCB array

In our previous discussion regarding optimising DCPLB usage, the UTCB pointer was to move 
into the KIP [p60, Chapter 4.5.2].

The motivation for having idle thread user code is discussed in a later section [p76, Chapter 
5.1.2]. As we will implement instruction protection [p60, Chapter  4.5.1], accesses to the idle 
thread user code will result in ICPLB misses.  However, the KIP already contains system call 
wrappers that the user must  use to invoke system calls.   Therefore,  we can reduce ICPLB 
pressure but moving the idle thread user code into the KIP.

The global UTCB array is later discussed at length in the context of eliminating DCPLB misses 
in kernel mode [p91, Chapter 7.3].

3. User Area 0 – small area for the user

264KB to 4MB user defined

This  is  a userspace  “memory hole”  disjoint  from the main region from 12MB to 128MB, 
described shortly.  We cannot move the subsequent kernel superpages, each 4MB, to start at 
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264KB as superpages must be aligned on their size.  As a result, this hole is known as external 
fragmentation.

Discontiguous memory is inconvenient so we would like to avoid it.  One approach is to move 
Kernel Area 0 (described above) to after the kernel superpages (described below).  The kernel 
superpages would then start on address 0.

But this leaves us with the issue of the null pointer catcher page.  One solution is to not have it 
but then null pointer bugs will  not be trapped.  On architectures which support overlapping 
MPU entries, such as the ARM1156T2-S, the null pointer catcher page could be locked into the 
MPU, with no permissions, and overlap the kernel superpages.  It must be locked into the MPU 
if we wish to detect kernel null pointer bugs consistently, as else null pointer accesses could be 
satisfied by the locked kernel superpage entry below.  This permanently wastes a DCPLB entry, 
which we have been trying to avoid [p60, Chapter 4.5.2].  So if we either dislike this solution or 
our architecture does not support overlapping DCPLB entries – such as Blackfin – a we simply 
have to accept this discontiguous memory trade-off.

4. Kernel Area 1 – kernel image

4MB to 8MB kernel image

5. Kernel Area 2 – kernel heap

8MB to 12MB kmem heap

We discuss the future directions of Kernel Area 1 and Kernel Area 2 together, recalling that we 
previously decide to merge them into a single 4MB superpage [p60, Chapter 4.5.2].

The  4MB  size  for  this  superpage  is  rather  arbitrary,  however  it  should  be  an  important 
consideration  as  kernel  memory  pages  reserved  by  L4  cannot  be  used  by  the  user. 
Unfortunately,  we later  find that  there is  no single  “correct” amount  of  kernel  memory to 
reserve [p172, Chapter 16.1].

But in a quest to support, say, more threads, we might want a kernel heap larger than 4MB – 
larger than the maximum size of a superpage – would require locking more precious DCPLB 
entries, slowing hungry userland processes with large working sets.

Recall that the page sizes supported by the DCPLB (and ICPLB) are 1KB, 4KB, 1MB and 
4MB.  To minimise the number of locked DCPLB entries for the kernel heap, one would like to 
use the largest page size.  Unfortunately, one must align pages on their size resulting in greater 
external fragmentation with larger page sizes.

Also, the desired page size may be too big but the next smallest page size too small resulting in 
internal fragmentation e.g. 2.5MB can be covered using three 1MB pages, locking 3 DCPLB 
entries or by one 4MB page, locking 1 DCPLB entry but wasting 1.5MB of RAM.  So there is a 
trade-off between saving DCPLB entries and saving memory.  DCPLB entries are precious for 
even small working sets since there are only 16 of them and the common page size of 4KB 
constrains the DCPLB coverage to just 16 * 4KB = 64KB.  But memory is also scarce because 
Blackfin supports a maximum of only 128MB of RAM.
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6. User Area 1 – general area for user

12MB to 0xffc00000 user defined

This is where userspace can put the bulk of its code and data.

7. CPU memory-mapped registers

0xffc00000 to 4GB memory-mapped registers (MMRs)

We discussed memory-mapped registers in a previous section [p60, Chapter 4.5.2].

In summary, we presented the memory layout of the initial Blackfin port.  We should move the 
idle thread user code into the KIP.  We have  discontiguous user memory due to our desire to 
catch user and kernel null pointer bugs.  On architectures supporting overlapping MPU entries, 
we can avoid this contiguous region and still  trap null pointer bugs but at the expense of an 
extra locked MPU entry.  Due to a flaw in the design of L4, we cannot determine what the size 
of the kernel heap should be.  Supporting other sizes may waste memory or consume extra 
DCPLB entries.  Changes to the memory layout are therefore only motivated by the previous 
section on DCPLB usage [p60, Chapter 4.5.2].
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4.5.6 New memory layout

We now present our new memory layout based on our previous analysis of locked DCPLB 
entries [p60, Chapter  4.5.2] and the initial memory layout [p66, Chapter  4.5.5].  This section 
serves to clarify what the new layout is so no new conclusions are drawn here.

1. Null pointer catcher

0 to 1KB unmapped

This is unchanged from the initial memory layout.

2. Kernel Area 0 – shared with userspace

4KB to 8KB [user readonly and executable] Kernel Interface Page (KIP) containing the 
UTCB pointer and idle thread user code

8KB to 8KB + 256 threads * 1KB = 264KB 
[current thread's UTCB is user readable and 

writeable]

global UTCB array

The UTCB pointer is now placed in the KIP, saving a DCPLB entry.  The idle thread's code has 
also been placed in the KIP to save an ICPLB entry as the system call wrappers are already 
there.  The KIP is no longer locked as we should not anticipate application behaviour.

The global UTCB array is unchanged.

3. User Area 0 – small area for the user

264KB to 4MB user defined

This is unchanged from the initial memory layout.

4. Kernel Area 1 – kernel image

4MB – 8MB kernel image and kmem heap

We combined the separate 4MB superpages for the kernel image and kmem heap, as the kernel 
image needs 200KB.  This new superpage must be locked into both the DCPLB and ICPLB for 
the trap code and is the only page, in our new memory layout, that needs locking.
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6. User Area 1 – general area for user

8MB – 4GB user defined

With one fewer kernel superpage, the user area starts 4MB earlier, providing more memory.

The memory-mapped registers superpage is no longer considered in our memory map as the 
kernel does not actually need to deal with it specially – DCPLB locking or otherwise.  Fine-
grained MMR sharing with userspace is now possible.

In summary, the new memory layout saves memory over the initial  layout and significantly 
reduces CPLB pressure.  Only the kernel image needs to be locked and in both the DCPLB and 
ICPLB.

4.5.7 Conclusions about memory issues

Instruction protection was initially disabled after Blackfin was found to be buggy with caching 
off.  It works with caching on.

Six pages were arbitrarily locked into the DCPLB causing great DCPLB pressure.  Some of the 
pages could be combined and in the end, we proposed a new memory layout where only a 
single page, for the kernel image, needed to be locked for the trap code.  This is the minimum 
for a protected kernel addressing architecture such as Blackfin.

We have discontiguous user memory due to our desire to catch user and kernel null pointer 
bugs.  It is unclear what the size of the kernel heap should be.

The initial FIFO-based CPLB replacement policy wasted too many cycles probing the CPLB. 
We simply propose to micro-optimise by removing the probing.  In the future, we hope to use a 
psuedorandom scheme instead of the FIFO one and also maintain a low overhead queue of free 
CPLB entries to prevent unnecessary evictions.

We are using a two level page table structure but we need to use a specialised walker – rather 
than L4's generic one – for better performance.
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4.6 Thread ID Space

As we do not have virtual  memory,  our TCB array is physically  addressed.   However,  we 
literally have it as a fixed array of pre-allocated TCBs.  As they are preallocated, we could only 
stomach the thought of 256 pre-allocated TCBs hogging kernel memory, as many of them could 
be unused (256 * 4KB, the size of the TCB = 1MB).  This severely limitations the thread ID 
space, which decreases system security [p44, Chapter 3.3.3].  Even after the implementation of 
the single kernel stack, where TCBs are only 512 bytes, should we only use 1MB for the TCB 
array, our thread ID space would still be small (1MB / 512B, the new sizeof the TCB = 2,048 
TCBs).  We would like to support a 16-bit thread ID space as suggested by Nourai [Nou05] and 
using the methods he describes.

The number of threads is also constrained by a fixed size, global UTCB array stored in kernel 
space.  The global UTCB array is later discussed at length in this context and that of eliminating 
DCPLB misses in kernel mode [p91, Chapter 7.3].
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4.7 UTCBs

Our UTCB size of 1KB was only decided upon based on convenience.  Excluding message 
registers,  UTCBs only need to be 64 bytes.   Blackfin architecture supports a maximum of 
128MB of RAM so memory is scarce.  We should therefore investigate reducing the size of 
UTCBs.

No message registers are register-backed – all are stored in the UTCB.  This means that the IPC 
path always has to copy message registers to and from UTCBs, stored in memory, touching 
cache lines.  Register-backed message registers permit the IPC path to merely context switch to 
the destination thread with no copying so this is a great motivation for register-backing.
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4.8 Conclusion

We wrote an “quick and dirty” implementation to gain a feel for the issues in writing a high 
performance kernel, without virtual memory.  We found that the performance of the kernel was 
extremely poor in all aspects – kernel entry and exit, system calls and memory management.

We identified that most of the cycles in the kernel entry and exit path came from the C++ and 
could be dramatically improved using micro-optimisations.  These same techniques could also 
be applied to improve the performance of other parts of the kernel.

System calls preserve too much of the user context and involve the complexity of the kernel 
accessing the user stack.

The  possibility  of  in-kernel  CPLB  misses  means  that  almost  all  kernel  traps  require  an 
expensive mode switch from exception mode to interrupt mode.  We will investigate design 
changes to eliminate in-kernel CPLB misses by considering trade-offs in UTCB placement.

IPC performance is heavily dependent on kernel traps and DCPLB refills.  For Inter-AS IPC, 
we will consider reducing DCPLB misses by changing the design of address space switches to 
not flush the CPLBs.  IPC, in general, would also benefit from the above implementation issue 
of micro-optimising of the kernel trap and the above design issue of removing in-kernel CPLB 
misses.

Six  pages  were  arbitrarily  locked  into  the  DCPLB  causing  great  DCPLB  pressure.   We 
proposed a new memory layout where only a single page, for the kernel image, needed to be 
locked for the trap code.

We wish to increase our limited 8-bit thread ID space to 16-bit of for security and need to do 
two things  to achieve  this.   Firstly,  we must  implement  Nourai's  physical  TCB allocation 
schemes.  Secondly, we must reconsider the fixed array of all UTCBs, stored in kernel space.

Our UTCBs are too large and should be made smaller.   We need to register-back message 
registers.

In conclusion, this chapter has identified a number of implementation and design issues, which 
we have been summarised here.  The rest of thesis aims to address these issues.

73



Chapter 5

5 Design Assumptions

This chapter identifies the primary assumptions in our design which, of course, ultimately affect 
the implementation.  Firstly, we justify why we do not want preemption and its effects on the 
kernel idle loop.  We then identify the assumptions created by the L4 N-series API.
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5.1 No Kernel Preemption

Preemption reduces latency by allowing the kernel to be interrupted in an operation.  Generally 
speaking, the L4 kernel implementation is only preemptible in the page table code as mapping 
or unmapping a large number of pages, such as during an address space teardown, is very time 
consuming.   In this  section,  we describe  why we should not enable  it  and the subsequent 
consequences on the kernel idle loop.

5.1.1 Costs

In this section we describe the general and Blackfin-specific costs of enabling preemption and 
conclude that we do not want it.

General

There are a number of architecture-independent costs for in-kernel preemption:

1. increased difficulty in maintenance and debugging due to the possibility race conditions

2. cycles lost to potential, extra locking (which become significant if preemption is rare)

3. with  the  single  stack  kernel  [War05],  additional  cycles  lost  to  recovering  from  a 
preemption, as the stack has been dropped (in fact, Matthew Warton later found that this 
cost was so high that interrupts were later changed to use a separate kernel stack in the 
single stack kernel!)

4. non-linear execution complicates mathematical verification

Blackfin

The Blackfin architecture adds an additional number of hurdles in supporting preemption.

Firstly,  the Blackfin masks interrupts during exceptions so preemption is impossible  during 
exceptions unless we defer the work to an interrupt.  Such a mode switch is expensive and, as 
we later describe ways of eliminating the switch [p89, Chapter 7.2.2], it is counterproductive to 
force us to perform the switch just for the sake of supporting preemption.

Secondly,  recall  that on the Blackfin, it  is difficult  to return to userspace when serving the 
nested interrupts [p20, Chapter 2.2] caused by preemption.

We do not want preemption

Preemption decreases  interrupt  latency  but  also decreases  maintainability.   Blackfin  makes 
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preemption even more difficult.  As a result, we do not want preemption – at least not for the 
duration of this thesis.

Therefore, the Blackfin port only permits:

1. interrupts

2. exceptions

3. exceptions during an interrupt (for in-kernel DCPLB misses and trapping kernel bugs)

In-kernel exceptions during an interrupt handler never need to switch threads as in-kernel CPLB 
misses can never result in a pagefault.  This is convenient as the single kernel stack design does 
not permit thread switches when trapped from kernel mode.

5.1.2 Idle Loop

There is one other place in L4 that is normally preemptible: the idle loop processor_sleep() 
which sleeps, waiting for interrupts in kernel mode.

However,  as  discussed  in  the  previous  section,  our  kernel  is  strictly  not  preemptible  and 
disallows  interrupts  in  kernel  mode.   Therefore,  processor_sleep() is  simulated  by  a 
usermode idle loop and the kernel is not preemptible by interrupts at all.
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5.2 N-series API

In order to remain supported within the research group and to restrict the thesis to Blackfin and 
physical memory issues, the design of the Blackfin port is based on the N-series of the L4 
kernel,  which requires the root task to be completed trusted.   In this section, we deal with 
consequences of this in terms of security, memory mapped registers and DMA.

5.2.1 Security

Versions of L4 prior to the N-series contained a mapping database in the kernel, which allowed 
arbitrary threads to share pages with other threads (known as mapping) and irrevocably transfer 
a page mapping to another thread (known as granting) [Uns03]. The N-series did away with the 
mapping database claiming kernel complexity and code size reasons.

Both kernel series had the concept of  privileged threads (i.e. those in the root task's address 
space) which can execute privileged calls, such as L4_ThreadControl() for creating a thread. 
Mapping and granting pages were normal unprivileged IPC operations that any thread could 
execute.  However, in the N-series, only a privileged L4_MapControl() call is provided.  The 
responsibilities  of  the  mapping  database  have  been  pushed  out  of  the  kernel  and into the 
privileged root task.

As a result, the root task must now be completely trusted.  While the old kernel could continue 
mapping pages even if the root server died, the new kernel cannot.  Furthermore, the root task 
can now access the memory of all other threads in the system.  This seems in opposition to the 
memory/bug  isolation and security  ideals  of object-oriented microkernel-based systems.   A 
single  bug in the root task can now compromise the whole  system.  In the old kernel,  an 
encryption task could, for example, be irrevocably granted pages by the root task and after that, 
the kernel would ensure that the root task would not be able to read the encrypter's memory, 
which could contain sensitive data such as private keys.

5.2.2 Memory Mapped Registers

Since the root task is already trusted, we can allow it to access the CPU's memory mapped 
registers and also, device mapped memory.  These pages can also be mapped to other tasks.

Of course, accesses to such memory registers can crash the whole system.  So we could make 
the kernel  more robust by combing through all  the exposed memory mapped registers and 
determining which can and cannot be accessed by the root task.  For instance, the root task 
should not be able to mask interrupts or change protection unit entries.  However, as the root 
task is completely trusted anyway, there is little motivation to do this and we simplify kernel 
construction as a result.
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5.2.3 DMA

On the Blackfin, DMA is manipulated using memory mapped registers.  It is up to the root task 
to ensure cache coherency by using the new N2 cache management API.  We can leave this to 
the root task as the N2 design already trusts it.
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5.3 Conclusion

Preemption causes too many problems so will not be enabled.  As a result, our port will not 
support  interrupts  in  kernel  mode.   Only  in-kernel  exceptions  for  DCPLB misses  will  be 
permitted.  The idle thread is moved into userspace for a strict rejection of preemption.

We base our work on the N-series API which features a completely trusted root task.  This is 
insecure but means that kernel construction is simplified: we can lazily expose all memory-
mapped registers, and the responsibility of guaranteeing memory coherence when dealing with 
DMA, to root task.
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6 Physical Memory 
Implications

One key features of Blackfin is that it does not support virtual memory.  In this chapter we 
analyse the effects of this on the design of both userspace and the kernel.
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6.1 Userspace changes

In this section, we discuss the changes to userspace that result form the lack of virtual memory. 
We consider program loading, a physical memory space and swapping.

6.1.1 Program Loading

Programs must be compiled with fixed addresses unless Position Independent Code (PIC) is 
used in conjunction with a loader.  As an example of the latter, ucLinux programs use the “flat 
binary” format and a kernel loader performs the necessary relocations [Hen06b].

6.1.2 Physical memory space

A single physical memory space is shared between the kernel and every program and obviously, 
collisions are not permitted.  Depending on the kernel and other loaded programs, the space left 
for a new program may be too discontiguous to use.  So the kernel must be constructed to 
minimise gaps in the memory layout, as must userspace.

Furthermore,  the  root task,  when given an overlapping page mapping request,  must  decide 
whether  the  page  is  to  be  intentionally  shared  with  another  address  space  or  whether  the 
intention was to map a page in the same place as an existing page (an illegal operation).  Hence, 
the root task hence has similarities to a single-address-space operating system [SLF+94].

6.1.3 Swapping

Transparent paging to disk is impossible  as there is no virtual  memory.  However,  explicit 
paging such as the use of overlays, where different code or data resides at the same address at 
different times [Pan68], is possible but this is not transparent to the program.
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6.2 Kernel changes

In this section we consider possible changes to the kernel with the removal of virtual memory.  , 
Mappings, the Kernel Interface Page, the TCB array and UTCB issues are discussed.

6.2.1 Mappings

As virtual  addresses  are  identical  to  physical  addresses,  1:1  mappings  are  enforced  in  the 
kernel's page table code.

6.2.2 Kernel Interface Page

Mapping the  Kernel  Interface  Page  (known as the  KIP)  into multiple  address  spaces  (and 
therefore, at multiple addresses) would result in data redundancy.  Therefore, the KIP is in a 
fixed location.

The L4 API already allows for this.  The KIP's size is reported as the special value of 0 meaning 
that "the KIP is not part of the user address space and cannot be controlled" [Nic05a].

There is  really  no loss in trademark microkernel  flexibility  here.   Regardless  of whether a 
system has virtual memory or not, some part of the address space will always be reserved for 
the kernel image.  So if one considers the KIP to be part of the kernel image, then fixing the 
position of the KIP has not lost us anything.

6.2.3 TCB Array

As previously noted, architectures without physical memory, by definition must use physical 
TCB addressing [Nou05].

6.2.4 UTCB Area

In L4 ports with virtual memory, the address space creator, through the L4_SpaceControl() 
system call, reserves an aligned UTCB array large enough to support the maximum number of 
threads.  However, this does not work well for physical memory architectures.

A motivation for this scheme is that different threads in the same address space can share an 
MPU  superpage  entry,  covering  multiple  UTCBs,  saving  on  the  cost  of  MPU  refills  for 
userspace UTCB accesses.   A previous additional motivation was to be able to calculate  a 
thread's UTCB address, given a Local Thread ID, without accessing the TCB and touching a 
data cache line.  But Local Thread IDs no longer exist so this is no longer a consideration.

However,  on  a  physical  memory  system  where  virtual  memory  is  physical  memory,  this 

82



CHAPTER 6 PHYSICAL MEMORY IMPLICATIONS

reservation is very wasteful.  A solution is to move all UTCBs into the kernel heap and leave 
UTCB allocation up to the kernel.  The API already provides for this, in a similar fashion to the 
KIP: the UTCB minimum size is reported as the special value of 0.

Tempting as this solution may be, it does not work well for the Blackfin.  As the reasoning is 
quite involved, we defer the discussion until we discuss the underlying problem of protected 
kernel addressing [p86, Chapter 7].

6.2.5 Message Registers in the UTCB

In this section, we discuss the motivation for storing message registers in the UTCB and then 
consider whether they are a good abstraction on architectures without virtual memory.

Why are they normally in the UTCB?

Some message registers stored are in memory as there is usually an insufficient number of real 
CPU registers on the architecture to store medium-sized messages – of say 60 words.  However, 
they are specifically stored in pinned UTCBs to avoid page faults in kernel mode.

On a system with virtual memory, an invariant is that a UTCB will  be backed by physical 
memory and will not be swapped to disk.  This is enforced by the kernel allocating the backing 
inside the unswappable kernel heap.

To construct  a  message,  the  user  thread  copies  data  from its  swappable  virtual  memory 
(probably the data segment) into the pinned UTCB's message registers (using the userspace 
function  L4_MsgLoad()).   This  pinning  ensures  that  kernel  accesses  to  memory-backed 
message  registers  during  an  IPC  will  not  result  in  page  faults.   This  simplifies  kernel 
construction, makes it a better candidate for mathematical verification and removes a class of 
security holes.  In fact, the same reasoning motivated the removal of Long IPC from the N-
series.

We might be tempted to dump them

However, for systems without virtual memory, pages cannot be swapped.  So at first, there 
seems to  be  little  sense  to  force  a  thread  to  do  an  extra  memory  copy  from its  already 
unswappable data  segment  into the  message  registers  before a  message  can be  sent.   The 
memory-backed message registers abstraction would appear to make no sense – it  could be 
dumped and the IPC call modified to be given the address and length of a message.

Register-backed message registers would still be maintained as they would not suffer from this 
double copying.

Of  course,  userlevel  would  still  have  the  flexibility  to  simulate  memory-backed  message 
registers by copying data to an array before sending it, if it so desired – perhaps most of the data 
to be sent is scattered across memory and needs to be brought together.  But the kernel would 
not mandate it as it would be an unnecessary performance penalty for other applications.
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However, this scheme is flawed because the IPC implementation would have to walk the page 
table to check every given address.  This is an unacceptable performance penalty compared to 
simply using a fixed UTCB address, which is known by the kernel to always be valid.  

Therefore, the memory-backed message registers abstraction is not changed by the removal of 
virtual memory.
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6.3 Conclusion

The number of changes required to support a full operating system without virtual memory are 
surprisingly small, although each change is quite significant.

The changes to userspace are:

1. Programs must be compiled with fixed addresses or relocated at load time.

2. With a single physical memory space:

a) the user and kernel must aim to minimise external fragmentation

b) the  root task  must  determine  whether  attempts  to overlap mappings  are  for  the 
purposes of sharing pages.

3. Transparent swapping is not available but explicit overlays are.

The changes to the kernel are:

1. The kernel must enforce 1:1 virtual-to-physical mappings.

2. The Kernel Interface Page should be fixed in one global location to avoid duplicating it 
in every address space and wasting physical memory.

3. The TCB array must be physically addressed.

4. A virtual UTCB area per address space wastes physical memory.  However, Blackfin's 
protected kernel addressing adds further complications and warrants extra investigation

The memory-backed message registers abstraction is not changed by the removal of virtual 
memory.
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7 Protected Kernel 
Addressing

We call a processor a protected kernel addressing architecture if both:

1. Kernel memory accesses are subject to the protection and refill mechanisms of its MPU

2. There is no way to avoid this without unacceptable performance loss

This  is  independent  of  whether  it  supports  virtual  memory.   Protected  kernel  addressing 
potentially introduces MPU misses in kernel mode.

Blackfin has protected kernel addressing as all kernel accesses are subject to the protection and 
refill  mechanisms of its DCPLB and ICPLB units.   Turning off protection disables caching 
which results in unacceptable performance.

ARM1156T2-S (MPU) also has protected kernel addressing.  While disabling protection merely 
results  in a default  memory map with accesses to the bottom 1.5GB or 2GB being cached 
(depending on the CP15 register), it can only be performed after an expensive flush of both 
instruction and data caches [Arm05].

In this  chapter,  we  introduce  the  advantages  and disadvantages  of  this  feature.   We then 
consider how we work around in-kernel MPU misses' nested exceptions, which are disallowed 
by Blackfin.  We the analyse one approach to eliminating MPU misses in detail – restructuring 
the UTCB Area.
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7.1 Advantages and Disadvantages

The advantage  of  protected  kernel  addressing  is  that  in-kernel  MPU misses  are  a  way  of 
detecting kernel memory bugs.

The disadvantage is  that MPU misses in kernel  mode result  in additional  complexity  [p44, 
Chapter 3.3.3] and performance issues.

Firstly, the kernel must lock its trap code into the MPU, reducing the number of scarce MPU 
entries available to userland.

Secondly,  on architectures with software-refilled MPUs, such as Blackfin,  the cost of MPU 
misses is very high and made worse by the associated pipeline and cache pollution (the final 
L4/Blackfin port performs a refill  in 1,425.31 cycles [p177, Chapter  17.1]).  However, on a 
hardware-refilled  architecture,  such  as  the  ARM1156T2-S,  the  performance  impact  is  less 
pronounced.

Thirdly, as we discussed, in-kernel MPU misses occur on UTCBs.  If we wish to maintain the 
ability of detecting kernel memory bugs, we must be able to distinguish buggy accesses from 
UTCB misses.  In order to check MPU misses on UTCBs in non-current address spaces, such as 
via an inter-address-space IPC, we need an additional data structure containing pointers to all 
UTCBs.  For relative simplicity,  we currently insert  all threads'  UTCB pointers into kernel 
space's page table, in addition to the threads' respective address spaces' page tables.  This is safe 
because the only thread in kernel space is the idle thread and it has no UTCBs of its own. 
However, this extra need to have a global UTCB list, for the sake of being able to trap kernel 
bugs, adds to kernel complexity.

Ideally, we would like to use architectures where protected kernel addressing can be turned on 
and off.  Then one would have the best of both worlds: for a debug kernel, one would enable it 
for trapping kernel memory bugs and for a release kernel, one would disable it to reduce kernel 
complexity.

In  summary,  protected  kernel  addressing  can  trap  kernel  memory  bugs.   However,  the 
introduced MPU misses increase kernel complexity and reduce performance.
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7.2 Nested Exceptions

The possibility of MPU misses on UTCBs means that MPU miss exceptions may occur in the 
middle of servicing a system call exception.  We firstly consider the effect this has on Blackfin 
system calls.  We then propose solutions for eliminating these miss exceptions.

7.2.1 Blackfin system calls

This section provides the implementation details for system calls on Blackfin in the presence of 
in-kernel  MPU misses  and justifies  that  the  implementation works  even in  the  trickiest  of 
solutions.

On  the  Blackfin,  system  calls can  only  be  implemented  as  exceptions.   Jumping  into  or 
accessing an invalid address also generates an exception.  Raising interrupts in software can 
only be done in kernel mode.

The Blackfin core enters an unrecoverable double fault condition if an exception occurs during 
an exception.  Since system calls can only be implemented as exceptions, a potential DCPLB 
miss exception in kernel mode would double fault.

However, exceptions (and therefore, DCPLB miss exceptions) are allowed to occur during an 
interrupt.  Therefore, to cater for possible DCPLB miss exceptions, system calls must switch 
from the CPU exception mode to the interrupt  mode.  Recall  that  the ARM also does not 
support nested exceptions of the same type, as the link register is trashed [p37, Chapter 2.6.1], 
so a similar trick must be used on ARM.

System calls exit the kernel and arrange for a special software interrupt 15 (used only by the 
kernel) to fire straight away to re-enter the kernel so that the system call can be safely serviced. 
Other interrupts are masked during this mode switch to prevent an unexpected thread switch.  

Works even in tricky situations

This mechanism  has been well-tested even in the situation where the user jumps to a system 
call instruction at the end of an unmapped page and the next page is also unmapped.

The Blackfin issues an ICPLB miss for the first unmapped page which contains the system call 
instruction.

After this is resolved, it executes the system call exception instruction.  The kernel is entered, 
raises interrupt 15 and exits, expecting re-entry immediately.

As exiting from a system call exception automatically advances the instruction pointer to the 
next instruction, which in this case, is pointing to the second unmapped page, we might expect 
that  instead  of  our  interrupt  15  being  triggered  next,  that  an ICPLB miss  on the  second 
unmapped page would be prioritised over it.   After all,  the Blackfin normally prioritises an 
exception over an interrupt.
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However, as if it were an act from god, this amazingly does not happen.  Our interrupt 15 is 
served before the ICPLB miss, as we wanted.  This might be because the Blackfin realises that 
the interrupt is pending so does not trigger a ICPLB miss on the second unmapped page as it has 
not started to access it.

7.2.2 Avoiding nested exceptions

The trick we described in the previous section – system call exceptions switching to interrupt 
mode in anticipation of a possible in-kernel MPU miss – while also used by ucLinux, is a waste 
of cycles.  We would like to find some alternative, less complex solutions that don't perform 
crazy mode switches and hopefully  perform well  also.   Therefore,  we consider 4 different 
methods:

1. Avoid DCPLB misses using locking

We later consider locking UTCBs in a kernel superpage to eliminate in-kernel DCPLB misses 
[p92, Chapter 7.3.3].

2. Mode switch only when strictly necessary

Some system calls,  such  as  L4_KernelInterface(),  and others  for  some combination of 
arguments, do not access UTCBs.  Therefore DCPLB misses will never occur so the system call 
need not perform the interrupt switch.

Unfortunately,  this  does  not  help  with  the  main  indicator  of  performance,  IPC,  as  it  may 
generate  DCPLB misses  on UTCBs.   However,  if  the  DCPLB refill  path  becomes  hand-
optimised assembler, this may not be such a problem.

3. Pre-fill the DCPLB

At all points at which a DCPLB miss may occur, we could call the DCPLB refill code.  This is 
pessimistic because we add this overhead for every access on the assumption that is miss is 
more likely to happen that not.

This introduces an expensive probe of the DCPLB to see if the relevant page is already in there. 
However, in exchange, when an actual DCPLB refill is required, we've avoided an unnecessary 
trap and untrap into the kernel to serve the DCPLB miss.

And of course, we also avoid this crazy interrupt switching scheme.

DCPLB misses on the KIP too

Recall that the current UTCB pointer needs to be updated on every thread switch and that we 
proposed placing this pointer into the unlocked KIP page [p61, Chapter 4.5.2].  The potential 
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DCPLB miss on the KIP in kernel mode is a very similar problem to the one we are discussing 
– DCPLB misses on UTCBs.  The difference is that there is a single KIP but many UTCBs. 
Therefore, it is quite feasible to keep a single global variable stating whether the KIP is in the 
DCPLB – we do not need to probe the DCPLB.  Before every kernel KIP access, we simply 
query this variable to see if we need to invoke the DCPLB refill code.

As  the  issue  of  DCPLB misses  on the  KIP is  straightforward  to  work  around,  we  avoid 
mentioning it in the future, to simplify explanations.

4. Disable the protection

At all points at which a DCPLB miss may occur, we could disable data protection temporarily. 
This bypasses the protected kernel addressing problem of Blackfin and ARM1156T2-S.  

However, on the Blackfin, disabling data protection disables data caching.  This is probably not 
so significant since I-cache will still be enabled and we usually aren't copying very much (e.g. a 
small number of message registers) minimising the effect of no D-cache.  Unfortunately ARM 
requires expensive flushes of its caches to disable protection [Arm05].

Also, disabling data protection means that kernel bugs will not get trapped but for short code 
sequences, this should not be a problem.  Nevertheless this is also a pessimistic approach since 
we may be  disabling  protection unnecessarily  when the page  in question is  already in  the 
DCPLB.

5. Analysis of these 4 options

We consider locking UTCBs in a later section.  Only mode switching when strictly necessary 
does not improve IPC performance, which is unfortunately, basically the only thing we care 
about.  Due to time constraints and  the intention to minimise changes to the kernel, we did not 
implement  pessimistic  approaches  of  pre-filling  the  DCPLB  and  disabling  the  protection. 
However, we have described the approaches so that future work can investigate them.

7.2.3 Conclusion about nested exceptions

Blackfin system calls, implemented as exceptions, waste time switching to an interrupt mode, in 
case an in-kernel DCPLB miss on a UTCB occurs.  We briefly describe ways of avoid DCPLB 
misses.  The next section is devoted to one such way – locking UTCBs.

90



CHAPTER 7 PROTECTED KERNEL ADDRESSING

7.3 UTCB Area

Up until now, the reader has had to accept our claim that protected kernel addressing combined 
with a lack of virtual memory results in in-kernel MPU misses on the UTCB Area.  In this 
section, we justify why.  We then propose ways to restructure the UTCB Area.

On  a  protected  kernel  addressing  architecture  with virtual  memory  however,  two  virtual 
mappings  for  the  UTCBs  are  made.   One  is  inside  the  UTCB  Area  specified  by  the 
L4_SpaceControl() system call.  The other is inside the locked kernel image.  In-kernel MPU 
misses on UTCBs will not occur since the kernel can use the address inside the locked kernel 
image.

But mappings, let alone multiple ones, cannot exist on architectures  without virtual memory. 
Therefore  on  such  architectures,  like  Blackfin,  we  suffer  from in-kernel  MPU  misses  on 
UTCBs.

So, let us consider 4 ways of placing UTCBs in the address space, under the assumptions of 
protected kernel addressing but no virtual memory, with a view to minimising memory use and 
avoiding UTCB misses in kernel mode.

7.3.1 Option A: Reserve UTCB Areas in userspace

Our first option is the standard L4_SpaceControl() approach of reserving a UTCB Area, on 
address  space  creation.   Unfortunately,  as  we  previously  mentioned,  this  wastes  memory 
because virtual memory is physical memory [p82, Chapter 6.2.4].  Furthermore, there are those 
in-kernel MPU misses we wish to avoid due to the use of userspace memory.

Address spaces often wish to support  widely  varying numbers of threads so the maximum 
number of supported threads may be very large.   As a result,  the UTCB Area, reserved in 
physical memory may be very large.  This is a waste of memory unless the maximum number 
of threads are actually created, which we anticipate does not occur very often.

Kernel accesses to the UTCBs cause MPU misses.  Locking the UTCB Area superpage of the 
current address space into the protection unit will not eliminate all misses because it does not 
handle inter-address-space IPCs where the destination address space's UTCB Area superpage is 
not in the protection unit.

This is the worst possible approach since it wastes memory and has in-kernel MPU misses.

7.3.2 Option B: Never reserve UTCB Areas

An improvement on the previous solution is to eliminate memory wastage by changing the API 
so that  L4_SpaceControl() will not reserve any actual memory for the UTCB Area – only 
stipulate where UTCBs may be placed.  In this section, we elaborate on the features of this 
scheme and then consider a problem it raises with overlapping mappings.
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Normal  pages  can  be  mapped  into  the  UTCB  Area  reserved  by  L4_SpaceControl(). 
Therefore,  there is  nothing wrong with saying  that the UTCB Area is  as big as the entire 
Blackfin  address  space.   UTCB  memory  will  only  actually  be  allocated  by 
L4_ThreadControl() in userspace.  The use of user memory for storing the UTCBs means that 
kernel-mode UTCB misses can still occur.

As with Option A, it is still possible to have, and take advantage of, a DCPLB superpage that 
covers the UTCB Area, for reducing DCPLB pressure – it's just that such a superpage may be 
covering a mix of UTCBs and ordinary data/instruction pages.

A problem with this scheme is that userspace may attempt to map a normal page where a UTCB 
already exists or vice-versa.  However, this is a similar problem to mapping a normal page 
where another page from another address space is already mapped.  As the root task already 
needs to have the ability to determine whether normal map requests to the same page, from 
different address spaces, are for the purposes of sharing data or are bugs [p81, Chapter 6.1.2], it 
is already likely to be maintaining a frametable.  This frametable could also be used to prevent 
UTCB mappings overlapping normal mappings in userspace – it would be a waste of space to 
implement this functionality in the kernel since it would duplicate the frametable already in 
userspace.

In summary, this option eliminates memory wastage as no memory is reserved for UTCBs. 
However, in-kernel UTCB misses still occur.

7.3.3 Option C: Create UTCBs on demand in kspace

This option moves all UTCBs into the kernel heap and leaves UTCB allocation up to the kernel, 
as previously noted [p82, Chapter 6.2.4].  They can be allocated on demand using the in-kernel 
kmem allocator and so, this option never wastes memory.  As all UTCBs are inside the locked 
kernel superpage, in-kernel DCPLB misses also cannot occur.  We now describe the necessary 
implementation details.

However, as all UTCBs are stored in kernel space, when a user thread attempts to access its 
UTCB, a protection violation.  The solution, in response to this, is to open up a window to the 
current UTCB, by adding an appropriate MPU entry.   Of course,  this entry would have to 
overlap the kernel image superpage.  This option, by no means, wastes an extra MPU entry as 
no matter what scheme we attempt, the user still needs MPU entries covering what ever pages it 
wishes to access (in this case, its UTCBs).

On an address space switch, we would need to incur the overhead of removing the window to 
prevent a permission leak.  Strictly speaking, it should be removed on even intra-AS thread 
switches (as threads should only be able to access their own UTCBs) but no security hole is 
created by not doing so as all threads inside an address space have the same level of trust.

So while this scheme saves memory and eliminates in-kernel MPU misses,  it  increases the 
switching overhead.  It also only works on the ARM1156T2-S (MPU) but not the Blackfin 
because Blackfin does not support overlapping MPU entries.  So we need to consider another 
way of placing the UTCBs in locked kernel space:
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Option C2: Create UTCBs on demand outside kernel heap

The problem with the previous solution is that the proposed window would overlap the locked 
kernel superpage, as UTCBs are stored inside that superpage.  Therefore, we propose moving 
UTCBs into a  separate  superpage,  still  in  kernel  space,  that  we handle  specially  to avoid 
overlapping MPU entries.  But this means that we cannot use the dynamic kmem allocator so 
we end up with a fixed-size UTCB array.

But how are we to open up a window for the current UTCB when this new UTCB array is 
locked and Blackfin does not support overlapping pages?  The solution is as follows.  On the 
kernel trap, we ensure that the UTCB array is locked so that no in-kernel MPU misses occur. 
On the untrap back into userspace, we exchange the MPU entry, pointing to the UTCB array, 
with a much smaller entry that points to the current thread's UTCB.  Notice that in our previous 
design,  we could not perform this  exchange as it  would have been with the kernel  image 
superpage and the kernel image must always be locked for the trap code [p87, Chapter 7.1].

However,  this  scheme  permanently  uses  an  extra  DCPLB  entry,  reducing  the  number  of 
available entries for userspace, especially for data-bound tasks that rarely access the UTCB. 
Furthermore, changing a protection unit entry on every trap and every untrap may be expensive, 
depending on the architecture.  On the Blackfin each protection unit changes takes at least 50 
cycles, excluding the time needed to calculate the immediate values used below:

// Disable protection, as required by the chip [p29, Chapter 2.3.3].
p0.h = DMEM_CONTROL;                   // 1 cycle
p0.l = DMEM_CONTROL;                   // 1 cycle
r0.h = mask for disabling protection;  // 1 cycle
r0.l = mask for disabling protection;  // 1 cycle
[p0] = r0;                             // 4 cycles (MMR access)
ssync;                             // min. 10 cycles (pipeline flush)

// Set the address.
p0.h = DCPLB_ADDR + dcplb_index;       // 1 cycle
p0.l = DCPLB_ADDR + dcplb_index;       // 1 cycle
r0.h = address;                        // 1 cycle
r0.l = address;                        // 1 cycle
[p0] = r0;                             // 4 cycles (MMR access)

// Set the page size and permissions.
p0.h = DCPLB_DATA + dcplb_index;       // 1 cycle
p0.l = DCPLB_DATA + dcplb_index;       // 1 cycle
r0.h = page size and permissions;      // 1 cycle
r0.l = page size and permissions;      // 1 cycle
p0 = r0;                               // 4 cycles (MMR access)

// Re­enable protection.
r0.h = mask for enabling protection;   // 1 cycle
r0.l = mask for enable protection;     // 1 cycle
[p0] = r0;                             // 4 cycles (MMR access)
ssync;                             // min. 10 cycles (pipeline flush)

This adds a penalty of more than 100 cycles per IPC, which is almost the cost of an entire IPC 
on the virtual memory ARM port!

Furthermore,  a  fixed-size  UTCB  array  puts  an  additional  cap  on  the  number  of  threads 
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supported because it does not share the kmem heap with other kernel structures.  Recall that if 
we were to store the array in the kmem heap, we could not open up a window to the current 
UTCB as  we  cannot  unlock  the  kernel  superpage  nor  does  Blackfin  support  overlapping 
DCPLB entries.  A fixed-size UTCB array wastes memory except in the unlikely case that all 
UTCBs are in use.  However it is a big saving over reserving a UTCB array for every address 
space, as proposed by Option A.

In summary, this solution wastes memory in a global UTCB array, caps the number of threads, 
permanently  occupies  an  additional  MPU  entry  and  incurs  additional  trapping  overhead. 
However, it wastes less memory than reserving a UTCB array per address space and eliminates 
in-kernel MPU misses.

7.3.4 Choosing a solution

The following table summarises the findings of the above discussion on design alternatives for 
the UTCB Area:

Option Memory wasted on 
unused UTCBs?

In-kernel 
MPU 

misses?

Requires MPU 
overlapping 

page support?

Other disadvantages?

A [A] Yes: UTCB Area per 
address space

Yes No No

B [B] No Yes No No

C [C] No No Yes Yes: thread switching overhead

C2 [C2] Yes: global UTCB array 
(less wastage than 
Option A)

No No Yes: trapping overhead, extra 
DCPLB entry, additional cap 
on number of threads supported

Table 7: UTCB Area design alternatives

In  this  section,  we  stress  again  that  we  are  only  considering  architectures  without  virtual 
memory.  We provide an analysis of the above options without,  and with,  protected kernel 
addressing.  Of the latter, we consider the case where the architecture supports MPU entries that 
refer to overlapping pages and where the architecture does not.

Physical memory but no protected kernel addressing

As an interesting  side-note,  had the  architectures  in  question not featured  protected kernel 
addressing  (and therefore,  in-kernel  MPU misses  would  never  occur),  Option B,  in  which 

[A]Reserve UTCB areas in userspace – standard L4_SpaceControl() approach of reserving a UTCB area 
per address space

[B]Never reserve UTCB areas – L4_ThreadControl() allocates UTCBs, not L4_SpaceControl()
[C]Create UTCBs on demand in kspace – moves all UTCBs into the kernel heap and leaves UTCB allocation up to 

the kernel
[C2]Create UTCBs on demand outside kernel heap – global UTCB array in kernel space but outside of the kernel 

heap
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L4_ThreadControl() allocates UTCBs, not L4_SpaceControl(), is the best solution as it has 
no real minuses.

ARM1156T2-S – effect of supporting overlapping MPU pages

Recall that ARM1156T2-S supports overlapping pages in its MPU.  Furthermore, protection 
changes are cheap because,  unlike Blackfin, the protection unit need not be disabled before 
modifying an entry.   Therefore,  an excellent solution for ARM is Option C,  which creates 
UTCBs on demand in kernel space, as it does not waste memory, avoids in-kernel MPU misses 
and thread switching overhead is minimal due to cheap protection changes.

Blackfin – inability to support overlapping MPU pages

However as Blackfin does not support overlapping MPU pages we can only choose between 
options A, B and C2 – all of which have significant disadvantages.  However, Option B is 
clearly equal to, or better than, Option A in all respects.  Therefore, we need to decide between 
Option B and Option C2.

Option C2's global UTCB array might not waste so much memory on unused UTCBs as we 
might think.  Blackfin only supports a maximum of 128MB of RAM.  For systems of this size, 
we would usually – but of course, this depends on system design – not expect more than 1,024 
threads.   Therefore,  a fixed-size UTCB array does not really  cap the number of supported 
threads and reserving an array of 1,024 UTCBs, which are currently 1KB in size, would take 
only 1MB of RAM, which is palatable (if just).  Even better, we know of ways to decrease the 
size of UTCBs by an order of magnitude [p100, Chapter  8.1] making the amount of wasted 
memory far smaller.  Furthermore, we could minimise this wastage even further by specifying 
of the maximum number of threads as a kernel compile option, to adapt the kernel to different 
expected workloads.

We wish to avoid Option B's in-kernel UTCB misses due to the complexity reasons cited before 
[p44, Chapter 3.3.3].  For this reason alone, we believe Option B should be avoided.

As Blackfin has a software-refilled DCPLB, Option B's in-kernel UTCB misses are even more 
expensive.  And furthermore, our implementation of DCPLB refilling is expensive, even in the 
final kernel,  at 1,425.31 cycles.   But is it  possible to optimise this to below the additional 
trapping overhead of Option C2, which is believed to be slightly over 100 cycles [p93, Chapter 
7.3.3]?  We don't think so as we know that 50 cycles are needed for inserting an entry in the 
DCPLB alone [p93, Chapter  7.3.3] and we still  need to traverse a 2 level page table that is 
actually 4 levels deep [p65, Chapter 4.5.4] in order to find the entry in the first place.

While we are leaning towards Option C2, we have not discussed its remaining disadvantage 
over Option B – namely that it hogs a precious DCPLB entry.  This is regrettable but with no 
macrobenchmarks available [p48, Chapter 4.1], it is difficult to quantify the effect of this.  So 
we  are  really  stuck  between  a  rock  and  a  hard  place  where  Option  B  suffers  from the 
complexity and the performance hit of in-kernel UTCB misses but Option C2 uses an extra 
DCPLB entry.  However, at least in microbenchmark terms, Option C2 is definitely faster than 
Option B as it avoids DCPLB refills.  Having previously stated that Option B should be avoided 
due to its in-kernel MPU misses, we hesitantly suggest implementing Option C2.
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Summary

In  summary,  if  we  do  not  have  protected  kernel  addressing,  Option  B,  in  which 
L4_ThreadControl() allocates UTCBs instead of L4_SpaceControl(), is the best solution as 
it does not waste memory.  If we do have protected kernel addressing, the deciding factor is 
whether or not the MPU supports entries pointing to overlapping pages.

On an architecture that supports overlapping MPU entries, such as ARM1156T-2, Option C, 
which creates UTCBs on demand in the kernel heap, is optimal as it does not waste physical 
memory and avoids the complexity of in-kernel MPU misses.

On architectures without overlapping MPU entry support, such as Blackfin, we have a difficult 
choice  between  Option  B,  in  which  L4_ThreadControl() allocates  UTCBs  instead  of 
L4_SpaceControl(), and Option C2, which allocates UTCBs on demand from a global UTCB 
array in kernel space.  While future work is to measure the performance difference under a 
macrobenchmark,  we  choose  Option  C2  for  now,  as  it  avoids  the  in-kernel  MPU  miss 
complexity of Option B.

7.3.5 Conclusions on the UTCB Area

The location and structure of UTCB Areas, on physical memory and protected kernel addressing 
architectures, is subject to a complex number of trade-offs involving memory, in-kernel MPU 
misses on UTCBs and other factors:

1. Ordinary  UTCB Area  reservation,  in  user  memory,  on  address  space  creation  (the 
standard L4 behaviour) wastes physical memory, introduces in-kernel MPU misses and 
is therefore, the worst design

2. Never reserving UTCB Areas but instead allocating UTCBs on demand in userspace 
does not waste physical memory but in-kernel MPU misses still occur

• Requires an API change where  L4_SpaceControl() sets the possible area where 
UTCBs  can  be  located,  but  does  not  actually  reserve  any  space,  and 
L4_ThreadControl() allocates a UTCB anywhere in this area

• UTCB and ordinary pages can be interleaved

As a side note, if a physical architecture did not feature protected kernel addressing, we
do not have to worry about the MPU misses and it is the ideal design since it does not
waste memory.

3. Allocating UTCBs on demand in the kernel image does not waste physical memory. 
The locked kernel image avoids in-kernel MPU misses but introduces the following 
issues:

• A userspace window for the current UTCB must be opened and is easily done on 
architectures that permit overlapping MPU pages (e.g. ARM1156T2-S)

• Without  overlapping  MPU pages  (e.g.  Blackfin),  a global  UTCB array must  be 
located outside of the kernel image and locked into the MPU, occupying another 
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MPU entry

• Exchanges of this entry with one that opens up the current UTCB for userspace 
must be performed on untraps and the vice-versa for traps

• The fixed-size global array caps the number of supported threads and wastes 
physical memory if few threads are created (physical memory wastage can be 
minimised  by  adjusting  the  number  of  supported  threads  to  the  expected 
maximum load at compilation time)

For Blackfin, we hesitantly choose the last option with a fixed global array to avoid in-kernel 
UTCB misses and the overhead of DCPLB refill routine.  The latter could of course be avoided 
if Blackfin had a hardware-refilled MPU.
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7.4 Conclusion

Protected kernel addressing,  which kernel accesses are constrained by the MPU, creates the 
potential  for  in-kernel  MPU  misses,  which  increases  kernel  complexity  and  reduces 
performance (especially with software-refilled MPUs).  It mandates the locking of the kernel 
image into the MPU, increasing MPU pressure.

Blackfin  system calls  need  to  waste  time switching  processor  modes  to  work  around  this 
problem.  We considered ways of avoiding in-kernel MPU misses with an in-depth analysis of 
UTCB Areas.

The location and structure of UTCB Areas, on physical memory and protected kernel addressing 
architectures, is subject to a complex number of trade-offs involving memory, in-kernel MPU 
misses on UTCBs and other factors.
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8 Saving Memory on 
UTCBs

In this  chapter,  we consider ways to reduce the amount of memory consumed by UTCBs. 
While other structures in L4 certainly take a lot more memory, there is no harm in considering 
improvements here.

We firstly describe the motivation for reducing the size of UTCBs and analyse the effects of 
achieving this by decreasing the number of memory-backed registers.

We then consider whether the memory for UTCBs should reclaimed as soon as the respective 
threads are deleted or whether we should wait until the address space is deleted.
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8.1 Smaller UTCBs

The UTCB in the final L4/Blackfin port is made up of the following:

Offset (bytes) Component Size (bytes)

0 Non-Message-Register Fields 64

64 64 Message Registers 64 x 4 = 256

320 (padding to 1KB) 1024 – (64 + 256) = 704

Table 8: L4/Blackfin UTCB components

The padding conveniently ensures that the UTCB takes a full  1KB, to match the minimum 
Blackfin page size.  However, we would like to reduce the size of UTCBs to save memory and 
as a result, increase MPU coverage.

If we remove the padding, only 320 bytes are actually needed for the UTCB.  Even if we round 
that up to the nearest power of 2 (512) for simplicity, we can still fit more than 1 UTCB on a 
page.

However,  we can do better  than this  and so the next section considers sacrificing message 
registers to make the UTCB even smaller.  The subsequent section then reflects on whether a 
pathological worst case can defeat our optimisation.

8.1.1 Sacrificing message registers

In practice, current L4-based systems tend not to use more than half a dozen message registers. 
It therefore makes sense to reduce the size of the UTCB by decreasing the number of message 
registers  or moving memory-backed message  registers  into CPU registers.   Of  course,  the 
UTCB's 64 bytes of non-message-register fields are untouched by our optimisation attempts.

Suppose we would like a UTCB size of 256 bytes.  We would only have room for (256 ­ 64) 
/ 4 = 48 memory-backed message registers.  A UTCB size of 128 bytes would allow for just 
(128 ­ 64) / 4 = 16 memory-backed message registers.

Currently, our kernel does not use register-backed message registers even though Blackfin has 
more than 40 registers.  If a sufficient number of registers were used, one could do away with 
memory-backed message  registers  entirely,  squeeze  the  UTCB down to 64 bytes  and still 
support more than 32 message registers (as they would fit into registers).

We have to be careful  with dumping message  registers  instead of moving them into CPU 
registers,  which  is  necessary  on other  architectures  which  do  not  have  as  many  available 
registers.   With insufficient numbers of message registers,  larger messages have to be sent 
either via multiple IPCs (which adds the overhead of extra system calls) or via shared memory 
(and one page per client and server would be an unreasonable waste of space for messages 
much smaller than the size of a page).
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8.1.2 Pathological worst case

Assume that we have reduced the size of UTCBs, as per the previous section, so that more than 
one UTCB can fit on a page.  Then, consider the case where the thread creator ensures that each 
UTCB is on a separate page, creating internal fragmentation.  The benefits of reducing UTCB 
size – saving memory and increasing MPU coverage – have been eliminated since UTCBs still 
effectively consume one page each.

Thankfully, as the location of the UTCB is specified by privileged threads, we only have to 
trust the privileged threads (i.e. the root task), to not do this.  This is consistent with the N-series 
design, where the root task is already so trusted that it can access the memory of all tasks in the 
system.

8.1.3 Conclusions on smaller UTCBs

Reducing the size of UTCBs saves memory and increases MPU coverage.  Two ways to reduce 
the size of our UTCBs are:

1. Remove the padding up to the minimum page size

2. Reduce the number of message registers or move memory-backed message registers 
into CPU registers.

Decreasing the number of message registers may result in messages being inefficiently split 
into multiple IPC calls or force large messages to be sent via shared memory pages, which may 
suffer from significant internal fragmentation.

The trusted root task can ensure that the savings, made from reducing UTCB size, are realised 
by ensuring that the maximum number of UTCBs are packed into each page.
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8.2 UTCB Deletion Trade-offs

In most ports, when a thread is deleted, its UTCB's page table mapping and physical backing 
are not freed.  Instead, all UTCBs in an address space are finally deleted when the address space 
is torn down.  We now consider the trade-offs in deleting UTCBs as soon as the respective 
threads are deleted.

8.2.1 Saving cycles v.s. saving memory

The delayed deletion scheme provides for efficient UTCB recycling as it avoids repeated UTCB 
deallocation and allocation when a thread ID is reused – cycles are being saved.

The trade-off is that memory is being wasted for non-existent threads.  This could be significant 
if many threads, with different IDs, are created and deleted over time but only a very small 
number of threads are active at any one time.

We choose to delete  UTCBs on thread deletion,  instead of address space deletion,  to save 
memory  as  it  is  precious  on  Blackfin  –  the  architecture  limits  the  maximum  amount  of 
supported memory to 128MB.  However, there is an additional complication here:

8.2.2 Deleting immediately may waste memory!

If we do try to deallocate UTCBs immediately and we support multiple UTCBs per page, we 
have to avoid unmapping the page if there is another UTCB on that page.  This would force us 
to introduce reference counting into the page table entries.  However, this may actually cause us 
to waste more memory than we save due to enlarged page table entries or the need for a shadow 
page table, as we explain shortly.

Firstly, the addition of a reference counter into page table entries may enlarge the entries, if 
there are not enough free bits.  If this occurs, we waste memory for the vast majority of page 
table entries, which are for normal, non-UTCB pages that do not require reference counting.

If there are few threads in the systems (and therefore few UTCBs) but  many normal page 
mappings, we may be wasting more memory than is saved by the reduction in UTCB size.  We 
could avoid this by creating a separate data structure just to maintain UTCB page reference 
counts but this adds even more complexity and chance of introducing bugs.

Secondly, hardware-walked page tables may specify a strict format for the page table entries.  In 
this  case,  we  would  need  a  shadow  page  table,  to  accommodate  the  reference  counting, 
consuming additional memory.

8.2.3 Conclusions on UTCB deletion

Deleting threads' UTCBs as the threads are deleted saves memory but consumes more cycles if 
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thread IDs are reused, compared to deleting the UTCBs when the address space is torn down. 
However, if multiple UTCBs per page are also supported, deleting UTCBs on thread deletion 
may  actually  waste  more  memory  than  is  saved,  through  page  reference  counting  bits. 
Therefore  we  cannot  draw general  conclusions  on  this  matter  without  details  of  expected 
workload and page table entry structures.
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8.3 Conclusion

Reducing the size of UTCBs saves memory and increases MPU coverage.  However, if the 
number of message registers are reduced to achieve this goal, sending larger messages takes 
additional cycles or memory.

In the general case, it is unclear whether UTCBs should be deleted as soon as their respective 
threads are deleted, as opposed to deleting UTCBs at address space destruction.
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9 System Calls

The initial Blackfin port preserved the entire user context on system calls.  In this chapter, we 
start by investigating the performance benefits and implications of the standard L4 behaviour of 
only preserving part of the context.  We then consider what part of the context needs to be 
preserved.

Finally,  the initial  port also made the system call  convention match the C function calling 
convention and forced the kernel to access the user stack to retrieve arguments.  So we discuss 
how we can improve this  –  we discuss  what  registers  should  be  used  for the system call 
convention.
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9.1 Preserving Part of the Trapframe

Some kernels,  such as DOS,  OS/161 [HLS02] and Linux save and restore all  registers  on 
system calls [Joh97].  No registers are clobbered except those used for return values.

L4 takes a more lightweight approach.  Realising that it is only normal exceptions, such as 
MPU misses, that require full trapframe preservation in order to be transparent to the flow of 
execution, system calls are allowed to clobber almost all registers.

In this section, we discuss the performance advantages of this, as well as security concerns and 
implications for the trap code.

9.1.1 Performance improvement

On architectures  with  a  large  user  context,  such  as  the  Blackfin  where  the  context  is  the 
equivalent of forty-five 32-bit registers, preserving only part of the trapframe is a significant 
cycle and data cache saving, especially on the IPC fastpath.

By pushing the responsibility of saving registers from the kernel up into userland, we minimise 
the lower bound of the kernel's system call cost.  We also reap performance benefits if userland 
either does not care that the vast majority of registers are clobbered and/or with smart compiler 
register allocation, avoids unnecessary register saves.

Of course, a few registers, such as the instruction and stack pointers, would still  have to be 
maintained to permit userspace to save and retrieve any registers that need to be saved.

9.1.2 Security concerns

A concern is that saving less than a full  trapframe introduces an information leak and is a 
security  problem.   For  instance,  consider  a  future  L4  implementation  that  uses  sparse 
capabilities, where the possession of a 64-bit value would entitle the holder to extra privileges. 
If L4 were to check if a system call was authorised by comparing the given supposed capability 
(provided by userspace) to the real capability value, the latter would be placed into registers by 
assembler.  If the contents of these registers leaked into userspace, because we did not restore 
the full trapframe, then userspace could steal the capability.

9.1.3 Trap code implications

Saving less than the full trapframe introduced some implementation complexities in the trap.

In our initial kernel port, functions that implemented system calls (syscall functions) saved and 
restored the entire trapframe.  The system calls returned values by writing to the memory copy 
of the user context stored in the TCB.  The C++ code that called the syscall functions then 
returned to assembler.   We shortly  discuss  the implications of the use  of  C++ here.   The 
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assembler, when restoring the trapframe from the user context stored in the TCB, would, as a 
side effect, propagate the returned values to userland.  System call arguments were handled in a 
similar fashion.

However, when we changed system calls to save and restore only a handful of registers to and 
from the trapframe stored in the TCB, a problem arose.  Some user registers containing system 
call  arguments were no longer being stored into the trapframe (which is read by the kernel 
syscall functions).  Similarly, some registers used for syscall return values were no longer being 
restored from the trapframe (which is modified by the system call functions) and therefore, were 
not sent to userspace.

Also save and restore registers used by system calls

To solve the problem, the assembler could save and restore all the registers that might be used 
for system call arguments and return values to the memory-backed trapframe stored in the TCB. 
However, this solution defeats the point of saving and restoring a minimal number of registers. 
It makes no sense to save and restore 7 extra argument/return-value registers, for all system 
calls – when IPC only requires 2 – just because one system call (L4_ExchangeRegisters()) 
requires 7 registers.

What would be better would be to save and restore only the  necessary argument/return-value 
registers, for the particular system call,  to the memory-backed trapframe.  Nevertheless,  the 
logic required to determine which of the 7 registers to save and restore probably takes longer to 
execute that just blindly saving and restoring those registers.

Nevertheless, we haven't explained why we need such registers to save to a trapframe in the 
first place.

But why are we saving to the trapframe?

We are saving registers to the memory-backed trapframe, in the TCB, because the code that 
invokes  syscall functions is written in C++ and the registers used for system call arguments 
might otherwise have been clobbered by the time the syscall functions were to access them.  So 
what is happening is that we are saving registers to the memory-backed trapframe, only to read 
them back, in the syscall functions, almost immediately afterwards.  It is a similar story with 
system call return registers.

The Blackfin port implements the code, that calls the syscall functions, in C++ in line with the 
philosophy of avoiding assembler at all costs for maintainability [p169, Chapter 15.3].  This is 
the only L4 port that does this.   Therefore,  the trade-off is that we must accept this minor 
performance penalty on the slowpath.  For the hand-optimised assembler IPC fastpath, we can 
certainly use this  optimisation, which avoids touching memory (the trapframe stored in the 
TCB).
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9.1.4 Trapframe preservation conclusions

L4 system calls do not preserve the full trapframe and clobber almost all registers, in the hope 
that cycles can be saved through userlevel being able to avoid unnecessary register saves.  

There is a concern that this creates an information leak.

Because we value debuggability and wrote some kernel system call handling code in C++, we 
are  forced  to  perform  extra  register  saves  and  restores.   This  does  not  matter,  from  a 
performance standpoint,  since the main determinant of performance – the fastpath – will  be 
written in hand-crafted assembler.
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9.2 Registers to be Preserved

We want the trap to save the minimum number of registers – just enough for userland to recover 
from the system call.  Recall that by saving as few registers as possible in kernel-mode, we save 
cycles if  userspace does not care that certain registers are clobbered [p106, Chapter  9.1.1]. 
Userspace only needs to save the ones it  is interested in.  In this section, we identify the 3 
categories of registers the trap code needs to preserve:

1. Instruction Pointer:  To continue execution after  a system call,  the kernel  needs to 
restore the user instruction pointer.

2. Stack Pointer:  In order for userspace to be  able  to restore the  registers  it  need to 
preserve across a system call, a pointer register must be preserved by the kernel.  Given 
that even assembler programs are likely to use the stack, the stack pointer is the perfect 
candidate.  

3. “Register  Room”:  Our  trap code needs  to decide  whether  the  CPU exception is  a 
system call or a CPLB miss.  On a CPLB miss, where all registers must be saved, we 
would not have wanted this test to have clobbered any registers.  Therefore, the trap 
code  needs  to  save  some registers  before  it  does  anything  –  enough  to  make  this 
decision.

In general, there is no need nor a desire – due to efficiency reasons – to save any more registers 
in kernel mode.  And in fact, if the architecture has banked registers (separate user and kernel 
registers), the banked registers need not even be saved, until a context switch.

Let us analyse our Blackfin port in terms of these 3 categories:

1. Instruction Pointer: The instruction pointer is banked.

2. Stack Pointer:  The stack pointer is also banked.  For both the instruction and stack 
pointers, we actually save them on the trap, instead of on context switches, which is 
unnecessarily inefficient for system calls that do not switch.  However, this is irrelevant 
as the only system call  we want  to optimise  on this  level  –  IPC – always context 
switches.

3. “Register Room”: As Blackfin has no more banked registers, we need to save the flags 
(zero, carry etc.) register and a few general registers.  However, we currently save all 10 
registers  preserved by C function call  convention (4 'R'  data registers,  4 'P'  pointer 
registers, the RETS link register and the frame pointer).  This is convenient because our 
userspace system call wrappers are currently functions so the wrappers need not do any 
extra register  saving.   Having said that,  this  is  lazy and increases the lower bound 
system call cost for programs that do not require the C function call convention to be 
preserved e.g. assembler programs.

In summary, the 3 categories of registers that trap code needs to save are the instruction pointer, 
stack pointer and some “register room”.  The Blackfin currently saves too many registers to be 
efficient.
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9.3 Registers for Args / Return Values

Now that we have decided what registers must be preserved to permit recovery after a system 
call, we need to determine which registers should be used for system call arguments and return 
values.  An observation is that one should reuse registers used for arguments for return values. 
But there are possibly other concerns – such optimising for programs written in the most likely 
userspace language and for virtualising another kernel.

9.3.1 Likely userspace language

As we need to choose some registers for system calls, we are imposing some policy so should 
impose the one that optimises most user applications.  At the time of writing, most Blackfin 
user applications will use C/C++ and conform to the Blackfin gcc C calling convention.  We 
first describe the L4 system call mechanism and then investigate whether it makes sense to base 
our system call register choice on this convention.

L4 stores the code that actually invokes the system call exception in the KIP.  The userspace 
system call library jumps into the KIP to execute the system call.  This permits the system call 
mechanism to be changed in an ABI-transparent manner.  It also means that all system calls 
incur  the  penalty  of  an additional  jump and return  (minimum of  5  cycles  in  total  on the 
Blackfin) but that is another story.

If we simply make this jump and return, a C function call, a straightforward implementation 
would  make  the  system call  convention  identical  to  the  C  calling  convention  so  that  no 
argument or return value marshalling at userlevel needs to be done.  Unfortunately, the number 
of  callee  saved  registers  may  be  large  (on  the  Blackfin,  there  are  10)  so  preserving  the 
convention may be expensive.  

Furthermore, the C calling convention may be insane.  For instance, even though the Blackfin 
has more than 40 registers, only the first 3 arguments to a function are register-backed.  The rest 
are stored on the stack.  The initial kernel had to walk the page table to check that the arguments 
on the stack were accessible, leading to a grossly inefficient and complex kernel [p55, Chapter 
4.3.2].  As a result, we changed the kernel so that userspace is now forced to copy all arguments 
to registers.

Having established that using the function calling convention for the system call convention is 
unreasonable,  there is no reason to wrap the system call  invoking code, in the KIP, in a C 
function  call.   But  the  question  remains:  which  registers  should  we  use  for  system  call 
arguments and return values?

One might argue that we should only use callee saved registers on the grounds that since in C, 
code is always executing in a function and if that function is using callee saved registers, it has 
already saved them.  We could also argue the other point of view: we should only use caller 
saved registers on the grounds that the current function need not save them if we modify them.

But both arguments are flawed because regardless of whether a register is callee or caller saved, 
at the point before the system call invocation, the compiler might have been using either or both 
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types.  After all,  an efficient compiler will try to maximise register usage.  As a result,  the 
compiler would still be forced to save and restore the previous contents of any register we wish 
to use for system calls, before and after the system call (we assume the register will likely still 
be used after the system call due to the compiler maximising register usage for a non-trivial 
program).

We  therefore  conclude  that  deriving  a  system  calling  convention  based  on  a  particular 
language's  calling  convention is  meaningless.   The choice  of  registers  seems arbitrary  and 
independent of the likely userspace language.

9.3.2 Virtualising Linux

ucLinux is an obvious candidate for virtualisation on top of L4 in a similar fashion to Wombat. 
In this section, we analyse what effects this might have on the system call convention.

The kernel is not permitted to use the same system call mechanism as an operating system it is 
trying to virtualise – otherwise it would not be able to distinguish native system calls from the 
calls to be virtualised.  We cannot change the guest operating system's calling convention as we 
wish to preserve ABI compatibility.

ucLinux uses system call exception 0 (EXCPT 0), register P0 for the system call number (from 
0-255), registers  R0-R4 for arguments and register  R0 for the return value [Bla06d uClinux-
dist/uClibc/libc/sysdeps/linux/bfin/syscall.c].

If we do not use exception 0 for L4 system calls, virtualising ucLinux is straightforward and has 
no bearing on our choice of registers for system calls.  However, if we insist on using exception 
0 for our own system calls, then P0 must be used for the system call number and our system call 
numbers must be greater than 255 (i.e. outside of ucLinux's range).

Another issue is that as L4 does not preserve all registers on an exception but Linux expects it 
to do [Joh97], on detecting an virtualised system call, we must ensure that the full user context 
has not been clobbered.

9.3.3 Summary

The choice of registers for the system call convention is arbitrary.  But making it match the C 
calling convention is usually inefficient and too complicated for the kernel – especially if it 
requires that arguments be placed on the stack, as was the case on Blackfin.  The kernel system 
call convention may need to be modified to distinguish native system calls from the calls to be 
virtualised.
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9.4 Conclusion

L4 system calls do not preserve the full trapframe for efficiency.  There is a concern that this 
creates an information leak.

Having decided  that  we do not need to save the  full  trapframe,  we determined that  the  3 
categories of registers we do need to save are the instruction pointer, stack pointer and some 
“register room”.

Lastly, we found that picking registers for the system call convention is – as long as we are 
reasonable – an arbitrary decision, except for when we need to virtualise an operating system. 
The initial Blackfin port was an example of something that was not within reason as it  had to 
walk the page table  to check that the arguments on the stack were accessible,  leading to a 
grossly inefficient and complex kernel.
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10 The Single Stack 
Kernel

This chapter firstly describes the method we used to port to  the single stack kernel.

It then discusses aspects of the implementation and raises warnings about certain error-prone 
mechanisms.
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10.1 Conversion procedures

Warton [War05] provides a fleeting explanation – at best – of how to convert from the multi-
stack kernel to the single stack kernel.  We fill in this gap by describing the changes to context 
switching and trapping.

10.1.1 Changes to switching

Switching threads in the previous, multi-stack kernel required changing over to the stack stored 
in the TCB being switched to.  The switch functionality was written in assembler and wrapped 
in a C function.  The assembler consisted of:

1. Pushing onto the old TCB's stack the:

a) registers saved by the compiler-specific C functional calling convention

b) return address

2. Manipulating the stack pointer to point to where it was on the new TCB's stack from a 
previous switch.

3. Restoring state from the new TCB's stack:

a) the registers saved for the calling convention

b) jumping to the return address

As a result,  code that called the C switch function could continue executing normally after 
context switches, without any special handling.

But in contrast to the multi-stack kernel, with a single stack shared between all TCBs, the call 
history, along with local variables, must be dropped on a context switch.  As the execution 
context is lost, switches become more explicit.

Any code that could potentially switch stacks must be split at the potential switch point.  Before 
the possible switch, all state necessary to recover from a switch (local variables etc.) must be 
saved to the TCB.  In addition, a pointer to the function containing the code that follows the 
switch - called a continuation [War05]- must also be stored in the TCB so that execution can 
continue after the switch back.

However, the switch function is much simpler as it only needs to:

1. Drop the stack by moving the stack pointer to the top of it

2. Jump to the continuation stored in the new TCB

As a result, there is no longer a need for a switchframe.
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10.1.2 Changes to trapping

As the single stack kernel drops the stack on a switch, if trapping from kernel mode (to service 
an MPU miss), one can now only switch at special preemption points that contain a pointer to a 
recovery function that  can deal  with the complete  loss of kernel  context [War05].   As the 
Blackfin port, for simplicity, does not allow kernel preemption [p75, Chapter  5.1], this is not 
currently an issue.

However, loss of the contents of the stack on a switch, means that usermode context must be 
stored outside of it – in the TCB.  Therefore, the old multi-stack kernel trapping behaviour of 
simply  pushing  all  registers  onto  the  stack  and then,  servicing  the  exception  in  question, 
regardless of whether we trapped from usermode or kernel mode, no longer works - trapping 
becomes more complicated.

We consider two single stack kernel trap designs.

Design 1 - kernel stack pointer points to either the TCB or 
stack

This is the design described briefly by Warton [War05].  With both ARM and Blackfin, the 
stack pointer is banked i.e. there are separate hardware-maintained user and kernel mode stack 
pointers.  In usermode, the kernel stack pointer will point to the top of the user context in the 
TCB.  On a trap into the kernel, it pushes the context into the TCB, treating the area as if it was 
the stack.  It then switches to the real kernel stack.

On a trap from kernel mode, the kernel stack pointer already points to the kernel stack.  So 
regardless of whether we came from usermode or kernel mode, both kinds of traps can stack 
registers immediately.

Design 2 - kernel stack pointer always points to the stack

Warton does not discuss this perfectly valid alternative where the kernel stack pointer always 
points to the real kernel stack.  On a trap into the kernel, this design would save a few registers 
sufficient to allow it  to determine whether it  came from usermode or kernel  mode without 
clobbering context.  This saving is needed for Blackfin since it has no banked registers other 
than IP and SP.

If it came from usermode, it saves the remaining context into the TCB.  The initial few registers 
it saved also need to be copied in the TCB in case they are lost in a stack-dropping switch. 
Otherwise, if it came from kernel mode, it simply stacks the remaining context.

Verdict

There is  no real  trade-off  here,  as Design 1 is clearly better  - Design 2 takes more cycles 
because of the extra copying of those initial registers if trapping from usermode and is more 
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complicated.  However, it is worth considering these two designs given that Warton did not.

10.1.3 Summary of conversion procedures

Execution context is lost on a switch so any code that potentially switches needs to be split at 
the potential switch point.  All state needed to recover from the switch should be stored into the 
TCB.  A continuation function restores this state and continues execution after the possible 
switch.

The trapping behaviour has changed.  If trapping from usermode, the kernel must still push all 
the context into the TCB (it does this by arranging that the kernel stack pointer will point to top 
of the user context on the trap) but the difference is that it must then switch to the single kernel 
stack.   However,  if  trapping from kernel  mode, the kernel  can simply  push the context as 
before.
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10.2 Implementation

We implemented the single stack kernel using the techniques described in the previous section 
and verified Matthew Warton's 2 week time estimate.

A number of issues were found during the implementation.  We will therefore consider the boot 
stack, size of the TCB, flawed – or at least, confusing – single stack kernel mechanisms and 
performance.

10.2.1 Boot stack

The Blackfin port now uses a single 2KB stack.  However, many L4 ports still have an 8KB 
boot stack in addition for no reason.  This is approximately 6% of the size of the kernel image 
so is needlessly wasteful and should be removed.

10.2.2 TCB size

In this section, we look at the size of the TCB on Blackfin and an advantage of physically-
addressed TCBs.

Blackfin

TCBs no longer contain kernel stacks so their size has been reduced from 4KB to 1KB, of 
which 604 bytes are actually used (the rest is for "power-of-2" alignment):

Field Size (bytes)

Architecture independent fields 326

Continuations for L4_ThreadControl() to 
unmap UTCBs when deleting threads [*]

20

Blackfin-specific 248

Trapframe 45 registers * 4 = 180

General continuations and 
miscellaneous

68

Total: 604

Table 9: L4/Blackfin TCB fields

As 1,024 – 604 = 420 bytes are being wasted for alignment, it would be useful to attempt to 
compact the TCBs to below 512 bytes (the next power of 2).  However, this is difficult given 

[*] UTCBs are normally deleted when the address space is deleted but this is wasteful [p102, Chapter 8.2].  The 
ARM port also deletes the UTCBs quickly but uses a less clean method of deleting them that does not require 
continuations.
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that the size of architecture independent part plus the mandatory trapframe for interrupts is 
already  326   +   180   =   506 bytes,  leaving  little  room  for  any  additional  bookkeeping. 
Aggressive use of C's  union mechanism would have to be used and apart from making the 
kernel more error prone, it would require much work to squeeze the TCB down to 512 bytes.

A benefit of physically-addressed TCBs

Suppose for a particular architecture, we managed to squeeze the size of a TCB down to 512 
bytes.  Assume that the minimum page size of the architecture is greater than 512 bytes (which 
is true on most architectures).

Now, if the TCB array is virtually allocated, a pathological thread ID allocation that touched 
each  page  would  nullify  the  effect  of  reducing  the  size  of  the  TCB  due  to  internal 
fragmentation.

Luckily, Blackfin is physically addressed and the L4 port allocates TCBs on demand, avoiding 
this  problem.  Other architectures could also use physical addressing to avoid this problem 
[Nou05].

10.2.3 Mechanisms

Warton devised a number of primitives in his implementations of the single stack kernel, which 
the Blackfin port also uses.  However, there are a number of caveats he did not mention:

ACTIVATE_CONTINUATION()

Recall that at all points where the kernel might switch, the code has been split into two with a 
recovery continuation function containing the code of the latter half.  Because after returning 
from a switch, the stack has been trashed, continuations assume nothing about the contents of 
the stack.  They restore the state saved before a potential switch and continue execution.  They 
never return as the stack may be gone and instead, call other continuations to “exit”.

However, if the kernel decides not to switch at a switch point, it must still call the continuation 
to  complete  its  work.   As  continuations  can  make  no  assumptions  about  the  stack,  the 
ACTIVATE_CONTINUATION() macro not only invokes the given continuation but also moves to 
the top of the stack.

Warton says that this provides greater data cache locality and reduces the change of running off 
the  stack.   At  first,  the  cache  argument  seems valid  given  that,  in  normal  circumstances, 
calculating the top of the stack requires no additional memory accesses.

Note that functions that never return but exit via a call to a continuation instead can also use 
ACTIVATE_CONTINUATION().  The Blackfin port for some time used this in its CPLB protection 
miss handlers.

Now, ACTIVATE_CONTINUATION() jumping to the top of the stack is safe if we trapped from 
usermode.  However,  if  we came from kernel  mode,  we would be corrupting the previous 
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kernel context stored on the stack.  The only way we could have come from kernel mode would 
be a CPLB miss.  Architectures with hardware loaded CPLBs are therefore not affected by this 
issue.  Software loaded architectures,  such as the MIPS64 and Blackfin, must either:

1. On all code paths that might be traversed when trapped from kernel mode, waste a small 
amount of stack by simply performing a function call to the continuation, instead of 
calling ACTIVATE_CONTINUATION().

OR

2. ACTIVATION_CONTINUATION() must calculate the highest safe address on the stack to 
move to.

Option 1 wastes some data cache by needless storing the previous function's context which will 
never be returned to.

Option 2 also requires a data cache line as the highest safe address is stored in the TCB, after 
being calculated on the trap in.  Depending on the implementation, it also adds unnecessary 
complexity and instructions (both cycles and cache lines): an early Blackfin implementation, 
even had a pipeline-burning conditional jump based on whether it trapped from usermode or 
kernel mode.

Therefore, Option 1 makes far more sense based on simplicity alone.  This puts into question 
whether  ACTIVATE_CONTINUATION() should really have this error-prone “move to the top of 
the stack” behaviour at all.  In the Blackfin port, the function call history is at most 5 deep so 
unless functions have a large number of local variables, the claimed data cache savings may not 
be worth the increased chance of bugs.

Current TCB

In the multi-stack kernel where the current kernel stack was inside the current TCB, the address 
of the current TCB could be calculated by aligning the stack pointer against the size of a TCB.

In the single stack kernel, there is no relationship between the stack pointer and the address of 
the current TCB.  Therefore, Warton places a pointer to the current TCB at the top of the kernel 
stack, updated on switches.  This is for cache locality with the ordinary contents of the stack and 
straightforward SMP generalisation, where there is one kernel stack per CPU.

However, this behaviour is not obvious and other port developers need to be careful  not to 
clobber the absolute top of the stack when implementing ACTIVATE_CONTINUATION().

System call functions

In this section, we discuss a poor implementation decision regarding system call functions and 
continuation arguments that leads to an unreliable kernel.

Functions that may switch are normally given a continuation argument so that they can call the 
continuation to resume work, after the potential switch:

// Note the continuation argument.
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void function_that_might_switch (continuation_t continuation)
{

// ­­­ Do some work ­­­

ACTIVATE_CONTINUATION (continuation);
}

void caller (void)
{

// ­­­ Do some work ­­­

function_that_might_switch (caller_finish);

// ­­­ We never get here since “caller_finish” is called
}

void called_finish (void)
{

// ­­­ Do some more work ­­­
}

However, functions that implement system calls are not given continuation arguments.  They 
return to the address after the call - just like a normal function call - but the contents of the stack 
have been trashed (due to call to ACTIVATE_CONTINUATION()):

void syscall_function_that_might_switch (void)
{

// ­­­ Do some work ­­­

ACTIVATE_CONTINUATION (__builtin_return_address (0)/*address 
after the instruction that called us*/);
}

void caller (void)
{

// ­­­ Do some work ­­­

syscall_function_that_might_switch ();

// ­­­ We arrive back here but the stack context is gone!
}

What's  worse  is  that,  callee  saved  registers  in  syscall_function_that_might_switch() 
have not been restored because the function exited via calling a continuation – not through the 
normal compiler-generated function return path.

Warton's justification, for not passing a continuation argument, is that it avoids dealing with 
complicated calling function conventions should caller() be written in assembler.  However, 
this is crazy because with a corrupted stack context and callee saved registers that haven't been 
saved,  a  huge  number  of  potential  bugs  due  to  a  violated  C++  calling  convention,  are 
introduced.  As a proof of this point, the following code was in an original version of the single 
stack kernel:

INLINE void tcb_t::do_ipc (threadid_t to_tid, threadid_t from_tid,
continuation_t continuation)

{
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arch.do_ipc_continuation = continuation;

// Trashes the stack pointer on return.
sys_ipc(to_tid, from_tid);

// The old stack context is gone!
ACTIVATE_CONTINUATION(

get_current_tcb()­>arch.do_ipc_continuation);
}

Notice how it nobly attempts to avoid accessing the stack after it's gone:

• It  recalculates  the  TCB by using  get_current_tcb() instead of  using  the  C++  this 
pointer

• It does not access the continuation argument

The code looks very convincing but sometimes fails.  As do_ipc() is inlined, if there was a 
call to get_current_tcb() before do_ipc(), the optimising compiler cleverly realises that the 
get_current_tcb() in  do_ipc() is  redundant  and can be  served  by  retrieving  it  from a 
variable.  Now, the variable may have been stored on the stack (in which case it's trashed) or 
stored in a callee saved register (which has also been trashed).

Even  if  do_ipc() were  not  inline,  the  C++  compiler  still  assumes  that  the  C++  calling 
convention has been maintained after the call to sys_ipc().  It has every right to depend on the 
old  stack  context  and  callee  saved  registers  for  whatever  reason.   As  a  result,  seemingly 
harmless changes like marking unrelated pointers as  const, adding assertions, adding debug 
printing – even rearranging code unrelated to the inlined sys_ipc() call (but enough to vary 
the register allocation) – were enough to cause incorrect behaviour.

These bugs  were  only caught  and worked around – several  times and in  different  ways – 
because the Blackfin has an MPU that trapped bogus memory accesses after registers were 
clobbered.   With  the  goal  of  eventually  supporting  CPUs  without  MPUs,  such  as  the 
ARM7TDMI, which cannot trap these bugs, one wonders what the chance of writing a reliable 
kernel, on such CPU, is.  And this is all in the name of saving a single argument in a function 
call.  While it is true that some architectures have complicated function calling conventions, 
given a choice between reliability and apparently reduced function call complexity, it is obvious 
that we should choose reliability.

However, without control over the current L4 source base, one can only resort to workarounds 
and the following one is reliable for the time being (until the compiler changes behaviour etc.): 
after a call to a function that clobbers the stack and callee saved registers,  immediately call a 
function that accepts no arguments and does not return.  This function must not be inline nor 
static (as static functions may be inlined by the compiler).  As it accesses no arguments, the 
compiler makes no assumptions about the stack.  As it is a new function, the compiler will not 
access  any  callee-saved  registers.   Do not  use  ACTIVATE_CONTINUATION() to  invoke  this 
function as the additional code may be enough to cause bugs.

Summary on mechanisms

The single stack kernel's mechanisms are error-prone.
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ACTIVATE_CONTINUATION() invokes a continuation but unnecessarily drops the contents of the 
stack for claimed cache benefits.  This causes problems if it is accidentally used on a code path 
traversed by a trap from kernel mode.

The current UTCB is stored at the top of the kernel stack and is  an invitation for it  to be 
overwritten.

System call functions return after violating the calling convention, just to avoid passing a single 
continuation argument, potentially from assembler.  A workaround is to switch to a non-inline 
function as quickly as possible.

10.2.4 Performance

On the Blackfin, the CPLB footprint of the single stack kernel is identical to the multi-stack 
kernel as the TCBs have always been physically allocated and the single kernel stack is locked 
into the CPLB as part of the kernel image.  On other architectures with virtually addressed 
TCBs, the MPU footprint should be reduced as more of the smaller TCBs can fit into a page.

On a switch, the single stack kernel suffers the overhead of saving and restoring continuation 
state.  But in its place, a multi-stack kernel must save and restore registers, to maintain the C 
calling convention.  No general conclusion as to which is slower can be made as it depends on 
the particular code path and the C calling convention.

However, the main claim to fame of the single stack kernel is reduced cache footprint through 
the reuse of a single stack, which Warton's benchmarks show more than compensate for this 
kind of change in macro-benchmarks.

As there are no macrobenchmarks available for L4 on the Blackfin, all we could attempt was the 
pingpong microbenchmark.  Attempts were make minimise the number of non-single-stack-
kernel related changes between the multi-stack and single stack kernels e.g. disabling of some 
newly-added CPU-consuming assertions.  However,  given the number of structural  changes 
indirectly caused by the single stack kernel, it was very difficult to create a fair comparison. 
And at that time, the kernel was in early development, so the IPC time was meaningless as it 
was dominated by system call deferral and CPLB refill costs.

Therefore, the cost of entering and exiting the kernel was measured and found to be 4,412.68 
cycles, almost 10% slower than the multi-stack kernel.  But this should be taken with a grain of 
salt as again, the number of indirect changes between the kernels was significant and difficult to 
minimise.  And also, a macrobenchmark, had one been available, may have led to a different 
conclusion.

10.2.5 Implementation summary

The boot stack is a waste of space and should be merged with the single stack.  The size of TCB 
has been reduced from 4KB to just over 600 bytes, thanks to the removal of the kernel stacks, 
and we believe it would be difficult to reduce the size even further.

The mechanisms in the single  stack kernel are error-prone and are not suitable  for reliable 
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kernels.

We experienced difficulty in trying to measure the performance difference due to the state of 
the kernel and the lack of macrobenchmarks.
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10.3 Conclusion

We described the changes necessary to port the single stack kernel:

• execution context is lost on a switch so any code that potentially switches needs to be split 
at the potential switch point and its state stored in the TCB for recovery by a continuation 
function

• if trapping from usermode, one needs to switch to the kernel stack after pushing the user 
context into the TCB.

We implemented the single kernel stack and reduced the size of the TCB from 4KB to just over 
600 bytes.

We reflected on our experience and determined that the single stack kernel's mechanisms are 
error-prone:

• ACTIVATE_CONTINUATION() unnecessarily drops the contents of the stack

• the current TCB pointer is stored at a vulnerable position – the top of the kernel stack

• system call functions return after violating the calling convention, just to avoid passing a 
single continuation argument.
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11 Physically 
Addressed TCBs

The Blackfin port previously used a static array of 256 TCBs.  With the desire to support a 
larger thread ID space, we changed this to an array of 65536 TCB pointers (each 32-bit) with 
TCBs allocated  on demand.   Nourai  called  this  scheme “phys_4b” and found that  it  gave 
comparable performance to the other physically-addressed TCB schemes.  We chose it because 
it was the simplest.

In porting the Blackfin to this scheme, we found two important details in his implementation 
that he did not mention in his thesis report.  We now describe those details – namely, how to 
convert from an address to a TCB pointer and how to handle TCB allocation – to make it 
possible for others to migrate to the physically-addressed TCB scheme.
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11.1 Address to TCB Conversion

The  KDB  kernel  debugger's  print_tid() function  calls  tcb_t::addr_to_tcb() which 
returns the TCB an address corresponds to.  With a simple array of TCBs (virtual or otherwise) 
it was easy to test whether an address was pointing to a TCB – check if the address was inside 
the array.  But with an array of TCB pointers, TCBs can be allocated anywhere inside the kernel 
heap.

The method used by Nourai to check if the address points to a TCB is to access the thread ID 
field as if the address pointed to a TCB.  The thread ID can then index into the TCB pointer 
array.  If the pointer in the array is identical to the candidate address, then the address is a TCB.
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11.2 TCB Allocation

In  this  section,  we  compare  implementation-level  TCB allocation  issues  using  virtual  and 
physical TCB arrays.  We then build on this and progress to discussing thread allocation in the 
context of a physical TCB pointer array, which is our target data structure.

11.2.1 Virtual TCB array

In an L4 implementation with a virtual array of TCBs, there is a trick to test if a TCB is valid – 
access the thread ID field of the TCB and see if it is non-zero.  On an access to an invalid TCB, 
a mapping from the virtual address to the dummy TCB is added.  The dummy TCB has a zero 
thread ID and is readonly.

The tcb_t::allocate() method initialises a TCB, given a pointer to a virtual TCB.  If there is 
already a mapping from the virtual TCB address to the dummy TCB, it is erased.  A mapping is 
then made from the virtual address to the physical backing for the TCB.  Finally, the thread ID 
field is set appropriately and will be non-zero, denoting a valid TCB.

11.2.2 Physical TCB array

If the TCBs are stored in a physically-addressed array of adjacent TCBs, as the initial Blackfin 
port did,  aside from wastefully  reserving memory for non-existent threads and limiting the 
thread ID space as a result, everything is still straightforward.

As MPU misses never occur on the locked TCBs and as we have no virtual memory on the 
Blackfin anyway, the dummy TCB is not used.  All TCBs are simply zero initialised (i.e. their 
thread ID fields are zero) to start with so in effect, all TCBs are separate dummy TCBs.  There 
is no need to make them readonly since regardless of the method of storing TCBs, the kernel 
never writes to TCBs before calling tcb_t::allocate() - the readonly marking of the dummy 
TCB mappings is simply to catch kernel bugs.

And without virtual memory,  tcb_t::allocate() need not play with mappings and simply 
initialises the thread ID field to create a new TCB.

11.2.3 Physical TCB pointer array

But if the structure is changed to a physically-addressed array of TCB pointers, things become 
more  complicated  if  we  want  to  keep  the  current  method  of  checking  TCB  validity  by 
dereferencing (to reduce the number of changes that have to be made to the kernel).  Firstly, all 
pointers must be initialised to point to a dummy TCB, not NULL, else dereferencing cannot 
work.  Consider the following code fragment:

tcb_t *virtual_tcb_address = get_current_space ()­>get_tcb (tid);
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// Is “tid” invalid (using TCB deference trick)?
if (tid != virtual_tcb_address­>tid)
{

// “tid” is invalid, a mapping from “virtual_tcb_address” to
// the dummy TCB was added by the above dereference. 
virtual_tcb_address­>allocate ();

}

For  the  virtual  TCB array  case,  the  comments  reflect  exactly  what  is  occurring.   For  the 
physical TCB array case, all invalid TCBs act as if they were all separate dummy TCBs i.e. just 
like the virtual TCB array case, get_current_space ()­>get_tcb (tid) returns a different 
address for each different tid.

But  for  the  physical  TCB pointer  array case,  if  tid is  invalid,  get_current_space ()­
>get_tcb   (tid) always  returns  the  same  pointer  –  a  pointer  to  the  dummy  TCB. 
virtual_tcb_address­>allocate() cannot work because  that  would  modify  the  dummy 
TCB.  This is a consequence of not having virtual  memory – our virtual  addresses are not 
mapped to physical addresses but rather, our virtual addresses are equal to physical addresses 
and in this case, that address is the dummy TCB for all invalid TCBs.

The  solution  that  was  used  is  to  drop  virtual_tcb_address­>allocate() and  use  the 
following code:

virtual_tcb_address = tcb_t::create_new (tid);
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11.3 Conclusion

We increased the thread ID space from 8-bit to 16-bit by changing from an array of TCBs to 
Nourai's physically-addressed array of TCB pointers.  We described some undocumented, low-
level implementations issues that are required for migrating to this scheme.
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12 IPC

In this chapter, we discuss a small set of implementation-specific issues regarding IPC.

We firstly discuss a caveat with the IPC system call  and the user context.  The rest of the 
chapter concentrates on our attempts to back some IPC message registers in real CPU registers.

Other IPC-related issues are dealt with in more general chapters, including Protected Kernel 
Addressing, CPLB Optimisations and Micro-optimisations.
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12.1 User Context

Functions implementing system calls in L4 generally modify the user context to return a value 
to userland.

However,  the  function implementing  IPC cannot safely  do this.   This  is  because  a  CPLB 
pagefault handler invokes the IPC function in order to contact the faulting thread's pager.  The 
faulting thread's context should not be modified by this IPC function as exceptions are supposed 
to be transparent (a thread should not know that it has experienced an exception, except for a 
time difference).

Instead, only the code, that invokes the function that implements IPC, should modify the user 
context.  This is a general problem and was previously undocumented, leading to the Blackfin 
port corrupting the R0 register (return value register for the IPC system call) on a CPLB fault.
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12.2 Register-Backed Message 
Registers

In this section, we start by discussing the motivation for register-backing message registers.  We 
then  explain  why  an  IDL  compiler  is  essential  for  taking  advantage  of  the  performance 
improvement  provided  by  registers.   Finally,  we  discuss  our  attempts  to  use  registers  on 
Blackfin.

12.2.1 In theory

The motivation is that if messages are small enough to fit completely into registers, then only a 
context switch is required to perform an IPC.  No copying to and from memory-backed message 
registers would be required and therefore, no data cache lines would be touched for the message 
itself.  Apart from saving a few cycles on the copy itself, this cache friendliness is why L4's 
IPCs can be so lightweight.

On protected  kernel  addressing  architectures  without  virtual  memory,  this  can also save  a 
protection unit miss and refill on the UTCB [p87, Chapter 7.1].  

12.2.2 In practice – the need for an IDL compiler

In this  section, we show why  libl4 is insufficient for taking advantage of register-backed 
message registers and motivate the need for an IDL compiler.

The userspace C++ system call library libl4 stipulates that messages be sent like this:

L4_Msg_t message;

// Construct “message”.
L4_MsgClear (&message);
L4_SetMsgLabel (&message, label);
L4_AppendWord (&message, word_to_be_sent);

// Copy “message” into the message registers.
L4_MsgLoad (&message);

// Send the contents of the message registers to “destination”.
L4_Send (destination);

Ideally,  L4_MsgLoad() would copy as many words as possible into register-backed message 
registers.

However,  L4_MsgLoad() actually copies all of the words into the UTCB, stored in memory. 
L4_Send() then reads the words back out of the UTCB and then loads as many as possible into 
registers before invoking the IPC system call sequence.
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This is because L4_MsgLoad() cannot write to registers if the C++ calling convention is to be 
maintained.  It cannot simply use callee saved registers because there is no guarantee that the 
compiler has not decided to use them for storing variables.  Marking registers as clobbered does 
not work as gcc will restore them before the function exits.

Contrary to popular belief [Kuz05], an optimising compiler would not help us here because 
some words (the ones that should be register-backed) are still needlessly stored into the UTCB 
by  L4_MsgLoad() and memory writes cannot be optimised out.  These memory writes touch 
data lines and completely defeat the purpose of having register-backed message registers.

The situation is actually worse than that.  If the message is not going to be reused, as is the 
common case, there is no point constructing the message (L4_MsgAppendWord()) in memory 
and touching data cache lines.

Furthermore, when L4_Send() actually copies words out of the UTCB and into registers, the 
number of words it copies it equal to the number of register-backed message registers, which 
may be larger than the size of the message.  This is because doing a checks such as:

if (number of words >= 1)
{

Copy Word into Register for Message Register #1
if (number of words >= 2)
{

Copy Word into Register for Message Register #2
if (number of words >= 3)
{

[...]

with its  conditional jumps would probably exceed the cost of unnecessary copies from the 
UTCB to registers, especially given that the words it copies are likely to be in the same data 
cache line.  Nevertheless,  these unnecessary copies do not just waste CPU but also clobber 
registers that the compiler will have to spend more time restoring.  If there is a shortage of 
registers, the contents of the to-be-clobbered registers may have to be pushed onto, and later 
popped off, the stack resulting in more data cache lines being used.

Therefore,  the  only  way  to  actually  exploit  L4's  register-backed  message  registers  is  to 
handcraft  assembler  or  use  an  IDL compiler,  such  as  Magpie  [Nic06c],  to  generate  such 
assembler.

12.2.3 Attempts on Blackfin

We attempted to support  register-back message registers  for the Blackfin port  but  ran into 
several issues – GCC, difficulties in trying to be efficient and the realisation that we would not 
actually gain anything, given the state of gcc and the rest of the port.

GCC bugs

GCC appears to ignore register assignments and clobbering, making it extremely difficult to 
write code that manages registers correctly.
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Ignores register assignments

// Assign val to Message Register 0 i.e. register “P2”.
register MR0 asm (“P2”) = val;

GCC ignored this line and simply did not produce any code for it.  It should be clear to gcc, 
because we specified a specific register, that the register keyword is not just a hint in this 
situation.  Using asm volatile did not make a difference.

Ignores register clobbering

Our code was of this form:

// Message Register 0 is stored in register “P2” ... [1]
register MR0 asm (“P2”);

asm volatile
(

// ... System call invoking code ...

: “+r” (MR0)  // System call wrote to MR0 i.e. P2 ... [2]
);

// ... Some C++ code ... [3]

// ... Some C++ code that copies P2 to memory ... [4]

Register P2 was clobbered by the code at [3] even though we have indicated that we are using 
P2 for the duration of the function:

1. As we described above in Ignores register assignments, because we specified a specific 
register at [1], the register keyword is not just a hint and should not be ignored by 
gcc.

2. Furthermore, the line at [2] explicitly states that the assembler reads and writes P2 so the 
register should not be used by C++ until after the end of the function and should be 
untouched at [4].

This is evidently a gcc bug.

Efficiency of hand-optimised assembler

Given the above unreliability of C++ code after assembler that had clobbered some registers, 
we decided to resort to implement  L4_Ipc() (the back-end to L4_Send()) almost entirely in 
assembler.  The idea was that the clobbered registers would be restored by the C++ calling 
convention when the function exited.

Unfortunately, when the compiler inlined L4_Ipc(), the registers stayed clobbered for a longer 
period of time and were evidently, only restored when the code's parent non-inline function 
exited.  As a result, it reduced the number of available registers to surrounding C++ code – so 
much so that  gcc refused to compile  certain C++ segments that  invoked  L4_Ipc() on the 
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grounds that it had run out of registers for register allocation!

Furthermore,  by writing so much code in assembler,  we had forced copying from registers 
containing C++ variables (such as the words to be copied in the UTCBs) to registers we had 
arbitrarily chosen.  Had it been possible to write the code in C++, the compiler would almost 
certainly have been able to avoid this and provide for a more optimal register allocation.  In 
other words, assembler actually reduced performance in this situation.

In any case, given that the registers stayed clobbered for longer than expected and gcc is known 
to be buggy in this situation, this simply did not work.  On top of this, the code was far more 
complex, being assembler.  At this point we decided to give up.

Futility of the exercise

Even if  we had succeeded in implementing register-backed message registers (and this was 
impossible since gcc is buggy), any gain would have been outweighed by the:

1. unnecessary storing of message words to memory in the absence of an IDL compiler

2. the lack of a fastpath – the slowpath still  accesses the message words stored in the 
UTCB, not the registers

Benchmarks of any improvement would only be meaningful if the above two problems were 
solved.

Summary of attempts on Blackfin

GCC ignored our  attempts  to mark registers  as  precious  or reserved.   Even if  could  have 
implemented the fastpath correctly, it would only have been meaningful if we had used an IDL 
compiler and written a fastpath, neither of which we found time to do.
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12.3 Conclusion

Functions implementing system calls in L4 generally modify the user context to return a value 
to userland.  However, the function implementing IPC cannot safely do this.

Register-backed message registers can result in zero-copy IPC and reduce D-cache footprint. 
Libl4  is  insufficient  for exploiting register-backed message  registers  – an IDL compiler  is 
required.  GCC is seemingly uncooperative with register specifications and this is one reason 
why we abandoned implementing register-backing.
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13 Micro-optimisations

This  chapter  is  a  collection  of  techniques  that  we  found  to  give  a  very  large  combined 
performance boost.

Our micro-optimisations were guided by 2 general principles:

1. Frequency of Execution: Certain sections of the kernel, such as the trap code and IPC 
path, may be executed millions of times a second.  A few wasted cycles on these paths 
add  up  to  a  few million  wasted  cycles  per  second.   Hence,  we  spent  much  time 
optimising these sections of code.

2. How Fast is Fast?: A particular section of code – perhaps a loop – may take a millionth 
of a second to execute or less – faster than a blink of the eye.  But on a 500 MHz 
processor, this is 500 cycles, which is the ballpark speed for an entire IPC.

The topics we will  cover are assertions,  volatile  operations,  inlining,  avoiding jumps,  code 
simplicity, pointer arithmetic and always choosing hardware routines over software ones.
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13.1 Assertions

In this section, we discuss disabling assertions in release mode.

There  is  an  undocumented  constant  called  CONFIG_KDB_NO_ASSERTS which  disables  all 
assertions.  By disabling this unnecessary code, the time to perform a trap into and out of the 
kernel more than halved – it fell from 1970.41 cycles to 898.24 cycles.  The size of the kernel 
decreased by a similar amount.

With  increasing  numbers  of  consistency  checks  in  the  kernel,  the  importance  of  disabling 
assertions becomes ever so more increasing.
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13.2 Volatile Operations

The C  volatile keyword is useful for preventing the compiler from optimising.  However, 
careless  use  of  this  can  result  in  suboptimal  performance.   In  this  section,  we  provide  2 
examples – an SSYNC pipeline flush and reading registers.

13.2.1 SSYNC pipeline flush

Reads to some system memory-mapped registers need to be preceded by an instruction barrier 
to resolve any speculative states in the pipeline.  This is normally done using an SSYNC pipeline 
flush, which takes a minimum of 10 cycles.  So a typical code sequence might be:

asm volatile (“ssync;”);
ASSERT (NORMAL, *memory_mapped_register == 0x1234);

In debug mode, we ordinarily require the volatile as gcc does not understand instruction side 
effects.  This prevents gcc from:

1. simply optimising out the instruction because “it doesn't affect any variables”

2. moving the barrier instruction to somewhere else

However,  in release mode, the  ASSERT is not executed at all.   Therefore,  the  SSYNC is not 
required either and is merely wasting cycles.  Therefore, it should be marked for conditional 
compilation using #if !defined (CONFIG_KDB_NO_ASSERTS).

13.2.2 Register reads

It's a similar story for ordinary register reads as well, where the volatile is needed because the 
register read must occur at a particular location in the code:

u32_t val;
asm volatile (“%0 = retx;” : “=r” (val));
ASSERT (NORMAL, val != 0xabadcafe);

In this case, assigning the value of the retx register to val should not be done in release mode, 
when assertions are disabled.  We now consider caching of volatile register reads.

Caching Volatile Reads

Sometimes we do not want to remove a volatile statement but might still be executing it more 
often than necessary.

For instance, we used to have a function  l4bfin_interrupt_level() that read the  IPEND 
memory mapped register in a loop:
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for (int i = 0; i < 16; i++)
{

if (*BFIN_IPEND & (1 << i))  // Memory Mapped Register
{

// Do something.
}

}

The BFIN_IPEND pointer was marked as volatile because it is changed by the processor on 
traps and untraps.  As a result, the compiler ensured that it would be reloaded – at the cost of 4 
cycles – on every iteration of the loop, instead of simply caching it in a register like a normal 
variable.  But we knew that the IPEND would not change inside the loop so by simply moving it 
out, we saved 60 cycles (4 * 16 – 4 = 60, where the – 4 is because we still need to load 
IPEND the first time):

const u32_t ipend = *BFIN_IPEND;  // Memory Mapped Register
for (int i = 0; i < 16; i++)
{

if (ipend & (1 << i))
{

// Do something.
}

}

As it was a very commonly called function, these wasted cycles alone was greater the cost of an 
entire IPC on other architectures!
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13.3 Inlining Functions

In this section, we discuss how carefully inlining some functions, instead of calling them, can 
result in dramatic performance improvements.

Recall that the direct cost of a call to an empty function is at least 18 cycles [p17, Chapter 2.1]. 
Indirect costs include the C calling convention which forces:

1. Marshalling of arguments into the correct registers.

2. Saving or avoidance of registers that may be clobbered by the call function.  With only 
10 registers (excluding the stack and instruction pointers) preserved by the Blackfin gcc 
calling convention, more than 30 registers cannot be relied upon after a function call.

We can avoid these costs through inlining. An additional advantage of inlining is that breaking 
the function call barrier enables more optimisations.  An example is this:

void f (bool input)
{

if (input)
// ... do this ...

else
// ... do that ...

}

void g (void)
{

f (true);
}

void h (void)
{

f (false);
}

f is not inlined so the  if input check is always performed.  However, if we marked  f as 
inline (or static), the check can be optimised out because the compiler knows which way 
the branch is going to go.  There is actually a gcc inefficiency here in that even though the 
inlined if is optimised out in g(), true is still placed into the R0 register before the inlined test 
that is actually no longer compiled in.  Similarly, in h(), false is placed into a register before 
the missing branch.

Of course,  inlining functions has the following disadvantages from both a performance and 
maintenance point of view:

1. If the function is large enough and/or called frequently enough, the size of the kernel 
will increase and furthermore, increases in instruction cache capacity misses (which cost 
around 100 cycles each [p24, Chapter  2.3.2]) may outweigh any savings in function 
calling convention overheads.

2. Changes to inline functions require time-consuming recompilation of all files that call 
the function.  Inline functions in libraries that maintain ABI compatibility cannot change 
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(but this is not a problem with the kernel).

3. Inline functions (which are implemented in .h headers) generally require inclusion of 
other headers to perform work.  Header dependencies may become circular and require 
re-engineering.

So a general rule is to only inline small functions (as a rule of rough, several C statements as 
long as they do not call non-inline functions) that are called frequently on any critical path.

For  instance,  L4's  generic  page  table  walker  (space_t::lookup_mapping())  calls  our 
pgent_t::is_subtree() method up to 4 times for the page table implementation (which is a 2 
level  page  table  that  is  essentially  4  levels  deep  [p65,  Chapter  4.5.4]).   Our  pgent_t 
implementation looks like this:

bool is_subtree (space_t *s, pgsize_e pgsize)
{

return is_tree (s, pgsize);
}

bool is_tree (space_t *s, pgsize_e pgsize)
{

bool ret;

if (pgsize == size_4m)
ret = tree.is_tree;

else
ret = ((pgsize_e) leaf.pgsize < pgsize);

return ret;
}

As is_subtree() (which is called 4 times) calls is_tree() each time, there are potentially 8 
function calls for each call to space_t::lookup_mapping(), which in itself is called on the 
critical CPLB refill path.  The direct cost is 8 * 18 = 144 cycles lost to function call overhead 
alone!  And then there are the indirect costs with argument marshalling and register clobbering. 
As these functions are small, there is no performance benefit in making them full  functions. 
And these are not the only functions being called on the refill path.

We inlined many such commonly called functions.  Note that the following presented cycle 
counts are quite high as they represent the kernel at different, early stages of development. 
Here are examples of the performance improvements we got for free:
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Patch Main Inlined Functions Benchmark Before 
(cycles)

After 
(cycles)

Saving 
(cycles)

d155 * Trapframe accessors
* Current interrupt level
* Whether we came from kernel mode
* Exception type accessor

Trap  in  and 
out of kernel

894.24 651.15 243.09

d163 * Page table entry accessors (above text 
– the “pgent_t” example)

DCPLB refill 4130.30 3269.93 860.37

r34 * TCB accessor
* CPLB flush functions
*  CPLB tactic  function (i.e.  should  I 
flush  multiple  CPLB  entries  of  the 
whole CPLB)

DCPLB refill 2805.98 2767.77 38.21

Table 10: Performance benefits of inlining functions

Notice how we managed to reduce the DCPLB refill cost by close to 900 cycles (out of more 
than 4000) simply by inlining!
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13.4 Avoid Jumps

Pipelined  architectures  begin  executing  future  instructions  to  keep  the  pipeline  full. 
Unfortunately, jumps create problems for this scheme and so trying to avoid jumps will be the 
focus of this section.

The target of a computed jump cannot be determined until the computation has been completed 
so the inability to fetch ahead results in pipeline stalls.  Similarly, the processor cannot know 
whether  conditional  branches  will  be  taken  or  not  so does  not  know which  set  of  future 
instructions to fetch in advance -  we later  discuss  the solution,  branch prediction,  in depth 
[p147, Chapter 13.4.5].

The following are the minimum costs for branches and assume no I-cache misses (note that they 
are all 1 cycle more than implied by the CPU manual [Ana05]):

Operation Cycles

Unconditional Jump 5

User Exception (EXCPT) i.e. system calls 10

Return from Exception (RTX) [*] 5

Conditional Jump Mispredicted 9

Conditional Jump Predicted 4

Conditional Jump Not Taken, Predicted 1

Table 11: Blackfin jump and branch prediction costs

Note that  the conditional jump costs exclude  the cost  of the tests and any register  loading 
required.  Branches are statically predicted by the programmer using the assembler (bp) suffix. 

So our mission is to firstly,  avoid jumps but if that is not possible,  attempt to optimise the 
common case by prediction.  We will discuss 5 optimisations methods related to branches.  We 
later also discuss loop unrolling as another way to avoid jumps [p162, Chapter 14.2.1].

13.4.1 Do not allow special cases

Testing for special cases on a commonly executed path is a waste of cycles.

For example, the L4 boot process fakes an initial context switch in order to initialise some state 
and establish the current TCB pointer.  This initial switch is indicated by a NULL old_tcb 
pointer.  So instead of this test:

if (old_tcb­>get_space () != new_tcb­>get_space ())

we  needed  an  extra  test  (and  potentially,  a  conditional  jump  depending  on  how  it  was 

[*] This figure is derived because we could not measure it directly – EXCPT cost 10 cycles and EXCPT, followed 
by RTX, cost 15 cycles so we concluded that RTX takes 15 ­ 10 = 5 cycles.
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implemented by the compiler):

if (!old_tcb || old_tcb­>get_space () != new_tcb­>get_space ())

There were several other checks and complexities for the initial switch.  But in all other uses of 
this  context  switching  function,  old_tcb is  never  NULL.   This  check is  needlessly  being 
executed in the common case.  The solution was to split  this context function into 2 – one 
function for the initial switch and one function for the common case.

13.4.2 Do not provide optional return arguments

Optional return arguments are also a performance hit because of extra checking.

l4bfin_interrupt_level() was once a commonly called function.  It returned the current 
interrupt level but also, optionally returned whether we had trapped from kernel mode:

int l4bfin_interrupt_level (bool *was_in_kernel_mode = 0)
{

// ... Some calculations ...

if (was_in_kernel_mode)
*was_in_kernel_mode = [expression];

return [expression];
}

Notice that we are checking if  was_in_kernel_mode points to NULL, in case the user of the 
function does not care about the relevant value.   This is a common C++ API idiom but  is 
woefully inefficient.  In the common case, was_in_kernel_mode is non-NULL so the overhead 
of this check is added unnecessarily.  There are 2 solutions:

1. Split the function into two

We can split the function into two to handle each situation – one where the caller cares about 
the value in question and the other, does not even calculate the value in question.  In this way, 
we have pushed the “do we care about this value” check from runtime to compile-time.  This 
technique  has to be used with caution as it  risks increasing I-cache capacity  misses if  the 
function is large enough.

2. Make argument compulsory

If the caller guarantees that  was_in_kernel_mode always points to a valid variable, then we 
save a jump by never needing to check that it points to non-NULL.  However, the callers who 
do not care about the return value will still be forced to have the value written somewhere in 
memory, potentially touching another D-cache line.  But if the function is inlined, there is a 
hope that the compiler will realise that the value is not used and not even bother calculating it.
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13.4.3 Do not generalise

Generalising code is sometimes a bad idea as we show with this example.  As the code for 
flushing the DCPLB was identical to the respective ICPLB code, except for some pointers and 
the way in which the respective protection unit was disabled and enabled, we thought that the 
Extract Method refactoring would be a good way to reduce code duplication:

// Prototype for our back­end containing the actual code for flushing
// [DI]CPLBs.  Notice that that all arguments except “space” are
// different for flushing a DCPLB as opposed to an ICPLB.  This is
// where all the shared code is implemented.
inline
void
l4bfin_cplb_flush_unlocked_entries (space_t *space,
        volatile const u32_t *addr_regs, volatile u32_t *data_regs,
        int num_unlocked_regs,
        void (*disable_func) (void), void (*enable_func) (void));

// Front­end function for flushing the ICPLB.  The DCPLB function
// is identical except the I's change to D's.
inline
void
l4bfin_icplb_flush_unlocked_entries (space_t *space)
{
       l4bfin_cplb_flush_unlocked_entries (space,
               BFIN_ICPLB_ADDR, BFIN_ICPLB_DATA,
               L4BFIN_ICPLB_NUM_UNLOCKED_ENTRIES,
               l4bfin_icplb_disable, l4bfin_icplb_enable);
}

However,  the use  of  function pointers  (disable_func  and  enable_func) for passing  the 
functions for disabling and enabling the respective CPLB (e.g. l4bfin_icplb_disable() and 
l4bfin_icplb_enable()) was sufficiently complex enough to prevent gcc from inlining:

1. these flushing functions (l4bfin_cplb_flush_unlocked_entries() and 
l4bfin_[di]cplb_flush_unlocked_entries())

2. the calls to the disabling/enabling functions passed as function pointers 
(l4bfin_[di]cplb_disable() and l4bfin_[di]cplb_enable())

What's worse is that these are called on the address space switching path with performance is 
critical.

Given how short the functions were, it made better performance sense to simply duplicate the 
code  of  l4bfin_cplb_flush_unlocked_entries() in  implementing  the  two  functions, 
l4bfin_[di]cplb_flush_unlocked_entries().  The  reduced  abstraction  also  benefited 
readability.

We  conclude  that  duplicating  small  sections  of  code  is  simpler  and  more  efficient  than 
attempting to extract the shared code into a generalised function and forcing branches.
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13.4.4 Use sensible data structure invariants

Assumptions about data structures can save us from performing unnecessary tests.

Previously, the code for flushing the CPLBs on an address space could not simply set all the 
CPLB entries to 0 – it needed to check, for every entry, that it was not flushing a locked entry 
(e.g. for a kernel superpage).

We could simply avoid these tests and conditional jumps, for each of the 16 entries of the 2 
CPLBs, by using data structure invariants.  As the locked entries are determined at boot time 
and are never changed,  we simply place all locked entries in the last few entries of each CPLB 
and our loops will  be set to only go up to a predefined constant, containing the number of 
unlocked entries.  No checks nor conditional jumps will need to be made.

13.4.5 Use branch prediction

As we stated previously, the processor does not know which way a conditional branch will be 
taken, in advance.  The approach taken by Blackfin is for the programmer to provide static 
prediction hints.  The assembler is annotated to specify whether the branch is expected to be 
taken.  If this is correct, it permits instruction readahead but if it is incorrect, the pipeline must 
be flushed of the instructions that came from the branch that was not actually taken.

By default, the compiler specifies the branch prediction bit by using well-known results from 
code analysis.  The conditional jump at the end of each loop is always predicted to be taken, as 
it is expected that most loops execute for several iterations.

All programmer specified if's are assumed to not be taken as they are expected to cover special 
cases.  As a result,  simply inverting the check and swapping code between the  if and  else 
clauses is sufficient to affect performance.  The if and else clauses may have been written in a 
particular  order for readability  reasons.   Therefore,  gcc provides  the  __builtin_expect() 
compiler  directive  to allow the programmer to specify  branch prediction.   We should  also 
specify the branch prediction bit  when writing assembler manually.

We must be careful to specify the correct prediction as a mispredicted branch costs 9 cycles. 
Furthermore, the common path should not branch so that the processor can fetch the instructions 
without waiting for the jump address to be computed: a predicted untaken branch costs 1 cycle 
– the same as a basic instruction – but a predicted taken branch costs 5 cycles.
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13.5 Simplicity

For  frequently  called  functions  such  as  get_current_tcb() and  previously, 
l4bfin_interrupt_level(), we should make them as simple as possible so that they execute 
in as a few cycles as possible and so that inlining does not bloat the I-cache footprint.  Recall 
that l4bfin_interrupt_level() used to loop 16 times and perform bit manipulations when it 
could be written to simply read from a cacheable variable [p52, Chapter 4.2.3].

13.6 In Loops, Use Pointer Arithmetic - 
Not Array Indexing

We initially found that it cost at least 15 cycles to copy each message register (a single 32-bit 
word).   We  found  that  this  figure  was  due  to  the  compiler  continually  performing  array 
subscript calculations:

// 404c86:       17 32           P2=R7;
// 404c88:       9d ac           P5=[P3+0x8];
// 404c8a:       91 ac           P1=[P2+0x8];
// 404c8c:       42 44           P2=P0<<2;
// 404c8e:       4a 5a           P1=P2+P1;
// 404c90:       08 6c           P0+=0x1;
// 404c92:       08 e4 10 00     R0=[P1+0x40];
// 404c96:       aa 5a           P2=P2+P5;
// 404c98:       44 0a           CC=P4<=P0(IU);
// 404c9a:       10 e6 10 00     [P2+0x40]=R0;
// 404c9e:       f4 17           IF ! CC JUMP 404c86
for (word_t i = start; i < start + count; i++)

dest­>utcb­>mr [i] = this­>utcb­>mr [i];

Simply re-expressing this indexed array loop into a pointer loop [p161, Chapter 14.2.1] reduced 
the number of cycles per message register down to 8:

const word_t *src_mr = this­>utcb­>mr + start;
const word_t *src_mr_end = src_mr + count;

word_t *dest_mr = dest­>utcb­>mr + start;

// 404c90:       10 90           R0=[P2++];
// 404c92:       08 92           [P1++]=R0;
// 404c94:       42 08           CC=P2==P0;
// 404c96:       fd 17           IF ! CC JUMP 404c90
while (src_mr != src_mr_end)

*dest_mr++ = *src_mr++;

Putting this into perspective, the cost of copying 60 message registers has dropped from 60 * 
15 = 900 to 60 * 8 = 480 cycles – a saving of more than 400 cycles, when a 0MR Inter-AS 
IPC costs 1567.86 cycles [p177, Chapter 17.1].
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13.7 Avoid Software-Based Primitives

Software routines can be very slow.  As our motivating example, when optimising our DCPLB 
refill path, we found that an innocent looking statement for calculating the next index in the 
FIFO replacement policy took more than 250 cycles:

upto = (upto + 1) % num_unlocked_regs;

Instead, we defied our wisdom of avoiding jumps and found the following, less straightforward 
code executed in less than 10 cycles:

upto++;
if (EXPECT_FALSE (upto >= num_unlocked_regs))

upto = 0;

The reason for this anomaly is that the Blackfin does not support divide nor modulus with a 
simple instruction.  Instead, libgcc implements modulus as a function, ___modsi3:

    17c8:       00 e3 70 09     CALL  2aa8 <___umodsi3>;

00002ab4 <___modsi3>:
    2ab4:       67 01           [­­SP] = RETS;
    2ab6:       08 32           P1=R0;
    2ab8:       11 32           P2=R1;
    2aba:       ff e3 d3 ff     CALL  2a60 <___divsi3>;
    2abe:       49 30           R1=P1;
    2ac0:       52 30           R2=P2;
    2ac2:       c2 40           R2*=R0;
    2ac4:       11 52           R0=R1­R2;
    2ac6:       27 01           RETS = [SP++];
    2ac8:       10 00           RTS;
        ...

00002a60 <___divsi3>:
    2a60:       67 01           [­­SP] = RETS;
    2a62:       47 01           [­­SP] = R7;
    2a64:       82 43           R2=­R0;
    2a66:       80 0c           CC=R0<0x0;
    2a68:       02 07           IF CC R0 = R2;
    2a6a:       07 02           R7=CC;
    2a6c:       8a 43           R2=­R1;
    2a6e:       81 0c           CC=R1<0x0;
    2a70:       0a 07           IF CC R1 = R2;
    2a72:       02 02           R2=CC;
    2a74:       d7 59           R7=R7^R2;
    2a76:       00 e3 09 00     CALL  2a88 <___udivsi3>;
    2a7a:       0f 02           CC=R7;
    2a7c:       81 43           R1=­R0;
    2a7e:       01 07           IF CC R0 = R1;
    2a80:       37 90           R7=[SP++];
    2a82:       27 01           RETS = [SP++];
    2a84:       10 00           RTS;
        ...
00002a88 <___udivsi3>:
    2a88:       00 69           P0=0x20;
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    2a8a:       a3 e0 09 00     LSETUP(2a90 <___udivsi3+0x8>,2a9c 
<___udivsi3+0x14>)LC0=P0;
    2a8e:       03 60           R3=0x0(x);
    2a90:       82 c6 08 c0     R0= ROT R0 BY 0x1;
    2a94:       82 c6 0b c6     R3= ROT R3 BY 0x1;
    2a98:       8b 52           R2=R3­R1;
    2a9a:       8b 09           CC=R3<R1(IU);
    2a9c:       1a 06           IF ! CC R3 = R2;
    2a9e:       82 c6 08 c0     R0= ROT R0 BY 0x1;
    2aa2:       c0 43           R0=~R0;
    2aa4:       10 00           RTS;
        ...

To perform modulus, 3 non-inlined functions are called (the CALL's) with additional processing 
on top.  Finally, the deepest function in the call chain, ___udivsi3, performs a loop (LSETUP 
creates a hardware loop) that executes 0x20 = 32 times.

So in summary, avoid modulus when using gcc on the Blackfin and in general, find ways of 
restructuring code to avoid software routines.
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13.8 Conclusion

It is worth optimising code at an extreme level if it is invoked very frequently like the trap and 
IPC paths.  In this chapter we described a range of effective techniques for this purpose:

• Disabling assertions more than doubled performance for free, on an ordinary kernel

• The  C  volatile  keyword  disables  optimisation  so  we  should  minimise,  or  carefully 
structure, its usage

• Inlining small, commonly called functions gave us visible performance differences for free 
by avoiding the function call convention

• Jumps are hazards for the pipeline – we should make the flow of execution are linear as 
possible:

• Special case tests should never been executed in the common path

• Sometimes, it is better to duplicate code to avoid jumps, especially if it is short

• Data structure invariants can remove unnecessary conditional jumps

• Branch prediction can be used in the cases where we cannot avoid jumps

• Commonly-called  functions should  be  simple  so that  they  are  fast  and can be  inlined, 
making them even faster again

• We should avoid array subscripts in loops and use pointer arithmetic instead; GCC is not 
smart enough to convert the former into the latter

• We should avoid software routines at all costs, such as modulus on Blackfin
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14 CPLB Optimisations

This chapter is concerned with implementation issues – specifically, we will run experiments 
for optimising CPLB protection unit related activities.

We firstly compare ways of switching address spaces, without leaking protection.

We then look at the fastest  way to change the protection entries of an entire CPLB.  The 
complication is  that changing data protection must be done with data caching disabled and 
instruction protection changes require instruction caching to be disabled.  So the trade-offs for 
working for the DCPLB do not apply to the ICPLB and vice-versa.
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14.1 Switching Address Spaces

For, an untagged protection unit (i.e. with no address space identifiers), when switching to a 
different address space, one normally flushes all unlocked entries.  However, as soon as we 
return to userspace after the switch, we are guaranteed to experience an ICPLB miss for loading 
the next instruction.  We then almost certainly expect DCPLB misses on data accesses to the 
stack and global variables.

Therefore, we investigate saving and restoring the ICPLB and DCPLB, to and from the address 
space data structure,  on switches.   This would eliminate CPLB misses on context switches 
entirely.

We describe the methods we will  be comparing and then present performance benchmarks, 
followed by an analysis.

14.1.1 Methods

We describe 3 methods for switching address spaces:

Method 1. Flush CPLBs

With this method, we zero out both the instruction and data CPLBs to prevent protection leaking 
to the new address space.  This is the orthodox address switching method for untagged MPUs, 
such as Blackfin's CPLBs.  It is also very easy to implement.

The direct cost is the zeroing.  The high, indirect costs are the compulsory user CPLB misses 
after the switch.

Method 2. Save and restore CPLBs

We can avoid these compulsory CPLB misses, on an address space switch.  Firstly, we save the 
contents of the CPLBs to the kernel data structure for the address space being switched away 
from.  Secondly, we then restore the contents of the CPLB from the kernel data structure for the 
address space being switched to.  Therefore, address spaces maintain their CPLB entries even 
after a switch.

The direct cycle costs (measured later) are greater than with the previous method because we 
are not just zeroing CPLB entries anymore – we are them copying to and from memory.  We are 
using the following amount of extra memory for storing CPLB entries:

2 * 16 * 8 = 256 bytes per address space

where:

2 = number of protection units (DCPLB and ICPLB)
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16 = number of entries per protection unit [*]

8 = entry size (address word and attributes word)

This extra use of memory translates to touching 256 / 32 = 8 D-cache lines for each of the 
old and new address spaces.  Of course, the increased code complexity and size also results in a 
greater I-cache footprint.  However, we expect that all this will be easily outweighed by the 
elimination of compulsory CPLB misses, after an address space switch.

Method 3. Save CPLBs on refills

We wish to avoid the overhead of saving the contents of the CPLBs on each address space 
switch.  If every time we updated a CPLB, we updated its cached value stored in the address 
space data structure,  we could avoid saving any CPLB entries on a switch.   Therefore, we 
would only need to restore the CPLBs for the address space being switched to, on an address 
space switch.

Over  the  previous  method,  we decrease  the  cost  of  a  switch but  increase  the  CPLB refill 
overhead.

14.1.2 Performance results

We ran the pingpong microbenchmark due to lack of available macrobenchmarks [p48, Chapter 
4.1].  We compared the 3 address space switching strategies in terms of DCPLB refill and IPC 
performance.

Address Space Switching 
Strategy

DCPLB Refill 
(cycles)

Intra-AS IPC 
(cycles)

Inter-AS IPC 
(cycles)

1. Flush CPLBs 1,405.5 911.20 12,228.24

2. Save and Restore CPLBs 1,400.8 910.80 1,782.41

3. Save CPLBs on Refills 1,425.26 910.71 1,567.30

Table 12: Address space switching strategies

The DCPLB refill cost is largely unchanged across all 3 strategies and is in the range of noise 
e.g. the differing placement of the kernel code creating a slightly more expensive cache conflict 
refill cost.  We later show that even if we could optimise the DCPLB refill path aggressively, 
Flush CPLBs would still not be fast enough to outperform Save CPLBs on Refills.

The Intra-AS IPC column shows that the baseline overhead of an IPC.  Notice that it is virtually 
the same across all 3 address space switching strategies as it does not involve any address space 
switching.  The small differences (a cycle at most) are noise.  This figure provides the lower 
bound for the Inter-AS IPC cost.  

The difference between the Intra-AS IPC and Inter-AS IPC is composed of the direct costs (e.g. 
flushing the CPLBs)  and indirect costs (e.g. CPLB misses) of the address space switch.

[*] Strictly speaking, we only actually need to store 15 since both the DCPLB and ICPLB lock 1 entry each, for the 
kernel superpage, and they never modify this entry.
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Notice that the Inter-AS IPC cost for a CPLB flush strategy is an order magnitude higher than 
the other 2 methods.

We urge caution in interpreting these results due to the unrealistically, small working set of 
pingpong.

14.1.3 Performance analysis

We now examine the performance figures, we just presented, in detail.

Method 1. Flush CPLBs

We previously noted that there were 3 DCPLB misses per Inter-AS IPC  [p57, Chapter  4.4]. 
Things  have gotten worse  since then because  of the introduction of  ICPLB protection and 
additional misses due to an unlocked KIP.  The cost breakdown is as follows:

Item Approximate Cost (cycles)

Common Intra-IPC and Inter-IPC Cost 911.2

0. Flushing the CPLBs (the only direct cost) 200 * 2 CPLBs = 400 [*]

1.  Kernel-mode  data  miss  on  destination  UTCB  message 
registers

1,405.5

2. Kernel-mode data miss on KIP for setting the UTCB pointer 
to the destination thread [#]

1,405.5

3. Usermode instruction miss on the KIP, when returning from 
the system call wrapper [#]

1,200 [*]

4. Usermode instruction miss on user code 1,200 [*]

5. Usermode data miss on global variables 1,405.5

6.  Usermode  data  protection  violation  on  KIP  for  accessing 
UTCB pointer of current thread (as 2. only gave the data page 
kernel permissions) [#]

1,500 [*]

7. Usermode data miss on UTCB message registers tag [A] 1,405.5

8. Usermode data miss on stack 1,405.5

Total 12,238.7

Table 13: CPLB misses after an address space switch (and flushed CPLBs)

The estimated total of 12,238.7 is very similar to the measured cost of 12,228.24 so we can 
assume our cost breakdown is sound.

[*] We did not get time in the thesis to run systematic benchmarks for these values so the numbers shown are from 
rough benchmarks.

[#] Could be avoided by locking or on each switch, pre-filling KIP page into the DCPLB and ICPLB.
[A]Why this did not show up in the DCPLB misses before the thesis began requires further investigation.
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As one can see, the direct cost of a context switch is only 400 cycles.  However, the indirect 
costs of a flushed CPLBs – CPLB refill misses – is 10,927.5, almost 12 times the inherent cost 
of an IPC!

Perhaps our slow C++ CPLB refill path, which takes 1,405.5 cycles to execute, is to blame? 
Now if we were to avoid all CPLB misses on the KIP, by pre-filling [p89, Chapter 7.2.2] (steps 
2, 3 and 6), and all UTCBs misses, by using a global UTCB array [p93, Chapter 7.3.3] (steps 1 
and 7), we would be left with just 3 misses (steps 4, 5 and 8).  Then, if we could develop a fast 
enough CPLB refill assembler path, this solution may still be feasible as long as:

911.2 + 400 + 100 + 3x < 1,567.30
x = 52.03

where:

911.2 = IPC cost
400 = CPLB flush cost
100 = UTCB scheme trap and untrap cost [p93, Chapter 7.3.3]
3 = minimum number of CPLB misses possible with a flush
x = maximum cost of our optimised CPLB refill path to make flushing feasible
1567.30 = cost of fastest address space switching method identified (Save CPLBs on refills)

The calculation shows that our DCPLB refill  path we have to be optimised down to 52.03 
cycles, which is unattainable as changing the protection on Blackfin alone takes 50 cycles [p93, 
Chapter 7.3.3].

Therefore,  flushing  CPLBs,  on  address  space  switches,  on  protected  kernel  addressing 
architectures with software loaded CPLBs, is infeasible due to the high indirect CPLB refill 
costs, even if we managed to rewrite the CPLB refill path in assembler.  But, this may well be 
feasible  on the  ARM1156T2-S,  which  is  similar  to  the  Blackfin,  except  that  it  has  faster 
hardware-refilled protection units.

Method 2. Save and restore CPLBs

As we can see, this is far faster than flushing the CPLB due to the elimination of CPLB misses. 
The cost of saving and restoring both CPLBs is 1782.41 – 910.80 = 871.61 in total.  Given 
that merely restoring both CPLBs costs 270 + 207 = 477 cycles [p163, Chapter 14.2.2], this 
seems reasonable.

Method 3. Save CPLBs on refills

Both the CPLB refill and IPC paths are critical to performance so increasing one at the expense 
of the other requires justification.  We note that the CPLB refill overhead only increases slightly 
by  1425.26 – 1400.8 = 24.46 cycles,  as  compared to the  previous  method.   But  this 
difference is  quite close to the noise level  and is  therefore an acceptable  penalty since we 
reduce the context switching time from 1782.41 cycles to 1567.30 cycles.  1567.30 – 910.71 
= 656.59 is therefore the time spent switching address space (and restoring CPLBs) and can be 
considered as the architecture lower bound on context switch performance.
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14.1.4 Experimental findings

On address space switches,  flushing  the CPLBs results  in very high  indirect  costs,  due  to 
compulsory CPLB refills.   Saving and restoring CPLBs is faster by an order of magnitude. 
Even if the CPLB refill path was highly optimised, flushing the CPLBs could not be faster than 
saving and restoring CPLBs.

14.1.5 Restoring CPLBs creates problems

The last 2 address space switching methods saved cycles by avoiding CPLB misses by restoring 
saved CPLB entries.  These entries were saved in address space data structures.  What we did 
not mention is that this actually introduces a major problem in an L4 optimisation for page fault 
handling.  In this section, we describe the problem followed by 2 possible solutions.

The problem - page fault optimisation

On a page fault (i.e. the page is not in the page table, let alone the CPLB), L4 sends an IPC to 
the faulting thread's pager.  The pager is expected to use the L4_MapControl() system call to 
map a page into the faulting thread's address space's page table.  It then returns an IPC to the 
faulting thread.

The kernel could now return to userspace and allow the CPLB miss on the same address to 
occur again.  The kernel would then be re-entered, the CPLB refill path re-executed but as this 
time the page is in the page table, the refill would succeed.

However, most kernel ports avoid this unnecessary extra trap (almost 400 cycles on the final 
Blackfin port [p177, Chapter  17.1]), by refilling the CPLB immediately using the new page 
table entry before returning to userspace.  However,  if  we restore CPLB entries on address 
space switches, this refill may have already been performed by another thread in the address 
space, leading to complications.  Consider the following sequence of events where Thread A & 
B are in the same Address Space S and Pager Thread P is in a different address space.

1. Thread A experiences a DCPLB miss on page 0x1234.  The kernel is entered, does not 
find the entry in Address Space S' page table and IPCs Pager Thread P.

2. Pager Thread P uses L4_MapControl() to add page 0x1234 to Address Space S' page 
table.

3. A timer interrupt interrupts the pager.  The scheduler invokes Thread B.

4. Thread B also experiences a DCPLB miss on the same page 0x1234.  The kernel is 
entered, sees the page in the page table and performs the DCPLB refill.  We add page 
0x1234 to the current Address Space S' saved DCPLB entries.

5. Eventually, the scheduler returns control to Pager Thread P.

6. Pager Thread P returns an IPC to Thread A, the original faulting thread.
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7. On the address space switch from Pager Thread P's space to Thread A's Address Space 
S,  we restore  the  saved CPLB entries  from Address Space S.   This  includes  page 
0x1234 due to Step 4.  What would normally happen here is that the kernel completes 
the resolution of the original Thread A pagefault by refilling the CPLB by looking up 
the page table.  However, because of Step 4, page 0x1234 is already in the CPLB.

If page 0x1234 might already be in the CPLB due to this problem, we need to probe the entire 
CPLB to prevent the addition of a duplicate entry into the CPLB.  A probe is slow because it 
involves a loop read the 16 memory-mapped registers in a CPLB (in the order of a hundred 
cycles).   However,  it  is  still  faster  than attempting to bypass the potential  problem by not 
performing the refill  on pagefaults  and returning to usermode straight  away because in the 
common case, a miss will occur on the same address and waste time trapping straight back into 
the kernel.

So we wish to have a more efficient means of determining if a page has already been inserted 
into the CPLB by another thread, in the same address space, than probing.

Solutions

In this section, we present 2 solutions for solving this pagefault optimisation problem.

L4_MapControl() updating saved CPLBs

We could bypass the problem by changing  L4_MapControl() to add the page to an address 
space's saved CPLB entries, so that when we switch back to that address space, that new CPLB 
entry is loaded.  As L4_MapControl() now effectively performs a CPLB insertion, there is no 
need for the kernel to perform the troublesome pagefault optimisation in question (i.e. refilling 
the CPLB after an IPC to the pager, to avoid an unnecessary trap back in).

This  would  work on a  system with a unified  data  and instruction CPLB.   However,  with 
Blackfin's  split  data  and  instruction  CPLBs,  it  is  unclear  which  CPLB  L4_MapControl() 
should insert into, for pages with both data and instruction permissions.

Inserting into both CPLBs may be suboptimal if, for example, the page is currently only being 
used for instructions and not in a data context until a long while later, as it would replace a 
DCPLB entry that is likely to be currently in use.  Therefore, the L4_MapControl() API could 
be modified to indicate whether the the page is being inserted for data, instructions or both.

A further problem is that if a pager were to map a large number of pages into an address space 
using one or more calls to  L4_MapControl() - more than can fit into the 16 entry CPLBs – 
time would be wasted inserting certain pages into the CPLB as they would be evicted by others 
before they have even been used.

Refill code marking page as “in CPLB”

Let us consider a different solution where the kernel still attempts the L4 pagefault optimisation 
of refilling after the IPC to the pager returns.
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Every time we insert a page into a CPLB, we modify the inserted page's page table entry (which 
we have a pointer to, after a page table lookup) to indicate that the page is already in the ICPLB 
and/or DCPLB, by storing 2 bits.

Now when the kernel attempts the refill after the IPC to the pager, it can determine whether the 
page is already in a CPLB simply by analysing the page table entry,  which it  would have 
anyway from the page table lookup.

Of course, if one's page table entries are already full, it would be quite wasteful to increase the 
size of the entries  just  to accommodate these 2 bits.   Furthermore,  on architectures whose 
hardware mandates a particular page table format, this would also require extra memory for a 
shadow page  table.   Remember that  our ultimate  goal  was to avoid CPLB probing on the 
pagefault path.  However, the pagefault path is not executed commonly enough to justify extra 
memory usage.  

As a final implementation detail, if we wish to invalidate a CPLB, we would like to be able to 
find its page table entry, without a lookup, to clear our “in CPLB” bits.  To allow this, we 
simplify  store  page  table  entry  pointers  when  we  set  save  CPLBs  in  address  space  data 
structures.

Conclusions on CPLB restoration problems

After a user pager returns control to the kernel to resolve a pagefault, the kernel normally refills 
the CPLB by looking up the new page table entry.  However, with an unfortunate sequence of 
events, restoring CPLBs on address space switches may lead to the refill being unexpectedly 
performed by another thread in the address space.

We could probe the CPLB to check for this situation but this slow.  We could simply not do the 
refill and return to usermode.  The processor will cause an immediate trap back into the kernel, 
in the common case where the refill  still  needs to be performed.  This trap is unnecessary 
overhead.

Another approach is to essentially fill the CPLBs when a page is mapped into the page table and 
remove the need for a refill.  Without API changes, this does not work well for split instruction 
and data protection units.

Yet another approach is to store bits, in the page table entries, indicating whether a particular 
page is in a particular CPLB.  There is a concern that this might waste a lot of memory on 
enlarged page table entries or the need for a shadow page table.
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14.2 Restoring CPLBs Without Caching

Having decided, in the previous section, to restore CPLBs from memory instead of flushing the 
CPLBs on an address space switch,  we compare the performance of  different  methods for 
restoring the contents of the Data CPLB and Instruction CPLB protection units.  Recall that 
each unit contains 16 entries but only 15 of them are unlocked and need to be restored.

In order to add a page to a CPLB, or modify an existing page's protection, one must disable the 
relevant  protection unit  [p29,  Chapter  2.3.3].   Therefore,  disabling  the data protection unit 
disables data caching and similarly, disabling instruction protection disables instruction caching.

This section will show that the DCPLB must be manipulated in a different way to the ICPLB 
for optimal performance.  We expect that the DCPLB restore code will  be sensitive to data 
accesses as data cache is disabled during DCPLB modifications.  On the other hand, we expect 
that the ICPLB code will be highly sensitive to code size, as instruction caching is disabled 
during ICPLB modifications.  

We describe the methods we will  be comparing and then present performance benchmarks, 
followed by an analysis.

14.2.1 Methods

For each of the 4 methods, we provide the C++, assembler and machine code, where available 
for restoring the instruction CPLBs.  The data ICPLB code is identical  except for different 
pointer targets so is not provided.

Method 1. Indexed Array Loop

This an ordinary C++ loop which restores each of the 15 CPLB protection entries using array 
subscripts:

l4bfin_icplb_disable ();
{

        // 40a0ac:       4b e1 e0 ff     P3.H=ffe0;
        // 40a0b0:       22 e1 09 f0     R2=­4087 (X);
        // 40a0b4:       05 68           P5=0x0;
        // 40a0b6:       0b e1 00 11     P3.L=1100;
        // 40a0ba:       4a 4f           R2<<=0x9;

        // Loop body
        // 40a0bc:       21 32           P4=R1;
        // 40a0be:       6a 44           P2=P5<<2;
        // 40a0c0:       1a 5a           P0=P2+P3; [*]

        // 40a0c2:       0d 6c           P5+=0x1;
        // 40a0c4:       62 5a           P1=P2+P4; [*]

[*] pointer calculation based on offset from the start of the array in bytes (P2)
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        // 40a0c6:       08 e4 26 04     R0=[P1+0x1098];
        // 40a0ca:       00 93           [P0]=R0;
        // 40a0cc:       02 32           P0=R2;
        // 40a0ce:       08 e4 36 04     R0=[P1+0x10d8];
        // 40a0d2:       82 5a           P2=P2+P0; [*]

        // 40a0d4:       10 93           [P2]=R0;
        // 40a0d6:       72 68           P2=0xe;
        // 40a0d8:       55 09           CC=P5<=P2;
        // 40a0da:       f1 1f           IF CC JUMP 40a0bc;
        for (int i = 0; i < L4BFIN_ICPLB_NUM_UNLOCKED_ENTRIES; i++)
        {
                BFIN_ICPLB_ADDR [i] = space­>saved_icplb_addr [i];
                BFIN_ICPLB_DATA [i] = space­>saved_icplb_data [i];
        }
}
l4bfin_icplb_enable ();

Notice  from the  generated  assembler  how gcc  is  continually  recalculating  the  source  and 
destination pointers at the lines marked [*] (i.e. continually adding i).

Method 2. Pointer Loop

As gcc could not optimise out the array arithmetic in the previous method, we rewrite the code 
to explicitly  avoid the  continual  array subscript  calculations and also,  move the loop setup 
outside of the region where the ICPLB (and instruction caching) is disabled:

register volatile u32_t *addr_mmr = BFIN_ICPLB_ADDR;
register volatile u32_t *addr_mmr_end = BFIN_ICPLB_ADDR +
        L4BFIN_ICPLB_NUM_UNLOCKED_ENTRIES;
register volatile u32_t *data_mmr = BFIN_ICPLB_DATA;

register u32_t *addr_src = space­>saved_icplb_addr;
register u32_t *data_src = space­>saved_icplb_data;

l4bfin_icplb_disable ();
{
        // 40a0cc:       28 90           R0=[P5++];
        // 40a0ce:       4a e1 e0 ff     P2.H=ffe0;
        // 40a0d2:       08 92           [P1++]=R0;
        // 40a0d4:       0a e1 3c 11     P2.L=113c;
        // 40a0d8:       00 90           R0=[P0++];
        // 40a0da:       51 08           CC=P1==P2;
        // 40a0dc:       20 92           [P4++]=R0;
        // 40a0de:       f7 17           IF ! CC JUMP 40a0cc;
        while (addr_mmr != addr_mmr_end)
        {
                *addr_mmr++ = *addr_src++;
                *data_mmr++ = *data_src++;
        }
}
l4bfin_icplb_enable ();

Note that gcc is ignoring the  register hint for the  addr_mmr_end variable so  P2 is being 
continually reloaded.
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Method 3: Unrolled Pointer Loop

Loop unrolling avoids loop overhead – the conditional branch on each iteration.  However, the 
size of the code is expanded proportional to the number of iterations – in this case, 15:

register volatile u32_t *addr_mmr = BFIN_ICPLB_ADDR;
register volatile u32_t *data_mmr = BFIN_ICPLB_DATA;

register u32_t *addr_src = space­>saved_icplb_addr;
register u32_t *data_src = space­>saved_icplb_data;

l4bfin_icplb_disable ();
{
        // [Sequence repeated 15 times using macros not shown]
        // 40a15e:       08 90           R0=[P1++];
        // 40a160:       24 6c           P4+=0x4;
        // 40a162:       20 93           [P4]=R0;
        // 40a164:       10 90           R0=[P2++];
        // 40a166:       25 6c           P5+=0x4;
        // 40a168:       28 93           [P5]=R0;
        *addr_mmr++ = *addr_src++;
        *data_mmr++ = *data_src++;
}
l4bfin_icplb_enable ();

Method 4: Assembler Unrolled Pointer Loop

This code is the same as the Unrolled Pointer Loop except that the repeated section is hand-
optimised and contain fewer instructions:

r0 = [p2++];
r1 = [p3++];
        
[p0++] = r0;
[p1++] = r1;

14.2.2 Performance results

The following table shows the speeds of the 4 different methods for restoring 15 ICPLB entries, 
with instruction caching disabled, and 15 DCPLB entries, with data caching disabled:
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Method Size of code executed 
with respective 

protection & caching 
disabled (bytes)

Per CPLB 
entry

Total

Restore with 
instr. protection 

& caching 
disabled (cycles)

Restore with data 
protection and 

caching disabled 
(cycles)

1. Indexed Array Loop 32 48 [*] 414 414

2. Pointer Loop 20 20 270 270

3. Unrolled Pointer Loop 12 180 [#] 920 207

4. ASM Unrolled Pointer 
Loop

8 120 [#] 542 214

Table 14: Methods for restoring CPLB entries

The Total figure under Size of code executed with respective protection & caching disabled is 
the size of the machine code placed after the point where the protection unit (and caching) was 
disabled, up to just before where that protection unit is re-enabled.  Per CPLB entry is always 
smaller than or equal to Total in size as it contains only part of Total's code – the part that is 
executed for each CPLB entry.

For instance, for the Indexed Array Loop, the loop setup code of 16 bytes executed while the 
protection was disabled.   For  each of  the  15  CPLB entries  copied,  32 bytes  of  code was 
executed – this is called Per CPLB entry.  The Total figure is therefore 16 + 32 = 48, not 16 
+ 15 * 32 = 496 as this figure measures the size of the code, not the total number of cycles. 
Notice that the Pointer Loop appears to have no setup cost (20 – 20 = 0) as we managed to 
execute this while protection was still enabled so it does not appear in our figures.  This is a 
feature – not a bug – because we are trying to determine the effect of code size with disabled 
instruction or data caching.

Restore with instr. protection & caching disabled (cycles) is the number of cycles that each of 
the 4 methods took to restore 15 ICPLB entries, while instruction caching was off.  Restore with 
data protection & caching disabled (cycles) is the number of cycles that each of the 4 methods 
took to restore 15 DCPLB entries.  These values include all overhead, including loop setup time 
regardless of whether that was done before or after caching was disabled.   Note that these 
values are inclusive of disabling and re-enabling the relevant protection (and by implication, 
caching)  to  avoid  executing  instrumentation  code  when  caching  was  disabled.   Currently 
disabling or enabling either takes approximately 18 cycles:

p0.h = DMEM_CONTROL or IMEM_CONTROL;            // 1 cycle
p0.l = DMEM_CONTROL or IMEM_CONTROL;            // 1 cycle
r0.h = mask for disabling/enabling protection;  // 1 cycle
r0.l = mask for disabling/enabling protection;  // 1 cycle
[p0] = r0;                         // 4 cycles (MMR access)
ssync;                             // min. 10 cycles (pipeline flush)

[*] The loop setup code (48 – 32 = 16 bytes), in the other 3 methods, managed to be executed when 
protection was still enabled.

[#] 15 CPLB entries are restored (the remaining one is locked and not restored) and the loop has been unrolled.
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14.2.3 Performance analysis

We now examine the performance figures, we just presented, in detail.

Pointer Loop compared to Indexed Array Loop

With  either  kind  of  caching  disabled,  pointer  arithmetic  (Pointer  Loop)  beats  array 
dereferencing  (Indexed  Array  Loop)  convincingly.   There  is  no  surprise  here  as  pointer 
arithmetic results in not just smaller code size but also fewer cycles.  GCC should be able to 
perform this conversion automatically as an optimisation but fails to if there is more than 1 array 
in a loop (there are 4 in our case).

Unrolled Pointer Loop

With instruction caching disabled, the main objective is to reduce the size of the code as each 
instruction fetch becomes extremely expensive.  As a result, at 920 cycles compared to 270 for 
the Pointer Loop, unrolling the loop, with instruction caching off, backfires spectacularly – the 
cost of loading instructions becomes higher than the loop overhead saved.

With data caching disabled, but instruction caching still enabled, the size of the code is not of a 
concern, if we assume the loop unrolling does not result in code so large that the number of 
instruction cache  misses  become unpalatable.   The  objective  is  to instead  avoid  uncached 
accesses to main memory i.e. the DCPLB entries saved in the address space data structure.  But 
we cannot avoid these data accesses as we must restore the 15 DCPLB entries.  The number of 
data accesses is constant for all approaches, assuming all local and loop variables are maintained 
in registers (which they are).  Therefore, we can see from the 207 cycles, instead of 270, that 
unrolled loops make sense when data caching is disabled.

One  might  argue  that  this  is  an  unfair  comparison  because  the  Pointer  Loop's  generated 
assembler involved unnecessary reloads of the P2 register, which do not occur here.  However, 
it is not of a concern because:

1. Each reload costs 2 cycles.  With 15 iterations, the total cost is  15 * 2 = 30 cycles, 
assuming no caching effects.  Even if we subtracted 30 cycles from the Pointer Loop's 
measurements, the rank order of the techniques remains unchanged.

2. With instruction caching disabled, the extra 8 bytes of code for each  P2 reload in the 
Pointer Loop, would actually penalise the Pointer Loop.  Yet, we find that the Unrolled 
Loop is still more inefficient.

Assembler Unrolled Pointer Loop

With instruction caching disabled, this performed better than the Unrolled Pointer Loop due to 
more compact code (120 bytes instead of 180 bytes).

It is unclear why the Assembler Unrolled Loop performed slightly worse than the Unrolled 
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Loop when data caching was disabled, when it executes fewer instructions and the machine 
code is more compact.

14.2.4 Experimental findings

We tried to determine the fastest way to restore the DCPLB registers, where data caching must 
be disabled, and the fastest way to restore the ICPLB registers, where instruction caching must 
be disabled.

Instruction protection is highly sensitive to increased code size so loop unrolling is a bad idea. 
With data protection, loop unrolling improves performance by discarding loop overhead.

GCC is not always smart enough to convert indexed array loops into pointer loops resulting in 
unnecessary array subscript overhead.  Always write pointer loops manually for performance.
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14.3 Conclusion

On address space switches, saving and restoring CPLBs is faster than flushing the CPLBs, as it 
avoids  compulsory  CPLB  misses.   Unfortunately,  this  adds  some  pagefault  optimisation 
complications.

Blackfin protection changes require disabling the respective protection unit and therefore, the 
respective type of caching.  The fastest way to restore the DCPLB is to use loop unrolling.  But 
the fastest way to restore the ICPLB is a simple loop.
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15 Kernel 
Development 

Strategies

This chapter  describes  some general,  high-level  techniques  for developing  reliable  kernels. 
They are important, yet peripheral, observations that we made during the development of the 
kernel port.

We firstly discuss why kernels should be developed on real hardware.  Secondly, we describe 
how  to  debug  a  kernel  without  any  printing.   Finally,  we  introduce  the  debug-driven 
development methodology.
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15.1 Real Hardware

A popular school of thought is that one should primarily develop systems code in simulators, 
emulators or virtualisers due to stronger debugging capabilities [KDC05].

However, for CPUs which enforces memory protection even in kernel mode (which catches 
kernel bugs), there are overwhelming reasons to instead develop primarily on real hardware:

1. The virtual environment may be buggy.  Hardware is buggy enough already.  Software 
can only be expected to be worse.

2. The virtual  CPU may act  differently  to the real  CPU and especially  on non-cycle-
accurate simulators, differences in cache and pipeline behaviour may result in bugs that 
only appear on real hardware.  Developing on a virtual – rather than a real – platform 
would be like reading the wrong book.

3. Even if the virtual CPU simulation is completely accurate (cycle accurate, even), it is 
unlikely that the functionality and interfaces of external devices, such as 3D graphics 
cards, are cloned identically by the virtual environment.

4. It encourages the development of stronger in-kernel KDB debugging capabilities, which 
after all, is all one has when a bug only manifests itself in hardware.  Furthermore, bugs 
in production systems running on real hardware can be debugged  when they occur – 
gone is the problem of needing – and being unable – to reproduce the bug.

This is  not to say that  we should  avoid using  simulators completely  as they  can assist  in 
debugging  – instead,  we  are  suggesting  that  one should  avoid  using  them as  the  primary 
development platform.

However, for CPUs without memory protection, such as the ARM7TDMI, the importance of a 
simulator is increased as it is the only way to trace kernel memory accesses to find memory 
bugs.

15.2 Debugging Without Visible Output

It  possible,  without  a  simulator,  to debug  delicate  code where  even debug  printing  is  not 
allowed – an arbitrary test can be performed by:

1. Infinite looping if the condition is true

2. Rebooting the CPU if the condition is false

With this binary and lightweight debugging trick, almost any bug can be tracked down without 
any heavy-weight printing, that might perturb timing. 
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15.3 Debug-Driven Development

The Blackfin port  was  only  ever  executed  on real  hardware,  we needed strong debugging 
support.  As a result, we used a debug-driven development methodology, in which the guiding 
principle is that code always has bugs and/or will be continually changed, so needs to be readily 
debuggable:

1. The KDB can perform both an in-kernel backtrace and a userland backtrace!

2. Every code path has detailed debug printing that can be turned on at compile time.  As 
there  is  only  one  serial  port,  user  debug  is  distinguished  from  kernel  debug  by 
highlighting the former in green.

3. Assembler is avoided as much as possible on the slowpath as it is difficult to debug. 
Even the code, that invokes the functions that implement system calls, is written in C++. 
All other L4 ports resort to assembler.

4. There are plenty of assertions.

We believe that this methodology is a far more reliable way to write software, in general – not 
just kernels.
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15.4 Conclusion

If  with  memory protection is  available,  we  should  develop  primarily  on real  hardware  as 
simulated  development  environments  almost  certainly  cannot  be  as  faithful  as  real  ones. 
Simulators should only be used for elusive bugs or if the processor does not support memory 
protection.

A trick for determining the result of a test without being able to print, is to make one branch to 
spin forever and the other branch reboot.

The debug-driven development methodology assumes that we will  always need to debug so 
code is written to make this easy.  It is believed to be a way of writing very reliable kernels and 
software in general.
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16 Flaws with L4

In this chapter, we discuss problems with L4 design and the L4-embedded implementation.  We 
analyse the fixed size kernel memory heap, followed by ways to exhaust kernel memory.
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16.1 Fixed Kernel Memory Heap

In a traditional operating system, such as Linux, all memory pages can be used by userspace or 
the kernel.  However in L4, the kmem memory heap is a reserved area in kernel space, whose 
size is fixed at compile time.

If little kernel memory is in use, the rest cannot be used by userspace.  Worse still, if more 
kernel memory is required than is available in the kmem heap, the kernel will start reporting out 
of memory errors and cannot grab unused pages from userspace.  The Sel4 kernel aims to solve 
this problem using userspace management of kernel memory [EDE06].

Forced to specify a fixed heap size, we unfortunately cannot determine a “correct” size for the 
kmem heap.   We would  like  to  claim something  like  “a  4MB kmem heap supports  4 * 
1048576 / 512 = 8192 threads” (where 512 bytes is the approximate size of a TCB under the 
single stack kernel).  However, we cannot even guarantee support for even a single thread as all 
kernel memory might be used by that single thread through page table entries.
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16.2 Ways to Exhaust Kernel Memory

The section considers various ways that user tasks may attempt to consume all kernel memory 
and especially take advantage of the fact that the kmem heap is of a fixed size, as discussed in 
the previous section.

16.2.1 Creating threads and address spaces

There is a potential for denial-of-service attacks by creating large numbers of threads or address 
spaces, to consume kernel memory.  However, L4's design avoids this by making the relevant 
system calls,  L4_ThreadControl() and  L4_SpaceControl() privileged and therefore, only 
available to the root task.

16.2.2 Touching memory

Similarly, should a userspace thread touch every page in the virtual address space, it does not 
matter since it is a privileged pager that ultimately makes the decision as to whether to create a 
mapping and consume kernel memory.

So, in both of these cases,  the root task asks as a resource manager that accepts or denies 
requests to prevent kernel memory from being exhausted.  But this is suboptimal as again, the 
root task must be trusted [p77, Chapter  5.2] so there should be an ability to delegate thread 
creation and paging privileges onto other threads – this would also avoid unnecessary IPCs (and 
expensive address space switches) to the root task.  Resource containment would then have to 
be added to L4.

16.2.3 TCB allocation

When a thread is deleted, its TCB's Thread ID field is merely set to 0 to mark it as invalid. 
However, the physical backing for it is never deallocated.

If threads are continually being created and deleted and thread IDs recycled, this saves a lot of 
memory allocation overhead.  However, if thread IDs are not reused, kernel memory is simply 
lost.  Nevertheless as only the privileged root task can create threads, one can prevent kernel 
memory from being exhausted in this way.

16.2.4 Dummy TCB mappings

In kernels with virtual TCB arrays, the dummy TCB mapping created on accesses to invalid 
threads, opens up another denial-of-service opportunity: an unprivileged thread can make L4 
run out of, or at least waste, kernel memory by IPC'ing to all invalid threads in the thread ID 
space.  As each IPC incurs a TCB validity test, additional dummy TCB mappings are created 
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and memory is wasted through page table entries.

At first,  we would imagine that redirectors, which intercept IPCs and send them to another 
thread for checking, could be used to audit all IPCs.  However, this is infeasible as if all IPC 
calls are to be monitored, performance suffers with a doubling of IPC calls.  Also, redirectors 
must not use the same TCB validity test (as that would create the dummy TCB mappings we are 
trying to avoid) so must somehow maintain a list of valid threads.  But worst of all, this does not 
work  because  the  current  L4  implementation  performs  the  thread  validity  checking  (and 
therefore, adds the dummy TCB mapping)  before  passing on the message to be checked to a 
redirector.
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16.3 Conclusions

Like almost all software, L4 has flaws – some of which we analysed:

The fixed size of the kernel heap means that it is too small at times and too big at others.  With 
this design, it is unclear what the size of the heap should be.

The user may attempt to waste kernel memory through creating large numbers of threads or 
address spaces, touching pages and never recycling thread IDs.  However, the trusted root task 
is involved in all these so can thwart these attempts.

However,  an  attack  that  IPCs  all  invalid  threads  in  the  thread  ID space  will  succeed  by 
consuming kernel memory with page table mappings for the dummy TCB.
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17 Global Evaluation

In previous chapters, we evaluated qualitatively and quantitatively aspects of the design and 
implementation.  However, we have not measured the conglomerate of all this work.

We again  use  the  pingpong microbenchmark  [p48,  Chapter  4.1],  with  the  addition  of  the 
DCPLB  refill  test  for  measuring  the  cost  of  a  data  CPLB  miss  and  refill.   Recall  that 
microbenchmarks are dangerous for making sweeping claims about performance but we do not 
have a choice here due to the lack of serious macrobenchmarks for our platform.  In any case, at 
least we know that we are presenting the best case performance figures.

We use these figures to compare the performance of the initial  and final kernel ports, then 
examine the performance of the final port in detail.
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17.1 Performance Improvement

In this section, we compare the speed of the initial kernel to the final kernel to validate the 
effectiveness of the design and implementation techniques we discussed throughout the thesis.

The following table compares the speed of initial kernel to the final kernel.  All figures are with 
caching on.

Operation Initial Kernel 
(cycles)

Final Kernel 
(cycles)

Improvement 
(times)

Kernel entry and exit 4,049.2 252.16 16.1

System call [*] 7,775.3 394.35 19.7

DCPLB refill - [#] 1,425.31 - [#]

Intra-AS IPC

0 MRs 17,566.3 910.5 19.3

4 MRs 17,218.7 967.10 17.8

8 MRs 17,272.2 1,003.20 17.2

60 MRs 17,890.7 1,471.71 12.2

Inter-AS IPC

0 MRs 39,203.1 1,567.86 25.0

4 MRs 38,907.2 1,625.4 23.9

8 MRs 38,962.8 1,660.45 23.5

60 MRs 39,582.0 2,163.77 18.3

Table 15: L4/Blackfin benchmarks (initial and final kernels)

All measurements indicate an order of magnitude improvement in performance.  The change in 
Kernel  entry and exit,  System call  and Intra-AS IPC times can be attributed to the micro-
optimisations we performed [p137, Chapter 13].  The Inter-AS IPC improvement is even greater 
than that enjoyed by Intra-AS IPC as we also eliminated the majority of indirect address space 
switching  costs  –  we  no  longer  do  a  simple  flush  of  the  CPLBs,  which  had  resulted  in 
mandatory CPLB refills on address space switches [p153, Chapter 14.1].

Notice how unstable the IPC measurements for the initial kernel are (the 0MRs case is slower 
than the 4MRs case, which theoretically does more work) due to cache effects of an overly large 
cache footprint.

As the number of message registers to be transferred increases, the performance differential 
between the final and initial kernels, for the Intra-AS IPC and Inter-AS IPC, decreases.  This is 
because we did not manage to improve the message register copying time to the extent that we 

[*] The system call was the Blackfin-specific L4_KDB_SystemClock() which merely looks up a 64-bit value 
from the scheduler class.

[#] Figure unavailable due to time constraints.
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managed to speed up the trap code and general IPC logic, using micro-optimisations.

In conclusion, the work we did in this thesis sped the pingpong microbenchmark by more than 
12 times, by all measures.
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17.2 Final Kernel Port Performance

We  now  discuss  each  component  of  the  final  kernel's  performance,  from  the  previous 
pingpong benchmark results [p177].

The Inter-AS IPC performance, even in the case where 60 words are transferred, outperforms 
ucLinux's best case context switch time of approximately 2,485 cycles [Hen06].  Although no 
fastpath has yet been written (so we are measuring a predominately C++ kernel), all figures are 
still higher than would be expected from L4 slowpaths.  Therefore, this section will look at each 
component in detail.

But firstly, for illustrative purposes, the following graph compares each component of kernel 
performance:

The time taken by the IPC operations seems to increase linearly with the number of message 
registers, so this gives us extra confidence that the numbers are correct.

Now, let us look at each component in detail:

17.2.1 Kernel entry and exit

We appear to have a very high cost of 252.16 cycles for an assembler path, especially when we 
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are not actually preserving the whole trapframe.  However, this is not particularly surprising 
since basic programming constructs on the Blackfin appear to be very slow.  For instance, as we 
found previously, a call to an empty function takes at least 18 cycles [p17, Chapter 2.1].  Of 
course, we are not suggesting that we should use functions in assembler paths, but rather that 
this illustrates how even a no-operation programming construct on the Blackfin is expensive, so 
that one can imagine the cost of constructs that actually perform computation.

Furthermore, our kernel entry and exit code is shared between all paths – system calls, MPU 
refills,  MPU  page  faults  and  interrupts.   As  a  result,  it  is  too  general  and  extremely 
unoptimised.   For instance,  in order  to untrap from an exception,  we spend  26 cycles  to 
determine that we came from an exception and then jump to the appropriate code path.

// Everything, except where noted, execute in 1 cycle
// (assuming no cache misses so the reality is likely far worse).
p0.h = BFIN_IPEND_HIGH;
p0.l = BFIN_IPEND_LOW;
r0 = [p0];  // [4 cycle MMR read]

// In “emulation” mode?
r2 = 1;  // 1 << 0
r1 = r0 & r2;
cc = r1 == 0;
if ! cc jump untrap_rte_label;

// Handling NMI?
r2 = 4;  // 1 << 2
r1 = r0 & r2;
cc = r1 == 0;
if ! cc jump untrap_rtn_label;

// Handling an exception?
r2 = 8;  // 1 << 3
r1 = r0 & r2;
cc = r1 == 0;
if ! cc jump untrap_rtx_label;  // [9 cycles mispredicted branch]

However, if we had avoided using this lazy general path and coded a specialised untrap into the 
exception-handling path, none of these 26 cycles would have been needed.  The rest of the trap 
code is just as inefficient, explaining the 252.16 cycle cost.  When writing the fastpath, this kind 
of overhead should be avoided.

17.2.2 System call

System calls take approximately an extra 142.19 cycles, on top of a kernel entry and exit, for 
two reasons.  Firstly, system calls, which are always implemented as exceptions, must defer 
their work to an interrupt handler, to handle the case of a nested MPU miss exception [p88, 
Chapter 7.2.1].  Secondly, we enter the C++ path for determining which system call to invoke. 
Recall that basic C++ constructs on the Blackfin are expensive – a call to an empty function 
takes at least 18 cycles [p17, Chapter  2.1].  Also, the calling convention results in constant 
saving and restoring of registers and for instance, the constant recalculation of the current TCB 
pointer in different functions.  A fastpath would avoid this C++ overhead.
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17.2.3 DCPLB Refill

The fully C++ DCPLB refill handler enters the kernel through the system call path but takes an 
extra 1,030.96 cycles to execute.  Here is the cost breakdown:

Component Approximate cycle count

System call overhead 400

Full trapframe preservation Approx. 45 words * 2 = 90 cycles

Two level page table walk 400

Additional C++ overhead and DCPLB manipulation 400

Benchmark limitation 100

Total: 1,390

Table 16: DCPLB refill cost breakdown

Unlike a system call, we must preserve the full trapframe of forty-five 32-bit words.  Secondly, 
we must walk a somewhat complicated two level page table structure that is actually 4 levels 
deep to handle the 4 page sizes and the code that currently does this is too general as it actually 
walks an n-level page table [p65, Chapter 4.5.4]. Thirdly, there is the additional C++ overhead 
for the whole refill  path and adding the entry to the DCPLB.  Again, recall that basic C++ 
constructs on the Blackfin are expensive – a call to an empty function takes at least 18 cycles 
[p17, Chapter 2.1] - so these hundred cycle figures are reasonable.

Lastly,  100 cycles  are inadvertently  lost  to extra  DCPLB refills  caused  by the eviction of 
pingpong DCPLB pages  due  to  a  limitation  in  the  benchmark.   Such an eviction occurs 
approximately every 15 tests and 1425.31 / 15 = 95.0 is approximately the 100 cycles we 
list above.

An assembler fastpath would certainly perform far better by not saving registers it does not need 
to use, using a non-general page table walk and avoiding C++ overhead.

17.2.4 Intra-AS IPC

The 910.5 cycle cost for Intra-AS IPC is composed of the following:

Component Approximate cycle count

System call overhead 400

sys_ipc() C++ IPC implementation 500

Total: 900

Table 17: Intra-AS IPC cost breakdown

It is clear that the C++ overhead of sys_ipc() – which we did not write – is unbearable.  After 
all, all Intra-AS IPC needs to do is context switch to a thread in the  same address space and 
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copy message  registers.   The latter  does not even have to happen if  message  registers  are 
register-backed and the message is small enough.

We can expect that an assembler fastpath that saves few registers, avoids general paths and 
avoids C++ overhead, would perform almost an order of magnitude better.

17.2.5 Inter-AS IPC

The Inter-AS IPC cost is composed of the cost of Intra-AS IPC (approximately 900 cycles) and 
the Blackfin architecture's lower bound cost for an address space switch – the cost of restoring 
CPLBs (approximately 600 cycles) [p156, Chapter 14.1.3].

Compared  to  other  operating  systems,  claiming  that  this  is  our  context  switching  time  is 
“cheating” slightly because L4's IPC calls do not preserve the full  trapframe on the switch. 
However, even if we add the overhead of saving and restoring up to forty-five 32-bit words – 90 
cycles – to our 0MR Inter-AS IPC cost of 1,567.86 cycles, we still outperform Linux's lower 
bound  context  switching  time  of  approximately  2,485  cycles  [Hen06].   And  this  is  the 
performance of our slowpath – the fastpath, could be expected to be more than several hundred 
cycles faster by avoiding C++ overhead.

17.2.6 IPC message register copying costs

Notice from the graph [p179,   Illustration 1:  Final L4/Blackfin kernel's performance], that on 
average, every 32-bit message register copied costs an additional 10 cycles.  This is fairly close 
to the theoretical minimum of 8 cycles for an iteration of the message-register-copying loop:

loop_top:
r0 = [p2++];    // Read source message register [1 cycle]
[p1++] = r0;    // Write destination message register [1 cycle]
cc = p2 == p0;  // Test for end of loop [1 cycle]
if ! cc jump loop_top (bp);  // Next iteration [5 cycles]

The missing 2 cycles  probably come from a pipeline  dependency between the consecutive 
accesses to R0 but this requires further investigation.
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17.3 Conclusion

The effectiveness of the design and implementation techniques we discussed throughout the 
thesis are exemplified by an order of magnitude performance difference between the initial and 
final kernels.

We only have a slowpath yet our context switches already perform far better than ucLinux. 
However compared to other L4 ports, performance is still disappointing.

We believe that fastpath DCPLB refill and IPC paths, written in assembler, are the answer.  We 
have already shown that C++ is very inefficient.  Hand-crafted assembler would also avoid the 
overhead of the C++ calling convention – the constant saving and restoring of registers and the 
recalculation of items such as the current  TCB.  Furthermore,  we would not need to save 
registers we do not use and we can avoid slow generalised code.  Such a fastpath is expected to 
be an order of magnitude faster for all benchmarked components except Inter-AS IPC, which 
suffers from an architecture lower-bound address space switching cost of approximately 600 
cycles.
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18 Conclusion

In this final chapter, we compare our achievements to the goals we stated in the introductory 
chapter.  We also discuss future directions.

184



CHAPTER 18 CONCLUSION

18.1 Achievements

We have discussed the design issues in supporting L4 on MPU-based processors.  Such issues 
include no virtual memory, protected kernel addressing and high-performance address space 
switching with untagged MPUs.  Our findings are not Blackfin-specific and generalise to other 
chips, such as the ARM1156T2-S and even the MPU-less ARM7TDMI.

We also analysed  additional  general  design  issues  such  as  reducing  the  memory  used  by 
UTCBs, factors affecting the system call convention and register-backing of message registers. 
We also documented kernel development strategies and observations about L4.  We hope all of 
our findings will be useful to future kernel developers.

We have constructed a port of L4 to Blackfin based on our analyses.  The port also implements 
recent related work – the single kernel stack and physical TCB arrays.  We have described the 
micro-optimisations used to speed up the Blackfin port,  most of which generalises to other 
architectures.

Our context switching time of 1,567.86 cycles already outperforms ucLinux's 2,485 cycles. 
Once a fastpath is written, this gap will widen even further in our favour and we will approach 
L4's traditional hundred-cycle address space switching time.

There is still work to be done on the Blackfin port before it is deployable.  However, most of the 
port has been completed and as our findings allow L4 to support  an additional category of 
processors – those without virtual memory – the future looks bright.
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18.2 Future Work

In this section, we describe the remaining work we believe should be done.

18.2.1 ARM ports

The findings in this thesis generalise to ARM processors without virtual memory.  Given the 
popularity of ARM, we should make ports to the MPU-based ARM1156T2-S and protection-
less ARM7TDMI (used in the iPod).

18.2.2 Tweaking the Blackfin kernel

This thesis has concentrated on the difficult architectural, L4 API and optimisation issues.  The 
remaining issues are comparatively easy – but time consuming – coding exercises that can be 
done later:

Cache API

Flushing the D-caches and I-caches using the  DMEM_CONTROL and IMEM_CONTROL registers as 
suggested by the Blackfin manual  [Ana05] does not work.  An investigation should be made 
into the feasibility of looping through all cache lines and flushing each individually – although 
this is expected to be very slow.

The  port  should  respect  L4_MapControl()'s  page  cacheability  attributes.   Currently,  the 
Blackfin port assumes that all addresses below the Blackfin's physical memory limit of 128MB 
should be write-back cached and that all other addresses – potentially, but not always, device 
memory – should  be  uncached.   This  behaviour  always  produces  correct  results  but  some 
memory above 128MB need not be uncached and the lack of caching is wasting cycles.

More efficient DCPLB replacement policy

We should also maintain a low overhead queue of free CPLB entries.  Only when this queue is 
empty should we invoke our replacement policy [p64, Chapter 4.5.3].

Once the kernel is very stable, we should switch to a psuedorandom replacement policy to avoid 
the cyclical worst case of the current FIFO policy.  

Eliminate DCPLB misses in kernel mode

We previously suggested a global UTCB array scheme [p92, Chapter  7.3.3] and a KIP entry 
pre-filling scheme [p89, Chapter  7.2.2].  Implementing these would eliminate expensive in-

186



CHAPTER 18 CONCLUSION

kernel DCPLB misses and also simplify the kernel.

We also suggested alternative and pessimistic approaches: pre-filling the DCPLB for UTCB 
accesses [p89, Chapter 7.2.2] and disabling the protection [p90, Chapter 7.2.2].

A thorough comparison of these methods should be performed.

Locking of TCBs in L1

There is 4KB – 36KB in total of Data SRAM on Blackfin 53x models.  It would be interesting 
to measure the performance increase of placing TCBs here to reduce D-cache pressure.

Should there be an insufficient amount of Data SRAM to store all of the system's current TCBs, 
LRU-based replacement could be used.  The real cost of this method are the cycles and D-cache 
footprint of (hopefully, occasionally) copying TCBs to and from L1 and SDRAM.  If this is too 
expensive, L4 could either limit the maximum number of threads supported so that all will fit 
into SRAM or state arbitrarily that the first n threads will be placed into SRAM.

An issue would be whether this SRAM should be a dedicated kernel resource for simplicity or 
shared with userspace.  If it is to be shared with userspace, the ordinary page-based protection 
mechanism could be used.   However,  one might  wonder what performance gains could be 
achieved by giving userspace access to SRAM but the end-to-end argument [SRC84] suggests 
that such a decision should be pushed as high as possible up the application stack, which in this 
case means leaving the decision up to userspace, as only the application knows its resource 
needs best.  

Implement fastpath

Implement the IPC, DCPLB/ICPLB refill and interrupt handlers in assembler.  These form the 
most critical parts of kernel performance.  Use the performance monitoring unit extensively to 
hand optimise the code.  Load this code into the instruction SRAM to reduce I-cache pressure.

The Skyeye simulator [Sky06] can not be used as it is not cycle accurate.

VisualDSP++ (Windows)  [Ana06b] provides a cycle accurate simulator.   Porting L4 to the 
Analog  Devices  toolchain  is  difficult  given  the  number  of  gcc-isms in  L4  but  should  be 
considered.

Another option is to convert the ELF generated by gcc to a format readable by VisualDSP++.  It 
is possible to do this using the elf2elf tool if one uses an older version of VisualDSP++, 3.5 
[Get06].

Support the watchdog timer

An investigation should be made into whether the watchdog timer is used in any real production 
environment.  It may only be used for emulators which is a different topic entirely.  However, it 
may be useful in realtime systems for flagging tasks that are running for longer than they should 
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be.

If the watchdog timer is to be supported, NMI kernel entry and exits will need to be supported.

Paravirtualise ucLinux

For a start, ucLinux’s register usage and system call convention must be analysed in greater 
detail so that we can potentially virtualise it.  As no one has previously written an L4 port for an 
MPU-based processor, no one has yet ported ucLinux to L4.  There are surely other design and 
implementation  issues  that  one  will  discover  when  embarking  on  this  “Wombat/Blackfin” 
project.

If we do this, we immediately gain access to Linux macrobenchmarks.  We should then re-
evaluate the trade-offs made in this thesis as a result of the pingpong microbenchmark.

Work around hardware anomalies

The Blackfin processor suffers from numerous documented glitches from revision to revision 
that can compromise the kernel [Ana06a].  The solutions to these problems are well documented 
inside that document.  An analysis should be made as to which revisions of the Blackfin chip 
are popular so that the number of revisions to be supported can be limited,  minimising the 
number of hacks required.

Serial port in release mode

The STAMP board only has 1 serial port which the kernel uses for the KDB debugger.  In 
release mode, the serial port should be available to userspace.  However, this has never been 
tested.

After everything is implemented and debugging of the kernel finished, debug statements will 
not need to be tweaked.  Therefore, it would then be a good time to ensure the serial port is not 
used by the kernel in release mode.

18.2.3 After tweaking the Blackfin kernel

With the above changes, the kernel should be in a very mature state and should be released to 
the public as a beta for community feedback.

The Iguana operating system should be ported to Blackfin so that eventually, the whole ERTOS 
stack will run on the Blackfin in direct competition with GNU/Linux.  Any effects of physical 
memory and protected kernel addressing on Iguana should be analysed, as they were for L4.

Other versions of the Blackfin such as the 535 should be supported.  Currently, GNU toolchain 
support does not exist for the 535.  Another objective would be to port L4 to Analog Device's 
VisualDSP++.  This would force not only the L4/Blackfin combination to be more portable but 
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also L4 itself.
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