o]
i
: V-_' {}
s

THE UNIVERSITY OF NEW SOUTH WALES
ScHOOL OF COMPUTER SCIENCE AND ENGINEERING

o

Virtualising Darwin on L4

Bachelor of Engineering (Computer Engineering)

February 20, 2007

Author: Joshua Root
Student ID: 3022016

E-mail: jmr@cse.unsw.edu.au

Supervisor: Prof. Gernot Heiser

Assessor: Charles Gray

Abstract

Virtualisation involves abstracting the interface between computer hardware
and the operating systems that run on it. One real machine can be used
to run several operating systems simultaneously, presenting a complete ma-
chine interface to each of them. Virtualisation is increasingly popular due
to its usefulness for many tasks, such as server consolidation, debugging,
improving security, and running legacy software.

I have added virtualisation features to the Darbat operating system, a
version of Apple’s Darwin OS that has been modified to run on the L4
microkernel. Multiple instances of the Darbat kernel can be executed si-
multaneously on a single computer system. Each instance is isolated from
the others by hardware-enforced memory protection. System resources, in-
cluding memory, CPU time, and peripheral devices, are shared between the
Darbat instances in a controlled manner.

Acknowledgements

I would like to thank Charles Gray, for his invaluable guidance; Tom Birch
and Geoffrey Lee, for their contributions to Darbat and their excellent de-
bugging advice; and Gernot Heiser, for his high standards and for giving me
the opportunity to work with his group on such a challenging and rewarding
project.

Contents

1 Introduction

1.1 Motivation
1.2 Outline
Background
2.1 Virtualisation
2.1.1 Classical Virtualisation
2.1.2 Para-virtualisation
2.1.3 VMM Responsibilities
22 Mach.
2.3 Darwin e
231 Mach
232 BSD
233 I/OKito
234 Libkern
2.3.5 Platform Expert
2.4 L4 ... e
241 IPC e
2.4.2 Privilege management
25 Iguana L L
2.6 Magpie. L
2.7 Darbat

Related Work

3.1 IBM’s VM e
3.2 VMware e e e e e
3.3 Xen ... e
3.4 QEMU
3.5 Pre-Virtualisation
3.6 User-modeLinux
3.7 Linux-on-Linux
3.8 Mac-on-Linux
3.9 Dedicated Device Driver VMs

10
10
11
12
12
13
15
15
15
16
16
17
17
18
18
19
19
20

3.10 Wombat

The Virtualised Darbat System

4.1 Design Rationale oL
4.2 System Overview
4.3 Components
4.3.1 Supervisor. Lo
4.3.2 The vconsole server
4.3.3 Thevdevserver
4.3.4 The vblock server
4.3.5 Libvblock
4.3.6 The userland vblock daemon
4.4 Memory Management
4.5 Build System Changes
4.6 Asynchronous Disk I/O
4.7 Difficulties encountered
Evaluation
5.1 Qualitative Evaluation
5.2 Quantitative Evaluation
5.2.1 Hardware Used
5.2.2 Experimental Method
523 Results
524 Analysis
5.2.5 Discussion oo
5.2.6 Performance Summary
Future Work
6.1 Vblock improvements
6.2 External address spaces for guests
6.2.1 Memory Server
6.3 Network
6.4 Videoand Audio,
6.5 Multiple I/OKits.
6.6 Other futurework
Conclusions

Vblock interface definitions
A.1 The libvblock interface . .
A.2 The Vblock RPC interface

28
28
29
32
32
33
33
33
34
35
35
36
36
36

38
38
39
39
39
40
46
48
ol

53
53
93
55
55
95
55
55

57

B List of new and modified files 67

B.1 New directorieso 67
B2 Newfiles. o 68
B.3 Modified files 68

List of Figures

2.1
2.2
2.3
24

4.1
4.2

5.1
5.2
5.3
5.4

5.5

6.1

Relationship between a VMM and a guest operating system . 13

Components of the XNU kernel 15
I/O Kit drivers inheriting from families and linked by nubs . 17
The previous structure of the Darbat system 20
Structure of the virtualised Darbat system 30
The virtualisation servers 31
Comparison of write latencies 41
Comparison of read latencies 42
Nonlinear behaviour with small transfer sizes 44
Minimum 10 ms transfer latency when using a hosted disk

image 45
Write latency penaltieso oL 47
Possible future structure of a virtualised Darbat system . . . 54

List of Tables

5.1 Detailed disk I/O timings
5.2 Mean write latency penalties
5.3 Filesystem latencies for virtualised Linux

Chapter 1

Introduction

Darwin is an operating system maintained by Apple, Inc. It is most often
encountered as the basis of Mac OS X. Darwin has been modified to run
on top of the L4 microkernel, and the resulting operating system has been
named Darbat.

Virtualisation is the abstraction of the interface between operating sys-
tem kernels and computer hardware. It enables multiple kernels, along with
their user environments, to be executed on a single physical computer. Just
as importantly, the kernels and their applications are isolated from each
other, so that a fault in one need not affect the others.

In this thesis, my goal has been to implement virtualisation features for
the Darbat operating system. I have made it possible to run several Darbat
kernels simultaneously, and have implemented a system whereby they can
each have access to a disk device, keyboard input, and text console output.

1.1 Motivation

Virtualisation is useful for solving a wide variety of problems, and more uses
seem to be constantly discovered. A virtualisation environment is often able
to overcome many of the shortcomings of the operating systems being run
in it. Applications for virtualisation include:

e reducing hardware under-utilisation by running many heterogeneous
services on the same system, without the usual risk that they will
interfere with each other’s operation (server consolidation);

e safely executing code of unknown trustworthiness (sandboxing);

e providing multiple operating systems and the application software
available for them on a single system;

e allowing tasks which require administrator access (e.g. testing kernel
code), without allowing such access to the real machine;

e debugging and profiling — the virtual machine can be instrumented
to provide information which is harder to extract from bare hardware.

Darwin is an interesting operating system for three main reasons:

1. It is one of the more popular desktop operating systems (mostly as part
of Mac OS X), and can run a wide range of software, both commercial
off-the-shelf and free and open source.

2. The Darwin source code is available and may be freely modified and
distributed, which makes it convenient for research.

3. Darbat, the port of Darwin to L4, offers many research opportunities
relating to the implementation of microkernel-based systems. What
was a monolithic kernel has begun to be broken up into separate pro-
tected modules.

Thus, a virtualised environment supporting Darbat (and other operating
systems) is of interest for several reasons both academic and practical.

1.2 Outline

Chapter 2 will provide background information on the concept of virtuali-
sation, the Darbat operating system, and the components from which it is
built.

Chapter 3 will present previous work that is related to the problem of
running Darwin in a virtualised environment.

Chapter 4 will describe the design and implementation of the virtualised
Darbat system that I have implemented.

Chapter 5 will present an evaluation of the work that has been done, in
both qualitative and quantitative terms.

Chapter 6 will describe future developments that will be enabled by the
work done in this thesis.

Finally, Chapter 7 will sum up what has been achieved in this thesis,
and examine what conclusions can be drawn from the work that has been
done.

Chapter 2

Background

In this chapter, I will first describe the idea of virtualisation and the tech-
niques that are commonly used to achieve it. I will then describe the compo-
nents from which the Darbat operating system is derived, including Darwin’s
kernel, the Mach kernel on which it is based, and the L4 microkernel. Lastly,
I will describe the architecture of Darbat itself, as it was when I began this
thesis.

2.1 Virtualisation

The idea of virtualisation is by no means new. IBM’s CP 67, which is widely
regarded as being the first true wvirtual machine monitor (VMM), became
available in 1967 [Cre81]. Virtualisation was long considered to be a high-
end feature, but in the late 1990s there was a resurgence of interest in the
area, largely focused on virtualising commodity systems. This may have
happened because commodity systems became powerful enough to replace
mainframes in many instances.

A VMM provides an execution environment called a wirtual machine
(VM). The terms VMM and hypervisor are often used interchangeably. A
VM allows software to be executed just as on real hardware. The advantage
of virtualisation is that many separate VMs can be run on a single real
computer, or even on a cluster of computers, with data transparently moved
between physical machines by the VMM as needed [CHO5]. An operating
system running in a VM is called a guest OS, and correspondingly, the real
machine on which the VM runs is called the host.

Virtualisation is related to simulation and emulation. Simulators aim
to provide an exact software representation of a hardware platform. They
are useful for development and debugging, as the state of the simulated
machine can easily be accessed, and the software running on it cannot cause
problems outside the simulated environment. Emulators are similar, but
primarily aim to successfully execute software written for the machine being

10

emulated, rather than recreating the precise behaviour of the hardware.
Emulators tend to be used to run software written for platforms which are
not readily available or are inconvenient to use.

To distinguish virtualisation from these related techniques, the definition
given in 1974 by Popek and Goldberg is often used: “As a piece of software
a VMM has three essential characteristics. First, the VMM provides an
environment for programs which is essentially identical with the original
machine; second, programs run in this environment show at worst only minor
decreases in speed; and last, the VMM is in complete control of system
resources.” [PG74]. They explain that their second requirement “demands
that a statistically dominant subset of the virtual processor’s instructions
be executed directly by the real processor, with no software intervention by
the VMM.” Virtualisation thus provides many of the benefits of a simulator
or emulator, but with a much smaller performance penalty.

In the literature, VMMSs are often classified according to their charac-
teristics. A type I (or native) VMM runs directly on the hardware, and
performs resource management itself. A type II (or hosted) VMM runs on
top of another operating system, and uses that operating system’s APIs to
manage resources. The operating system on which a type II VMM runs
is called the host OS. VMMs are also classified according to the way they
handle guests performing privileged operations, as described in the following
sections.

2.1.1 Classical Virtualisation

Code executing in a VM cannot be allowed unrestricted access to the real
CPU state, as such access would allow it to gain full access to all the re-
sources of the machine rather than the subset allocated to it by the VMM.
Therefore, a subset of the instructions available to software running in the
VM must not be executed on the real CPU, but must be handled by the
VMM. These are called sensitive instructions.

A VMM must maintain the state of the real CPU such that it meets the
expectations of the currently executing guest. It must have the expected
access to memory regions, for example. To achieve this, the VMM loads a
page table that gives the guest memory access at the appropriate locations.
Writing to the page table is a sensitive operation, as the guest could expand
its access. Thus, the VMM must be able to intercept page table writes and
only allow them to occur if they abide by the memory allocation policy.
Other CPU features must be similarly virtualised, including segmentation,
interrupts, and privilege level changes.

Classical virtualisation, also known as trap-and-emulate virtualisation,
relies on all sensitive CPU operations causing an exception when executed
in user mode. That is, it requires that all sensitive instructions are also
privileged. Guest operating systems are run in user mode, and the VMM

11

catches exceptions caused by the guest attempting to perform privileged
operations. It then performs an operation that has the same effect on the
virtual machine as the attempted operation would have had on a real ma-
chine. The guest’s execution can then be resumed at the instruction after
the one causing the exception.

The popular x86 architecture has historically not been classically vir-
tualisable [RI00]. Some instructions are legal in both supervisor mode and
user mode, and thus do not normally raise exceptions, but behave differently
depending on the mode they are executed in. This meant that to achieve vir-
tualisation on x86, guest code had to be modified to avoid such unprivileged
sensitive instructions. This could be achieved by manual source modifica-
tion (see section 2.1.2), or by automatic code transformation at compile time
(section 3.5) or even at runtime (section 3.2).

Both Intel and AMD, the major manufacturers of x86 processors, have
recently introduced extensions to the x86 architecture which enable classi-
cal virtualisation [UNR™05,MS05]. However, using them exacts a significant
performance penalty. This, along with the large number of CPUs that lack
these extensions, means that other techniques are still attractive (see sec-
tion 3.2). Further additions to the architecture in the future are planned
to add hardware assistance for MMU and I/O virtualisation, which may
increase the appeal of these features.

2.1.2 Para-virtualisation

Para-virtualisation [WSGO02] involves presenting a virtual machine interface
which is different to the real machine. Such systems cannot be considered
true virtualisation, as they do not satisfy Popek and Goldberg’s first re-
quirement — hence the name. However, para-virtualisation offers the same
isolation and resource utilisation advantages as true virtualisation, and can
provide better performance.

The disadvantage of para-virtualisation is that guest operating systems
must be ported to run on the virtual machine interface. Porting a non-
trivial operating system to a new platform is complex, time-consuming and
expensive. However, it has recently been shown that the porting process
can be automated to a great extent (see section 3.5).

2.1.3 VMM Responsibilities

Figure 2.1 shows the relationship between the VMM and a guest operating
system. The VMM runs in privileged mode, while the guest OS and its
user-level programs run in unprivileged mode. Privileged operations are
intercepted by the VMM. It then checks that the operation is safe, that is,
it maintains the integrity and isolation of all VMs. If so, it is executed. If
not, it may be modified to make it safe, or the VMM may indicate to the

12

Guest Applications

Unprivileged
Guest Kernel
I
Privileged Operations
VMM Privileged

Figure 2.1: Relationship between a VMM and a guest operating system.
The VMM runs in privileged mode, while the guest operating system and
its applications run de-privileged.

guest that the operation failed.

The exact tasks which must be performed by a VMM vary depending
on the architecture being virtualised, but on most contemporary processors
they would include the following:

2.2

maintaining guest virtual memory mappings, including page-fault han-
dling;

enabling controlled protection domain switching from guest user mode
to guest kernel mode and back, including exception handling;

providing guests with access to virtual I/O devices, which may be
implemented in software or backed by real devices;

delivering interrupts from devices (virtual or real) to guests;
scheduling guest kernels and processes;

managing, allocating and re-allocating machine resources between VMs.

Mach

Mach is a first-generation microkernel which was developed at Carnegie Mel-
lon University in the 1980s [RJOT89]. It expanded on features found in the

13

earlier Accent kernel, and aimed for clean abstractions and portability.

Microkernels are meant to enable improved reliability and flexibility by
running many core operating system services in user mode that would tra-
ditionally have been part of the kernel. Separate services can be run in
separate hardware-enforced protection domains, thus greatly reducing the
likelihood that a malfunction in one service will affect the correct opera-
tion of other services. If a service crashes, it is possible to restart it, and
with careful design such events can cause minimal disruption to the system’s
operation.

Mach provides a comprehensive API for inter-process communication
(IPC). Ports are roughly analogous to UNIX’s pipes, in that they are end-
points for communication. Like pipes, ports have associated access permis-
sions, and a process can have many open ports at a time. Unlike pipes,
ports are used to send structured messages rather than plain byte streams.
Messages can be sent and received asynchronously, and the kernel checks all
messages for validity.

Pagers are used in Mach to manage virtual memory. The default pager
allocates anonymous memory regions. These regions are backed by RAM,
or moved to disk when free RAM is low. Other pagers can provide memory-
mapped files, or map devices for drivers.

The Mach project produced some good results, notably the virtual mem-
ory subsystem and the separation of the concepts of threads and processes.
However, systems running on the Mach kernel tend to have significant per-
formance problems. A large portion of IPC execution time is spent checking
port access rights and verifying message validity. Even more serious on mod-
ern hardware is the fact that memory system performance is significantly
degraded on Mach-based systems compared to monolithic ones.

Chen and Bershad [CB93] found that programs running on Mach with a
user-level UNIX server exhibited a significantly higher memory cycle over-
head per instruction than when running on a monolithic UNIX. Liedtke
[Lie95] performed further analysis of Chen and Bershad’s results and showed
that the degradation was due almost entirely to the exhaustion of cache ca-
pacity, and that the component responsible for this was Mach itself. Mach’s
large working set limits the performance of system’s built on it.

Some system implementers reacted to Mach’s poor performance by mov-
ing large parts of the operating system back inside the kernel. Unfortu-
nately, this approach simply resulted in a monolithic kernel with Mach’s
APIs added, and lost the advantages of the microkernel design. Ironically,
it appears that this approach only closed a fraction of the performance
gap [HHLT97].

14

Networking
File system BSD
NKE

I/0O Kit Virtual Memory
Mach

Drivers IPC

Figure 2.2: Components of the XNU kernel. Reproduced from [App0O6c].

2.3 Darwin

Darwin [App] is an open-source operating system which is probably best
known for its role as the basis of Apple’s Mac OS X [App06d]. It consists of
mainly BSD user-level programs and a kernel called XN U, which was created
by combining the Open Software Foundation’s version of Mach 3 with most
of a 4.3 BSD kernel. Darwin was derived from the earlier OPENSTEP op-
erating system developed by NeXT Software [AppO6a]. Later development
added code from more recent BSD versions, e.g. FreeBSD 5.

Darwin runs on PowerPC and x86 hardware. It should theoretically work
on a wide range of systems, but it is rarely used on hardware not made by
Apple. All Apple computers currently in production are x86-based.

Figure 2.2 shows the structure of the XNU kernel. All of the kernel
components run in a single protection domain with full privilege. NKE
stands for network kernel extension, the mechanism by which network stack
components can be added to the kernel.

2.3.1 Mach

The Mach portion of the kernel provides threads, virtual memory and pag-
ing, timers, locks, scheduling, and of course IPC. The default pager uses
swap files accessed through the BSD VFS interface to store less-used pages
when physical memory is scarce. There is also a vnode pager for memory-
mapped files and a device pager for memory-mapped devices.

2.3.2 BSD

The BSD component of XNU provides standard UNIX services such as the
file system, networking, process management, signals, pipes, TTYs, pseudo-
devices, and POSIX and System V shared memory and IPC. It implements

15

these using the services provided by Mach and the I/O Kit (XNU’s device
driver component, described in section 2.3.3).

A unified buffer cache is used for both file data and virtual memory
pages. This allows efficient page replacement through the file system, since
the virtual memory object descriptors are also used for in-memory file data.
It also allows cached data to easily be shared between the read/write and
mmap interfaces.

The back end of the BSD device abstraction layers use the interfaces
exported by the I/O Kit. For example, the block device code would access a
hard disk drive through an IOMedia object. The I/O Kit interface is defined
in terms of Mach IPC, but is converted to function calls at build time since
the components are in the same protection domain.

2.3.3 1/0 Kit

Darwin uses an object-oriented driver framework called the I/O Kit [App06b].
It is implemented in a subset of C++: Exceptions, multiple inheritance and
templates are not supported. The standard C++ runtime type information
system is also unavailable, but libkern supplies its own version.

Families are sets of classes that implement functionality that is common
to categories of similar devices. Driver implementations inherit from a par-
ent class from an appropriate family. For example, a USB keyboard driver
inherits from the IOHIDevice class in the human interface device family.

Drivers are linked together using nubs, objects which represent commu-
nication channels or logical services. Drivers usually need the services of
other drivers in order to do their job. For example, a PCI ethernet card
driver needs the services of the PCI controller driver. The latter publishes
a nub which allows the former to use its services. Figure 2.3 illustrates the
relationship between drivers, families and nubs using the example of a SCSI
disk connected to a SCSI controller card.

The controller card is connected to a PCI bus. The PCI bus driver in-
herits from the IOPCIBridge family, and publishes an IOPCIDevice nub for
each device it finds connected to the bus. The SCSI card driver is given an
IOPCIDevice reference for the card it drives. It publishes an IOSCSIPar-
allelDevice nub for each device it finds on the SCSI bus. Finally, the SCSI
disk driver, which inherits from the IOBlockStorageDriver family, is given
an IOSCSIParallelDevice reference for the disk it drives, and publishes an
IOMedia nub which presents a generic disk device interface.

2.3.4 Libkern

The libkern component provides simplified C++ runtime services for the
I/0 Kit and drivers, including an implementation of runtime type informa-
tion. It also provides utility functions that are useful in many parts of the

16

Disk

C:) IOMedia nub

IOBlockStorageDriver bsos' disk:drivar

family
<> Q Q IOSCSIParallelDevice nubs

IOSCSIParallelController bSCSIcard driver |

family

Q Q <> IOPCIDevice nubs

PCI bus driver

IOPCIBridge
family

Figure 2.3: I/O Kit drivers inheriting from families and linked by nubs.
Reproduced from [App06c].

kernel, e.g. byte-swapping.

2.3.5 Platform Expert

The Platform Expert is the module of XNU that is responsible for taking
care of platform-specific details in the boot sequence. This includes handling
the kernel boot arguments, registering interrupts, scanning the system for
available devices, and driving devices such as the video console that are
required from an early stage.

24 14

L4 [Lie95] is a family of second-generation microkernels. It avoids the per-
formance problems seen in earlier systems such as Mach by an approach of
true minimality. The kernel contains only those features which cannot be
implemented at user level while ensuring the integrity of the system. Darbat
currently runs on version N1 of the NICTA::Pistachio [NIC05] implementa-
tion of L4.

The L4 API deals with two main abstractions, threads and address
spaces. Threads are an abstraction of sequential program execution. Fach

17

thread has a unique identifier by which it may be named. Address spaces are
an abstraction of virtual memory and protection. An address space can be
named by specifying the ID of a thread that executes in it. The combination
of an address space and the threads in it is called a task.

24.1 IPC

Threads can communicate via the IPC system call. In some L4 implemen-
tations, this may include a special form of IPC which maps part of the
sender’s address space into the receiver’s. Threads can use shared memory
regions for large data transfers, or indeed in whatever way the application
programmer wishes; while ordinary IPC is useful for small messages and for
synchronisation.

L4 TPC is synchronous, i.e. the sending thread blocks until the recipient
explicitly performs a receive operation, and vice versa (with optional time-
outs in some implementations). This avoids the need to manage message
queues in the kernel'. L4 also associates minimal semantics with message
data and uses very simple security mechanisms. L4’s IPC is consequently
at least an order of magnitude faster than Mach’s [Lie96].

IPC messages are sent using up to 64 message registers (MRs). The
exact number of available MRs is implementation-dependent. Each register
is the size of a machine word. MRs have read-once semantics: reading from
an MR causes the value contained in it to become undefined. Writing to the
MR makes its value well-defined again.

The zeroth message register must always be used, and contains the mes-
sage tag. The tag contains metadata such as the number of words being
transferred, and also specifies parameters such as whether the operation
should be a send, a receive, or both.

The sender places the values they wish to send into their MRs and in-
vokes the IPC operation. The values are then copied by the kernel into
the recipients MRs. Some MRs may be implemented using real machine
registers, and in this case no actual copying needs to be done. The other
MRs are implemented as memory areas within a larger structure called the
user-accessible thread control block (UTCB).

2.4.2 Privilege management

In the N1 kernel, privileges allowing threads to alter other threads’ schedul-
ing parameters, give access to memory, and restrict communication are del-
egated hierarchically. (In some other implementations, the first task to be
started, which is known as the root task, has exclusive control over these
operations.) The root task has access to all memory and may create new

!The one exception is the asynchronous notification mechanism, which nevertheless
requires no queuing or semantic checks by the kernel.

18

threads and address spaces. It gives access to memory to other tasks by
mapping. New threads are assigned threads to act as their pager, scheduler,
exception handler, and redirectors when they are created.

Threads may set the priority of any thread that they are assigned to as
scheduler. However, they may only set a maximum priority that is equal to
their own. Similarly, a pager handles page faults for a thread by mapping
some of its own memory into the faulting thread’s address space, but can
only map memory that it has access to itself.

In the N1 kernel, threads’ communication may be restricted by the use
of redirectors. Different redirectors can be used for sending and receiving.
If a redirector has been specified for an IPC’s direction, then the message is
sent to the redirector rather than its destination. The redirector can then
check that the message is allowable under the system’s policies, and if so,
forward it to its destination. Redirectors are allowed to forge the sender
field of messages that they forward so that they appear to come from the
original sender rather than the redirector.

2.5 Iguana

Iguana [HL04,NICO06b] is a set of services which run on top of L4. It provides
a set of basic policies which are implemented using the mechanisms provided
by L4. It was designed as a basic framework on which embedded systems
can be built, and provides services for memory allocation, protection domain
management, and thread management, and a capability-based framework for
access rights management. Protection domains are implemented as (mostly)
non-overlapping address spaces, which allows for a single-address-space view
of the system while retaining hardware-enforced memory protection.

One server thread provides most of Iguana’s functionality and runs as
the root task that is started by L4 at system boot time. Other functions
of a more stand-alone nature run in their own threads. The latter category
includes the init thread that launches most of the system’s tasks, a timer,
and a naming service that allows threads to create and look up mappings
between strings and numbers (which could be pointers, thread IDs, etc.).

Iguana keeps track of allocated memory using objects called memsec-
tions. References to memsections are opaque, but threads can look up the
base address of a memsection’s allocation with a call to the Iguana server.
A capability that allows access to a memsection contains a reference to it.

2.6 Magpie
Magpie [NICO06a] is an interface compiler. Given an interface description

in a subset of the CORBA [Obj04] interface description language (IDL),
it produces stub code that implements remote procedure calls (RPC) using

19

External Address Space

User Program

\

Darbat ‘Kernel’
(Mach + BSD)

«—» /0O Kit

Iguana Single Address Space

..

L4

Hardware

Figure 2.4: The structure of the Darbat system prior to this thesis.

L4’s IPC mechanism. This means that a service implemented in a different
thread can be called as though it were an ordinary function. Magpie is used
extensively in Iguana to provide the interfaces to the server threads.

Using an IDL compiler greatly reduces the scope for programming errors
involving the way data is put into and taken out of L4’s message registers.
The compiler can also take advantage of architecture-specific optimisations,
though the version of Magpie being used in the Darbat project only does
this on the ARM architecture.

2.7 Darbat

Darbat is a modified version of Darwin which runs entirely in user mode
on top of L4. Initial work was done by Wong [Won03|, but the approach
of removing the Mach code entirely proved problematic. Mach’s IPC and
virtual memory APIs are part of Darwin’s official user API, and practically
every feature offered by them is used by some piece of existing software or

20

another. Achieving full compatibility with existing Darwin software would
therefore have amounted to re-implementing those Mach subsystems. While
this was partially achieved by Hohmuth and Rudolph when porting Lites to
L3 [HR96], they only had to implement the small subset of Mach IPC that
was needed by their system.

Although the I/0 Kit is co-located with the Mach and BSD components
in the XNU kernel, it has been successfully separated from the rest of the
kernel and ported to run on L4 [Lee05]. Darbat now makes use of this
separate I/O Kit server rather than keeping XNU intact. This is done
because running separate services in separate protection domains improves
reliability and security, as per the principle of least privilege. It was also
anticipated that this design would make virtualisation easier by not accessing
real hardware from the parts of the system that would be running in a virtual
machine.

The current, redesigned version of Darbat, which leaves Mach mostly
intact, was developed by Gray et al. [GLB06]. While user programs can
still use Mach TPC, Darbat takes advantage of the performance of L4’s IPC
by modifying the standard user libraries (e.g. libSystem) to use it. System
calls are implemented as L4 IPC calls from the user program to the Darbat
server.

Darbat currently uses Iguana for basic memory and address space man-
agement, as well as its resource naming service. Figure 2.4 shows the struc-
ture of the Darbat system, as it was when work on this thesis was started.

Darbat currently runs only on x86 hardware, but it may be ported to
PowerPC at some point. It can be booted all the way up to a single-user
shell, and while full binary compatibility with existing x86 Darwin applica-
tions has not quite been achieved due to a pending L4 ABI change and some
unimplemented system calls, many nontrivial programs run very well.

21

Chapter 3

Related Work

3.1 IBM’s VM

IBM developed the VM system in order to solve the problem of underutilised
hardware. At various points in its development history it has been known as
CP-67, CP/CMS, VM/CMS, VM/370, VM/ESA, and z/VM. It is a type I
VMM, and unsurprisingly, it is a classical virtualisation system. It runs on
various IBM mainframe models. It was first made available outside IBM in
1967, and development and use has continued to the present day.

Later IBM hardware added an execution mode called interpretive execu-
tion [OJGI1], which allows many privileged instructions executed by guests
to be handled by the hardware rather than trapping into the VMM. The
VMM supplies information about the guest’s privileged state to the hard-
ware before starting the guest in interpretive mode. This greatly reduces
the overhead of running the guest OS in a VM. For example, a guest’s
attempt to disable interrupts will be translated by the hardware into the
setting of an appropriate flag in the data structure representing the virtual
CPU’s privileged state.

3.2 VDMware

VMware [VMwO07] is a series of commercial virtualisation packages produced
by VMware, Inc. There are both type I VMMs (e.g. VMware ESX Server),
and type I VMMs (e.g. VMware Workstation) that run on Linux and Mi-
crosoft Windows on x86 hardware. Since the x86 architecture has histori-
cally not been classically virtualisable, VMware uses binary translation of
the guest kernel to enable full virtualisation. It changes sensitive instruc-
tion sequences to code that modifies the state of the virtual CPU in the
appropriate manner. The translation is performed on demand at runtime.
Memory is virtualised by maintaining a shadow page table for each guest.
The shadow page table is what is actually used by the MMU to perform

22

address translation. Sensitive MMU operations in the guest are changed
to operations that modify the shadow page table (with appropriate validity
checking) as well as modifying the guest’s own page table.

Fach guest is given a fixed maximum memory allocation when it is
started. If memory is underutilised, each guest will have access to its full
allocation. When memory becomes tight, a balloon driver is used to force
guests to conserve RAM [Wal02]. This driver uses the guest kernel’s mem-
ory allocation routines to claim memory for itself. It tells the VMM which
pages it has obtained, and the VMM then uses those pages for other pur-
poses. The guest kernel should respond to the low-memory situation in its
customary way, e.g. by paging out to disk.

VMware could be viewed as both a para-virtualising VMM and a tool
for porting operating systems at runtime. Alternatively, a black-box view
of the system might lead to the conclusion that VMware is a VMM that
uses clever tricks to fully virtualise x86. It runs unmodified x86 code at
nearly full speed, and the fact that sensitive instructions are replaced rather
than causing traps is merely an implementation detail. The distinction may
be academic, but it is interesting to note that Popek and Goldberg’s first
requirement may be interpreted in different ways.

VMware engineers recently evaluated the hardware support for virtu-
alisation offered by recent Intel x86 CPUs [AA06]. However, they found
that an implementation using the hardware features performed consider-
ably worse than their current software approach. They attribute this to the
fact that MMU virtualisation is not performed in hardware, and many rel-
atively expensive traps into the VMM cannot be avoided as they occur on
every potentially sensitive instruction. The binary translation approach can
often avoid entering the hypervisor altogether by appropriate instruction
rewriting.

3.3 Xen

Xen [BDF'03] is a type I VMM which presents a para-virtualised inter-
face. Certain privileged operations must be converted to hypercalls, that is,
hypervisor API calls, in order for guest kernels to operate correctly. The
hypervisor is mapped into the top of every guest address space to reduce the
number of context switches required. Guests are responsible for managing
their own page tables, and Xen only verifies that updates to page tables are
allowable.

One guest is given more privileges than the others, and is known as Do-
mainl. It is given direct access to physical devices, and is responsible for
loading new guest instances, maintaining translations for virtual block de-
vices, managing the firewall rules in the virtual network device, and hosting
the software that presents the hypervisor control interface to the system

23

administrator.

Disk and network I/O is performed asynchronously. Guests provide
buffers, and place read and write requests in a circular queue whose lo-
cation is known to the hypervisor. Guests are notified of events, such as the
arrival of a network packet, by an asynchronous event mechanism that uses
callback functions. Virtual block devices are backed in DomainQ either by
real block devices or by disk images.

Guests other than Domain0 can be given memory-mapped access to par-
ticular physical PCI devices. A virtual PCI configuration space is provided,
and interrupts are delivered using the asynchronous event mechanism.

3.4 QEMU

QEMU [Bel05] began as a CPU emulator, but later became capable of type IT
virtualisation on x86 hardware through the addition of a host kernel module
called kgemu. User mode guest code is executed as-is, with syscalls inter-
cepted by the kernel module. Guest kernel code is normally emulated, but
experimental support for virtualising it is available.

The source code for kqemu was not available at first, but it was eventually
released in early February 2007. Unfortunately, there was insufficient time
to examine its implementation before the completion of this thesis.

3.5 Pre-Virtualisation

Pre-virtualisation [LUCT05] is a para-virtualisation technique whereby sen-
sitive instructions are handled in a kernel at compile time. The sensitive
instructions can either be replaced with appropriate emulation code im-
mediately, or padded with nops to allow the modification to be made at
runtime. A library known as the in-place VMM is loaded along with the
guest kernel. It translates sensitive operations to the API of whatever VMM
the guest OS is running under, and is called by the previously inserted code
when appropriate. The same kernel binary can also be run on bare hardware
without an in-place VMM.

Locating the sensitive instructions is done in two main ways. Instructions
which are illegal in user mode can be identified automatically by a modified
assembler. The remaining instances are found by running the guest in a
virtual machine, protecting all sensitive memory objects, executing a typical
workload, and recording where protection faults occur.

The advantages of pre-virtualisation are greatly reduced development
effort compared to usual para-virtualisation methods, and the ability to
produce a guest binary which can run on bare hardware and on a variety of
VMMs.

24

3.6 User-mode Linux

User-mode Linux (UML) [Dik00] is a para-virtualised version of the Linux
kernel which is run on Linux as an ordinary user-mode program. It uses the
ptrace mechanism to intercept the system calls made by programs running
under the guest kernel, and installs its own handlers for all signals that they
may receive. In this way it is able to redirect all data going to and from the
kernel, allowing it to maintain the virtual machine state and isolate guest
processes from the host.

3.7 Linux-on-Linux

Linux-on-Linux [Lin06] is, like User-mode Linux, a system for running Linux
kernels in user mode on a host Linux. Unlike UML, it requires fairly mini-
mal changes to the Linux source code. Some extra ptrace functionality is
added to the host, as well as a modified scheduler which “allows each vir-
tual machine to be assigned a fixed proportion of the processor it runs on.”
The guest kernel is patched to use a memory layout suitable for a Linux
user process, and scatter-gather 1/O is enabled for the simscsi virtual disk
driver.

The guest kernel is launched by a user-mode VMM. Pre-virtualisation
is used to replace sensitive instructions in the guest kernel with calls to the
VMM, or optionally non-privileged sensitive instructions can be replaced
with instructions that will trap (and be caught by the VMM). Linux-on-
Linux currently runs on Itanium processors.

3.8 Mac-on-Linux

Mac-on-Linux [Mac07] is a virtualisation system which allows Mac OS or
Mac OS X to be run as a guest on top of Linux. It only runs on PowerPC
hardware, and is thus able to operate as a classical trap-and-emulate VMM.
A host kernel module handles the execution of guest privileged operations.

The guest OS is launched by a user-level wrapper component, which
arranges a virtual machine context to be set up by the kernel. Virtual
hardware devices for the guest are implemented mostly in the user-mode
component, and are backed using the host OS’s facilities.

3.9 Dedicated Device Driver VMs

LeVasseur et al. developed a system for reusing unmodified device drivers
in new operating systems by running them in virtual machines [LUSGO04].
Each driver is run in its original OS, providing exact compatibility. This
device driver OS (DD/OS) is para-virtualised so that it only attempts to use

25

the machine resources allocated to it for the purpose of running the driver.
A translation module is added to the DD/OS, which enables communication
with the host OS and other VMs, allowing them to access the functionality
of the driver. A driver in a DD/OS can use functionality provided by a
driver in another DD/OS using this mechanism.

The translation module can access the DD/OS at whatever layer is most
convenient. This allows one translation module to be used for a variety of
similar devices. The interface exported by the translation module can also
be whatever is chosen by its implementer.

The advantage of this approach is that existing drivers can be used with-
out modification, and without having to emulate the interface that they
expect. Devices are accessed by the rest of the system at a higher level of
abstraction through the translation modules. Reliability is also improved
by keeping drivers in separate protection domains.

3.10 Wombat

Wombat [LvSHO5] is a port of Linux to the L4 microkernel. It was developed
at National ICT Australia (NICTA). It was partly inspired by the L*Linux
work done at TU Dresden [HHL797]. L4Linux is relatively difficult to port
to a new CPU architecture, and ran only on x86 for many years until an
ARM port was added in 2005. Wombat is designed to be portable, and
currently runs on x86, ARM and MIPS. A new set of architecture-specific
files for running on L4 was added to Linux, essentially treating L4 like a
new hardware platform.

Wombat is designed for use in embedded systems. Embedded devices
that run Linux often also need to run real-time and /or security-critical soft-
ware. Running Linux on L4 allows these parts of the system to be protected,
in terms of both performance and data access, from faulty or malicious code
running in the Linux environment.

Wombat is built on Iguana, with the Wombat server running in the
shared address space along with the Iguana servers and any native Iguana
applications. Native Linux device drivers can be used provided they do not
perform DMA, but it is preferred that Iguana drivers be used, as the devices
can then be shared with other Iguana tasks. User-level device driver support
has been added to ordinary Linux by members of the Gelato Federation, and
this feature can in fact use the same drivers as Iguana [Chu04].

Unmodified Linux user programs can be run in their own address space,
and communicate with Wombat via the trampoline mechanism. L4 uses
different syscall numbers to Linux, so when a user process performs a Linux
syscall, 1.4 treats it as an exception. The Wombat server is set up to be the
exception handler for its user processes, and L4 delivers the exception to it
via IPC, at which point Wombat can handle the syscall. Linux applications

26

can also be ported to run in the Iguana environment and call the Wombat
server directly using L4 TPC.

Page faults are propagated to the Wombat server by the same mecha-
nism as other exceptions, and are handled by invoking the appropriate L4
mapping operation.

Scheduling is accomplished by ensuring that only one Linux thread per
processor is runnable at any time. This means that the L4 scheduler will
abide by the scheduling decisions made by Linux, as far as Linux processes
are concerned. Iguana tasks that have a higher priority than Wombat will
always be scheduled in favour of any Linux thread. This allows real-time
tasks to coexist with Linux without compromising their correctness.

27

Chapter 4

The Virtualised Darbat
System

This chapter describes the changes that I have made to the Darbat system.
I have continued using [.4 as a hypervisor, and have made it possible to run
several Darbat kernels simultaneously. I have also implemented a system for
enabling these kernels to share the hardware devices that are available.

4.1 Design Rationale

Much of the work of para-virtualising Darbat had already been done by
virtue of it being ported to L4. Pre-virtualisation was not applicable as the
guest kernel had already been purged of sensitive instructions.

Xen’s structure shows remarkable similarities to a microkernel-based
system, but with complexities and difficulties that can be avoided with
L4 [HULO6]. Domain0 is a single point of failure for most other software
in the system, and having most device functionality implemented in it also
leads to large communication overheads. Having dedicated device servers
with drivers in separate protection domains mitigates the reliability issues,
and L4’s IPC has been highly tuned for performance.

A type II VMM such as VMware Workstation would of course have met
many of the goals, but it would be very difficult to achieve the ones related
to device sharing. Performance is also limited by the need for guests to go
through the host OS to get to the hardware. Virtual devices would either
need to emulate the interface of real devices, with associated performance
problems due to the multiple translations between interfaces, or they would
require drivers to be written for each guest OS.

It would also be very difficult to allow control of a device to be passed
from one VM to another in cases where only one can reasonably use it at a
time. An example would be the video card. The host OS would generally
not have provisions for dynamically giving up and reasserting control of such

28

devices.

In light of these factors, I decided to continue and extend the para-
virtualisation approach that had already begun to be applied to Darbat.
The work to be done consisted of finding and removing assumptions that
system resources could be exclusively controlled by a single guest kernel, and
designing and implementing ways to share those resources between multiple
guests. It would also be necessary to modify the system bootstrap process
to allow multiple guest kernels to be started.

4.2 System Overview

I extended the para-virtualised Darbat system using multiple user-level
server tasks running in the Iguana environment. The environment now
consists of a supervisor task and a set of virtual device servers, as well as
the guest Darbat servers themselves and the previously existing components
such as the I/O Kit. The number of Darbat guest kernels that can be run si-
multaneously is limited only by available address space. The virtual devices
are backed by real devices via I/O Kit, or by programs running in guests.
The latter allows guests to use virtual disks backed by disk images.

One guest is roughly analogous to Xen’s Domain0 in that it is trusted to
run a supervisor Ul program and will, in practice, tend to back most of the
virtual disk devices. However, it is not required to back any of the virtual
devices, and does not contain drivers. I will refer to this guest as Darbat0.

It is not actually necessary for the supervisor Ul to be presented through
a guest OS, nor that that guest OS should necessarily be Darbat. Another
OS or a purpose-built program could be used instead. It was simply conve-
nient to use the first Darbat to be started for this purpose.

Figure 4.1 shows the structure of the system. Arrows indicate communi-
cation. Communication with the Iguana servers and L4 is omitted for clarity.
The first major difference is that there can now be multiple Darbat kernels
running as servers in the Iguana environment. Each one has its own set of
user processes, which it manages as before. The second major difference is
that the Darbat servers do not communicate directly with the I/O Kit. In-
stead they must communicate with the virtual device servers, which handle
the multiplexing of real devices in various ways. The vblock daemon, shown
in the upper right, is one of these ways. It is a user application that runs
under one of the Darbat kernels, but also communicates directly with one of
the virtual device servers. It uses the resources of its parent Darbat kernel
to provide virtual block devices to other Darbat kernels.

29

vblock
daemon

Supervisor and

D .

arbat 0..n Virtual Device || 1/0 Kit
Servers

Iguana Single Address Space

L4

Hardware
-

Figure 4.1: Structure of the virtualised Darbat system. Dashed lines indicate
external address spaces.

30

vblock daemon

vblock

Darbat

libvblock

vdev

I/0 Kit

\

vconsole

Figure 4.2: The virtualisation servers and their relationship to Darbat, I/O

Kit and each other.

31

4.3 Components

Figure 4.2 shows the communication that takes place between the virtual-
isation servers, the Darbat kernels, and the I/O Kit. Vconsole takes text
output from all of the Darbat guests and displays it on the video frame-
buffer. Libvblock is a library that is linked in to the Darbat kernels, and
handles communication with the wvblock server. The vblock server handles
the routing of messages between users and providers of block devices. The
provider is currently either I/O Kit, for real disks, or the vblock daemon,
for virtual disks backed by a file on some other block device. The vdev
server proxies I/0O Kit API calls, and handles the multiplexing of keyboard
input. The supervisor is responsible for the overall management of all the
components in the system.

4.3.1 Supervisor

The supervisor is responsible for launching guests. It also co-ordinates
changes to device configurations. It launches DarbatO when it is started,
and tells the vconsole, vblock and vdev servers about the new Darbat in-
stance. This causes them to display its console output on the screen, note
that it has access to I/O Kit’s disk device, and start sending it characters
typed on the keyboard, respectively. The supervisor then waits for I/O Kit
to register its disk devices with vblock, and only then allows Darbat0 to
continue and begin using the disk.

The supervisor calls on Iguana’s init task to do the actual launching
of new Darbat instances. I decided to implement it this way because init
already had the code to launch servers in the Iguana environment, and in
fact had ready access to necessary information that would have been more
difficult to obtain in a different task, such as the reference to the naming
server that needs to be placed on the stack of each new task.

After the initial system setup is done, the supervisor will currently act
upon three types of message. First, it receives notification from I/0O Kit
of certain characters being entered on the keyboard, which will cause it to
send messages to vdev and vconsole telling them to switch the ownership of
the keyboard and console. This means that keystrokes will go to a different
guest, and that same guest’s console output will be displayed on the screen.

Second, a message can cause the supervisor to launch a new guest. This
is called by the guest_launcher program running under Darbat0. A reply
to such messages is sent with the thread ID of the new guest. The third
type of message is generally received directly after replying to a launch guest
message. It is a request to send a message to a guest that lets it know it
can begin using its disk devices. This cannot be sent by the supervisor
automatically, because the guest_launcher needs to call vblock to give the
guest access to its disk first, for which it needs the guest’s thread ID.

32

4.3.2 The vconsole server

The vconsole server accepts character output from guests. A shared, page-
sized memsection is used as a ring buffer that holds characters to be trans-
ferred to vconsole. If the video console is active, guest output is displayed
on it. A message from the supervisor can activate or deactivate the video
console.

One guest is said to ‘own’ the screen at any given time. This guest’s
output is displayed on screen as it is received, while that of other guests is
only stored in FIFO queues. When a queue reaches a maximum length, the
oldest items are deleted from it until it is under the maximum length again.
Upon receiving an appropriate message from the supervisor, the ownership
of the screen is changed. The screen is cleared, and the contents of the new
owner’s queue are then displayed.

4.3.3 The vdev server

This server acts as a proxy between guests and the 1/O Kit. It currently
simply passes I/O Kit RPC calls straight through without modification,
but it is expected that vdev will become much more useful when multiple
I/0 Kits are present in the system (see section 6.5). At present, it is really
only adding latency for I/O Kit API calls.

The vdev server does have one important function. It keeps track of the
current ‘owner’ of the keyboard and forwards keystrokes to the appropri-
ate Darbat kernel. A message from the supervisor causes the owner to be
changed. By switching the video console device to a different guest along
with the keyboard, the entire user interface can be moved among guests in
the same way that a KVM switch does so with real machines.

4.3.4 The vblock server

This server provides an interface for block devices such as hard disks. Virtual
block devices may be backed by a real device or by a backing store managed
by a daemon running on a guest OS. Such a daemon would typically use
a partition or disk image on one of its host kernel’s available virtual block
devices to back the devices it exports.

Guests may query the vblock server to see what devices are available to
them, and may read from and write to their devices. Reading or writing is
accomplished by calling the server with a buffer reference, a block number,
and a device identifier. Buffers must be supplied by guests. All operations
are asynchronous, so read/write calls to providers are expected to return
as soon as the request has been enqueued. A separate thread in the server
handles upcalls [Cla85], which signal the completion of I/O operations to
guests.

33

Guests may also query the geometry of their devices, request that all
outstanding data for a device be flushed to disk, and send a capability to
a device’s provider. A capability must be sent for all buffers that are to be
used with a read or write call, so that the provider can access the buffer to
read or write the data from it.

Providers may add and remove devices, and give a guest access to a
device. The supervisor may add and remove clients. The vblock server keeps
track of the available devices, and the access that the registered clients have
to them, in a set of hash tables.

Currently, due to complications in the implementation of the vblock
daemon (see section 4.3.6), devices hosted by guest processes are limited to
having only one disk operation outstanding at a time. If the client performs
another call while a disk operation is outstanding, vblock will return an er-
ror code of EAGAIN, and the client is expected to retry the call after some
period of time. Whether each given provider has an outstanding operation
is kept track of in a hash table. A value is inserted upon successfully en-
queuing an operation, and is removed by the upcall thread upon delivering
the corresponding completion message.

The vblock server’s IDL4 interface definition is reproduced in appendix A.2.
It is compiled into RPC stub code by the Magpie interface generator.

4.3.5 Libvblock

Libvblock is a library that is linked into guest kernels. It manages a pool of
I/O buffers and handles communication with the vblock server.

Zero-copy is used as much as possible when doing 1/O with vblock de-
vices. A pointer to the buffer being used is passed with each request. This re-
quires that a capability for the buffer memory has been given to the provider
beforehand. Libvblock takes care of these chores.

The client simply needs to call a function to get a suitable buffer, then
pass the buffer reference to the read or write call, and call another function
to return the buffer when the corresponding completion message is received.
Libvblock ensures that the capability is first sent if it has not already been.

The kernel using libvblock is expected to have a function that it calls
when it receives a message that signals the completion of an asynchronous
disk I/O operation. A pointer to this completion function is passed in to
libvblock’s initialisation function, since libvblock may receive completion
messages during its normal operation. In particular, it must receive them
to implement synchronous 1/0, since the device providers always behave
asynchronously.

Libvblock’s interface as defined in its public header file is reproduced in
appendix A.1.

34

4.3.6 The userland vblock daemon

The vblock daemon is a user program that runs under the control of a Darbat
guest OS. It backs virtual block devices using files in the filesystem provided
by its OS. It follows the same protocol as I/O Kit when communicating with
the vblock server.

Darbat does not currently preempt its user threads. It simply assumes
that they will eventually make a system call, at which point they will be
blocked waiting for a reply, so any thread can be scheduled by replying to
it. Unfortunately, this means that a user process that blocks in an L4 TPC
call that does not involve the Darbat server effectively locks up its parent
Darbat instance. For this reason, the vblock daemon has to use a polling
loop that tries a non-blocking L4 receive call, and does a short usleep() if
no message is received.

The code is structured such that it will be very easy to convert it to be
dual-threaded when Darbat gains preemption abilities. But until then, it
is single-threaded. This means that the same thread that receives requests
from the vblock server can be blocked waiting for the Darbat server, which
can itself be blocked waiting for the vblock server. This circular wait condi-
tion must be avoided by having the vblock server refuse to send a message
to the daemon if there is an I/O already outstanding.

4.4 Memory Management

Each guest is run as an Iguana task, which means that memory allocated
to them is part of the shared address space. This will likely change in the
future; see chapter 6. One large Iguana memsection is used as the guest’s
‘physical memory’, and allocations are generally done using the guest’s own
mechanism, e.g. kalloc(). Notable exceptions to this are when the memory
is shared with another task — disk I/O buffers are allocated as 1:1 mapped
memsections so that they can be used in DMA operations by I/0 Kit, for
example.

An important memory management change that had to be made in the
Darbat kernel itself was a new system call that I called mapcap. This call
takes a capability that gives access to an Iguana memsection, and maps
the corresponding memory into the address space of the calling process. It
is necessary to do this so that the vblock daemon can access 1/O buffers
given to it by the Darbat kernels that use the virtual devices it provides (see
Section 4.3.6).

The mapcap call works by looking up the address and size of the memsec-
tion, and making a note of the fact that the calling process has a mapping
for each of the pages involved. An equal-sized region of the process’s ad-
dress space is reserved in the Mach virtual memory system, so that there is
a region where it is safe to map the memory because Mach’s VM will not

35

put anything else there.

The page fault handler then checks for mappings created by mapcap,
and backs the pages appropriately. The Mach VM system does not know
anything about these mappings, of course, but the vblock daemon can access
the data, and copy it into another buffer that can be used with ordinary
system calls.

4.5 Build System Changes

The Darbat build system had to be modified not only to build the new
virtualisation servers, but to allow an arbitrary number of Darbat kernels to
be built. The former was not difficult, but the latter took a bit of thought.
The build scripts being used did not have any easy way to create a new
image by simply relocating an existing one. The solution that I eventually
employed was to add a slightly modified version of the function used to
build an application. The regular version named the application based on
the name of the directory containing its source. My modified version allows
a name to be specified separately, so multiple applications can be built from
the same source. I then made the script that builds the Darbat server take
a numeric parameter, from which it then derives its name.

4.6 Asynchronous Disk I/0

I implemented support for asynchronous disk I/O operations in Darbat.
This involved a few minor changes in the disk device code in the Darbat
kernel itself, but most of the work was done in libvblock (see Section 4.3.5)
and I/0 Kit.

In I/O Kit, an extra thread was added. The main thread still receives
disk messages, but it now simply places them in a queue (protected by a
mutex) and wakes up the new thread using a semaphore. The thread doing
the disk operations simply takes descriptors off the queue, calls the driver,
and sends a message to the request’s originator to signal its completion.

4.7 Difficulties encountered

The sheer size of the Darbat code base proved to be a source of much diffi-
culty during development. Besides the time needed to become familiar with
the overall layout and the locations of specific files of interest, it was often
extremely difficult to determine the semantics of many sparsely-documented
functions because of the many layers of indirection that were typically tra-
versed.

In particular, it took a large amount of code reading and several failed
attempts to discover that the Mach virtual memory system did not appear

36

to be capable of mapping arbitrary physical memory at an arbitrary virtual
location, as required by the vblock daemon.

37

Chapter 5

Evaluation

In this chapter, I will present an evaluation of my work in terms of both
the qualitative features that have been added, and quantitative performance
impact of those features.

5.1 Qualitative Evaluation

I have demonstrated that the system can run three Darbat kernels simultane-
ously. Adding more is limited only by lack of available memory in Iguana’s
shared address space. Each kernel is built from the same source, though
multiple copies of the binary must currently be relocated so that they can
be loaded in the shared address space.

All guests run in separate hardware address spaces, so a fault in one
cannot affect the others unless it was providing a service to them.

The system starts with one guest instance (Darbat0) running, and others
can be launched when desired. All of the instances can send their console
output to the vconsole server, and it is displayed on screen if the user has
selected that particular instance to be visible. The user can change which
guest’s output is visible on the screen with a keystroke, which also sets which
guest receives characters from the keyboard.

All of the guests can access vblock devices that have been allocated to
them through the vblock server. Darbat0 is allocated the physical disk, and
any running guest can run the vblock_daemon program to host a new vblock
device, which can then be allocated to a new guest.

All guests can communicate with I/O Kit using its native API via the
vdev server, though I/O Kit’s behaviour with multiple guests using this
feature has not been extensively tested. Arguments and return values are
certainly communicated correctly, at least.

In summary, the main goals of this thesis, to run multiple Darbat kernels
on a single machine simultaneously, and to give them all access to a selection
of essential devices, have been achieved.

38

5.2 Quantitative Evaluation

In this section, I will present my measurements of the performance impact
of the virtualisation features I have added. I had planned to run a whole-
system benchmark such as AIM7 [AIM], but all such programs that I tried
either proved very difficult to build, or failed to run on Darbat due to its
incomplete state.

The structure of the virtualised system suggests that the main perfor-
mance impact would be added latency when doing disk operations, due to
all disk messages being routed through the vblock server. I therefore decide
to use the I0zone filesystem benchmark [Cap06] to measure the latency of
disk I/O operations.

I have taken measurements on the following configurations:

e Native Darwin/Mac OS X,
e The unvirtualised Darbat system,
e The virtualised Darbat system running a single guest,

e The virtualised Darbat system running a single guest, but using only
synchronous I/0O, and

The virtualised Darbat system running two guests.

5.2.1 Hardware Used

All tests were run on an Apple Mac mini with a 1.5 GHz Intel Core Solo
processor. It had a Serial-ATA hard disk drive with a capacity of 55.89 GiB.
Tests were run using files on a 34.88 GiB partition, which was formatted with
a Journaled HFS+ filesystem. The partition had 16.22 GiB of free space.
The system also had 512 MiB of RAM, though that is somewhat irrelevant,
as Darbat currently only makes use of a fixed amount of memory.

5.2.2 Experimental Method

Measurements were taken with IOzone version 3.281. A few small changes
were made to its source code, to enable cross-compilation for an x86 target
on the PowerPC development machine being used, and to reduce loss of
precision introduced by unnecessary casting of a value between integer and
floating point.

Four different configurations were tested, with three runs on each. The
machine was rebooted between runs. Here are the descriptions of the con-
figurations, along with the abbreviations that will be used to refer to them
in the following sections:

e osx: Mac OS X 10.4.8, started in single user mode to match Darbat.

39

darbat-novirt: Darbat configured to communicate directly with I/0O Kit.
Vblock, vconsole, vdev and libvblock are not present.

darbatQ: Virtualised Darbat with one guest running. The guest uses
the real disk partition through vblock.

darbatO-sync: Same as darbat0, but with asynchronous disk I/O dis-
abled.

darbatl: Virtualised Darbat with two guests running. The first guest
is the same as darbat0, but it now hosts a vblock device backed by a
disk image in its filesystem, with a total size of 6 GiB and 1.51 GiB
of free space. IOzone is run under the second guest, which uses the
device hosted by the first.

10zone was invoked with the command line, “./iozone -a -g 32768
-L 64 -S 2048 -b latest-latency.xls -N -o”. The flags given have
the following effects:

-a enables automatic mode. 10zone chooses a range of file and record
sizes to use.

-g 32768 sets the maximum file size to 32768 KiB. This is used be-
cause larger sizes currently cause Darbat to crash, for reasons that are
not yet fully understood.

-L 64 -S 2048 tells I0zone the processor’s cache line size in bytes
and total cache size in KiB, respectively.

-b latest-latency.xls causes output to be saved in a binary spread-
sheet file with the given name.

-N causes results to be reported as microseconds per operation, rather
than as KiB per second.

-o causes the test files to be opened with the 0_SYNC flag. This means
that write calls will not return until the data has actually been sent
to the disk. Thus, the true cost of doing I/O is measured, rather than
the cost as modified by the buffer cache. This is important because of
the file size limitation noted above.

5.2.3 Results

Figure 5.1 shows the time taken to complete a write call for the tested range
of record sizes, with a representative file size of 16 MiB. Figure 5.2 shows
the time taken to complete a read call for the tested range of record sizes,
once again with a file size of 16 MiB.

40

Latency (ms)

Write Latency, 16 MiB file

3000

—e— 0S X
—m— darbat0
A darbat0_sync
& darbat_novirt
—#&— darbatl

T T T T T
0 2 4 6 8 10 12 14 16 18

Transfer Size (MiB)

Figure 5.1: Comparison of write latencies.

41

Latency (ms)

20

Read Latency, 16 MiB file

—e— 0SX
—m— darbat0
A darbat0_sync
& darbat_novirt
—&— darbatl

T T T T T
8 10 12 14 16

Transfer Size (MiB)

IS
o

18

Figure 5.2: Comparison of read latencies.

42

Configuration Section | p (us) | on-1
darbat-novirt | disk_[read/write] 97.7 | 1.247
disk_rdwr 28.3 | 2.055
I/O Kit 26.7 | 3.091
Driver 832 | 3.559
darbatO-sync | disk_[read/write] 93.7 | 1.700
vblock_rw 36.3 | 3.300
/O Kit | 24.3 | 3.399
Driver 813 | 6.976

Table 5.1: Time spent in various parts of the call sequence for performing a
disk I/O operation.

The write latency results are counterintuitive in that darbat-novirt took
longer than darbatO. To investigate this phenomenon more closely, the
darbatO-sync and darbat-novirt configurations were compiled with code that
measured the average time taken to complete four different parts of the call
sequence. The same 10zone command as was used for the previous tests
was run on these instrumented kernels, producing average times computed
from around 118,000 reads and writes. The difference in cumulative times
was calculated to determine the time spent in each layer, excluding the time
spent in lower layers. The results, averaged over three runs, are shown in
Table 5.1. The sections are named as follows:

disk_[read/write | The outermost function where the code differs at all
between the configurations. It selects a buffer to use in the virtualised
case. In both cases, it copies data in or out of the buffer, and calls the
next function in the sequence.

disk_rdwr / vblock_rw The function that performs the IPC, to I/O Kit
in the unvirtualised case, or to vblock in the virtualised case. This
code is in libvblock in the virtualised case.

I/O Kit Processing done by the I/O Kit server that is not in the disk driver
itself.

Driver Time spent in the actual disk driver code.

Figure 5.3 shows nonlinear fluctuations in write latency when using small
record sizes, and Figure 5.4 illustrates that darbatl always takes at least 10
ms to complete a write operation.

Summary of Results

Read latencies are extremely close between all tested configurations. Write
latencies for darbatO and darbat-novirt are considerably higher than for na-

43

Latency Increase

Write Latency Penalty vs OS X, 16 MiB file
30.00%

25.00%

20.00%

15.00% —&— darbat0
—#— darbat0_sync

A darbat_novirt

10.00%

5.00%

0.00%

T T T
150 200 250 300

Transfer Size (KiB)

Figure 5.3: Nonlinear behaviour with small transfer sizes.

44

Write Latency, 16 MiB file

50

40

30
m
£
= —&— 0S X
o —Mm— darbat0
9 A darbat0_sync
© darbat_novirt

20 —m— darbatl

10 +

o |
T T T T T
0 50 100 150 200 250 300

Transfer Size (KiB)

Figure 5.4: Darbatl takes a minimum of 10 ms to complete a transfer.

45

Configuration | p (increase over OS X) | on—1 | SEM
darbat-novirt 0.612 | 0.754 | 0.079
darbat0O-sync 0.431 | 0.556 | 0.059
darbat0 0.440 | 0.557 | 0.059
darbat1 12.775 | 6.990 | 0.737

Table 5.2: Mean write latency penalties, expressed as the relative increase
compared to OS X. Sample standard deviation and the standard error of
the mean are also given.

tive Mac OS X, and darbatl exhibits extremely write high latencies. Dar-
bat0 has lower latencies than darbat-novirt.

Darbat-novirt spends noticeably more time in the disk driver than dar-
bat0, and also spends more time in the function that copies data in and out
of the buffer shared with I/O Kit. DarbatO takes longer to communicate
with I/O Kit than darbat-novirt, but this is outweighed by the places where
darbat-novirt spends more time.

5.2.4 Analysis

To obtain a relative performance metric, each of the Darbat configura-
tions’ write latencies was expressed as a percentage increase compared to
Mac OS X. This was calculated by taking the difference between each Dar-
bat value and its corresponding OS X value, and dividing by the OS X
value. Averaging these results across the whole samples produces the num-
bers shown in Table 5.2.
Figure 5.5 shows the relative write latency increases compared to Mac OS X

for the tested range of record sizes, with a representative file size of 16 MiB.

Uncertainty Analysis

In this section, I will calculate the uncertainty in the results and the values
derived from them.

10zone claims that its timing is accurate to the nearest 1 us. However,
it truncates its floating point results when it converts them to integers for
output, rather than rounding them correctly. The reported values may
therefore be up to 1 us less than they should be. Therefore the uncertainty
in each value is +1.5us. Adding 0.5 to each value corrects the downward
bias from the truncation, making the error in the corrected values +1us.

The mean is the sum of all the sample elements, divided by the num-
ber of elements. Uncertainties add in quadrature when their corresponding
values are added, and are divided by exact constants along with their val-
ues. Therefore the uncertainty in the mean is the quadrature sum of all the

46

Latency Increase

Write Latency Penalty vs OS X, 16 MiB file
10000.00%

—&— darbat0

—#— darbat0_sync
A darbat_novirt
& darbatl

1000.00%
= =
100.00% A A
10.00%
1.00%
0.10% T T T T T T
6 8 10 12 14 16

Transfer Size (MiB)

18

Figure 5.5: Write latency penalties relative to OS X.

47

values divided by the number of values:

VIZ+12+12 i\/5

3 T3

Standard deviation is calculated as the root mean square difference be-

tween the measurements and the sample mean. To calculate the uncertainty

in the sample’s standard deviation, we therefore add each measurement’s un-

certainty to that of the mean in quadrature. We then double the result (due

to the squaring), sum all such results in quadrature and divide the sum by

N — 1 (corresponding to the calculation of the mean), then halve the result

due to taking the square root to get o from 2. Symbolically, this process
is as follows:

~ £0.577us

3-(2/ 121 272)°

2
==1.0
2

Therefore, on the graphs that show latencies, I have used error bars
indicating 40 + 1.0. At the scales used, they are almost too small to see.

Taking the difference between the set of means for two different config-
urations makes the uncertainties add in quadrature:

2
A(py — p2) = \JAp2 + Ap3 = :l:\/g ~ +0.816us

When we normalise all the differences to a percentage increase, the rel-
ative uncertainties add in quadrature. Letting the difference in means be d,

we get:
V() Gy
X d /’LOS$

This relative uncertainty has been used for the error bars on the graphs
in this section that show latency increases compared to OS X. At the scales
that have been used, the bars are almost too small to see.

5.2.5 Discussion
Relative performance

Darbat is currently in an unstable state and is missing major features, so
it has not been subjected to a concerted optimisation effort. It is thus not
surprising that it performs worse than Mac OS X in these tests. It is also
not surprising that asynchronous I/O makes things slightly slower. Only
one I/O operation is being issued at a time, so it will be completed more
quickly if the kernel immediately waits for I/O Kit to complete it, rather
than performing other operations before getting back to receiving the reply.
The most surprising result is that the Darbat systems using vblock are in
fact faster than those without it.

48

The measurements in Table 5.1 were taken to aid in understanding this
result. Darbat-novirt spends significantly more time in the disk driver, and
moderately more time in the outer disk_read / disk_write functions. Intuition
is at least satisfied by the fact that darbat0 spends more time in the function
that performs the IPC, as this also includes the time spent in the vblock
server.

More information is needed to satisfactorily explain what is happening,
but a rough guess may be hazarded. The two places that exhibit unexpected
slowness have a feature in common, namely that they access the shared
buffer. Darbat-novirt has a single 64 KiB buffer, while darbat0 allocates
buffers as needed, and only makes them as large as is needed at the time.
It may be that darbat-novirt’s buffer has an unfortunate placement, and
that some memory system effect, perhaps cache aliasing or a quirk of the
page-fault handling, is causing the loss of performance.

It would be interesting to see what difference it would make to eliminate
two IPC calls per I/O operation by having vblock’s clients and providers
send messages to each other directly most of the time, only using the vblock
server to initially find each other. It seems likely that the 8 us difference
between vblock_rw and disk_rdwr is close to the true overhead added due to
the use of vblock.

Effects of record size

The nonlinear behaviour seen in Figure 5.3 shows that the behaviour of the
filesystem is complex. With larger record sizes, the time taken to transfer
the data dominates the overall latency, so irregularities such as these become
less apparent.

The levelling-off of the curves in Figure 5.5 occurs at 2 MiB, which is
the size of the processor’s L2 cache. The more of the data that fits in
the cache, the less penalty there is for copying it between buffers. The
fact that exhausting the cache capacity makes the performance so much
worse compared to native OS X suggests that Darbat’s performance could
be markedly increased by eliminating the copy between the buffer cache
and the buffer shared with the device provider. This could be done by
implementing scatter-gather 1/O, which would require Darbat being able to
determine the real physical addresses of pages in its buffer cache. A list of
physical frames could then be sent to I/O Kit, which could perform DMA
directly from the memory backing the buffer cache pages.

Darbat1’s performance

Darbatl exhibits very poor performance, both in terms of overhead per
operation and cost per byte. The main factor that explains this is that the
vblock daemon must poll for messages because the Darbat kernel cannot

49

Configuration | Latency (us) | Penalty vs. native
Linux 66.0 N/A

Xen 68.2 3.3%

VMware 85.6 29.7%
UML 250 279%

Table 5.3: Filesystem latency for creating a 10 KiB file in native Linux,
XenoLinux, Linux running under VMware Workstation, and User-Mode
Linux. Measurements reproduced from [BDF103].

preempt it. It may be possible to partly alleviate this problem by adjusting
the daemon’s sleep intervals, but effort would be better spent in fixing the
underlying problem by implementing preemption.

The other main factor contributing to darbatl’s poor performance is
the fact that it must copy the data three more times than darbatO: from
userland into darbatl’s buffer cache, from there into the buffer shared with
the vblock daemon, and from there into a buffer that darbatO will accept
in a read/write syscall. After that, it must of course go through the usual
sequence for darbat0’s disk I/O. It may be possible to eliminate one copy
from darbatl’s I/O path by writing a custom pager. This could make it
possible to map an arbitrary piece of physical memory into a user process’s
address space. It does not appear to be possible to do that with the standard
Mach virtual memory system.

The performance of disk I/O using the vblock daemon should be re-
evaluated when Darbat gains the ability to preempt its user processes.

Effects of the buffer cache

While the measured write latencies showed the cost of sending data all the
way to the disk, due to the use of the 0_SYNC flag, the read latencies are
measuring a different quantity. Read latencies for all of the configurations
are both very close together, and very low compared to the write latencies.
This is because the data being read was all able to fit in the buffer cache.

This illustrates that even with extremely poor performance of actual
disk I/O such as that exhibited by darbatl, many file operations will, in
practice, not perform any worse. Of course, it would be a different story if
the capacity of the buffer cache had been exhausted.

Comparison with other virtualised systems

Unfortunately, disk I/O latency does not appear to be a popular metric for
evaluating VMMs in the literature. Most papers focus on throughput and
CPU utilisation with multiple concurrent requests. However, the original

50

2003 Xen paper [BDFT03] does have a comparison of filesystem latencies
for native Linux, XenoLinux, Linux running under VMware Workstation,
and User-Mode Linux. The data for XenoLinux was gathered when running
it as Domain0, and no data for other domains using devices provided by
Domain0 is given. Table 5.3 reproduces their results for the creation of a 10
KiB file.

These few data points are not sufficient to compare my system with these
others in any meaningful way, especially since I negated the benefits of the
buffer cache for my tests, and these did not. They do, however, appear to
suggest that Darbat0’s 44% penalty over native (without the benefit of the
buffer cache) may be quite competitive. This penalty could in fact be greatly
reduced if copying between guests and 1/O Kit were avoided, as described
earlier in this section.

What was not measured

Disk I/0O latency is only one part of the performance impact of the modifi-
cations I have made. CPU usage and throughput are the other metrics that
tend to be used to evaluate such changes. Unfortunately, measuring these
would have been considerably more difficult than measuring the latency for
a single process. Most throughput benchmarks involve many processes or
the asynchronous I/O API, and Darbat is unable to run them in its current
state.

It was also not possible to measure the complete disk 1/O performance
characteristics of the systems, since files large enough to exhaust the capacity
of the buffer cache could not be used.

5.2.6 Performance Summary

A virtualised Darbat instance using the real disk takes about 44% longer
than native Mac OS X to complete a disk I/O operation. A Darbat instance
without the virtualisation servers took significantly longer, but it appears
likely that this is only due to chance. The real overhead added by the
virtualisation servers is around 8 us per operation, possibly slightly lower.
It should be possible to reduce this by having Darbat communicate with
the providers of its vblock devices directly, rather than going through the
vblock server every time.

It appears that the higher latency for Darbat compared to Mac OS X is
mostly due to the fact that the data is copied an extra time. It should be
possible to eliminate this extra copy by implementing scatter-gather DMA.

A Darbat instance using a disk image provided by the vblock daemon
running under another Darbat instance exhibits extremely high latencies.
This is explained by the fact that it needs to poll for messages due to Dar-
bat’s inability to preempt its user processes, combined with the fact that it

o1

must copy the data several more times.

52

Chapter 6

Future Work

The work presented in this thesis will enable many future developments.
This chapter will discuss some of them. Figure 6.1 shows the structure of
a possible future virtualised version of Darbat. The Darbat kernels are run
in external address spaces, and there are multiple I/O Kit instances. The
latter may also be run in external address spaces. Wombat is run alongside
Darbat, and makes use of the same virtualised devices.

6.1 Vblock improvements

It should be possible for vblock to send the details of each device’s provider
to guests. Then, the guest could communicate with the provider directly,
rather than going through the vblock server in every call. This should
decrease disk I/0 latency by some amount.

The vblock server should also have a protocol for advertising the presence
of newly-added devices to guests, so that hot-plugging drives will work.

6.2 External address spaces for guests

It is planned that guests will eventually be launched in external address
spaces. This will relieve the address space scarcity problems that currently
affect Darbat, since the XNU kernel expects to have a full 4 GiB address
space to work with. It will also remove the need to have multiple copies
of the same kernel that only differ in having been relocated to a different
address, since each address space will be able to have the same kernel image
loaded in-place.

When this happens, the supervisor will need to be the exception handler
and scheduler for the guests, a role that is presently filled by the Iguana
server. Depending on the security model that is chosen, the supervisor may
also act as redirector as well.

53

User User
Process Process

User
Process

Darbat Kernel

[m————————————=

|
|
|
l
|
: Darbat Kernel
|
|
|
|
|
|

User
Process

Supervisor and
/0 Kit [«——»| Virtual Device
Servers

Wombat

¢

Iguana Single Address Space

L4

Hardware

Figure 6.1: Possible future structure of a virtualised Darbat system. Dashed
lines indicate external address spaces.

54

I/0 Kit

6.2.1 Memory Server

This server will act as the pager for the guests when they are launched in
external address spaces. It will give memory to guests on demand until they
reach their maximum allocation. It may also communicate with balloon
drivers in the guests to reclaim memory when needed.

The memory server will be important in enabling guest instances to be
brought down cleanly, since it will keep track of the memory resources that
each one uses.

6.3 Network

A network virtualisation server could be implemented, to allow all guests to
have network access. It would likely implement a virtual NIC per guest and
a virtual ethernet switch. Packets could be sent and received in much the
same way as block devices are read and written, except that a MAC address
will be given rather than a block number.

6.4 Video and Audio

Servers could be implemented to multiplex video and audio devices between
guests. These servers would assign video and audio devices to guests in
much the same way as the keyboard is assigned. More complex schemes
could also be explored, for example, optionally mixing audio output from
multiple guests simultaneously. The video display could be shared using a
system such as Blink [Han06] or Nitpicker [FHO05].

6.5 Multiple I/0 Kits

Multiple I/O Kits could be used to isolate unreliable drivers. This would
require a system for configuring which devices each I/O Kit should handle.
The vdev server would also need to be extended to keep track of which
devices are provided by which I/O Kit instance. For security, it could also
keep track of which guests should be allowed to access which devices.

To realise the benefits of isolated drivers, it would also be necessary to
implement a system to detect when they fail, and to restart them with as
little impact on the correct operation of user processes as possible.

6.6 Other future work

Listed here is selection of other interesting work that may follow on from
the work presented in this thesis.

55

fair scheduling of guest kernels and applications;

support for overcommitting memory to increase utilisation, possibly
via balloon drivers;

hot-plug support for all relevant devices;

runtime starting (and stopping) of I/O Kits for new drivers and de-
vices;

a secure user interface for VM management;

support for running Wombat guests (and other suitably modified oper-
ating systems, including hardware-assisted VMMs for legacy OS sup-
port).

56

Chapter 7

Conclusions

In this thesis, I have described the design and implementation of a para-
virtualised system supporting multiple instances of the Darbat OS, which
runs in the Iguana environment on the L4 microkernel. I have reported on
the successful operation of the system, and measured a part of the perfor-
mance impact of the new features. I have also described some of the future
work that will be enabled by the previous achievements.

The qualitative goals have been met quite successfully, as multiple Dar-
bat instances have been run simultaneously, and have been given multiplexed
access to a basic set of devices.

The performance impact has not been fully characterised, but initial
results are promising. The impact on disk I/O latency due to the use of
the virtualisation servers appears to be small compared to other factors.
Strategies have been identified to overcome the factors that lead to reduced
performance compared to native Darwin. It does not seem unreasonable
at this stage to think that disk performance comparable to native could be
achieved with careful optimisation.

o7

Bibliography

[AAOG]

[AIM]
[App]

[App06a]

[App06b)]

[App06i]

[App06d]

Keith Adams and Ole Agesen. A comparison of software and
hardware techniques for x86 virtualization. In Proceedings of the
12th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS’06), San
Jose, California, USA, October 2006.

Aim benchmarks. http://sourceforge.net/projects/aimbench.

Apple Darwin Releases. http://www.opensource.apple.com/
darwinsource/.

Apple, Inc. Darwin project FAQ. http://developer.apple.com/
opensource/faq.html, 2006.

Apple, Inc. Introduction to I/O Kit fundamentals.
http://developer.apple.com/documentation/DeviceDrivers/
Conceptual /IOKitFundamentals/, November 2006.

Apple, Inc. Kernel programming guide. http://developer.apple.
com/documentation/Darwin /Conceptual /KernelProgramming/,
November 2006.

Apple, Inc. Mac OS X technology overview. http:
//developer.apple.com/documentation/MacOSX/Conceptual/
OSX_Technology_Overview/, June 2006.

[BDF03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim

[Bel05]

[Cap06]

Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield. Xen and the art of virtualization. In Proceedings of the
19th ACM Symposium on OS Principles, pages 164-177, Bolton
Landing, NY, USA, October 2003.

Fabrice Bellard. QEMU, a fast and portable dynamic transla-
tor. In USENIX Annual Technical Conference, FREENIX Track,
pages 41-46, Anaheim, CA, April 2005.

Don Capps. I0zone filesystem benchmark. http://www.iozone.
org/, October 2006.

58

[CBY3]

[CHO5]

[Chu04]

[Clas85]

[Cre81]

[Dik00]

[FHOS5]

[GLBO6]

[HanO6]

J. Bradley Chen and Brian N. Bershad. The impact of operating
system structure on memory system performance. In Proceedings
of the 14th ACM Symposium on OS Principles, pages 120-133,
Asheville, NC, USA, December 1993.

Matthew Chapman and Gernot Heiser. Implementing transparent
shared memory on clusters using virtual machines. In Proceedings
of the 2005 USENIX Technical Conference, pages 383—386, Ana-
heim, CA, USA, April 2005.

Peter Chubb. Get more devices drivers out of the kernel! In
Ottawa Linux Symposium, Ottawa, Canada, July 2004.

David D. Clark. The structuring of systems using upcalls. In
Proceedings of the 10th ACM Symposium on OS Principles, pages
171-180. ACM Press, 1985.

Robert J. Creasy. The origin of the VM /370 time-sharing system.
IBM Journal of Research and Development, 25(5):483-490, 1981.

Jeff Dike. A user-mode port of the Linux kernel. In Proceedings of
the 4th Annual Linux Showcase and Conference, Atlanta, Georgia,
USW, October 2000.

Norman Feske and Christian Helmuth. A Nitpicker’s guide to
a minimal-complexity secure GUIL. In ACSAC ’05: Proceedings
of the 21st Annual Computer Security Applications Conference,
pages 85-94, Washington, DC, USA, December 2005. IEEE Com-

puter Society.

Charles Gray, Geoffrey Lee, and Tom Birch. Darbat re-
lease 0.2 notes. http://ertos.nicta.com.au/downloads/darbat/
ReleaseNotes-0.2.pdf, 2006.

Jacob Gorm Hansen. Blink: 3D multiplexing for virtualized ap-
plications. Technical Report 06/06, Dept. of Computer Science,
University of Copenhagen, January 2006.

[HHL*97] Hermann Hértig, Michael Hohmuth, Jochen Liedtke, Sebastian

[HLO4]

Schonberg, and Jean Wolter. The performance of p-kernel-based
systems. In Proceedings of the 16th ACM Symposium on OS Prin-
ciples, pages 66—77, St. Malo, France, October 1997.

Gernot Heiser and Ben Leslie. Iguana: A protection and re-
source manager for embedded systems. http://www.ertos.nicta.
com.au/software/kenge/iguana-project/latest /iguana_talk.pdf, Au-
gust 2004.

59

[HR96]

[HULO06]

[Lee05]

[Lie95)

[Lie96]

[Lin06]

Michael Hohmuth and Sven Rudolph. Steps towards porting a
Unix single server to the L3 microkernel, April 1996.

Gernot Heiser, Volkmar Uhlig, and Joshua LeVasseur. Are virtual-
machine monitors microkernels done right? Operating Systems
Review, 40(1):95-99, January 2006.

Geoffrey Lee. I/O Kit drivers for L4. BE thesis, School of Com-
puter Science and Engineering, University of NSW, Sydney 2052,
Australia, November 2005.

Jochen Liedtke. On u-kernel construction. In Proceedings of the
15th ACM Symposium on OS Principles, pages 237-250, Copper
Mountain, CO, USA, December 1995.

Jochen Liedtke. Towards real microkernels. Communications of
the ACM, 39(9):70-77, September 1996.

Itanium Linux-on-Linux. http://ertos.nicta.com.au/software/
virtualisation/lol.pml, December 2006.

[LUCT05] Joshua LeVasseur, Volkmar Uhlig, Matthew Chapman, Peter

Chubb, Ben Leslie, and Gernot Heiser. Pre-virtualization: Slash-
ing the cost of virtualization. Technical Report PA005520, Na-
tional ICT Australia, October 2005.

[LUSGO04] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Gotz.

[LvSHO5]

[Mac07]

[MS05]

[NICO5)]

[NICO6a]

Unmodified device driver reuse and improved system dependabil-
ity via virtual machines. In Proceedings of the 6th USENIX Sym-
posium on Operating Systems Design and Implementation, San
Francisco, CA, USA, December 2004.

Ben Leslie, Carl van Schaik, and Gernot Heiser. Wombat: A
portable user-mode Linux for embedded systems. In Proceedings
of the 6th Linux.Conf.Au, Canberra, April 2005.

Mac-on-Linux web site. http://mac-on-linux.sourceforge.net/,
February 2007.

Steve McDowell and Geoffrey Strongin. Pacifica — next generation
architecture for efficient virtual machines. http://developer.amd.
com /assets/WinHEC2005_Pacifica_Virtualization.pdf, 2005.

National ICT Australia. NICTA L4-embedded Kernel Reference
Manual Version N1, October 2005. http://ertos.nicta.com.au/
Software/systems/kenge/pistachio/refman.pdf.

Magpie. http://ertos.nicta.com.au/software/kenge/magpie/latest/,
June 2006.

60

[NICO6b)

[Objo4]

[0JGI1]

[PG74]

[RI00]

Project: Iguana. http://www.ertos.nicta.com.au/software/kenge/
iguana-project/latest/, June 2006.

Object Management Group, Inc. CORBA 3.0.8 Specification,
March 2004.

D. L. Osisek, K. M. Jackson, and P. H. Gum. ESA/390
interpretive-execution architecture, foundation for VM/ESA.
IBM Syst. J., 30(1):34-51, 1991.

Gerald J. Popek and Robert P. Goldberg. Formal requirements
for virtualizable third generation architectures. Communications
of the ACM, 17(7):413-421, 1974.

John Scott Robin and Cynthia E. Irvine. Analysis of the Intel
Pentium’s ability to support a secure virtual machine monitor. In
Proceedings of the 9th USENIX Security Symposium, Denver, CO,
August 2000.

[RJO*89] R.F. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron, A. Forin,

D. Golub, and M. Jones. Mach: a system software kernel. Spring
COMPCON, pages 176-8, 1989.

[UNR'05] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando

[VMwO7]

[Wal02]

[Won03]

[WSG02]

C. M. Martins, Andrew V. Anderson, Steven M. Bennett, Alain
Kagi, Felix H. Leung, and Larry Smith. Intel virtualization tech-
nology. Computer, 38(5):48-56, 2005.

VMware, Inc. VMware products. http://www.vmware.com/
products/, 2007.

Carl A. Waldspurger. Memory resource management in VMware
ESX server. In Proceedings of the 5th USENIX Symposium on Op-
erating Systems Design and Implementation, Boston, MA, USA,
2002.

Ka-shu Wong. Mac OS X on L4. BE thesis, School of Com-
puter Science and Engineering, University of NSW, Sydney 2052,
Australia, December 2003.

A. Whitaker, M. Shaw, and S. D. Gribble. Denali: Lightweight
virtual machines for distributed and networked applications. In
Proceedings of the USENIX Annual Technical Conference, Mon-
terey, CA, June 2002.

61

Appendix A

Vblock interface definitions

A.1 The libvblock interface

The header file vblock.h, which defines the interface to libvblock, is repro-
duced below

/*
vblock.h
client interface for Darbat virtual block device server

Joshua Root <jmr at cse.unsw.edu.au>
created 2006-10-25
Copyright 2006 National ICT Australia.

¥ ¥ X X X *

*/

#ifndef _VBLOCK_H
#define _VBLOCK_H 1

/*

Initialise libvblock. Should be called before any other
libvblock functions. ’completion_func’ is a function that will
be called if libvblock receives a completion message during
other operations. Note that completion messages must also be

they are received while one of its functions is executing.

¥ K X X X X %

Return value is O on success, or a BSD error code on failure.
*/

int vblock_init(void (*completion_func) (char *, int));
/*

* Obtain a buffer of at least ’size’ bytes that can be used with
* the read and write functions. The return value is an opaque

62

handled by the client, as libvblock does not handle them unless

* reference to the buffer that can be passed to libvblock

* functions. The actual base address of the buffer is returned
* in ’base’, and should be used for copying data in or out.

* Returns a valid pointer on success, or NULL on failure.

*/

void * vblock_get_buffer(unsigned int size, char #**base);

/*

* Return a buffer, identified by ’buf_ref’ (which should have
been obtained from vblock_get_buffer()), to the pool of
available buffers.

* %

*/

void vblock_return_buffer(void *buf_ref);

/*
* Get the geometry of the device identified by ’devnum’. On
* success, ’nblocks’ is set to the number of blocks on the

* device, and ’blocksz’ is set to the device’s block size. On
* failure, both ’nblocks’ and ’blocksz’ are set to O.
*/

void vblock_get_geometry(int devnum, unsigned long *nblocks,
unsigned long *blocksz);

~
*

Read or write ’size’ bytes from/to location ’offset’ in the
device identified by ’devnum’, into/from the buffer specified
by ’buf_ref’ (which should have been obtained from
vblock_get_buffer()).

The non-async variants wait until the I/0 is actually complete
before returning, while the async variants return as soon as
the request has been enqueued (or if an error occurs while
enqueuing it). At some point after a successful async call,
the calling thread will receive a completion message that
indicates that the I/0 operation has actually completed.

¥ X X X X X X X X X ¥ X *

Return value is O on success, or a BSD error code on failure.
*/
int vblock_read(int devnum, void *buf_ref,

unsigned long long offset, unsigned int size);
int vblock_read_async(int devnum, void *buf_ref,

unsigned long long offset, unsigned int size);

int vblock_write(int devnum, void *buf_ref,
unsigned long long offset, unsigned int size);

63

int vblock_write_async(int devnum, void *buf_ref,
unsigned long long offset, unsigned int size);

/*
* Returns the number of devices currently available through vblock.
*/

int vblock_ndevs(void);

/*
* Ask the device’s provider to flush its buffer cache.
* Return value is O on success, or a BSD error code on failure.
*/

int vblock_sync(int device_number);

#endif /* _VBLOCK_H */

A.2 The Vblock RPC interface

The IDL4 definition of the RPC interface to the vblock server, from the file
vblock.idl4, is reproduced below

/*
* vblock.idl4
* RPC interface to Darbat virtual block device server

*/

import "iguana/types.h";
import "vblock/interface_uuids.h";

/* client interface */

[uuid (INTERFACE_VBLOCK_CLIENT_UUID)]

interface vblock_

{
/*
* Register with the server. Must be called before using any
* other vblock functions. Returns the number of devices
* available to the client in ’ndevs’. Return value is 0 on
* success, or a BSD error code on failure.
*/

int init(out int ndevs);
/*

* Gets the geometry of the device specified by ’device_number’.
* Returns the number of blocks in the device in ’nblocks’ and

64

};

* their size in ’blocksize’.

* Return value is O on success, or a BSD error code on failure.

*/

int get_geometry(in int device_number, out unsigned long nblocks,
out unsigned long blocksize);

~
*

Read or write ’size’ bytes from/to the device specified by
’device_number’, into/from the address given in ’buffer’,
starting at the offset given in ’offset’. The operation is
asynchronous, so the function returns as soon as the request
has been enqueued, or when an error occurs while attempting to
enqueue it. The calling thread will be sent a completion
message when the operation actually completes.

Return value is O on success, or a BSD error code on failure.

* X X X X X ¥ *

*/
int read(in int device_number, in char *buffer,
in unsigned long long offset, in unsigned long size);
int write(in int device_number, in char *buffer,
in unsigned long long offset, in unsigned long size);

/*
* Ask the device’s provider to flush its buffer cache.
* Return value is O on success, or a BSD error code on failure.
*/

int sync(in int device_number);

/*

Sends the capability ’cap’ to the provider of the device
specified by ’device_number’. This function should be called
with a capability for every buffer that is to be used for read
or write calls.

Return value is O on success, or a BSD error code on failure.

* X X X *

*/

int add_cap(in int device_number, in cap_t cap);

/* interface for clients to export devices */
[uuid (INTERFACE_VBLOCK_PROVIDER_UUID)]
interface vblock_provider

{

/*
* Register to provide a device that has ’nblocks’ blocks of size
* ’blocksize’. The id number of the new device is returned in

65

};

* ’dev_id’.
* Return value is O on success, or a BSD error code on failure.
*/
int add_device(in unsigned long nblocks,
in unsigned long blocksize, out int dev_id);

/*

Indicate that the thread ’client’ should be allowed to access
the device specified by ’device_number’. The permitted
operations are encoded in ’permissions’, which can be the
values READ_MASK or WRITE_MASK, or their bitwise union.
Return value is O on success, or a BSD error code on failure.

O I

*/
int give_client_device(in L4_ThreadId_t client,
in int device_number, in int permissions);

/*

* Indicate that the device specified by ’dev_id’ is no longer

* available for use. Fails if not called by the provider of the
* device or the supervisor.

* Return value is O on success, or a BSD error code on failure.
*/

int remove_device(in int dev_id);

/* supervisor interface */
[uuid (INTERFACE_VBLOCK_SUPERVISOR_UUID)]
interface vblock_supervisor

{

/*

* Register the thread ’tid’ as a client of the vblock server.

* Return value is O on success, or a BSD error code on failure.
*/

int add_client(in L4_ThreadId_t tid);

/*

* De-register the thread ’tid’ as a client of the vblock server.
* Return value is O on success, or a BSD error code on failure.
*/

int remove_client(in L4_ThreadId_t tid);

66

Appendix B

List of new and modified files

The Darbat code base is very large, so it may be difficult to distinguish be-
tween code that was written for this thesis and code that existed previously.
To help address this problem, this appendix lists all of the files that I have
added or changed during thesis development, along with descriptions of the
new or modified functionality in each.

B.1 New directories

These are the directories that were added to the Darbat source. Most of the
files they contain are also completely new, though not all. Notably, vconsole
contains substantial amounts of code taken from Mach.

libs/vblock The libvblock library.

virt Directory containing virtualisation-specific programs.

virt /supervisor The supervisor.

virt /utils Directory containing user-mode virtualisation utilities.

virt /utils/guest_launcher Program that launches a new guest.

virt /utils/vblock_daemon The vblock daemon.

virt /vblock The vblock server.

virt /vconsole The vconsole server.

virt /vdev The vdev server.

67

B.2 New files

These are files that are new, but are in a pre-existing directory. New files
in new directories are not listed.

darbat/igcompat /src/iokit /vblock_disk.c Sits between diskdev.c and
libvblock. This is the virtualised counterpart to disk.c, and handles
async 1/O properly.

darbat /igcompat /src/iokit /disk.h Declarations common to disk.c and
vblock_disk.c.

darbat/osfmk/console/darbat_vconsole.c Handles communications with
the vconsole server.

iguana/init /src/launch_darbat.c Listens for messages from the super-
visor and launches new Darbat guests when requested.

B.3 Modified files

These are pre-existing files that I modified in some way.

SConstruct Build multiple Darbats, build virtualisation servers and li-
brary, pass virtualisation config option to sub-projects to allow condi-
tional compilation.

darbat/SConstruct Conditionally build virtualisation code, set a unique
target name so there can be multiple Darbats.

darbat/bsd/kern/bsd_init.c Initialise vconsole.
darbat/bsd/kern/kern_mib.c Code for virtualisation-related sysctls.
darbat/bsd/kern/kern_sysctl.c Code for virtualisation-related sysctls.
darbat/bsd/kern/subr_log.c Forward log_putc output to vconsole.
darbat/bsd/kern/sysctl_init.c Code for virtualisation-related sysctls.
darbat/bsd/sys/sysctl.h Define the virtualisation-related sysctls.

darbat/igcompat/machvm/pmap.c Added a non-panicking stub
for pmap_remove_some_phys|().

darbat/igcompat/machvm/vm_resident.c Don’t immediately panic in
vm_page_wait ().

darbat/igcompat /src/console.c Don’t define cnputcusr here when using
vconsole.

68

darbat/igcompat/src/darbat.c Virtualisation-related sysctl initialisation
code, and allocation of the I/O buffer mapping table. Send dar-
bat_cons_write characters to vconsole.

darbat/igcompat /src/ig_stubs.c Removed or conditionalised the stubs
for symbols that I added implementations of.

darbat/igcompat /src/iokit.c Enable setup of multiple disks when using
vblock, explicitly send capabilities for shared memsections to 10Kit,
separate the network, disk and userclient proxy memsections when
virtualised, send messages to IOKit via vdev when it’s there.

darbat/igcompat /src/iokitstubs.c Changed the communication proto-
col with IOKit to send the address of the return area so multiple clients
can work; also saved a message register by making use of the label.

darbat/igcompat /src/iokit /disk.c Changes to stay compatible with diskdev.c
and IOKit when their interfaces changed.

darbat/igcompat /src/iokit /diskdev.c Added async I/O support, im-
plemented sync ioctl, turned writability on.

darbat/igcompat /src/main.c Don’t initialise video console when using
vconsole, initialise virtualisation-related sysctls, only insert thread ID
into naming when not virtualised.

darbat/igcompat /src/sysloop.c Added mapcap syscall, made pager func-
tion handle mappings set up with mapcap. Handle disk I/O comple-
tion messages (CT_.REQ_-COMPLETE_O).

darbat/osfmk/console/i386 /serial_console.c Send console output to
vconsole.

darbat/osfmk/i386 /cpu_data.h Fixed a syntax error in the CPU_DATA_GET
macro.

darbat/osfmk/kern/clock.c Silenced a printf in clock_deadline_for_periodic_event
that was happening every 100 ms.

darbat/osfmk/14/pcb.c Add non-panicking stubs for a couple of func-
tions called by the paging code.

darbat/osfmk/mach/i386/vm_param.h Halved VM_KERNEL_SIZE so
more than one Darbat could run.

darbat /pexpert/gen/pe_gen.c Don’t initialise the built-in video console
when using vconsole.

69

iguana/init /src/startup.lua.template Start the virtualisation servers,
and don’t automatically start Darbat when using virtualisation.

iguana/init /SConstruct Compile new source file.

iguana/init /src/init.c Removed the hack where all tasks were given the
capability for the memsection shared between IOKit and Darbat.

iguana/iokit/SConstruct Added virtualisation defines.

iguana/iokit/src/iokit.c Made IOKit act as a vblock provider. Added a
thread to do disk I/O asynchronously, with requests added by the main
thread to a producer/consumer queue. Added the ability to receive
new capabilities. Remove the assumptions of a single client with a
single shared memsection. Added the disk sync operation. Intercept
some special keyboard characters and send them to the supervisor.
Fixed some bugs.

libs /xnuglue/include/iguana/iokit_disk.h Added new disk op defines.

libs /xnuglue/src/l4compat /hacks.c Adjusted the offset of the return
area for the virtualised case in vm_map_copyin_commony().

tools/build.py Added the KengeEnvironment.RenamedApplication() method
so that multiple, differently-named Darbats can be built from the same
source.

70

