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Chapter 1

Introduction

L4 is increasingly being utilised as a software platform for commercial embedded systems,

and has already been deployed in mobile phones with soft real-time requirements. While

L4’s design has traditionally been optimised for best-effort systems where throughput is

the primary concern, support for real-time applications is increasingly being required of

the kernel.

In this thesis, we look at three scheduling optimisations that have traditionally been used

in L4 to increase best-effort system performance: lazy-queueing, direct process switching

and FIFO IPC send-queue ordering. Although all three optimisations have served in the

past to provide L4 with blazingly fast performance, they have also come at the price of

reducing L4’s theoretical real-time capabilities.

We qualitatively describe the trade-offs associated with these three optimisations and

quantitatively measure the actual benefits and costs of the optimisations, both in terms

of throughput and latency. We perform these measurements by benchmarking several

modified versions of L4, each implementing a different combination of the three optimi-

sations.

1.1 Document Overview

Chapter 2 of this document gives an overview of L4 and describes its current scheduling

algorithms and policies in detail. The implementation of the three optimisations of lazy-

queueing, direct process switching and FIFO IPC queueing are described in detail, along

with the theoretical benefits and costs of each.

Chapter 3 describes the different L4 kernel implementations used for our experiments, as

well as the custom data structures and micro-optimisations implemented on each. This
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chapter also describes an in-kernel scheduling API that we developed to assist development

of each of the kernel variants.

Chapter 4 describes the methodology we used to evaluate each of the kernels. Four

methods were used: (i) gathering statistics on how workloads interact with the kernel;

(ii) measuring the throughput of each kernel with a macro-benchmark; (iii) measuring

the latency and speed of specific kernel operations using micro-benchmarks; and finally

(iv) profiling each of the kernels to determine the time spent in the scheduler and IPC

paths.

Chapter 5 analyses the results of each of our benchmarks, providing quantitative mea-

surements of the advantages and costs of each of the optimisations.

Finally, Chapter 6 draws conclusions from the results, and discusses possible future di-

rections of work.
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Chapter 2

Background and Related Work

2.1 The L4 Microkernel

A kernel is the part of an operating system running in the processor’s privileged mode

that is responsible for providing services that allow processes on the system to carry out

their tasks effectively. Traditionally, kernels have attempted to provide all the services

required for a fully functioning operating system, such as device drivers, file systems

and networking services. While such monolithic kernels are flexible and convenient to

construct, these advantages come at the cost of stability and security: a bug in any

part of the large kernel may cause the entire operating system to become corrupt or the

system’s security to be compromised.

In contrast to these fully-featured monolithic kernels, the primary goal of a microkernel

is to have the minimal amount of functionality running in the processor’s privileged mode

that still allows the implementation of a system’s required functionality [9, 7]. Many

of the services that would ordinarily be provided by a monolithic kernel (for instance

device drivers) are instead implemented as user-level servers. By reducing the quantity

of privileged code and increasing the isolation of such system services, a greater level of

security and stability can be achieved. A bug in an isolated device driver may require the

driver to be restarted, but will avoid corrupting the entire system [5].

The NICTA L4-embedded N2 microkernel [12] is a second-generation microkernel designed

from the ground-up for high-performance. The kernel’s API has been designed with a

focus on use with embedded systems. L4-embedded provides three primary abstractions

to user-level tasks:

Threads : A thread represents a single flow of execution within the system. Every thread

has its own program counter, stack and set of registers. The kernel’s scheduler
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determines which thread should be executing on the processor at each point in

time.

Address spaces : Each address space in L4 provides a virtual address space with map-

pings to physical memory. Each address space may contain one or more threads.

Threads can be protected from each other by isolating the threads in different ad-

dress spaces.

Inter-process communication : Inter-process communication (IPC) allows threads, po-

tentially in different address spaces, to communicate with each other. L4 uses syn-

chronous IPC, in that a thread attempting to send a message is unable to continue

execution until either the message has been received by its destination thread or the

send is aborted.

Three types of IPC operations are possible: (i) send, which sends a message to

another thread; (ii) receive, which receives a message from another thread; and (iii)

send/receive, which sends a message to another thread and then, once the message

has been successfully received, receives from another thread. A call IPC operation

is a special case of send/receive where the thread being sent to is the same as the

thread being received from.

2.2 The Importance of IPC Performance

Two primary advantages of microkernels are increased security and stability. For these

advantages to be realised, system services must be modularised into separate isolated

servers. These modular operating system components communicate to each other through

IPC thousands of times per second, each potentially causing a context switch. IPC is also

used in L4 for each interrupt delivery [10] and is also used by para-virtualised Linux and

Darwin for each syscall and trap into the kernel [6, 16].

As IPC is such a frequent operation (with thousands of messages taking place each second),

it has a significant potential to introduce high overheads into the system. Figure 2.1

shows the theoretical performance overhead of IPC as a function how frequently IPCs are

performed. As the frequency of IPC increases to the 1000 to 10 000 cycle range, system

performance becomes quite sensitive to IPC times. These calculations fail to take into

account secondary effects such as cache and TLB usage by the IPC path, which may

contribute even more to overhead. Such secondary effects were found to be significant

factors in the poor performance of the first-generation Mach microkernel [1].

If IPC performance is slow, system designers will be forced to recombine system compo-

nents back together in order to restore performance, defeating the primary advantages
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gained by using the microkernel in the first place. For these reasons, significant effort has

gone into ensuring that IPC remains as fast as possible. In the construction of the L3

microkernel, a predecessor to L4, Liedtke [8] asserted that “anything which may lead to

higher IPC performance has to be discussed. In case of doubt, decisions in favour of IPC

have to be taken.”
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Figure 2.1: Total system overhead attributable to IPC as a function of

the number of cycles between each IPC. Each curve represents a different

length IPC call, measured in cycles. The range of values shown are typ-

ical IPC times of a modern microkernel. Reproduced from Elphinstone

et al [2].

2.3 Thread Scheduling

The scheduler of a kernel is responsible for determining which thread on the system should

execute at each point in time. Such decisions tend to be made by the scheduler each time

a new thread becomes ready to run (such as when a thread is woken by an IPC message),

when the currently running thread blocks (such as by calling another thread with IPC),

and also at fixed time intervals multiple times a second (allowing the scheduler to share

processor time between multiple threads).

Schedulers tend to be designed to make decisions according to a defined policy, such as

always choosing to schedule high-priority threads over low-priority threads, or giving each
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thread in the system a fair share of processor time.

A microkernel scheduler can be evaluated using the following metrics:

Scheduling Overhead The overhead of a scheduler is the percentage of system resources

(most often measured in processor time) the scheduler requires to perform its func-

tion. Simple schedulers will often be able to make scheduling decisions with very

little overhead, while more sophisticated schedulers may require more time and

memory to make their (potentially ‘better’) decisions. Because IPC often involves

the interaction of more than one thread, the scheduler may need to be involved in

IPC operations. As such, inefficient schedulers may cause significant increases in

IPC times.

Interrupt Latency A scheduler’s interrupt latency is the amount of time between an

external event occurring (in the form of an interrupt) and the thread responsible

for handling the event being scheduled, as shown in Figure 2.2. Long interrupt

latencies result in the system being unable to respond to events in a timely fashion.

Short and predictable interrupt latencies are particularly important to the class of

systems known as ‘real time systems’, described further in Section 2.3.1.

The minimum interrupt latency of a kernel is determined by the amount of time

the kernel takes to switch from the current thread to the interrupt handling thread.

Interrupt latencies may be longer if an interrupt occurs while the kernel is in the

middle of a long-running operation that cannot be interrupted. For this reason, the

maximum interrupt latency in a system is directly proportional to the length of the

longest non-preemptable operation in the kernel.

For example, older versions of L4 took significant amounts of time to delete address

spaces with complex page mappings associated with them. Any interrupt that fired

towards the beginning of such a delete operation would be forced to wait for the

entire operation to complete before being serviced.

Accuracy The accuracy of a scheduler is its ability to ensure that threads are only given

the resources they are entitled to, as dictated by the scheduling policy. For instance,

a strict priority-observing scheduler should not allow low-priority threads to be

executed while high-priority threads are waiting. Similarly, a round-robin scheduler

should give two equal-priority threads an equal amount of time on the processor.

These scheduling requirements are often in conflict: optimisations that help reduce sched-

uler overhead may come at the cost of higher interrupt latencies (such as the ‘lazy queue-

ing’ optimisation, described in Section 2.4.3). Others may come at the cost of reducing

accuracy (such as the ‘direct process switch’ optimisation, described in Section 2.4.2).
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The design of a scheduler needs to be based on the precise requirements of the processes

running on the system, with scheduler trade-offs made accordingly.

Figure 2.2: Interrupt latency is the time taken between an interrupt

firing and the first instruction of the interrupt handler executing.

2.3.1 Real-Time Scheduling

An increasingly large proportion of embedded systems require strict timing guarantees

from the operating system. Such systems, known as real-time systems, not only rely on

functional correctness, but also temporal correctness (i.e., the correctness of the system

depends on when the system finishes its calculation).

Real time systems fall into two broad categories: hard real-time systems and soft real-

time systems. The former category requires strict guarantees that deadlines will be met;

missing a deadline may result in injury or loss of life. An embedded system monitoring

sensors in a car to determine if and when an airbag should be released would be considered

an instance of a hard real-time system.

The latter class of soft real-time systems requires only statistical guarantees that deadlines

will be met. Failure to meet a single deadline reduces the effectiveness of the system, but

will not cause a complete failure. A mobile phone that suffers a degradation of sound

quality when deadlines are missed would be considered an instance of a soft real-time

system.

In order to provide support for real-time systems, kernels must provide guaranteed upper

bounds on both interrupt latencies and the time taken by system calls. Real-time schedul-

ing algorithms are also required to ensure that threads are given sufficient processor time

at the time they require it. Two popular real-time scheduling algorithms for real-time sys-

tems with threads that have periodic deadlines are the rate-monotonic scheduling (RMS)

algorithm and the earliest deadline first (EDF) algorithm [11].
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RMS gives a unique priority to each thread in the system, sorted by the frequency of

deadlines that each thread must meet. Threads with a high rate of deadlines are given

highest priority, while threads with a lower rate have lower priorities. EDF also gives

unique priorities to each thread, but dynamically modifies the priorities such that the

thread with the closest deadline is given the highest priority. Both algorithms provide

guarantees that all deadlines will be met regardless of the number of real-time threads in

the system so long as system utilisation remains below 69% for RMS or 100% for EDF.

2.4 Thread Scheduling in L4

The current implementation of L4-embedded N2 uses a priority-based scheduling scheme,

carrying out round-robin scheduling on threads with equal priorities. Conceptually, at

any point in time each thread in the system is either running, ready to run, or blocked

waiting for an external event.

Each thread in the system is also assigned a priority, from 0 to 255 inclusive. A thread

will only be scheduled to run if there are no ready threads of a higher priority. If multiple

threads of the same priority are all ready, each thread will run for a fixed amount of time

(known as its timeslice) before control is passed to the next thread of the same priority

in a round-robin fashion.

Timeslice lengths in L4 are enforced by the kernel periodically probing the system to

determine if the current thread’s timeslice has expired. Each of these probes is known

as a timer tick, and typically occurs once every 1 ms to 10 ms, depending on the system

architecture [13].

2.4.1 Scheduling Implementation

The L4 scheduler is implemented by having a ready-queue, which keeps track of all threads

currently in a state ready to run. Each time a new thread needs to be selected to be

scheduled, the scheduler searches the ready-queue for the highest priority thread, which

then begins execution.

The L4 ready-queue data-structure is implemented as an array of 256 queues, one queue

for the ready threads of each priority level as shown in Figure 2.3. Each thread control

block (TCB) is linked to the next and previous TCB of the same priority level. A thread

can be added to the scheduling queue in O(1) time by adding it to the tail of the queue
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associated with its priority. Threads can similarly be removed from the queue in O(1)

time by updating the pointers of the previous TCB and the next TCB in the queue.

As is, the ready-queue with p priority levels would require O(p) operations to determine

the highest priority thread, found by iterating over the array of queues from highest to

lowest priority. To avoid the scan, a two-level tree of bitmaps is used to improve search

speed, depicted in Figure 2.4. The lower level consists of p bits, bit i being set if a thread

is queued at priority i. Each bit in the upper level corresponds to a word in the lower

level. The upper-level bit is set if any bit in the lower level word is active. This bit-tree

structure can be generalised to support any arbitrary number of p threads by having

⌈log
w

p⌉ levels, assuming w-bit words.

Some modern processors, such as the ARM family of processors [3], are able determine

the highest bit set of a word in a single operation. This allows the scheduler to determine

the highest priority thread with just a single operation on each of the ⌈log
w

p⌉ levels of

the bitmap (a total of two operations in the current L4 scheduler). Processors without

hardware support for finding the highest priority bit must do a little more work, but can

still find the highest order bit of a w-bit word in O(log
2
w) operations, making the entire

lookup operation take O(⌈log
w

p⌉ · log
2
w) operations (approximately ten operations in the

current L4 scheduler implementation, though each operation is likely to be more involved

than those on processors with hardware support for lookups).

Figure 2.3: The scheduling queue data structure. The next thread to

be selected by the scheduler will be thread A, which will then be moved

to the end of the queue. Threads D and E will not be considered by the

scheduler while ever ready threads of a higher priority are in the queue.
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Figure 2.4: The scheduling queue bitmap tree data structure. Two

levels of bitmaps form a simple tree. Each queue that contains a thread

will set the corresponding bit in the tree.

2.4.2 Direct Process Switch

In a kernel that implements a strict scheduling policy, each time a thread sends an IPC to

another thread, the scheduler must be invoked to determine which thread in the system

has the highest priority so that flow of control can be given to it. In the majority of cases,

the scheduler’s decision will be merely to keep letting the sender execute or to switch

to the destination of the IPC. Involving a heavy-weight scheduler each time a message

passes between two threads introduces a significant level of overhead to each IPC call,

often unnecessarily.

To avoid the scheduler overhead in this situation, Liedtke [8] proposed an optimisation

termed a direct process switch, which allows the IPC path to decide which thread should

be scheduled at the completion of an IPC operation without consulting the scheduler.

Assuming thread A is currently executing, thread B is ready to receive from A, and

thread C is ready to send to A, then:

• if thread A sends to thread B, either A or B will be switched to (whichever has

highest priority);

• if thread A calls thread B, thread B will be switched to;

• if thread A receives from thread C, thread A or C will be switched to (whichever

has higher priority); and finally
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• if thread A performs a send/receive to B and from C, thread B or C will be

switched to (again, whichever has higher priority).

The scheduler’s ready-queue is not consulted in any of these cases to determine if the

thread being switched to is the highest-priority thread in the system. Instead, the sending

thread ‘donates’ the time between the IPC taking place and the next timer tick to the

destination thread, a process misleadingly termed timeslice donation1. When the next

timer tick takes place, the scheduler will be invoked and will restore control to highest

priority thread ready to execute.

The primary consequence of using direct process switching is that thread priorities are no

longer strictly observed by the kernel: if a high-priority thread calls a low-priority thread,

the low-priority thread will be scheduled, even if other threads are ready to execute. This

time that a thread executes while a higher priority thread is ready to run is known as

temporary priority inversion, and is depicted in Figure 2.5.

Figure 2.5: Temporary priority inversion caused by the direct process

switch optimisation. High-priority thread A performs an IPC to low-

priority thread C, causing it to begin execution. When the remainder of

A’s timeslice runs out thread C will be preempted, and the intermediate-

priority thread B will be scheduled.

1The name ‘timeslice donation’ originates from previous versions of L4 which actually did donate the

remainder of the current thread’s timeslice to the destination of the IPC [14]. In contrast, modern

versions of L4-embedded only donate the time up until the next timer tick, which may be a significantly

shorter length than the remainder of the thread’s timeslice.
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2.4.3 Lazy Queueing

Each time an IPC operation in L4 takes place, multiple manipulations of the scheduler’s

ready-queue are required. A standard call between two threads A and B would involve

four queue operations: (i) A is removed from the ready-queue as it passes control to B;

(ii) B is added to the ready-queue as it begins to execute; (iii) B is removed from the

ready-queue as it returns control back to A; and finally (iv) A is added back on to the

ready-queue again.

In most cases it is expected that thread A will be calling B to perform a simple operation

which will then immediately return control back to A. The scheduling queue is modified

four times only to return back to its original state.

In an attempt to avoid the scheduling operations altogether in the common case of one

thread calling another, lazy queueing [8] was introduced into L4. Two forms of lazy queue-

ing are possible: lazy enqueueing and lazy dequeueing, both of which are implemented in

L4.

Lazy Dequeueing

A kernel implementing lazy dequeueing no longer guarantees that its scheduler queue only

contains runnable threads. Instead, it will contain at least every runnable thread, but

may also contain non-runnable threads, as shown in Figure 2.6. When a thread in the

ready queue becomes blocked, no action is taken to dequeue it. If the thread becomes

runnable again while still on the scheduling queue, the time that would have been spent

dequeueing the thread (only to enqueue it later) is saved.

While searching the ready-queue to find the highest priority thread ready to execute,

the scheduler may discover that the first thread on the scheduling queue is actually in

a blocked state. In this case the scheduler simply dequeues this thread and moves on

to the next thread in the queue. Such an operation is termed a deferred dequeue—the

dequeue operation that should have taken place when the thread lost its runnable status

was deferred to a later time. Theoretically, lazy queueing will never add overhead to

the scheduler: in the best case, queue operations are avoided. In the worst case, queue

operations are merely deferred to a later time, but precisely the same number of operations

are performed.

Lazy-dequeueing may, however, cause a potentially large amount of work to be deferred

at a later time. If a large number of blocked threads build up on the ready-queue, the
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scheduler may need to dequeue them all in a single non-preemptable operation. This has

the potential to cause significant delays in interrupt delivery.

Figure 2.6: The scheduling queue with lazy queueing enabled. The

shaded boxes represent blocked threads. In the queue’s current state, the

scheduler will determine that A is blocked, remove it from the queue and

then choose B. Threads C and D will remain on the queue despite being

in a blocked state as the scheduler will not reach them prior to selecting

B.

Lazy Enqueueing

A kernel implementing lazy enqueueing removes the restriction that the scheduler’s ready-

queue must contain the currently executing thread. With this optimisation, a thread that

executes for a short burst of time may be able to complete is execution without ever being

placed on the ready-queue, saving two queue manipulations.

For example, if the currently running thread A calls thread B (which is not currently on

the scheduling queue), B will execute directly without any queue operations taking place.

If thread B then returns control back to thread A, two enqueue operations will have been

avoided (in addition to the two operations avoided from lazily dequeueing thread A).

If thread B is interrupted prior to entering a blocked state again, only then will it need

to be added to the ready-queue. Such an operation is referred to as a deferred enqueue.

This may occur, for instance, if thread B is preempted by an interrupt causing a context

switch, or if thread B performs a send IPC to third thread C leaving both B and C ready
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to run, but C executing. As with lazy dequeueing, lazy enqueueing will not cause any

additional work to be performed, but in the worst case merely defers when the queueing

operations occur.

2.4.4 FIFO IPC Queueing

Threads attempting to send an IPC to a thread not ready to receive can choose to either

abort the IPC operation or block, waiting until the destination becomes ready to accept

the IPC. Sending threads that are forced to block are added to the IPC send queue of

the destination thread. When the destination thread finally becomes ready to receive, it

will determine if any threads are currently waiting on its queue and, if so, will take one

of those threads off and complete its IPC operation.

The L4 kernel implements the IPC send queue as a simple first-in-first-out (FIFO) queue:

threads are processed from the queue in the same order that they are added. The primary

benefit of using FIFO queues is that both enqueue and dequeue operations can occur in

O(1) time, helping to reduce IPC times.

The use of FIFO send queues may introduce an indirect form of priority inversion, as high-

priority threads can become queued behind lower-priority threads. Such high-priority

threads will be forced to wait for the lower-priority threads to be served before being able

to continue.

2.5 Real-Time Scheduling in L4

As L4 is utilised more and more in embedded systems with soft real-time requirements,

the importance of providing timing guarantees has increased. Unfortunately, the use of

the three scheduling optimisations described in Section 2.4.1 all hinder L4’s suitability for

use in real-time systems.

Both the RMS and EDF scheduling algorithms use priorities to ensure that threads are

executed at the correct time so that deadlines are met. Both algorithms assume that the

priorities of threads will be strictly adhered to. The direct process switching and FIFO

queueing optimisations of L4 unfortunately both violate this assumption.

Additionally, to be used as a real-time system, L4 must ensure that interrupt latencies

have a predictable upper bound. The introduction of lazy-queueing has the potential to

introduce large latencies into the kernel when the number of active threads is large. In a

real-time system where the number of threads in the cannot be determined in advance,
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the length of such latencies are unpredictable. Alternatively, if a fixed upper bound

on the number of threads can be determined during system construction, the maximum

latency caused by lazy-queueing can be measured and accounted for, and presents less of

a problem.

2.6 Related Work

Liedtke [8] originally proposed both the direct process switch and lazy-queueing optimi-

sations for the L3 operating system, a predecessor to L4. While Liedtke’s tests showed

that removing lazy-queueing slowed down IPC by up to 23%, he did not consider the

costs of increased interrupt latency nor quantify the performance advantages of direct

process switching. Fourteen years of development and a change of CPU architecture has

also taken place between L3 and L4-embedded N2, which may have also had an effect on

the trade-offs of the optimisations.

Ruocco [13] investigated the direct process switch scheduling behaviour in L4, concluding

that “the extreme performance optimisations that L4-embedded inherited from previous

implementations, especially those performed in the critical IPC path, are, to a large

degree, the main sources of complexity for real-time scheduling” and that a “review of

the current trade-offs between performance and predictability would ease priority-driven

real-time programming.” This thesis attempts to perform such a review.

Krishnapura [4] investigated how the EDF scheduling scheme could be implemented at

user-level on top of the existing fixed-priority round-robin scheduler, by ensuring that

only one thread was runnable at any point in time. By having only one thread runnable

at any time, the problem of priority inversion from direct process switching is overcome,

but care must still be taken to prevent priority inversion from IPC FIFO queueing.

Steinberg [14] modified a variant of L4 named ‘Fiasco’ to give threads the option of donat-

ing both their current timeslice and all future timeslices when performing an IPC. Such

semantics form a basic priority inheritance protocol and allow the kernel to implement

the direct process switch optimisation whenever threads elect to carry out this donation.

Steinberg did not quantify the performance costs of the changes, however, despite the

implementation being quite intricate.
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2.7 Summary

L4 uses three optimisations that, while potentially reducing scheduling overhead in the

system and hence increase system throughput, come at the cost of increased latencies and

decreased scheduler accuracy. These trade-offs are summarised in Table 2.1.

These problems hinder L4’s suitability for being used as a platform for real-time systems.

In this thesis, we attempt to quantify both the advantages and costs of these three optimi-

sations so that system implementers can make an informed choice when deciding whether

such optimisations should be used.

Effect on Scheduler

Optimisation Overhead Latency Accuracy

Direct Process Switch ✓ ✕

Lazy Queueing ✓ ✕

FIFO IPC Queueing ✓ ✕

Table 2.1: Summary of the optimisations used in the IPC path. Ticks

indicate an improvement of the named attribute, while crosses indicate

a degradation. The three optimisations all help to decrease scheduler

overhead, but come at the cost of latency or accuracy.
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Chapter 3

Kernel Implementations

To quantify the performance trade-offs of the three scheduler optimisations described

in Chapter 2 we created multiple variants of the L4-embedded N2 kernel, each with a

different set of optimisations applied.

In particular, we created four variants of the kernel with different combinations of the

direct process switch and lazy-queueing optimisations, and three variants of the kernel

with different methods of IPC queueing that ensure thread priorities are observed. These

kernel variants are described in detail below.

3.1 NICTA L4-embedded N2 1.3.0

All of our tests are based on the NICTA L4-embedded N2 1.3.0 kernel [12], which we

modified to implement different scheduling optimisations and data structures. We also

ran all tests on the original unchanged kernel to provide a performance baseline and to

allow our modified implementations to be compared to the unmodified kernel.

One feature of the L4-embedded N2 kernel designed to reduce the cost of IPC is the IPC

fastpath. The IPC fastpath is a highly-optimised assembly implementation of the routines

in L4 carrying out IPC between threads. The fastpath gains its speed by paying careful

attention to avoiding unnecessary cache misses, avoiding C calling conventions, and by

avoiding complex checks required for less common IPC cases.

By avoiding these checks, the IPC fastpath is unable to fulfill the more complex IPC

calls, which would be too time consuming to optimise in assembly. Any call that the

IPC fastpath can not handle is redirected to the IPC slowpath, a C-based implementation

of the IPC routines. The IPC slowpath is able to handle all IPC cases, but comes at a

performance cost.
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In designing the fastpath, the L4 designers assume that it will be able to handle the

majority of IPC calls, with only an occasional call needing to be demoted to the slowpath.

This provides the best of both worlds: most calls are able to be carried out at high speed

without sacrificing advanced functionality.

For all our experiments, we implemented our data structures and modifications to the IPC

path entirely in C. Unfortunately, it becomes difficult to make meaningful conclusions

by comparing the unmodified assembly-optimised L4 kernel with our modified C-based

kernels. For this reason, we tested two versions of the unmodified L4 kernel. The first

version, the Fastpath kernel, is the unmodified L4 kernel with all optimisations enabled.

The second version, the Slowpath kernel, is the L4 kernel with the IPC fastpath disabled,

forcing all IPC calls to pass through the C-based IPC routines.

Any performance differences between the Fastpath and Slowpath kernel can be attributed to

the advantages of optimising the IPC path in assembly. Differences between the Slowpath

and other kernels in our experiments should be closely related to the changes in algorithms,

optimisations and data structures made by our experiments.

3.2 Internal Scheduling Interface

As a result of the direct process switching optimisation, L4 has been designed in such

a way that a scheduling decision is made locally each time two threads interact. For

instance, if one thread sends an IPC message to another, the code in the IPC path itself

determines which thread should next be executed, enqueues the alternate thread onto the

scheduler’s ready list, and then switches execution to the first thread without any other

calls being made to the scheduler. Examples of this implicit scheduling code style are

shown in Figure 3.1.

While such implicit scheduling decisions allow the lazy queueing and direct process switch-

ing optimisations to be implemented more easily, the make it difficult to introduce different

scheduling policies or implementations into the kernel without making significant modi-

fications to large amounts of the kernel. Any change in scheduling policy would require

that modifications be made to every one of the many implicit scheduling points scattered

throughout the code.

For this reason, we introduced an in-kernel abstract scheduling interface into L4 to allow

scheduling policies and implementations to be switched with relative ease. All points in

the code that make localised scheduling decisions or performed ready-queue manipulations

were rewritten to use a new scheduler API.
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/∗ Execute an IPC c a l l between ‘ c u r r e n t ’ and ‘ d e s t ’ ∗/
vo id s y s i p c ( t c b t ∗ cu r r en t , t c b t ∗ dest , . . . )
{

. . .

/∗ Switch to the d e s t i n a t i o n th r ead i f they a r e h i g h e r
∗ p r i o r i t y than us , o t h e rw i s e keep runn ing ∗/

dest−>s e t s t a t e (STATE READY) ;
i f ( des t−>p r i o r i t y > cu r r en t−>p r i o r i t y ) {

enqueue ( c u r r e n t ) ; /∗ Lazy enqueue o f d e s t ∗/
sw i t c h t o ( d e s t ) ;

} e l s e {
enqueue ( d e s t ) ;

}
. . .

/∗ Ca l l the d e s t i n a t i o n th r ead and wa i t f o r a r e p l y ∗/
dest−>s e t s t a t e (STATE READY) ;
cu r r en t−>s e t s t a t e (STATE WAITING ) ;
sw i t c h t o ( d e s t ) ; /∗ Lazy dequeue o f c u r r e n t ∗/
. . .

}

Figure 3.1: Examples of the implicit scheduling decisions made in the

L4 code. The first code segment shows the actions that take place on

a ‘send-only’ IPC call. The second shows the actions for a ‘send-wait’

IPC call.

The original process of introducing the API took quite some time, approximately 60

engineering hours. Once the API was in place, however, changes to the scheduler could

be made with relative ease. Modifying the scheduler from using direct process switching

to a strict priority-observing scheduler took approximately 4 engineering hours for a basic

yet fully-functional implementation.

3.2.1 Interface API

At a basic level, a scheduler only needs to know through its interface which threads are

ready to be scheduled and when a scheduling decision needs to be made. Details such

as the actual thread that should be scheduled at any given time or how long that thread

should be allowed to run for should be left to the scheduler implementation.

The scheduler API, shown in Figure 3.2, introduces three basic mechanisms: an ‘enqueue’

operation that informs the scheduler that a given thread is ready to be scheduled, a

‘dequeue’ operation that informs the scheduler that a thread can no longer be scheduled,

and a ‘schedule’ operation that requests the scheduler to make a decision about which
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/∗ Hin t s d e s c r i b i n g t r a d i t i o n a l L4 behav i ou r ∗/
typedef enum {

/∗ Schedu l e h i g h e s t p r i o r i t y th r ead ∗/
HINT HIGHEST PRIORITY ,

/∗ Schedu l e most r e c e n t l y enqueued th r ead ∗/
HINT NEW,

/∗ Schedu l e the c u r r e n t or j u s t−enqueued th r ead ∗/
HINT CURRENT OR NEW,

} h i n t t ;

/∗ Ready queue man i pu l a t i o n s ∗/
vo id enqueue ( t c b t ∗ ) ;
vo id dequeue ( t c b t ∗ ) ;
vo id swap ( t c b t ∗ , t c b t ∗ ) ;

/∗ Request s c h e d u l e r to per fo rm a con t e x t sw i t ch ∗/
vo id sched ( h i n t t ) ;

/∗ Manipu la te ready−queues and per fo rm a sw i t ch ∗/
vo id enqueue sched ( t c b t ∗ , h i n t t ) ;
vo id dequeue sched ( t c b t ∗ , h i n t t ) ;
vo id swap sched ( t c b t ∗ , t c b t ∗ , h i n t t ) ;

Figure 3.2: The new L4 internal scheduling API

thread should next execute and (if it is different from the currently executing thread)

switch control to it.

The scheduling API also introduced methods that allow multiple commands to be issued to

the scheduler at once, such as ‘swap’, which performs an enqueue and dequeue atomically,

and also ‘enqueue/schedule’, ‘dequeue/schedule’ and ‘swap/schedule’ which perform a

ready-queue manipulation followed directly by a scheduling operation. More advanced

schedulers can optimise these combined calls, potentially saving work.

Each of the API calls involving a ‘schedule’ operation also takes an additional parameter

that we termed a scheduling hint. Scheduling hints are passed to the scheduler calls and

inform the scheduler which thread the direct process switching optimisation would have

chosen to schedule. A scheduler that does not implement direct process switching is free

to ignore the hints without further consequence, while a scheduler that does implement

the behaviour can use the hints to avoid having to search the ready-queue and allow it to

precisely emulate the behaviour of L4 prior to the introduction of the scheduling API.

Three scheduling hints were required to specify the traditional scheduling behaviour of L4:

(i) a hint indicating that the highest priority thread in the system should be scheduled,

(ii) a hint indicating that the most recently enqueued thread should be scheduled (used
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/∗ Execute a IPC c a l l between ‘ c u r r e n t ’ and ‘ d e s t ’ ∗/
vo id s y s i p c ( t c b t ∗ cu r r en t , t c b t ∗ dest , . . . )
{

. . .

/∗ Enqueue ‘ d e s t ’ , and per fo rm a r e s c h e d u l e . ∗/
dest−>s e t s t a t e (STATE READY) ;
enqueue sched ( dest , HINT CURRENT OR NEW) ;
. . .

/∗ Dequeue ‘ c u r r e n t ’ , enqueue ‘ d e s t ’ , and per fo rm
∗ a r e s c h e d u l e . ∗/

dest−>s e t s t a t e (STATE READY) ;
cu r r en t−>s e t s t a t e (STATE WAITING ) ;
swap sched ( dest , c u r r en t , HINT NEW) ;
. . .

}

Figure 3.3: The code from Figure 3.1, rewritten using the internal

scheduler API.

in the IPC path when a thread calls a second thread), and (iii) a hint indicating that the

most recently enqueued thread or the currently executing thread should be scheduled,

whichever has the highest priority (used in the IPC path when a thread sends to a second

thread without waiting for reply.)

One significant limitation of the interface is that it still requires programmers to manu-

ally set a ‘thread state’ variable, as shown in Figure 3.3. Ideally, thread state information

should be managed entirely by the scheduler, being set to ‘ready’ on an enqueue and reset

to ‘waiting’ on a dequeue. Unfortunately, the thread state variable in L4 is overloaded

to store more information than just that relevant to scheduling. For instance, the SMP

implementation of L4 uses the thread state variable to mark threads that are to be sched-

uled on another CPU, to indicate when a TCB is locked for writing, and to facilitate

IPC between threads on different CPU cores. In the future it would be ideal if these two

separate functions (scheduling status and SMP functionality) were separated, allowing for

a cleaner scheduling API.

3.2.2 Reducing Abstraction Overhead

One significant problem in introducing an abstraction layer inside the kernel is the pos-

sibility of adding overhead to all scheduling-related functions. Such overhead may arise

from the additional function calls required to call the scheduler (and the associated stack-

maintenance costs of maintaining the C calling convention involved in such calls), or
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having code behind the API that is over-generalised (which may prevent optimisations

that do not apply to all locations being applied at any location).

The first issue was addressed by enabling aggressive compiler inlining, allowing the com-

piler to avoid the costs of carrying out function calls. Additionally, we were able to write

the scheduling code in such a way that unnecessary code (such as the code for scheduling

hints that do not apply to a given scheduler call) can be optimised away by the compiler’s

dead-code removal pass.

The second issue was addressed through the use of the combined action API calls (which

allow the scheduler to optimise for cases where multiple actions are taking place at once),

and also by optimising for each scheduling hint individually.

Further, the centralisation of the scheduling code allowed us to optimise the scheduling

code at one central location, benefiting the entire kernel. Time could be spent on micro-

optimisations that would have otherwise been too time consuming had they required

changes to multiple different locations in the kernel.

3.3 Measuring Scheduling Optimisations

To determine the effect that the direct process switch and the lazy-queueing optimisation

had on performance and latency, we implemented four kernels with different combinations

of the two optimisations. The four kernel implementations are described in detail below.

3.3.1 Direct Process Switch / Lazy Queueing

The Direct/Lazy kernel implementation uses both the direct process switch and lazy-

queueing scheduler optimisations, a behaviour mimicking that of the Slowpath kernel.

We used the kernel to quantify the performance impact of introducing the in-kernel

scheduling API. Differences between the Slowpath and Direct/Lazy kernels can be attributed

to the changes in code required by the scheduling API as both kernels use the same

scheduling optimisations.

One impact of using the lazy-queueing scheduler optimisation with the scheduler API

is that calls which involve dequeue operations need not be carried out immediately, but

can take place at a deferred time if necessary. This causes the scheduler API calls swap,

dequeue sched, and swap sched to become equivalent to enqueue, sched and enqueue -

sched respectively.
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While dequeue could potentially be ignored completely by the scheduler, we chose to

treat the operation normally in our implementation because of its limited use in the

kernel and to allow routines to safely be able to dequeue threads about to be destroyed.

An alternate solution would have been to add an additional scheduler hint to all scheduler

calls involving a dequeue allowing a caller to force a thread to be dequeued when lazy-

queueing is in effect.

3.3.2 Direct Process Switch / Eager Queueing

The Direct/Eager kernel implementation uses the direct process switch optimisation like

the Direct/Lazy kernel, but removes the lazy-queueing optimisation of L4, instead ‘eagerly’

taking threads off the ready-queue.

While the use of eager-queueing theoretically requires that more enqueue and dequeue

operations take place, removing lazy-queueing allows the code to find the next priority

thread to be simplified, no longer needing to handle deferred dequeues. Similarly, when

threads that have been lazily-enqueued are preempted, they no longer need to be added

to the ready-queue, slightly simplifying the scheduling logic.

3.3.3 Full Scheduling / Lazy Queueing

The Strict/Lazy kernel implementation disables the direct process switch optimisation while

still utilising lazy-queueing. Removing direct process switching ensures that in almost all

cases no thread will ever execute while a higher priority thread is ready to execute. The

one exception arises from the L4 ThreadSwitch system call, which allows one thread to

donate the remainder its tick to another. Because the call was used extensively in the

initialisation routines in our testing platforms described in Chapter 4, this call could not

be removed from the API nor replaced with different semantics that observe priorities.1

Even with strict scheduling, many micro-optimisations can be employed by the scheduler

to avoid having to perform a full search of the ready-queue prior to each context switch.

For instance, if we assume that no prior enqueue or dequeue operations have taken place

since the last schedule, we can take the following shortcuts:

1The concept of a ThreadSwitch call is incompatible with strict priority-observing scheduling. As such,

we did not attempt to strictly define the semantics of the call, which becomes troublesome when the

destination of a ThreadSwitch call itself performs a ThreadSwitch, performs an IPC, or page faults

requiring its pager to intervene. Instead, we cheat and merely claim that the executing thread is

undefined after an ThreadSwitch call until the next timer tick.
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• If an ‘enqueue/schedule’ call is made, either the current thread or the newly en-

queued thread is going to have the highest priority in the system, so the higher of

the two may be scheduled.

• If a ‘swap/schedule’ call is made which dequeues the current thread, the newly

enqueued thread can be scheduled if its priority is greater than the current thread’s

priority (which is the highest priority thread in the system). If a strict FIFO ordering

of threads is not required, this optimisation can also take place if the thread priorities

are equal.

The question now becomes how to determine if previous enqueue or dequeue operations

have taken place since the last schedule. One simple method would be to keep a flag

that is set if a enqueue or dequeue call is made, and is cleared after each schedule. If

the flag is clear, the above-mentioned optimisations can take place. If the flag is set, the

ready-queue must be searched.

A more sophisticated method is to instead keep track of an upper bound on the highest

priority thread. When a schedule call is made, either the current thread is the highest

priority (in which case no context switch takes place), a recently enqueued thread is the

highest priority (in which case execution switches to it), or a recently dequeued thread

is currently cached as the highest priority (in which case a full ready-queue lookup must

take place.) In any case, no more additional work is required by the scheduler compared

to not using these optimisations, other than that of caching the highest thread priority.

This takes place by increasing the currently cached priority if necessary each time an

enqueue takes place, and resetting the cached value after each lookup.

These optimisations also allow lazy-queueing to become feasible. If a full ready-queue

lookup was required each time a schedule took place, all ready threads would have to

be enqueued at all times to ensure that the scheduler considered them (preventing lazy-

enqueueing), and any high-priority blocked threads would be immediately dequeued (sig-

nificantly reducing the effectiveness of lazy-dequeueing.)

3.3.4 Full Scheduling / Eager Queueing

The Strict/Eager kernel implementation removes both the lazy-queueing and direct pro-

cess switch optimisations. This implementation uses the implementation optimisations

described for both the Direct/Eager and Strict/Lazy kernels, providing the same benefits as

both.

Since the two optimisations are mostly independent of each other, we would expect the

both the performance decreases between the Direct/Lazy and Strict/Lazy kernels and the
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decrease between the Direct/Lazy and Direct/Eager kernels to be present in the Strict/Eager

kernel.

Optimistically, the performance decrease of removing the two optimisations might be less

than the sum of removing each one. This would be the case if there is an overlap in the

additional work required to be carried out by removing each of the individual operations.

Pessimistically, the performance decrease may be worse if the two individual optimisations

have ‘synergistic’ effects, such as those observed by Liedtke [8] when performing similar

experiments on scheduler and IPC optimisations.

3.4 IPC Queueing Behaviour

The current L4 implementation uses a FIFO queue ordering, as described in Section 2.4.4.

While FIFO queueing allows each queue operation to take place in O(1) time, it may cause

a high-priority thread to become queued behind a lower-priority thread.

We attempted to determine the costs of processing queued IPC messages in priority

order using three different kernel implementations. Each implementation is based on the

Direct/Lazy kernel, such that any benchmark results should be directly comparable to the

Direct/Lazy kernel.

3.4.1 Full IPC Queue Scan

We modified the Direct/Lazy kernel to perform a full scan of the IPC send queue each

time a thread performs a receive operation. During the scan, the thread with the highest

priority is determined and is used as the next thread to receive from. This implementation

is called the IPC-Scan kernel.

Such an implementation allows fast O(1) enqueues of threads onto an IPC send queue,

but requires O(n) operations in order to scan the IPC send queue before a thread can

be processed. In a pathological case, it may require O(n2) operations to complete n IPC

operations.

3.4.2 Sorted IPC Queue

We modified the Direct/Lazy kernel again to insert new threads in IPC send queues such

that threads are always sorted in priority order, forming the IPC-Ordered kernel. Such a

method requires O(n) operations to add a new thread to a send queue, but allows the
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next thread to be processed to be determined in O(1) time. Like the IPC-Scan kernel

implementation, it may still require O(n2) operations to complete n IPC operations in

the worst case.

3.4.3 Heap IPC Queue

Our final implementation, IPC-Heap, converted the IPC send queues for each thread into

a heap data structure. Heaps require O(log n) time to both add a new element onto the

queue and remove a single element from the queue.

While using a heap is a significantly better choice of data structure in terms of time

complexity, the operations for manipulating a heap are more involved than those involved

in scanning a list for the highest priority thread or inserting a thread at the appropriate

location in a list. The trade-off is that while using a heap data structure guarantees

that n IPC operations will only take O(n log n) time, it may come at the cost of signif-

icantly slowing down other operations due to the housekeeping involved in maintaining

the heap.

The heap implementation used in this implementation is a rough prototype and, due to

time limitations, was not significantly optimised. However, the results of the implemen-

tation should still provide a general understanding of the costs of using a more complex

data structure in a critical path.
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3.5 Summary of Kernel Implementations

Kernel Name Description

Fastpath Unmodified L4-embedded N2 kernel implementation, with an

assembly-optimised IPC code path.

Slowpath Unmodified L4-embedded N2 kernel implementation, with no

assembly IPC optimisations.

Direct/Lazy Modified L4-embedded N2 kernel, with an added interface to

allow the scheduler implementation to be easily modified.

Direct/Eager As with Direct/Lazy, with eager queueing (i.e., lazy queueing

optimisations disabled).

Strict/Lazy As with Direct/Lazy, with full scheduling on context switches

(i.e., direct process switch optimisations disabled).

Strict/Eager As with Direct/Lazy, with both eager queueing and full

scheduling on context switches (i.e., both direct process switch

and lazy queueing optimisations disabled).

IPC-Scan As with Direct/Lazy, with a full scan of IPC send queues carried

out each time an IPC receive is performed to ensure the highest

thread is processed first.

IPC-Ordered As with Direct/Lazy, with the IPC send queues of each thread

always kept in priority-order to ensure the highest thread is

processed first when an IPC receive is performed.

IPC-Heap As with Direct/Lazy, with the IPC send queues of each thread

replaced with a heap data structure, ensuring that the highest

thread is processed first when an IPC receive is performed.

Table 3.1: Summary of the different kernel implementations evaluated.
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Chapter 4

Scheduler Evaluation Methods

To determine the strengths and weaknesses of each of the variants of the kernels described

in Chapter 3, we constructed a series of benchmarks designed to exercise different aspects

of the kernels. The benchmarks fall into two broad categories: macro-benchmarks, de-

signed to exercise the system as a whole and be representative of workloads the system

is likely to experience in real-world usage, and micro-benchmarks, designed to focus on

a particular aspect of the system to evaluate performance of particular aspects of the

kernels. These benchmarks are described in more detail below.

4.1 Testing Platform

4.1.1 Hardware Platform

We ran our tests on the Gumstix Connex 400xm board. The processor has an X-Scale

PXA255 clocked at 400 MHz, with 64 MB of RAM.

The PXA255 has on-chip performance counters that allow processor events such as clock

cycles, cache misses and TLB misses to be counted. We used the cycle counter in all our

benchmarks to gain our timing results, except where noted otherwise.

4.1.2 Software Platforms

L4 Workbench

To perform micro-benchmarks, we constructed a custom framework named ‘L4 Work-

bench’ to allow benchmarks to be quickly constructed and tested.
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The platform is carefully designed to ensure that no system activity takes place when

a benchmark is executing other than the benchmark itself. The framework also runs

benchmarks multiple times before timing results are taken to ensure that code and data

pages associated with the benchmark are paged in and that the processor’s caches are

primed. Each test is then run five additional times, and the average result of each test is

taken. The standard deviation of all test results was less than 1%.

Wombat and Re-aim

Wombat [6] is a port of Linux modified to run para-virtualised on top of L4. Wombat was

constructed by adding a new L4 ‘architecture’ to the Linux kernel. The port utilises L4

for thread creation and management, and uses L4 IPC for communication between the

different components of the system such as syscall and exception delivery.

Re-aim [15] is a full-system benchmark designed to simulate a variety of workloads on

POSIX-compliant operating systems. For our tests, we ran Re-aim on top of Wombat.

We used the benchmark not only for its output benchmark results directly, but also as

sample workload allowing us to gather statistics about how user-level processes interact

with L4 (Section 4.2), and finally to act as a profile target to determine how much system

time individual components of L4 consume (Section 4.5).

The Re-aim benchmark has two separate testing modes:

Single-user Mode : This benchmark mode runs a series of micro-benchmarks, each mea-

suring the performance of a particular aspect of the system such as the number of

UDP operations per second, the number of floating point operations per second, or

the disk throughput of the system. We used the Re-aim single user benchmark to

test system throughput for the different kernels. The different single user tests we

used in our benchmarks are outlined in Table 4.1.

Multi-user Mode : This benchmark mode attempts to simulate workloads experienced

by ‘real world’ systems. In our tests, we ran five processes that simultaneously

execute a list of tasks in a pseudo-random order.

The tasks carried out by each thread are determined based on the benchmark ‘pro-

file’ used. Each profile attempts to simulate a different workload, such as a database

server, a file server or a web server. The three profiles we tested are described in

Table 4.2. We used the Re-aim multiuser benchmarks to gather statistics on how

userspace interacts with the kernel, and also to act as a profile target.
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Benchmark Task

brk test Carry out the brk syscall in a loop.

creat clo Create and then close files in a loop.

dgram pipe Send and receive random-length datagram packets.

dir rtns Carry out various directory querying syscalls.

exec test Create children with fork, which in turn carry out an

exec.

fork test Create and wait for child processes using fork and wait.

link test Create and destroy hard links to individual files.

misc rtns Carry out miscellaneous Unix query syscalls.

page test Allocate and deallocate memory with sbrk.

pipe cpy Send and receive random-length packets over a Unix pipe.

shared memory Perform semaphore operations and read/write operations

on shared memory.

signal test Send and catch Unix signals in a loop.

stream pipe Send and receive random amounts of data of a Unix

stream.

udp test Send and receive random-length UDP packets over

loopback.

Table 4.1: Descriptions of the Re-aim single-user benchmark tasks

tested.

For both benchmarking modes, a number of the tests attempt to read or write to disk.

The hardware we used for testing runs Wombat entirely from a RAM-disk, so no real I/O

occurs.

In order to ensure that the results gained were reproducible, we modified the Re-aim

benchmark source-code to seed its pseudo-random number generator on the child-number

of each benchmark process instead of the Linux-generated process-id that Re-aim was

configured to use.

Finally, in our initial trials of Re-aim we discovered a bug in Wombat that caused it to

lose track of significant amounts of time under high system activity. This bug caused the

Re-aim throughput results to become artificially inflated. Unable to fully determine the

cause of the bug, we modified Re-aim to query the cycle-counter on the PXA255 to gain

accurate timing results.
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Benchmark Task

complete The complete suite of Re-aim tests, both CPU-bound and

those with a high level of system activity.

database A workload simulating that of a database server. Involves

a some CPU-bound work, and a significant level of work

with high system activity.

udpserver A workload simulating a network server communicating

over UDP, such as a DNS server.

Table 4.2: The Re-aim multiuser system profiles tested.

4.2 Kernel/Userspace Interaction Statistics

To gain an understanding of how userspace workloads interact with the kernel, we mod-

ified a version of the Direct/Lazy kernel to collect statistics about how the three different

Wombat workloads listed in Table 4.2 interact with the kernel. We use these values to

calculate theoretical performance qualities of the kernels described in Chapter 3, such as

the number of queue operations saved by lazy-queueing, or the number of ready-queue

lookups saved by direct process switching.

The following values are measured:

Eager Enqueues / Dequeues : The number of times a kernel that implements eager-

scheduling would need to enqueue or dequeue a thread from the ready-queue.

Only one counter is used to record the number of enqueues and dequeues because the

two values are the same: every thread that would be enqueued onto the ready-queue

by an eager scheduler must eventually be dequeued again. (The one exception is

that the two counters would differ from each other if there are threads on the ready-

queue that have not yet been dequeued.) The final value of the counter is hence

equal to the number of enqueues and also the number of dequeues.

The counter value is obtained by recording the number of transitions a thread makes

from a ready state to a blocked state. A kernel implementing eager-queueing would

be required to remove the thread from the ready-queue at this time, but a lazy-

queueing kernel may avoid the operation completely.

Actual Enqueues / Dequeues : The number of times a thread is actually enqueued in

the scheduling queue data structure by a kernel implementing lazy-queueing.

Similarly to the eager enqueue/dequeue counter, only one counter is used to record

both actual enqueues and actual dequeues because the two values are expected to
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be the same: the number of times a thread is placed on the ready-queue must be

equal to the number of times a thread is removed from the ready-queue, disregarding

changes in the number of threads currently on the ready-queue.

By inspecting the differences in the number of eager enqueues/dequeues and the

number of actual enqueues/dequeues, the effectiveness of lazy-queueing in avoiding

ready-queue operations can be determined.

Deferred Enqueues / Dequeues : The number of times an enqueue or dequeue opera-

tion is avoided by lazy-queueing, only to occur again at a later time.

Deferred dequeues occur when the scheduler is searching for a thread to run and

stumbles across a thread not in a ready state, which must then be removed be-

fore continuing. Deferred enqueues occur when an executing thread is not on the

scheduling queue and is interrupted by a second thread, sends to another thread, or

has its timeslice expire. The original thread must then be placed on the ready-queue

to ensure that the scheduler comes back to it at some point in the future.

Context Switches : The number of context switches from one user thread to another

user thread, caused for example by IPC transferring control to a different thread or

timeslice expiration.

Ready Queue Lookups : The number of times the ready-queue is searched to find the

highest priority thread in the system ready to execute.

Ready Queue Length : The number of threads currently on the ready-queue, sampled

each time a ready-queue operation (i.e., an enqueue, a dequeue or a lookup) takes

place. The value sampled is the number of items on the queue prior to the queue

operation taking place.

Total IPC Calls : The number of IPC messages successfully transferred from one thread

to another.

IPCs Requiring Queueing : The number of IPC calls that require the sending thread to

be placed on the receiver’s IPC send queue prior to the IPC being carried out. This

situation occurs if the destination thread is not currently ready to receive an IPC,

for example if it is not listening for IPCs or if it is only ready to accept an IPC from

a specific thread other than the sender.
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4.3 Micro-Benchmarks

4.3.1 Ping Pong

A common benchmark used in the L4 community to measure the performance of IPC is

the ‘ping pong’ benchmark. This benchmark attempts to determine the best-case number

of cycles required for a thread to send a single IPC message with a fixed amount of data

to another thread.

The benchmark is performed by having a client thread make an IPC call to a server

thread. The server immediately replies back to the client, simultaneously becoming ready

to receive the next IPC. We measured the number of cycles required to perform 1 000 000

such operations to determine the number of cycles required for the IPC operation.

4.3.2 Hot Potato

The ‘hot potato’ benchmark measures the time it takes for a ring of 250 threads to relay an

IPC message (the ‘potato’) among them. Each thread is given a unique priority between

1 and 250 inclusive, and the order of threads in the ring shuffled.

When only one IPC is being passed between the threads, the hot potato benchmark is

similar to the ping pong benchmark, with two exceptions: (i) the thread being sent to

and the thread being received from are different, which exercises different areas of the

IPC code; and (ii) IPC messages are sent to and from threads with different combinations

of priorities, each combination producing a different scheduling outcome. This contrasts

ping pong where each thread both sends to and receives from a thread of a fixed priority.

The hot potato benchmark also tests the time taken for the ring of threads to relay the

IPC when multiple IPCs are active within the ring. When only one IPC is being relayed,

only a single thread will ever be placed on the ready-queue at any point in time, while

all others will blocked waiting for the IPC. When multiple IPCs are active in the ring,

multiple threads will be ready to be scheduled at any point in time: one per active IPC.

By increasing the number of active IPCs, we test how the ready-queue data structure

responds to a greater number of threads being placed on it at any point in time.

The hot potato benchmark is a more realistic benchmark for determining average-case IPC

times than the ping-pong benchmark as it exercises a greater amount of the IPC handling

code of each kernel. The benchmark also uses a large number of threads, preventing the

entire working set of the benchmark from fitting into the processor’s cache, as would likely

be the case for IPC usage in real-life systems.
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4.3.3 IPC Queueing

The four kernels, Direct/Lazy, IPC-Scan, IPC-Ordered and IPC-Heap all use different methods

of enqueueing and dequeueing threads on IPC send queues. This benchmark tests the

performance of these methods as the number of threads on a single IPC queue increases.

The test executes by starting a number of threads with random priorities. The threads

are each woken one by one in a random order. When a thread wakes, it calls the server,

causing it to becomes queued on the server’s IPC send queue. Only after all threads are

enqueued does the server process the threads waiting on its send queue. This process is

repeated and the average time is determined for each thread to send its IPC, be enqueued,

and then be processed by the server.

The test allows us to measure how long it takes to enqueue and dequeue threads from

IPC send queues. Because we expect the time taken to enqueue and dequeue to change

depending on the number of other threads on the queue, we repeat the test for varying

numbers of threads.

4.4 System Latency

We measured latency in the system by setting up a high-priority ‘latency measurement’

thread which periodically takes latency measurements while other system activity takes

place. The thread utilises a 3.6864 MHz timer on the PXA255 to trigger an interrupt at

a known time in the future, and then blocks waiting for the interrupt. When the thread

is woken again, it records the current time and determines the latency by calculating the

difference between the time the thread was scheduled to wake up and the time the thread

was actually woken. The length of time in the future the latency thread schedules its

wake-up interrupt is chosen randomly to avoid systematic errors in the latency samples.

To measure worst-case latencies introduced by the different scheduling algorithms, we

constructed benchmarks designed to act as pathological testcases for each algorithm.

While none of these pathological cases are intended in any way to be representative of

expected workloads in L4, they are still relevant when considering hard real-time systems

(which require guarantees about the upper-bounds on interrupt latencies, for example),

when there is a possibility of malicious threads being present on the system (which may

attempt to exploit these worst-case scenarios), or if the system designers are just feeling

particularly pessimistic (and hence do not wish to assume that the scenarios described in

these contrived benchmarks will not actually occur in their real-life workloads).
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4.4.1 Lazy-Dequeueing Latencies

The use of lazy-dequeueing in a kernel has the potential to introduce large latencies into

the kernel if a large number of blocked threads build up on the ready-queue and must later

be removed in a single non-preemptable operation. These two tests attempt to highlight

these problems by deliberately triggering these long chains of deferred dequeues.

IPC Elevator Test

A chain of 250 threads in increasing priority is formed, each thread initially blocked waiting

for an IPC from the previous thread in the chain. Starting from the lowest priority thread,

each thread, when woken, carries out the following sequence of actions:

• The thread performs a send IPC to a high-priority server currently ready to receive.

• Control flows to the server, which then performs a blocking receive, sending it to

sleep again. The scheduler then returns control back to the original thread.

• The thread then performs a blocking call to the next thread in the chain, causing

the next thread to wake and the current thread to become blocked.

This process is depicted in Figure 4.1. The first step in the sequence of actions forces

each thread in the chain onto the ready-queue, while the third step causes each thread,

now on the ready queue, to become blocked. If lazy-dequeueing is being used by a kernel

implementation, the thread will not be removed from the ready-queue. When the end of

the chain is reached, all 250 threads (now in a blocked state) will be on the ready-queue.

The next time the kernel attempts to find a thread ready to be scheduled, all 250 threads

will be removed from the queue, a long non-preemptable operation potentially causing

large latencies. The process is then repeated.

Thread Start/Stop Test

An alternative way of showing the large potential latencies caused by lazy-dequeueing is

through L4’s suspend/resume thread functionality. When a thread is suspended, lazy-

queueing kernels may not remove the suspended threads from the ready-queue.

This test sets up 250 intermediate-priority threads, each of which is then suspended by

a high-priority controller thread. Once all threads have been suspended, the controller

thread changes to a low priority, forcing the L4 scheduler to search for the next ready-

ready thread. During this search, all 250 suspended threads are lazily dequeued from the
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Figure 4.1: The IPC elevator test. A series of threads in increasing

priority each send to a high-priority server S, causing S to be scheduled

and the thread placed on the ready-queue. Each thread, when next sched-

uled, then calls the next thread up in the chain, becoming blocked. The

process repeats, forcing a large number of blocked threads onto the ready-

queue, which will all have to be dequeued the next time a ready-queue

lookup occurs.

ready-queue in a non-preemptable operation. L4 will eventually reschedule the control

thread, which will then revert to a high priority, resume the 250 threads, and repeat the

process.

4.4.2 Chained IPC Latencies

Another source of high latencies in the L4 kernel independent of the scheduler optimi-

sations presented in Chapter 2 are chained IPCs. Chained IPCs involve a sequence of

successive IPCs that are carried out one after the other in a single non-preemptable op-

eration.

Such chains may form if multiple threads perform a ‘send and receive’ IPC to each other.

None of the IPC operations can take place until the first thread in the chain becomes

ready to receive. When this happens it is possible, if the priorities of threads in the chain

are in increasing order, that the entire chain of IPCs will be carried out in a single non-

preemptable operation, potentially introducing high latencies. This benchmark sets up

250 threads in such a chain, releases the chain, and then repeats the process in a loop.

We examine this source of latency in order that we may be able to compare the latency

caused by lazy-queueing with it. This will assist in gaining an understanding of the

relative magnitude of the lazy-queueing latencies.
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4.5 Scheduler Overhead

The final metric we tested was the amount of processor time consumed by the scheduler,

as a percentage of the total system time. We would expect that the performance of each of

the kernels would be inversely proportional to the amount of time taken by the scheduler

to make its decisions. Profiling can help reveal the cause of performance bottlenecks, and

also acts as a method to double-check the results measured in previous benchmarks (for

instance, by ensuring that unexpected idle time does not occur).

To determine the amount of time taken by the scheduler, we profiled a system running

the Re-aim udpserver multiuser benchmark for each kernel.

4.5.1 Statistical Profiling

One light-weight method of profiling a complete system is statistical profiling. This pro-

filing method periodically takes a sample of the instruction the processor is currently

executing. The collected samples are analysed off-line, matching each sample with its

corresponding function. Over long periods of sampling, functions in the system will be

represented by approximately the same proportion of samples as the processor time they

consume.

Statistical profiling has the benefit that every component of the system—both compo-

nents running in the processor’s privileged mode and those in standard mode—can be

simultaneously profiled. Additionally, statistical profiling can take place without needing

to recompile any part of the system, and is capable of profiling any type of code regardless

of the language it was written in (whether that be C, C++, or hand-crafted assembler).

Statistical methods of profiling do, however, suffer from a few flaws. They rely on random

sampling, and as such are not appropriate for profiling code that runs a small, constant

number of times. Such code will not be sampled a sufficient number of times to confidently

determine what percentage of time each of the functions are taking.

Further, the method of statistical sampling used assumes that a program counter value

can be mapped uniquely to a single function. Because program counter samples contain

virtual addresses (which may be shared by multiple different processes), this assumption

may not always hold.

For the Re-aim benchmarks, L4, Iguana and Wombat each occupy a different region of

the system’s virtual address space, allowing program counter samples to be correctly
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attributed to each. The user applications running on top of Wombat (such as init, the

system’s shell and Re-aim itself) share virtual addresses, as depicted in Figure 4.2.

For our profiling results, we make every effort to ensure that the minimal number of

Wombat processes are running during the profiling process, and assume that those that

are running will be relatively inactive, and thus will only be sampled a negligible number

of times. With this assumption, we attribute all samples in the user-level virtual address

area to the single application being profiled.

Figure 4.2: Address space layout of a system running Re-aim on Wom-

bat. L4, Iguana and Wombat each occupy unique locations in the virtual

address space, allowing program counter samples to be uniquely mapped

to compiled functions. User-space applications running on Wombat,

however, share the same set of virtual addresses making this mapping

difficult.

4.5.2 Sampling the program counter on the ARM

The basic idea of gathering program counter samples is fairly straight-forward: the profiler

sets up an interrupt to periodically fire. When the interrupt fires, the profiler is trapped

into. The profiler then records the address that was executing when the interrupt fired

and resumes execution of the system.

The PXA255 chipset has an on-chip read/write 32-bit cycle counter, which also has the

ability to fire an interrupt when the counter overflows. By setting the value of the counter

to 232−t, we can choose to fire an interrupt t cycles in the future. For our tests we sampled

the processor’s program counter at a random time within every 25µs block, as shown in

Figure 4.3.

In our experiments we ran multiple profiling runs on the same workloads taking a sample

once every 25µs in half the runs and once every 1600µs in the other half. We were unable

to detect any significant differences in profiling results of the two runs. This suggests that

the overhead of sampling once every 25µs is not significant enough to modify the profiling

results.
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Figure 4.3: Random sampling of the processor’s program counter.

Time is divided into even length blocks. An interrupt is scheduled to

fire at a random point of time in each block, where the program counter

is recorded for later off-line analysis.

Sampling kernel code

A significant difficulty in profiling code is that while the L4 microkernel is executing,

interrupts are disabled. The effect of this is that any timer-based interrupt would be

delayed until after interrupts were re-enabled (causing a significant number of samples to

be captured on the ‘re-enable interrupt’ instruction, making it appear as if that instruction

itself was taking the majority of the processor’s time).

The ARM processor has two methods of generating an interrupt, a standard interrupt and

a ‘fast’ interrupt. Each interrupt type has a different method of trapping into the kernel.

Further, when interrupts are disabled, the kernel is capable of leaving fast interrupts

enabled.

We modified the kernel to leave fast-interrupts enabled while in kernel mode, and designed

the profiler to use fast interrupts as its method of taking a sample. This allows the profiler

to be able to take samples at almost all times.

There are still a few periods of time that the profiler is unable to sample the system:

when the kernel page faults, for example, even fast interrupts are disabled until the fault

is resolved. From the profiler’s point of view, it appears that faulting instructions take

many hundreds of cycles to execute, and hence these instructions are more likely to be

sampled by the profiler.

4.5.3 Analysing Results

To analyse the profiling data, we group program counter samples into their individual

functions. This is done by dumping the symbols from compiled executables which gives

the compiled-code addresses of each source-level function. Functions that have been
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compiled from C and C++ have both start and end locations recorded in their executable

files, making program counter samples easy to account for. Functions written in assembly

(such as memcopy and memmove) only have start symbols listed for them, making it harder

to determine if a given program counter sample belongs to them. We use a heuristic that

assigns program counter samples to an assembly function if the previous symbol known

in the address space was the start of an assembly function and the starting location is not

more than a small constant number of bytes earlier than the sample.

Dynamic libraries are trickier to map samples to, as the libraries may be located at

different virtual addresses for each program execution. We could not find a reliable method

of determining where a given library was located in memory that did not involve making

modifications to either Wombat itself or the applications running under Wombat. As a

consequence, our implementation does not track program time spent in dynamic libraries,

but instead marks it ‘unknown’.

4.5.4 System cache profiling

The system profiler is configured to use the processor’s clock cycle performance counter

as a trigger for when to take a sample: when a certain number of cycles have occurred

(representing the passage of time), a sample is taken. These samples tell us where the

most time is being spent.

The PXA255 offers a variety of different performance counters, all of which can be set

up to trigger an interrupt at overflow. If instead of sampling after a number of clock

cycles we take a sample after a specific number of data-cache misses, we can create a very

rudimentary system cache-usage analyser. This same technique can be used on any of the

other performance counters offered by the processor: TLB misses, branch mispredictions,

data stalls, etc.

Due to time limitations, we were unable to collect data relating to the scheduler’s contri-

bution to cache misses, but will consider it in future work.

4.6 Summary

We took four different approaches to evaluate the different kernels described in Chapter 3:

(i) collecting statistics regarding how the Re-aim multiuser benchmarks interact with the

kernel scheduler and IPC paths; (ii) performing micro-benchmarks on L4 Workbench, each

testing a particular aspect of system performance for each modified kernel; (iii) using the
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Re-aim single user benchmarks to determine the performance of a variety of different tasks

for each modified kernel; and finally (iv) profiling each modified kernel to determine the

amount of time spent in the scheduler and IPC paths.

The results of these tests are described in the next chapter.
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Chapter 5

Results

In this chapter, we explore the results of the benchmarks described in Chapter 4. We

start by examining statistics showing how userspace workloads interact with the kernel

and calculating the theoretical overheads associated with the scheduler optimisations and

IPC. We then move on to looking at empirical results and compare them against our

theoretical results.

5.1 Kernel/Userspace Interaction Statistics

5.1.1 Scheduler Usage

Scheduler Operations

The results in Table 5.1 show the number of different scheduler operations performed per

second for three Re-aim workloads described in Section 4.1.2. Comparing the number of

eager enqueues/dequeues to the number of actual enqueues/dequeues, we can see that

the number of queue operations avoided by lazy-queueing is significant: between 96% and

99% of operations need not be carried out, depending on the workload.

Of the enqueue and dequeue operations actually carried out, a large fraction occur at a

deferred time; roughly one-third of enqueues and two-thirds of dequeues. These results

suggest that it is important for lazy-queueing kernels to ensure that deferred queue op-

erations are able to be performed quickly, as all kernels explored in this thesis currently

do.

The results also show that the number of scheduler lookups is significantly less than the

number of context switches. If no optimisations are applied, we would expect that a

priority-observing kernel implementation would be required to perform one ready-queue
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Operation complete database udpserver

Eager enqueues/dequeues 6757.60 10187.48 41605.22

Actual enqueues/dequeues 280.96 233.79 213.45

Enqueues/dequeues avoided 95.84% 97.71% 99.49%

Deferred enqueues 88.88 83.27 99.02

(percent of actual) 31.63% 35.62% 46.39%

Deferred dequeues 181.85 140.88 128.81

(percent of actual) 64.73% 60.26% 60.35%

Context switches 7040.25 10464.57 41905.92

Ready-queue lookups 363.94 308.16 305.38

Lookups avoided 94.83% 97.06% 99.27%

Table 5.1: Counts of scheduling operations required by three different

Re-aim workloads. All values are operations per second.

lookup before each context switch to determine the next thread to switch to. The direct

process switch optimisation saves a large fraction of the lookups required, with between

95% and 99% of the lookups being avoided, depending on the workload.

Ready Queue Usage

Figure 5.1 shows the number of threads present on the ready-queue prior to each queue

operation taking place (i.e., prior to each enqueue, dequeue or queue-lookup taking place).

The results show that for these workloads, the majority of queue operations take place

with only two or three threads actually being present on the ready-queue. Further, a

maximum of six threads are ever simultaneously on the ready-queue for these particular

workloads.

These results are not unexpected. The tested Re-aim workloads only run five processes

at any point in time. The worst-case scenario would correspond to all five processes being

ready to execute at the same time as the Wombat syscall thread.

Lazy-dequeueing is likely to inflate the number of ready threads on the ready-queue, as

blocked threads remain on the queue for longer than necessary. Similarly, lazy-enqueueing

may artificially reduce the number of threads on the ready-queue, but only by at most a

single thread, unlike lazy-dequeueing which may cause an arbitrary increase.
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Figure 5.1: Number of threads enqueued on the ready-queue for Re-aim

workloads as a percentage of queue operations. We can observe that for

the majority of queue operations, only two or three threads are actually

present on the ready-queue.

Because these results are sensitive to the number of threads running in the system (which

was limited to only five for the Re-aim tests), it is hard to draw any generalised conclusions.

Future work that carries out benchmarks utilising a greater number of threads may provide

greater insight to how the ready-queue is utilised by system workloads.

5.1.2 IPC Usage

All three workloads have a significant level of IPC activity, ranging from thousands to

tens-of-thousands of IPCs per second. The complete and database workloads tend to

Operation complete database udpserver

IPC calls 6494.19 9979.19 41402.03

Average cycles between successive IPC calls 61244 39733 9311

Expected IPC overhead (350-cycle IPC) 0.57% 0.87% 3.62%

IPCs requiring delivery queueing 0.64 0.89 0.56

Maximum IPC send-queue length 1 1 1

Table 5.2: Counts of IPC operations required by three different Re-aim

workloads. All values are operations per second.
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have a lower number of IPCs, as both workloads involve tasks that are primarily CPU

bound. In contrast, the udpserver workload primarily involves communication back and

forth to Wombat, so we would expect a higher level of IPC activity.

We calculated the approximate number of cycles of work performed between successive

IPCs, using the fact that the PXA255 has a clock speed of 400MHz and assuming that

the instrumented kernel takes approximately 350 cycles to perform each IPC.

Both the complete and database workloads have a significant number of cycles between

each IPC. Using the calculations shown in Figure 2.1 on page 10, we would expect these

workloads to have approximately 0.57% to 0.87% of their time attributable to IPC over-

heads. The udpserver workload has a much greater rate of IPCs, averaging approximately

one IPC each 9000 cycles of work performed. With this high level of IPC activity, we

would expect system time attributable to IPC to be approximately 3.62%.

For all three workloads, the number of IPCs that are placed into their sender’s IPC

send queue is very small: less than one per second. Further, for each of these queueing

operations, the enqueued thread is the only thread in the receiver’s send-queue. As IPC

send-queueing is such a rare operation, we would not expect any measurable difference for

the IPC-Scan, IPC-Ordered or IPC-Heap kernel implementations. This allows a guarantee of

thread ordering to be provided by the kernel with minimal impact on these workloads.

5.2 Micro-Benchmarks

5.2.1 Ping-Pong

Figure 5.2 shows the number of cycles taken for the different kernel implementations to

perform a warm-cache IPC operation. All standard deviations for the results were less

than 0.1%.

The Fastpath implementation is by far the fastest IPC implementation, taking 173 cycles

to perform an IPC, which is 121 cycles faster than the C-based Slowpath implementation

using the same algorithms, taking 294 cycles (70% slower).

The Direct/Lazy kernel, mimicking the behaviour of the Slowpath kernel, has an almost

identical speed, taking 297 cycles. Thus the introduction of the abstract scheduling in-

terface has a minimal impact on warm-cache IPC times between two threads.
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Figure 5.2: Warm-cache ping-pong times for the different kernel im-

plementations. Times are shown for different numbers of 32-bit words

being transferred in the IPC call.

The Direct/Lazy, Strict/Lazy, Direct/Eager and Strict/Eager kernel implementations take 297,

365, 374, and 452 cycles respectively. For raw IPC times, the direct process switch optimi-

sation saves 68 cycles while lazy-queueing saves 77 cycles. Removing these optimisations

would respectively cause a 23% and 26% time increase to warm-cache IPC times over the

base Direct/Lazy IPC times. Despite over 13 years of development having taken place on

the L4 kernel and a change of architecture from IA32 to ARM, the former result closely

matches Liedtke’s [8] results, which also determined that removing lazy-queueing would

increase IPC times by 23%.

Comparing the Direct/Lazy, IPC-Scan, IPC-Ordered and IPC-Heap kernels we see that all four

have very similar raw IPC times, taking 297, 296, 304 and 297 cycles respectively. No

change should be expected between the four kernels, as the ping-pong benchmark does

not require any IPC queue manipulations to take place. The small differences between

the four kernels can be attributed to small changes in the compiler’s code generation.

5.2.2 Hot Potato

Figure 5.3 shows the results of the hot-potato benchmark, described in Section 4.3.2. The

x-axis shows the number of IPC messages (or ‘potatoes’) active in the ring, while the

y-axis shows the average time taken for each thread to process a single IPC message and

pass it on to the next thread. The number of cycles required for each IPC operation
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Figure 5.3: Results of the ‘hot potato’ benchmark, described in Sec-

tion 5.2.2. The x-axis shows the number of IPC messages active in

the ring, while the y-axis shows the time taken for each thread to see a

constant number of IPC messages.

is significantly higher than in the ping-pong benchmark because the working set of the

benchmark is too large to fit entirely in the processor’s cache.

When the number of potatoes is small, the Fastpath kernel is significantly faster than

the other kernel implementations, benefiting from its assembly-optimised IPC fastpath.

As the number of potatoes increases, however, the performance of of the kernel slowly

deteriorates, eventually exceeding the speed of the Slowpath kernel by a small margin.

As the number of active IPCs in the ring approaches the number of threads, threads

increasingly are forced to wait for their destination to be ready before they can send.

Such waiting will require the source thread to be placed on the destination thread’s

IPC send-queue, and later removed when the IPC finally takes place. Neither of these

operations are supported by the assembly-optimised IPC path of Fastpath, forcing it to to

use the same C-language IPC path as the Slowpath kernel implementation.

For large numbers of active IPCs, the Fastpath kernel eventually becomes slower than the

Slowpath kernel, because the fastpath offers no benefits to the kernel for these testcases

but is still invoked each IPC forcing the kernel to perform extra checks only for the IPC

to be demoted to the slowpath.

The Slowpath kernel and the Direct/Lazy kernel both implement the same scheduling algo-
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Figure 5.4: Results of the ‘hot potato’ benchmark comparing the IPC-

Scan, IPC-Ordered and IPC-Heap kernels against the Direct/Lazy kernel.

The Fastpath kernel is also shown as a baseline.

rithm and are both implemented in the same language. All else being equal, we would

expect a similar performance curve for the two kernels. The Direct/Lazy kernel, however, is

around 10% faster for this benchmark. The difference in performance can be attributed to

a minor implementation difference in the lazy-queueing optimisation of the two kernels:

the Slowpath kernel eagerly dequeues threads from the scheduler’s ready-queue when a

thread carries out a blocking receive, unless the thread being received from is the same as

the thread being sent to. This latter exception is why the performance difference is not

visible in the ping-pong benchmark results. In contrast, the Direct/Lazy kernel (like the

Fastpath kernel’s IPC path) lazily-dequeues the threads.

The ordering of the Direct/Lazy, Strict/Lazy, Direct/Eager and Strict/Eager kernels are sim-

ilar to the warm-cache IPC times in Section 5.2.1. The notable exception is that the

performance difference between Strict/Lazy and Direct/Eager kernels is magnified from the

ping-pong results, the former kernel having an 4% speed advantage over the latter.

Comparing the three IPC strict queue ordering kernels shown in Figure 5.4, both the

IPC-Scan and IPC-Ordered kernels have very similar performance to that of the Direct/Lazy

kernel. The hot-potato benchmark does not require IPC queues to ever hold more than

a single thread at any point in time; this means that any disadvantages that the two

kernels with O(n) send-queue operations have dealing with a larger number of threads do
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Figure 5.5: IPC queueing benchmark results. The x-axis shows the

number of threads enqueued onto a single server thread’s IPC send-

queue before the server starts processing the threads; the y-axis shows

the amount of time taken for each thread to be processed.

not apply for this benchmark. The IPC-Heap kernel, meanwhile, has slower performance

than the other three kernels. While this kernel only has to ever enqueue a single thread

on any one IPC send-queue like the others, the heap data structure used by the kernel has

more complex enqueue and dequeue operations, causing the performance decrease seen in

the results as the number of queued IPCs increases.

5.2.3 IPC Queueing

The results in Figure 5.5 show the IPC queueing benchmark described in Section 4.3.3

executed for Direct/Lazy, IPC-Scan, IPC-Ordered, and IPC-Heap. The Direct/Lazy implemen-

tation makes no attempt to process threads in priority order, but can be considered as a

baseline for an “ideal” implementation.

The IPC-Scan and IPC-Ordered kernel implementations require O(n) time to process each

thread, as would be expected of the implementation. When a larger number of threads

are present on the IPC send-queues, the IPC-Ordered kernel tends to be twice as fast as

the IPC-Scan kernel. This occurs because when threads are inserted into a sorted list, on

average only half the list needs to be searched before the correct location can be found.

In contrast, the IPC-Scan algorithm requires the entire list to be scanned every time a

thread is taken off the queue.
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Figure 5.6: Latency measures of a pathological case for lazy-queueing.

250 threads are placed on the ready-queue which then move into a blocked

state. A kernel implementing lazy-queueing may have to dequeue all 250

blocked threads before a ready thread can finally be found, introducing

potentially large latencies into the system.

The IPC-Heap kernel performs significantly better than both IPC-Scan and IPC-Ordered once

the number of threads becomes larger, as we would expect of the O(log n) algorithm. This

comes at the cost of slower performance than the other two implementations when the

number of threads is smaller than ten. The operations involved in maintaining a heap

data structure require more work than those for maintaining a sorted list or scanning a

list, causing the scalability offered by the IPC-Heap kernel to come at the cost of higher

overhead for each queued IPC operation. It is likely, however, that these overheads could

be reduced if additional effort was spent optimising the heap implementation of this

kernel.

5.3 System Latency

5.3.1 Lazy-Dequeueing Latencies

The two lazy-dequeueing latency tests show the effect of lazy dequeueing on worst-case

latency times. Both latency benchmarks attempt to force the scheduler to place 250

different threads on the ready-queue and then lazily dequeue them all. A lazy-queueing

kernel that leaves these threads on the ready-queue will possibly require that all 250

threads be removed from the ready-queue in a single non-preemptable operation.
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Figure 5.7: Latency measures of a pathological case for IPC chain-

ing, described in Section 4.4.2 on page 41. Full results are shown in

Figure A.3 of Appendix A.

By inspecting the assembly of the compiled Slowpath kernel, we expect a deferred dequeue

to take approximately 20 clock cycles, with four data-cache lines accessed, one of which

is shared with eight other threads. The PXA255, running at 400 MHz, would then be

expected to take approximately 50 ns for each deferred dequeue (12.5µs for all 250 threads)

assuming warm caches, or 893 ns (223µs for all 250 threads) if caches are cold, assuming

a 108-cycle cache-miss penalty (measured for the PXA255) and that the penalty for the

one shared cache line is only taken by one eighth of the threads.

Figure 5.6 shows the lazy-dequeueing benchmark latency results for two kernels. The

lazy-queueing Fastpath kernel takes up to 250µs for a significant proportion of samples

taken. In contrast, the eager-queueing Strict/Eager kernel has the majority of its latency

samples less than 30µs. We were unable to determine the precise cause of the outliers for

the Strict/Eager kernel, but may be due to unexpected cache-misses.

The full results in Figure A.1 of Appendix A show that all eager-queueing kernels have a

similar profile to the Strict/Eager kernel, while almost all lazy-queueing kernels suffer the

same level of latencies as the Fastpath kernel. The Slowpath kernel, however, does not suffer

the high average latencies of the other kernels, despite employing lazy-queueing. This is

because the Slowpath kernel eagerly-dequeues threads that block on IPC, as described

earlier in Section 5.2.2.

Figure A.2 of Appendix A shows the results of the second lazy-queueing latency test,

and shows that the Slowpath kernel still has the same latencies in pathological cases. The

two kernels Direct/Lazy and Strict/Lazy, though using lazy-queueing, do not show the high

latencies in this case as they both eagerly dequeue halted threads.

56



20%

40%

60%

80%

100%

120%

dgram
_pipe

dir_rtns

page_test

shared_m
em

udp_test

N
or

m
al

is
ed

 th
ro

ug
hp

ut

Fastpath
Direct/Lazy

Direct/Eager

Strict/Lazy
Strict/Eager

20%

40%

60%

80%

100%

120%

dgram
_pipe

dir_rtns

page_test

shared_m
em

udp_test

N
or

m
al

is
ed

 th
ro

ug
hp

ut

Direct/Lazy
IPC-Scan

IPC-Ordered
IPC-Heap

Figure 5.8: Partial results of the Re-aim single-user benchmark results,

normalised to the performance of the Slowpath kernel. The full results

are presented in Figure A.4.

5.3.2 IPC Chaining

Figure 5.7 shows the results of the IPC chaining latency test for the Fastpath kernel. The

test shows that latencies of almost 1.6 ms can be triggered by userspace applications. All

the kernels we tested showed similar results, which are shown in full detail in Figure A.3

of Appendix A.

The latencies arise because the kernel must complete all 250 IPC transfers in a single

non-preemptable operation. The use of strict scheduling does not assist to reduce the

latencies because the high-priority interrupt handling thread can not be placed onto the

scheduler’s ready-queue (and hence considered for scheduling) until the entire chain of

operations is complete.

One method of reducing these latencies to lower levels would be to introduce a preemption

point after each IPC transfer. Such a preemption point would check for pending interrupts

each time an IPC transfer was completed and, if appropriate, would interrupt the chain

of IPCs to allow the interrupt handler to be scheduled.
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5.4 System Throughput

Figure 5.8 shows partial results of the Re-aim single user benchmarks for the different

kernel implementations. (The full results are presented in Appendix A.) The clearest

observation is that for almost all of the benchmarks the Fastpath kernel has the highest

throughput, with a greatest improvement of 13% for the ‘shared mem’ benchmark com-

pared to the Slowpath kernel. This increase is due to the high number of IPCs performed

in the benchmark, which continuously obtain and release semaphores, each requiring a

call to the kernel. The high-speed IPC path in the Fastpath kernel benefits most by this.

Other benchmarks, such as the ‘dir rtns’ benchmark, show little difference between the

various kernel implementations due to very few IPC calls between threads in the system

being required by the benchmarks. Operations such as interrupts and timeslice expirations

still require the scheduler to be invoked regardless of what activity the benchmark is

performing, but these occur so infrequently (only hundreds of times per second) that any

differences among the kernel implementations are insignificant.

The kernels with C-based IPC paths show less significant differences for the different

benchmarks, with all kernels performing within 5% of the Slowpath kernel.

5.5 Scheduler Overhead

We ran a full system profile on different kernels running the Re-aim multiuser udpserver

benchmark. Table 5.3 shows a breakdown of the most time-consuming functions during

the benchmark running on the Fastpath kernel, and Table B.3 shows the total amount of

time spent by each of the different modules in the system for the same benchmark run.

The first observation is the large amount of time (15%) spent in the ‘sys cache control’

function of L4. The function is used primarily for flushing ranges of memory from the

processor’s cache. After a brief investigation we were unable to determine the reason

why such a large amount of time is spent in the function, but further investigation would

certainly be warranted.

Table 5.4 shows the total amount of time spent in the scheduler and IPC paths by each

kernel for the udpserver benchmark. The aggressive compiler inlining used in all the

kernels means that much of the time that should be attributed to the scheduler is falsely

attributed to IPC. For this reason, the split in time between the IPC and scheduler

columns of the table is, at best, a rough approximation. The split still allows us to see

that the two eager-queueing kernels, Direct/Eager and Strict/Eager, spend less time in the
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Module Function Time Spent (%)

vmlinux memmove 30.08

l4kernel sys cache control 15.10

vmlinux syscall loop 3.38

l4kernel vector arm swi syscall 2.45

vmlinux ip push pending frames 1.75

l4kernel vector arm swi exception 1.64

reaim read write close 1.63

vmlinux udp sendmsg 1.46

vmlinux ip append data 1.37

vmlinux flush range invalidate kernel 0.97

l4kernel kip code 0.91

vmlinux local bh enable 0.90

vmlinux netif rx 0.89

Table 5.3: Functions using the most amount of processor time running

the Re-aim udpserver multiuser benchmark, running on the Fastpath

kernel. A more detailed profile is listed in Appendix B.

scheduler than the two equivalent kernels with lazy-queueing, Direct/Lazy and Strict/Lazy.

This occurs as the two eager kernels need not perform deferred-dequeues when searching

for the next priority thread, instead paying a higher overhead in the IPC path. The

Slowpath kernel similarly has a relatively low scheduler overhead. This is likely to be

because of its use of eager dequeueing in the IPC path when threads become blocked

waiting for IPC, giving it the same advantage as the other eager-queueing kernels at the

cost of IPC slowdown times.

The IPC overheads listed are greater than estimated in Section 5.1.2. The Slowpath kernel

which takes only 294 cycles for a basic IPC would be expected to have significantly less

than 3.62% overhead, calculated for a hypothetical kernel with a 350-cycle IPC cost. The

difference is likely to be because the cycles calculated in the ping-pong benchmark assume

best case conditions: only two threads, sending small numbers of message registers, with

all caches warm. By taking the system overheads shown in Table 5.4 and the IPC statistics

in Table 5.2, we can estimate that an average IPC for the Slowpath kernel actually takes

561 cycles, almost twice the basic ping-pong time recorded.
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Time (%)

Kernel IPC Scheduler Combined

Fastpath 2.80 0.90 3.70

Slowpath 5.81 0.30 6.11

Direct/Lazy 5.68 0.60 6.28

Strict/Lazy 6.32 1.00 7.32

Direct/Eager 7.10 0.25 7.34

Strict/Eager 7.14 0.59 7.72

Table 5.4: IPC and scheduler overhead for the different kernel imple-

mentations, running the Re-aim multiuser udpserver benchmark.
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Chapter 6

Conclusion

The goal of this thesis was to quantify the advantages and disadvantages of the three

scheduling optimisations used in L4: direct process switch, lazy-queueing, and FIFO IPC

send ordering. In order to carry out these experiments, we also constructed an in-kernel

scheduling API allowing scheduling policies in the L4 kernel to be readily modified without

significant changes to other parts of the kernel being required. Each of these goals are

discussed below.

6.1 Kernel Optimisations

6.1.1 Direct Process Switch

The direct process switch optimisation brings clear performance advantages for all the

benchmarks we tested due to the decreased overhead of IPC. As workloads increase their

rates of IPC, these benefits will become increasingly significant in the level of throughput

the kernel is able to provide. Workloads with more modest rates of IPC are less likely to

see the performance improvements, however.

The optimisation comes at the cost of predictability, though. No guarantees about pri-

ority observance can be offered, making the construction of real-time systems difficult

to impossible. Real-time systems that utilise a lower rate of IPCs would be best served

disabling the optimisation for only a small increase in IPC overhead.
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6.1.2 Lazy Queueing

The lazy-queueing optimisations also bring measurable performance increase, but cause

the worst-case scheduling latencies present in the system to increase, as highlighted in

Section 5.3.1.

These worst-case latencies are directly proportional to the number of threads active in

the system, however. If this number is known at system construction time, these latencies

can be accounted for.

Further, in the current implementation of L4, latencies arising from other sources in L4

such as those from IPC chaining shown in Section 5.3.2 are significantly worse than those

caused by lazy queueing, and would have to be accounted for regardless of whether lazy-

queueing was used.

While lazy-queueing introduces measurable latencies into the system, these predictable

latencies are unlikely to be an immediate cause for concern for system builders until other

(more serious) latencies in L4 are fully addressed.

6.2 FIFO IPC Queueing

For the workloads we tested, threads were rarely ever placed on an IPC send queue, and

those that were placed on a queue were always alone. This means that the theoretical

problems of FIFO IPC queueing discussed in Section 2.4.4 are rarely a concern in real-life

systems.

If guarantees are required regarding thread ordering, changes can be made to the L4

kernel to implement priority-based IPC queueing with little effect on the performance of

existing workloads. While simple algorithms such as using an ordered queue are fastest

for IPC queueing in the workloads we looked at, using a more scalable data structure such

as the heap implementation in IPC-Heap would ensure that IPC times do not get out of

hand in pathological cases.

6.3 Kernel Scheduling API

The introduction of the kernel scheduling API simplified scheduling code throughout

the kernel, and allowed different schedulers to be dropped into L4 with relative ease.

62



Rewriting the L4 scheduler to remove the direct process switch optimisation required

only 4 engineering hours for an unoptimised yet fully functioning implementation.

The scheduling API was also implemented with almost no overhead: the performance

differences between the Slowpath and Direct/Lazy kernel implementations are negligible.

The differences between the Fastpath and the Direct/Lazy kernel are more significant,

though. The assembly-optimised IPC fastpath offers clear performance advantages that

can not be overlooked, but is unable to take any advantage of the scheduling API. This

does not prevent the use of the scheduling API in the rest of the kernel, however, nor reduce

its usefulness. A custom IPC fastpath must still be constructed each time a scheduling

policy changes or a new optimisation is used, regardless of whether the scheduling API is

used or not.

6.4 Future Work

While we attempted to gain an understanding of the trade-offs associated with best-effort

scheduling optimisations, more areas of work remain to be investigated.

The kernel implementations we investigated used both scheduler implementations and

IPC paths coded in C, in contrast to the commercially deployed Fastpath kernel which

uses an assembly-based IPC path. The relative performance of each of our kernels have

the potential to change if all are coded in optimised assembly.

All of our kernels used the same ready-queue data-structure described in Section 2.4.1 on

page 13. It would be insightful to investigate the effects of using alternate data structures

for the ready-queue, such as a data structure that provides a O(1) highest priority thread

lookup, perhaps with slower enqueues. The correct choice of data structure may assist in

reducing scheduling overhead even further.

Finally, all our macro-benchmarks utilised the Re-aim benchmark running on Wombat.

Ideally, a wider range of system workloads should be instrumented and benchmarked with

the different kernels. This would allow our results to be more generalised, giving system

implementers a greater understanding of the trade-offs involved in the optimisations we

discussed in real-life workloads.
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Appendix A

Further Benchmark Results

The following pages contain the full results of the experiments described in Chapter 3 and

discussed in Chapter 5.
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A.1 IPC Elevator Latency Test Results
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Figure A.1: Latency measures for the IPC elevator test, described in

Section 4.4.1 on page 40.
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A.2 Thread Start/Stop Latency Test Results
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Figure A.2: Latency measures for the thread start/stop test, described

in Section 4.4.1 on page 40.

66



A.3 IPC Chaining Latency Test Results
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Figure A.3: Latency measures for the IPC chaining latency test, de-

scribed in Section 4.4.2 on page 41.
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A.4 Re-aim Single User Benchmarks
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Figure A.4: Re-aim single-user benchmark results, normalised to the performance of the Slowpath kernel.
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Appendix B

Fastpath Kernel Profile

Module Function Samples Time (%)

vmlinux memmove 2483775 30.075
l4kernel sys cache control 1246782 15.097
vmlinux syscall loop 279264 3.381
l4kernel vector arm swi syscall 202029 2.446
vmlinux ip push pending frames 144646 1.751
l4kernel vector arm swi exception 135114 1.636
reaim read write close 134309 1.626
vmlinux udp sendmsg 120695 1.461
vmlinux ip append data 113373 1.373
vmlinux flush range invalidate kernel 79877 0.967
l4kernel kip code 75096 0.909
vmlinux local bh enable 74369 0.900
vmlinux netif rx 73740 0.893
vmlinux udp queue rcv skb 67315 0.815
vmlinux udp rcv 66221 0.802
vmlinux flush range 64548 0.782
vmlinux kmalloc 61616 0.746
vmlinux netif receive skb 58735 0.711
vmlinux process backlog 58646 0.710
vmlinux ip rcv 57829 0.700
vmlinux udp recvmsg 54195 0.656
vmlinux dev queue xmit 50494 0.611
vmlinux sock alloc send pskb 48344 0.585
vmlinux kfree 47331 0.573
vmlinux parse ptabs 47069 0.570

Table B.1: Listing of the top 25 functions on a full system profile of
the Re-aim multiuser benchmark ‘udp’ running on the Fastpath kernel.
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Module Function Samples Time (%)

l4kernel sys cache control 1246782 15.097
l4kernel vector arm swi syscall 202029 2.446
l4kernel vector arm swi exception 135114 1.636
l4kernel kip code 75096 0.909
l4kernel idle thread 36057 0.437
l4kernel schedule 29418 0.356
l4kernel find next thread 26959 0.326
l4kernel vector arm high vector 19811 0.240
l4kernel vector syscall return 19553 0.237
l4kernel vector common syscall return 18462 0.224
l4kernel sys ipc 17713 0.214
l4kernel arm page fault 12464 0.151
l4kernel handle interrupt 9768 0.118
l4kernel vector arm irq exception 9023 0.109
l4kernel vector arm abort return 8323 0.101

Table B.2: Listing of all functions in the L4 kernel measured to take
more than 0.1% of system time, running the Re-aim multiuser bench-
mark ‘udpserver’ running on the Fastpath kernel.

Module Time Spent (%)

vmlinux 69.15
l4kernel 23.62
reaim 3.40
ig timer 0.60
ig server 0.07
Unknown / Other 3.14

Table B.3: Total time spent in each system module for the Re-aim
‘udpserver multiuser benchmark, running on the Fastpath kernel.
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