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Abstract

The storage world is facing a crisis: while the quantity and cost of storage is improving expo-

nentially, the speed of accessing stored data is not. Two traditional approaches to solving this

problem are bigger and smarter hardware (like RAID), and intelligent ways of using existing

resources (such as I/O scheduling). The aim of this thesis is to investigate how to marry these

two techniques.

In the context of the Linux kernel, we benchmark ten I/O schedulers on a range of RAID

configurations and workloads to determine which techniques are applicable to host-based I/O

scheduling on hardware RAID devices. We also implement two new schedulers for Linux, and

solve several performance issues in the existing ones.

Our results show that I/O scheduling can generally improve performance using the techniques

that have been employed for many years. We show that Linux’s deadline scheduler generally

performs best, and describe some optimisations to improve performance for the other schedulers.
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Chapter 1

Introduction

The storage world has, for some time, been facing a crisis; the quantity of storage available

has been growing exponentially, while the speed of accessing it has not. Figure 1.1 depicts

this growing disparity. While the cost per byte and areal density (that is, bytes per unit disk

area) have improved by factors of 100 000 and 10 000 since 1980, respectively, the speed of

accessing the data—transfer rate and access time—have improved only by factors of 100 and 10.

To make matters worse, processor speeds and memory capacity have been growing by similarly

Figure 1.1: Hard disk improvement since 1980 [GH03].

high rates. As a consequence, there are huge quantities of storage available and the system

capacity to process that data, but the relative speed of accessing it is slow, and getting slower.

There are two ways in which this problem has traditionally been tackled. The first is to add

more hardware to hide performance problems. RAID, for instance, combines multiple physical
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disks into a single volume with improved performance and reliability characteristics. This is

often done in dedicated hardware which abstracts away such functionality, presenting a disk-like

device to the host system.

The second approach is I/O scheduling, which aims to improve performance and quality of

service by more efficient use of available disk resources. This is achieved by two main techniques:

reordering of disk requests and merging of adjacent requests into single larger requests. While

I/O scheduling algorithms have been developing since the 1960s, they all make assumptions

about the underlying disk hardware:

1. the logical data layout presented to the host system corresponds to the physical layout;

2. one read/write head, meaning only one location on the disk can be manipulated at any

moment;

3. the device has knowledge of a single data request at any time.

These assumptions are sufficiently accurate according to the traditional model of the hard disk.

Both RAID and I/O scheduling can be combined to further improve storage system perfor-

mance. RAID, however, invalidates all three assumptions of the traditional disk model on which

I/O scheduling algorithms are based. To what extent, then, are these algorithms applicable to

RAID devices? We hope to answer this question.

We will be taking a measurement-based approach to evaluating I/O scheduler performance

using real RAID hardware and I/O schedulers. In particular we will be working on the Linux ker-

nel, which provides four different I/O schedulers. It also provides a fully modular I/O scheduler

framework, which allows us to develop new schedulers with relatively little effort.

Using this framework we will develop several new schedulers which implement some of the

classic algorithms used in many performance evaluations, and on which real implementations are

based. Using these, we can study I/O scheduling on hardware RAID from an implementation-

independent perspective, largely free from the requirements of real-world schedulers. In addition,

we will study Linux’s default schedulers, which are used in millions of production machines. We

hope to improve performance of these schedulers and provide guidance to those wanting to use

them on RAID devices.

The study will proceed in three parts. Initially, we will study, document, and improve the

current state of Linux’s four I/O schedulers. We will then benchmark them under a variety

of loads and RAID configurations, along with the new schedulers developed for that purpose.

Finally, we will analyse the benchmarks and try to identify which of the classic I/O schedul-

ing techniques apply to hardware RAID, while also providing a practical analysis of Linux’s

schedulers and how they perform on such platforms.

This work is organised as follows. In Chapter 2, we survey the literature on the relevant

topics: disk and RAID hardware, I/O scheduling algorithms, and the Linux kernel. Chapter 3

looks at our modifications made to Linux to improve the I/O schedulers and to support the

2



benchmarks. Chapter 4 describes these benchmarks, and details the hardware and software

platform on which they were run. Chapter 5 presents the results of the benchmarks which are

analysed in Chapter 6. Finally, Chapter 7 summarises the findings of the study.
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Chapter 2

Background

In this section, we review the literature relevant to the remainder of the work. Specifically,

Section 2.1 details a model of the hard disk drive, concentrating on properties relevant to I/O

scheduling. Section 2.2 describes the purpose and techniques of I/O scheduling and how they

have been influenced by the traditional model the hard disk. It then goes on to detail the

classic I/O scheduling algorithms, and others relevant to our work. Section 2.3 looks at RAID,

including the common configurations and implementations. Finally, in Section 2.4, we describe

the relevant components of the Linux kernel, including the I/O schedulers, and look at two

previous studies of their performance.

2.1 Disk Model

2.1.1 Physical construction

A modern disk drive consists of a set of rotating coaxial discs, called platters, which are coated

with a magnetic material onto which data is stored [RW93a]. Typically, both sides of the platter

are used, giving two recording surfaces per platter. Data is read and written by a magnetically-

sensitive head, one per surface, which is mounted at the end of an arm. The arms are coupled

to an actuator which moves the heads to the desired angle, a processes known as seeking. Only

a single head can be active (that is, reading or writing) at any particular time, and since all

heads are coupled to the same actuator, they cannot be moved independently. This structure is

shown in Figure 2.1.

2.1.2 Data geometry

Data on disk is laid out according to three geometrical attributes. A sector is the smallest

addressable unit of disk storage, which contains raw data, usually 512 bytes, and information

for synchronisation and error-checking [Tan01]. The set of sectors equidistant from the centre of

a particular surface form a track. Thus, a track is all sectors that can be accessed by a particular

head without requiring a seek. The corresponding (i.e. equal radius) tracks from all disk surfaces

5
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Figure 2.1: Physical structure and data geometry for a three-platter disk.

form a cylinder—the set of all sectors that can be accessed without seeking. A sector can be

uniquely identified by its cylinder, head (or, equivalently, surface), and sector number; the CHS.

Modern disks, however, typically export an abstract addressing mode to the operating system

called LBA, or logical block addressing, where the disk is presented as a linear array of blocks.

Requests to the disk are made in terms of a logical block number, or LBN, which uniquely

identifies each block. The LBN to CHS mapping is performed transparently by the disk controller

(see Section 2.1.3), but this mapping is complicated by several optimisation and error handling

techniques, discussed in the following paragraphs.

Skew When seeking between adjacent tracks, mechanical delay may cause the head to miss

the first sector of the next track, requiring an idle period until that sector again rotates under

the head. When employing track skewing, the position of the first sector of each track is offset

from the previous one such that track zero is not missed after a single-cylinder seek. Head

skew accounts for the latency in switching the active head by offsetting each surface from the

previous.

Sector remapping Failed sectors are a common occurrence, during both manufacturing and

normal usage. When a sector is detected bad, a new sector is drawn from a pool of spares and

remapped over the failed one. Future references to the failed sector are then redirected to the

replacement. This results in a LBA to CHS mapping that changes over time, but is completely

transparent to the host system.
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Zoned bit recording Due to the shape of a disk surface, tracks toward the outer edge are

longer than those toward the centre, and hence the number of sectors per track can be increased

for tracks toward to the edge of the disk. This is called ZBR, or zoned bit recording, and requires

the disk controller to keep a mapping between tracks and the number of sectors they contain.

To minimise this overhead, the disk is divided into zones, groups of contiguous tracks, for which

the number of sectors is constant.

As a side-effect of ZBR, the maximum rate of data transfer from the medium is not constant.

The rotational velocity of a disk is fixed, and the sector density (approximately) constant. As a

result, the linear velocity of sectors passing the head increases the further it is from the centre,

and thus the maximum throughput increases for zones toward the edge of the disk.

2.1.3 Controllers

Physical disk management is performed by a microprocessor called the disk controller. It pro-

vides low-level data storage and retrieval via a host interface such as SCSI, controls the disk

head and positioning hardware, and manages the on-board memory which is used for caching,

buffering, and request queueing. Only the latter three features will be discussed in more detail,

since they are the most important with respect to I/O scheduling.

Caching Read caching is an optimisation technique that exploits locality in disk access pat-

terns by keeping certain sectors in memory. Future access to those sectors can be satisfied out

of the cache without requiring access to the physical medium, and can be done with orders of

magnitude greater bandwidth, since costly mechanical operations are avoided (see Section 2.1.4).

A prefetching (or readahead) cache improves sequential read performance by reading more

data from the disk than was requested. One such technique is to always read full tracks,

regardless of the individual request size (so-called track buffering). This is an efficient caching

scheme, since no extra seeking is required. Track buffering can also be employed to limit

rotational delay by reading the track immediately after the head is positioned, rather than

waiting for the starting sector. This is called on-arrival readahead.

Another caching policy is to keep recently read sectors in controller memory in the hope

that they will be read again in the near future. However, the effectiveness of this cache type is

somewhat limited, as modern systems typically employ a buffer cache (or page cache), where

disk data is cached in main memory.

Buffering Under write-back buffering, the disk notifies the host of write request completion

immediately after receiving it. To the host, the write completes at cache speed and can continue

processing. However, the request is actually queued in the disk controller to be written to the

medium at some later point. Under a light write load, this can improve performance due to

lower perceived latency. Under heavy load, the buffer fills and performance drops to the level

sustainable by the physical medium.
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Write-back buffering has several disadvantages. Reliability can be compromised since the

host view of the disk can differ from its actual state, and this can result in corruption if the system

fails. Additionally, it is possible that write-back buffering results in decreased performance due

to the adversary effect [RLLR07].

Queueing Command queueing1 allows a disk to accept and process multiple requests in par-

allel. The maximum number of outstanding requests is called the queue depth. Command

queueing can improve performance, but it has important implications for host I/O scheduling.

The first benefit of command queueing is the ability to reorder requests. Since the disk has

full knowledge of the platter and head positions, it can modify the order in which requests are

serviced to minimise the amount of seeking required, and thus improve throughput.

Another benefit is the ability to overlap disk access with bus I/O [RP03]. For example, while

data is being read from the medium for one request, the controller can be receiving the next

request from the host.

2.1.4 Sources of latency

The time taken to service a disk request can be attributed to three sources.

Mechanical delay The mechanical delay accounts for the latency due to the intrinsic physical

limitations of the moving disk components, and can be broken into two factors: positioning time

and transfer time.

Positioning time (or access time) is the time to position the disk head over the desired sector,

and has two contributing factors. The first, seek time, is the time taken for the arm actuator to

move the heads to the desired cylinder. It is a non-linear function of the cylinder distance, arm

mass, platter size, actuator power, and other physical disk properties. The second is rotational

delay, which is the latency incurred while waiting for the target sector to rotate under the head

once it is positioned over the desired track.

Transfer time is the time required to read or write data from the physical medium. It is a

function of the disk rotational velocity, and the size of the transfer being performed.

Electronic delay Electronic delay encompasses a range of intrinsic delay sources occurring

in the controller, including:

1. bus arbitration and transfer;

2. signal processing;

3. error detection and correction;

1Command queueing is called TCQ (tagged command queueing) in SCSI disks and NCQ (native command
queueing) in SATA disks.
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4. head and platter position calculations;

5. buffer, cache and queue management.

Queueing Using command queueing, controllers can have multiple requests outstanding, only

one of which may be operating on the physical medium. As a result, requests can spend time

queued on the controller waiting for other requests to complete. This is called the queueing

delay, and is determined by the disk controller’s scheduling policy.

2.2 I/O Scheduling

The I/O scheduler is an operating system component whose purpose is to maximise disk perfor-

mance and to provide quality of service (QoS) between competing disk users. In this section, we

outline the techniques, goals, and assumptions of I/O scheduling algorithms, and then describe

the classic algorithms which form the basis of many modern I/O scheduling techniques.

2.2.1 Mechanism

An I/O scheduler uses three main mechanisms to achieve its scheduling goals.

Reordering Request reordering is the primary technique employed in practically every I/O

scheduler. It involves queueing requests received from applications generating I/O, and modi-

fying the order in which they are subsequently issued to the disk.

Merging Two requests queued at the I/O scheduler can be merged if those requests are

operating on a contiguous region of the disk. For example, two separate requests for adjacent

sectors can be combined into a single, larger request for both sectors at once. This reduces the

number of disk commands required.

Delaying An I/O scheduler may delay issuing a request to the disk drive, even if no other

requests are pending. Such schedulers are called non-work-conserving [ID01], meaning they

allow disk resources to go unused.

2.2.2 Performance

The first job of the I/O scheduler is to optimise performance, specifically bandwidth, which it

does by exploiting physical characteristics of disk access. As discussed in Section 2.1.4, servicing

an I/O request incurs certain delays which limit the performance attained. The most significant

of these is the access time, which depends primarily on the geometrical location of consecutive

requests on the disk medium. As such, the order in which requests are executed can have a

significant impact on the bandwidth extracted from the disk. By reordering requests, one can
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reduce the time spent positioning the disk head, and hence increase bandwidth, since more time

is spent transferring data.

Request merging can also contribute to bandwidth improvement. Since fewer commands

are required, command overhead is reduced [LSG02]. Additionally, if the merged requests are

physically contiguous, they can be read or written in a single rotation.

It is believed that the optimal algorithm for the I/O scheduling problem is NP-complete

[JW91]. While Andrews et al. proved that the offline2 algorithm is NP-hard [ABZ02], no such

proof is known for the online variant.

2.2.3 QoS

The second function performed by the I/O scheduler is managing quality of service. This is

provided by reordering or delaying requests to satisfy some QoS policy. Service quality metrics

vary, but may include:

• fair distribution of bandwidth or disk time;

• fixed bandwidth or disk time allocation;

• bounded latency.

These guarantees may be provided to a range of entities, including users, processes, individual

requests, or logical blocks.

Different QoS-based scheduling algorithms provide varying levels of quality guarantee. For

example, general purpose algorithms might make weak, best-effort attempts to satisfy a schedul-

ing policy, while hard-real-time algorithms might provide strict guarantees. Additionally, the

QoS received by each entity may differ according to some priority scheme.

2.2.4 Simplified disk model

The traditional I/O scheduling algorithms operate on a highly simplified model of the hard disk

compared to that presented in Section 2.1. In this section, we present a range of approximations

and assumptions that are often (implicitly) made, to varying degrees, in practical and theoretical

I/O scheduling algorithms.

Strictly speaking, all of these assumptions are false in modern disk drives, and while this

disk model may lead to decreased performance, there are several reasons why such a model is

frequently used. Firstly, it reduces complexity in the scheduling algorithm. Secondly, it is rela-

tively independent of the actual disks being used, which vary in physical data layout, controller

memory size, cache policy, seek times, low-level optimisation, etc. Information required for more

complex models is often not exposed outside the disk.

2An offline scheduling algorithm assumes all requests are known a priori.
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Worthington et al. [WGP94] studied the effects of complex data mappings and prefetching

caches on I/O scheduler performance. They concluded that knowing the full logical to physical

address translation can improve scheduler performance by less than 2%, while effective use of

prefetching caches can have a marked improvement.

Data layout Many I/O schedulers work on the assumption of an LBA-like physical data layout

and access characteristic. This encapsulates two key concepts: logically-adjacent sectors are

physically adjacent, and only a single disk head exists. This implies seek cost is a monotonically-

increasing function of LBN.

Controllers I/O scheduling algorithms typically neglect the effect of the disk controller on

algorithm behaviour; primarily caching and buffering. While Worthington’s study showed this

can be detrimental to performance, some algorithms are inherently cache-friendly. Command

queueing combined with on-disk rescheduling, however, can subvert an OS-based I/O scheduler.

As a result, command queueing must often be disabled for algorithms requiring strict ordering

of requests at the disk medium [LSG02].

2.2.5 Classic algorithms

In this section, we present a range of classic I/O scheduling algorithms and summarise the

literature comparing their performance. While innumerable other I/O schedulers exist, many

are based on the techniques of these algorithms. Figure 2.2 compares how they respond to a

particular workload by tracing head movement.

FCFS

FCFS, or first come first served, is the simplest I/O scheduler; requests are issued to the device

in the order they arrive. This policy does not take advantage of disk characteristics. Given a

random workload, it can be shown that, on average, FCFS must perform 1
3

of a full-stroke seek

per request [CKR72].

FCFS generally performs poorly. Jacobson and Wilkes [JW91] showed that, at best, it

performs equally with position-aware schedulers, but is usually worse. Seltzer et al. [SCO90]

showed that up to 3–4 times performance improvement over FCFS can be achieved with general-

purpose algorithms.

FCFS has several advantages. It is trivial to implement, is free of starvation (since no request

can “jump the queue”) and has the lowest CPU overhead of any I/O scheduling algorithm. It

can be used successfully on devices where traditional I/O scheduling techniques do not substan-

tially affect performance, such as RAM-based devices. Finally, FCFS performs well under light

workloads, where short queues leave little room for scheduling.
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SSTF

Shortest seek time first (or SSTF) schedules the next request such that the seek distance is

minimal over all currently queued requests. Seek distance is typically quantified as cylinder

difference, but can be approximated as LBN difference [WGP94].

Hofri [Hof80] performed a detailed study of FCFS vs. SSTF performance. He concluded

that:

1. SSTF always outperforms FCFS in terms of mean latency;

2. both algorithms have comparable coefficients of variation, with SSTF marginally higher;

3. latency variance in SSTF is lower than FCFS;

4. SSTF has better scalability under increasing load.

The major drawbacks of SSTF are starvation and latency variance. Under sufficiently heavy

load, the head has a tendency to “stick” in one area of the disk. Requests outside this area can

starve indefinitely, leading to high latency for some requests, and thus high latency variance.

SATF

Shortest access time first (SATF) schedules the next request such that its access time (see

Section 2.1.4) is minimal over all currently queued requests. It is a generalisation of SSTF to

include rotational delay, and can be considered to be a greedy approximation to the optimal

scheduling algorithm.

Worthington et al. [WGP94] compared SATF and SSTF (among others), and concluded that

while SATF has very high computational overhead, the improvement in latency is appreciable.

They also showed that SATF has a higher coefficient of variance, and thus more susceptible to

starvation than SSTF. Jacobson and Wilkes [JW91] showed that, in general, rotational-position-

aware schedulers outperform seek-time based algorithms.

Pure SATF is difficult to implement in practice, since disks typically do not export rotational-

position information. However, it can be implemented in disk controllers, where accurate posi-

tioning information is available [RLLR07].

SCAN

The SCAN 3 algorithm, also called elevator, moves the arm in one direction only until all requests

in that direction have been satisfied. The arm then reverses direction and repeats the process.

Thus, the arm “sweeps” in alternating directions across the disk.

3SCAN is not an acronym; it is capitalised by convention. In older literature, SCAN is called LOOK, while
SCAN refers to a slightly different algorithm.
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Figure 2.2: Head movement in I/O scheduling algorithms. Each dot represents a request.

Figure (a) shows the point at which each request is queued at the I/O scheduler, numbered

according to arrival time. Figures (b)–(e) show the resulting seek path for the FCFS, SSTF,

SCAN and CSCAN algorithms.

Several studies [WGP94, TP72, SCO90] have shown SCAN and SSTF to have comparable

performance characteristics. SCAN is more resistant to starvation—no request can starve indef-

initely. However, it is not fair with respect to response time, since the maximum time between

service is greater for sectors at the edge of the disk compared with those in the centre. Because

prefetching caches are optimised for sequential access, SCAN makes more effective use of them

compared with FCFS and SSTF.

CSCAN, or circular SCAN, is a variant of SCAN where the arm is constrained to move in

the forward (that is, from low to high logical blocks) direction only. When the arm reaches the
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last request, it performs a full-stroke seek and starts again from the first request.

Worthington et al. [WGP94] showed that CSCAN has lower variance in latency compared

with SCAN, but achieves a lower mean. Teorey and Pinkerton [TP72] claim that SCAN is

superior under lightly-loaded conditions, while CSCAN performs better under heavy load.

V(R)

The V (R) scheduler, proposed by Geist [GD87], is a continuum of algorithms parametrised by

R, a variable in the range [0, 1]. The next request is scheduled according to the SSTF algorithm,

with an additive seek penalty of R×(number of cylinders on disk) applied for reversing the head

direction compared with the previous seek. Thus, the endpoints of the continuum are V (0),

which is pure SSTF, and V (1), which is SCAN.

Via measurement, Geist showed that V (0.2) consistently outperforms both SSTF and SCAN

in terms of average throughput, and claims that its implementation is no more complex. He

also showed that the selection of R is a trade-off between latency mean and variance; increasing

R tends to reduce variance, while decreasing R reduces the mean. Finally, he showed that for

R > 0.4, performance is indistinguishable from V (1) (SCAN).

Anticipatory

Anticipatory scheduling is a relatively new algorithm, proposed by Iyer and Druschel [ID01]

in 2001, which aims to improve performance by recognising and accounting for the deceptive

idleness problem. It is not a complete I/O scheduling algorithm in itself, but rather augments

an existing scheduler.

When applications issue synchronous4 sequential I/O, there is a small period between re-

quests in which the application is processing—the think-time. Normally, sequential I/O achieves

good bandwidth, but when multiple streams of I/O are present, a seek-optimising scheduler will

service other requests during the think-time. As a result, the performance advantage of sequen-

tial I/O is lost. This is called deceptive-idleness.

The anticipatory scheduler solves this problem by detecting sequential synchronous I/O,

and inserting short periods of idleness (that is, no request is scheduled) if a sequential request

is likely to soon follow the previous one. If this occurs, an expensive seek is avoided. However,

any incorrect anticipation results in lost bandwidth.

Despite forced periods of disk inactivity, a well-implemented anticipatory scheduler can pro-

vide a significant performance improvement over a non-anticipatory seek-optimising scheduler

such as SCAN. Iyer and Druschel showed a consistent performance improvement in a range of

micro-benchmarks and real workloads of up to 70% compared to a variant of SATF. However, as

a trade-off for increased overall bandwidth, anticipatory scheduling can cause increased latency

variance and unfair bandwidth distribution.

4A synchronous workload is characterised by a single outstanding request.
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2.3 RAID

Redundant array of inexpensive disks5, or RAID, is a technique for solving some of the perfor-

mance, reliability and capacity problems of traditional single-disk storage systems. A RAID

array is a set of independent disks, transparently combined into a single logical disk, which

achieves the above goals by intelligently distributing data and extra redundancy information

over the physical disks.

In their classic paper, Patterson et al. [PGK88] propose five RAID configurations, called

levels, which vary in their performance, space efficiency, and degree of redundancy. Since then,

several additional levels have been adopted as standard, while some of the original levels have

seen little practical use.

In this section, we will discuss the basic techniques and terminology of RAID, the RAID levels

commonly implemented in modern disk arrays, and the two main implementation methods.

2.3.1 Data striping

In a striped RAID scheme, the physical storage space is broken up into fixed-size chunks called

stripe units, typically 1–1024 KiB in size (the stripe size), which are contiguous within a single

physical disk. Stripe units are then grouped into sets called stripes, typically formed from

the corresponding unit from each disk in the array. A stripe contains a set of data and its

associated redundancy information. Stripe units are assigned in a round-robin fashion to the

available disks such that the stripe units from a single stripe are logically contiguous. Figure 2.3

shows a graphical representation of data striping.

Physical Disk 0 Physical Disk 1

S0 S1

S2 S3

S4 S5

S6 S7

Logical Disk

Stripe

Unit

{ }Stripe

Figure 2.3: Structure of a data striping RAID array consisting of a single logical disk formed

by two physical disks with four stripe units per disk. The corresponding stripe units from each

disk (S4 and S5, for example) form a single stripe.

The primary aim of data striping is improved performance [CLG+94]. Since a striped RAID

array consists of multiple physical disks, it is inherently capable of servicing multiple independent

5Often called redundant array of independent disks.
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requests in parallel. Additionally, due to the round-robin stripe unit placement strategy, striping

allows single large requests (larger than one stripe size) to be executed in parallel.

The choice of stripe size affects the performance gains of these two factors. A small stripe

size means more requests span multiple stripe units, and these requests can be executed in

parallel with improved effective bandwidth. However, this decreases disk utilisation due to

increased seeking. On the other hand, a large stripe size decreases seeking at the disk, but

limits the effective bandwidth for large requests. Chen and Patterson [CP90] showed that the

optimal stripe size depends primarily on the number of outstanding requests, the request size

distribution, and the properties of the physical disks.

2.3.2 RAID 0

RAID 0, also known as the striped set, is a pure application of data striping with no redundancy.

Since there is no redundant information to write, RAID 0 has the highest write performance

and space efficiency, but the worst reliability (indeed, worse than a single disk), since failure

of any one disk in the array results in data loss. It is primarily used where good capacity and

performance (both read and write) are desired.

2.3.3 RAID 1

A RAID 1 (or mirrored set) array is the simplest level employing redundancy, where each of two

physical drives store a complete copy (mirror) of the logical disk. This scheme yields a good

degree of redundancy and best read performance, since a request can be serviced by either of

the mirrors. However, write performance is average, since both mirrors must be updated for

every write. RAID 1 has the lowest space efficiency, so is used when reliability and performance

are of greatest importance.

2.3.4 RAID 1+0

RAID 1+0 is a simple combination of mirroring and striping, where n mirrored (RAID 1) sets

are striped together to form a single logical disk. This scheme shares the properties of pure

RAID 1, however it has the best degree of redundancy, since one disk from each mirror can fail

before data loss occurs.

2.3.5 RAID 5

RAID 5, called distributed parity, is a striped scheme where one unit from each stripe contains

parity computed over the remaining units in the stripe. This configuration can tolerate any

single-disk failure, since the data on the failed disk can be reconstructed from the remaining

data and parity information.

For read requests, RAID 5 behaves similarly to RAID 0, ignoring the parity unit in each

stripe. However, when a write occurs, the corresponding parity stripe unit must be updated.
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This leads to poor write performance for small requests (so-called partial-stripe writes), since

computing the parity information requires reading the existing stripe. Large write requests

(full-stripe writes) do not suffer from this problem, since the parity unit can be calculated from

the new data alone.

RAID 5 arrays have the best space efficiency of the redundant schemes, since they require

only one additional disk, regardless of the array size. To prevent any “parity disk” becoming

a bottleneck, the parity stripe units are distributed equally across all disks in the array (see

Figure 2.4).

2.3.6 RAID 6

RAID 6, also called dual distributed parity or P + Q redundancy, is an extension of RAID 5 to

two redundancy units per stripe, allowing two disk failures before data loss occurs. Read and

large write performance is similar to RAID 5, but for small writes, two redundancy stripe units

must be updated. RAID 6 requires two additional disks over the non-redundant RAID 0 case,

and like RAID 5, the redundant stripe units are distributed over all available disks.

2.3.7 Hardware and software implementation

RAID functionality can be implemented in either hardware or software.6 In hardware RAID,

the array is managed by a dedicated RAID controller device, which presents an abstract disk

drive to the host system. They often include large memories for buffering, caching, and request

queueing. In software RAID, array functionality is performed entirely in software on the host

system using existing storage devices.

RAID controllers perform logical-to-physical sector mappings and parity calculations in hard-

ware, relieving the host system from such resource-intensive operations. Hsieh et al. [HSA02]

found that, as a result, hardware RAID typically achieves higher throughput for a given host

CPU load. However, they discovered that hardware RAID does not always give greater raw

throughput.

2.4 Linux

The Linux kernel contains four I/O schedulers: noop, deadline, anticipatory, and CFQ (com-

pletely fair queueing). In this section we outline the structure of Linux’s block I/O subsystem,

then go on to describe the I/O schedulers in detail. The version of Linux described is 2.6.24,

which is the latest stable release as of January 25, 2008. Finally, we summarise the existing

literature comparing their properties, all of which is based on older versions of Linux.

6Hybrid hardware/software implementations also exist, but are less common.
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RAID 0: striped set

RAID 1+0: mirrored and striped set

RAID 5: distributed parity

RAID 6: dual distributed parity

Figure 2.4: RAID 0, 1+0, 5 and 6 arrays with four physical disks. The shaded stripe units

represent redundancy information.

2.4.1 Block I/O subsystem

Figure 2.5 shows the structure of the Linux block I/O subsystem. The block layer provides a

generic API for accessing block devices such as disks. It deals with requests—a representation

of individual I/Os performed on the device—which are passed through the I/O scheduler before

being placed on the dispatch queue. This queue is the interface between the device-independent

block subsystem and the device driver.

Two important I/O modes are marked on the figure. Direct I/O operates directly on the

block device in terms of LBNs, and bypasses the page cache (also called the buffer cache). File

I/O is performed on a filesystem in terms of creating, reading and writing files, and does not

bypass the page cache.
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Figure 2.5: Linux I/O subsystem. The arrows show control flow of I/O requests. The important

I/O scheduler components are shaded dark grey.

Merging The generic block layer performs back-merging, which occurs when a new request is

merged behind an existing request; that is, the start sector7 of the new request is greater than,

and adjacent to, the end sector of an existing request. These merge opportunities are discovered

by a hash table look-up which is indexed by the end sector of the existing requests.

As a consequence of merging, two queued requests may become adjacent. When this occurs,

they can be merged into a single larger request. To clearly distinguish this case, we shall refer

to it as coalescing.

Tunables The block layer provides access to a variety of tunables ; per-device variables which

affect the behaviour of the block I/O subsystem and I/O schedulers. These variables can be

tuned by the user through files in the sysfs pseudo-filesystem provided by the Linux kernel.

The following table summarises the relevant generic tunables; the scheduler-specific tunables

are described in their respective sections.

7Linux defines a sector as a 512-byte logical block.
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Parameter Default Description

scheduler none I/O scheduler selected for device.

nr requests 128 Maximum queued requests allowed.

queue depth max Maximum concurrent requests on disk.

max sectors kb 512 Maximum size (in KiB) of a single request.

Table 2.1: Summary of generic tunables.

2.4.2 Noop

Noop (no-operation) is a simple I/O scheduler that provides FCFS-like behaviour; requests are

issued in the order they arrive. However, because it back-merges requests, ordering may be

perturbed. Strictly speaking, noop performs a sorted insertion of requests onto the dispatch

queue. However, testing has shown that this queue very rarely holds more than a single request,

since drivers dequeue requests immediately. Hence, this sort has no effect.

Noop has no tunables.

2.4.3 Deadline

The deadline I/O scheduler aims to limit the time each request spends queued. This is achieved

by assigning an expiry time, or deadline, to each request entering the scheduler. If the deadline

is reached before the request is serviced, the scheduler will expedite dispatch of that request.

Dispatching of expired requests is rate-limited to prevent excessive performance penalties under

heavy load.

Deadline normally issues requests in batches, which is a set of contiguous requests in a par-

ticular direction (read or write). Up to writes starved read batches are issued before running

a write batch. This partitioning ensures that read requests, which often have an application

waiting on the response, receive sufficient service. On the other hand, write requests are typ-

ically issued asynchronously from the page cache, and hence the latency is not directly visible

to the application.

Within a sequence of batches in a single direction, deadline schedules requests according to

the SCAN algorithm. However, when switching directions, the request with the earliest expiry

time is selected.

Deadline has several tunables which are summarised in Table 2.2.

2.4.4 Anticipatory

The Linux anticipatory scheduler (abbreviated AS) is an implementation of the algorithm de-

tailed in Section 2.2.5. It exploits spatial and temporal locality in I/O request patterns to

improve performance, but also implements deadlines to prevent starvation. AS’s tunable pa-

rameters are summarised in Table 2.3.
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Parameter Default Description

read expire 500ms Expiry time for reads.

write expire 5s Expiry time for writes.

writes starved 2 Number of read batches between write batches.

front merge true Enables front-merging.

fifo batch 16 Maximum requests per batch.

Table 2.2: Summary of deadline tunables.

Batching AS issues requests in batches, which are defined as a period of time over which

requests of the same direction are issued. However, AS does not deal with read and write

requests like deadline, rather synchronous and asynchronous. A synchronous request is defined

to be a read, or a write to a file opened with the O DIRECT or O SYNC flags, which prevent the

request being buffered in the page cache. All other requests are treated as asynchronous.

Requests in a batch are issued in SCAN order, and need not be contiguous. However, small

backward seeks of up to 1 MiB are allowed, but are biased at twice the cost of a forward seek. On

top of this behaviour is per-request deadlines, which operate similarly to the deadline scheduler.

AS always merges requests where possible.

Anticipation AS’s anticipation heuristic detects when a process is likely to issue sequential

synchronous I/O, at which point the scheduler enters the anticipation state. In this state, an

idle period of up to antic expire ms is inserted waiting for a suitable request. The heuristic

is based on a table of statistics collected for each running process, which includes a history of

seek distances and think-times. Only synchronous requests are subject to anticipation.

Parameter Default Description

read expire 125ms Expiry time for synchronous requests.

write expire 250ms Expiry time for asynchronous requests.

read batch expire 500ms How long to issue synchronous requests before

switching to asynchronous.

write batch expire 125ms How long to issue asynchronous requests before

switching to synchronous.

antic expire 6.7ms Maximum anticipation time.

Table 2.3: Summary of AS tunables.

2.4.5 CFQ

The completely fair queueing (CFQ) I/O scheduler aims to fairly distribute disk time to each

competing process, while attempting to minimise starvation with deadlines and improve per-
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formance via anticipation. CFQ also supports I/O priorities, which can be used to define the

priority and type of service received by each process. The tunables exported by CFQ are shown

in Table 2.4.

Priorities CFQ is the only scheduler to support I/O priorities. A priority consists of two

components: level and class. Priority level, a number ranging from 0 (highest) to 7 (lowest),

determines priority of requests within a class. The priority classes, one of real-time, best-effort,

or idle, have the following meaning:

Real-time Requests in this class are given maximum priority; other classes are not serviced

if RT requests are pending. Within the class, requests are serviced in a round-robin-like

fashion, with priority level determining the frequency and length of each round;

Best-effort The BE class is serviced in the same manner as RT, but only when no real-time

requests are pending;

Idle These requests are only serviced if no requests from other priority classes are pending.

There are no priority levels associated with the idle class.

I/O priority can be set with the ionice tool. For process with no explicit priority given, they

are put into the best-effort class, with the level derived from their nice8 value.

Dispatch Each process issuing I/O is assigned a time-slice during which it has exclusive

access to the device and may issued synchronous requests. The number of requests in the slice

is determined by the quantum tunable, and the base length of the time-slice is specified by the

slice sync tunable and adjusted according to priority level.

For asynchronous requests, all processes share a set of seventeen queues; one per priority

class/level pair. The scheduling algorithm treats these queues the same as processes; they receive

a time-slice (determined by priority level and slice async) and are scheduled round-robin.

Within a time-slice, requests are fully-merged and issued according to the SCAN algorithm,

with backward seeks of up to back seek max KiB allowed but biased at back seek penalty

times the cost of a similar forward seek. Additionally, the scheduler will wait up to slice idle ms

within a synchronous time-slice for the process to issue more I/O. This is for both anticipation,

and to ensure processes issuing bursty I/O get a fair share of disk time.

2.4.6 Previous studies

There have been two recent studies looking at the Linux I/O schedulers, one by Pratt and

Heger [PH04], and another by Riska et al. [RLLR07]. In this section we review the experiments

and results obtained in these two studies.

8The nice value refers to task-scheduling priority.
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Parameter Default Description

back seek max 16MiB Maximum backward seek size.

back seek penalty 2 Reverse seek penalty factor.

fifo expire async 250ms Expiry time for asynchronous requests.

fifo expire sync 125ms Expiry time for synchronous requests.

quantum 4 Maximum requests per-queue to service each round.

slice async 40ms Base time slice for asynchronous requests.

slice sync 100ms Base time slice for synchronous requests.

slice async rq 2 Base number of asynchronous requests per round.

slice idle 8ms Maximum anticipation time.

Table 2.4: Summary of CFQ tunables.

Pratt 2004

Pratt and Heger [PH04] studied the Linux 2.6.4 I/O schedulers: noop, deadline, anticipatory and

CFQ (which was back-ported from Linux 2.6.5). While those schedulers share their names with

the current generation, their implementations and behaviour are somewhat different. Notably,

the 2.6.5 version of CFQ uses a completely different algorithm based on stochastic fairness

queueing [McK90] and does not support I/O priorities. Additionally, there are many other minor

changes in all four schedulers which together could result in significantly different performance

characteristics. Care must be taken when comparing results between versions.

Experimental setup Three different hardware configurations were used: a single CPU, single

disk system, an 8-way NUMA machine with a 5-disk RAID 5 array, and a 16-way SMP system

with a 28-disk RAID 0. It is unclear from the paper whether hardware or software RAID was

used. The benchmarks consisted of four workload profiles simulating a file server, web server,

mail server, and a metadata-intensive load. In addition, they benchmarked sequential read and

write performance. These workloads were run on both the EXT3 and XFS filesystems.

Results The key results from this study are as follows:

• the performance difference between the schedulers is more pronounced with the XFS

filesystem compared with EXT3;

• AS typically performs poorly, except for sequential read workloads, for which it performed

well;

• deadline performs well in all situations;

• anticipation causes loss of performance on TCQ-enabled disks or hardware RAID arrays.

The conclusion from the study is that I/O scheduler choice is heavily dependent on workload

I/O pattern, disk hardware, and filesystem used.
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Riska 2007

Riska et al. [RLLR07] studied the I/O schedulers of the Linux 2.6.16 kernel. This version of

the I/O schedulers are similar to 2.6.5, but variations still exist and thus behaviour may have

changed.

Experimental setup Each I/O scheduler was studied on top of the ReiserFS filesystem using

a single 18 GiB SCSI disk with a TCQ depth of 4. Two workloads were used: the Postmark

benchmark with different file sizes ranging from 0.1–3 MiB, and concurrent compilations of the

Linux kernel source.

Results The study showed the following for Postmark:

• deadline achieves the highest throughput overall;

• noop always performs significantly worse than the other schedulers—as low as 25% through-

put;

• AS performs marginally better than the other schedulers with large files.

The kernel compile benchmark, which they classified as a medium write-intensive load,

showed that deadline, anticipatory and CFQ yielded approximately equivalent throughput, with

noop marginally lower.

The conclusions of the study were:

• for heavy loads, merging is critical to performance;

• for light and medium workloads, reordering is the most important factor leading to per-

formance gains; up to 20% improved throughput.
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Chapter 3

Implementation

In this chapter, we describe the important code we have written as part of the study. Firstly,

this includes two new I/O schedulers for Linux: FIFO, described in Section 3.1, and V(R), in

Section 3.2. Secondly, in Section 3.3, we look at a modification made to the driver for the RAID

controller used in our benchmarking. In Section 3.4, we look at problems discovered in the

existing Linux I/O schedulers, and the way in which they were solved.

3.1 FIFO

Linux does not include a strict first come first served (FCFS) I/O scheduler. While noop does

not sort requests, it does merge and coalesce them, which means order is not always preserved.

Since FCFS is often used as a baseline for comparing scheduler performance, we implemented a

Linux I/O scheduler called FIFO (first in first out—so named to distinguish the algorithm from

the implementation) that provides pure FCFS behaviour; that is, requests are never merged or

reordered. Since the final request ordering under noop and FIFO should be similar, this helps

isolate the effect of merging on I/O scheduler performance.

FIFO is based on the noop scheduler, modified to provide the desired behaviour. The major

change is in elevator allow merge fn(). This function allows an I/O scheduler to control when

merging is allowed to take place. The FIFO implementation of this function unconditionally

denies all attempts to merge. Since coalescing occurs as a result of a merge, this ensures both

merging and coalescing do not occur.

The other change made compared to the default noop implementation is to remove request

sorting of requests when placing them on the dispatch queue. However, as noted in Section 2.4.2,

this change should not affect performance, since the dispatch queue never holds more than a

single request with the drivers used in this study.

A patch which adds the FIFO I/O scheduler to the Linux 2.6.24 kernel can be found in

Appendix A.
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3.2 V(R)

We implemented a variant of V(R) (see Section 2.2.5) which was used primarily for benchmark-

ing. It provides both SCAN and SSTF behaviour in a single implementation (by tweaking the R

parameter, named rev penalty), both of which are commonly used for comparing I/O scheduler

performance.

Our V(R) implementation schedules read and write requests together (unlike the other sched-

ulers), and implements back and front merging and coalescing. It also provides deadlines, which

can be disabled at run-time. We will first describe the differences in behaviour between our im-

plementation and the theoretical algorithm, then go on to detail the implementation. Table 3.1

summarises the V(R) tunable parameters.

The published V(R) algorithm defines R such that the effective distance for a backward seek is

R×(number of cylinders on disk) larger than an equivalent forward seek. In our implementation,

we redefined R such that the effective distance of a reverse seek is multiplied by R. Hence, the

domain of R becomes [1,∞), with V (1) behaving as SSTF, and V (∞) as SCAN (for simplicity

we allow R = 0 as an alias for SCAN). This was done to simplify implementation, tuning and

debugging, because the scheduler behaviour is no longer dependent on disk size.

Internally, V(R) is structured similarly to deadline. When the scheduler queues a new

request, it is placed into a red-black tree sorted by start sector. In parallel, pointers are kept to

the request before and after (in sector order) the last one issued. In addition, the sector of the

last request and the current head direction are stored. In selecting the next request, the sector

distances to the next and previous requests are calculated, and the distance corresponding to

the current head direction is divided by rev penalty. This is equivalent to multiplying the

reverse seek distance, but avoids overflow. The request with the smallest effective distance is

selected and issued to the device.

Deadlines If deadlines are enabled, requests are assigned an expiry time when queued. If

that deadline expires, V(R) expedites dispatch of the corresponding request. However, it is

not scheduled immediately, since such behaviour can lead to a so-called “deadline avalanche.”

This occurs when the scheduler is under high load and deadlines are expiring more quickly than

requests can be satisfied, causing the scheduler to degenerate to FIFO behaviour. To solve this,

requests are normally issued in batches of up to fifo batch requests. The deadline queues are

only checked for expiries between batches, with the expired request starting a new batch.

The V(R) I/O scheduler patch for Linux 2.6.24 can be found in Appendix A.

3.3 CCISS queue depth

The hardware RAID controller used in this work is the HP Smart Array P600 (discussed in detail

in Section 4.1.2) which uses the Linux CCISS driver. This device is capable of queueing up to
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Parameter Default Description

sync expire 500ms Expiry time for synchronous requests.

async expire 5s Expiry time for asynchronous requests.

fifo batch 16 Maximum requests per batch.

rev penalty 10 Penalty for reversing head direction.

Table 3.1: Summary of V(R) tunables.

512 requests, therefore the I/O scheduler does not see more than a single concurrent request until

the disk load exceeds 512 concurrent requests—a situation that cannot be considered typical.

This has several implications for benchmarking I/O scheduler performance.

Firstly, since the disks (and indeed, the RAID controller itself) are doing I/O scheduling,

a deep queue on the controller can negate the scheduling performed on the host. Moreover,

with fewer requests at the host, the schedulers have less request information and are thus less

effective. Secondly, the I/O schedulers cannot be compared under light load, since they all

degenerate to FIFO.

To solve this problem, we modified the CCISS driver to introduce a queue depth tunable,

which can be used to restrict the queue depth of the device to any value between 1 and the

maximum supported by the hardware (512 for the P600). The implementation of this tunable

modifies the existing queue depth restriction to be variable at run-time, rather than a compile-

time constant.

A patch to add the queue depth tunable to the CCISS driver in Linux 2.6.24 is available in

Appendix A.

3.4 Deadline and anticipatory tweaks

During the course of our initial investigation, several issues with the deadline and anticipatory

schedulers were discovered and fixed. In this section, we describe the problems, how they were

solved, and some benchmark results. Since benchmarking the fixes is not a primary goal of

this work, the results shown are not intended to be a rigorous analysis but rather indicate the

usefulness of the work.

All of these fixes were accepted into the Linux mainline kernel, and are present in version

2.6.24 and later. Hence, all the benchmarks and analysis in the main body of the work include

these improvements. The descriptions that follow apply to Linux 2.6.23.

3.4.1 Resetting batch counter

The Linux deadline I/O scheduler issues requests in batches. To ensure acceptable interactive

performance, several read batches are issued between each write batch. However, in between

read batches, the batch counter would not be reset, causing the second and subsequent batches
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to consist of a only a single request. Thus, deadline’s goal of preferring reads over writes failed;

rather than issuing n read batches in between writes, it would issue only 1 read batch plus an

additional n requests.

We fixed this bug by forcing the batch count to reset whenever a new batch is started,

regardless of what triggered it. The corresponding patch is available in Appendix A.

To measure the effect of this bug on performance, the following experiment was conducted.

Using the FIO tool (discussed in Section 4.2.3), we generated a workload consisting of two

processes issuing the same I/O pattern; 8 MiB sequential requests issued asynchronously in

chunks of 16 KiB directly to the device (i.e., bypassing the page cache and file system), with

one process writing and the other reading. The target device was a single 15 000 RPM, 72 GiB

SCSI disk. We ran the workload over a period of 300s and measured the total I/O performed,

then repeated the experiment after applying our patch. The results are shown in Table 3.2.

Batching algorithm Total I/O (MiB) Read/write ratio

Read Write

Original 5 357 6 643 0.806

Modified 9 406 4 703 2.000

Table 3.2: Deadline throughput before and after fixing the batch count reset bug.

The measurements show that the expected read/write ratio of 2 (which is the default value

of the writes starved tunable) is not achieved by the original deadline batching algorithm.

Indeed, the total write I/O exceeds the total read I/O. This is due to misalignment of read

requests on batch boundaries, resulting in under-full batches. The fixed version of deadline

achieves the desired ratio.

3.4.2 Batch start-sector

The deadline scheduler keeps read and write requests in separate sector-sorted binary trees so

that finding the next request in a given direction is a constant-time operation. This is required for

efficient batching. As a result of this separation, finding the next request after a data-direction

switch requires an O(lg n) traversal of the other tree.

To avoid this costly operation, deadline simply starts new batches from the request with

the lowest start sector. Since the request queues are implemented as min-trees, this is an O(1)

operation. However, this strategy leads to significant fairness disparity between low- and high-

sector requests.

To rectify this problem, we modified the deadline batching algorithm such that new batches

after a data-direction switch start with the request whose deadline is earliest. This solves the

problem described above, while maintaining the O(1) performance. We can achieve this by using

the expiry-sorted queues; the request with the earliest deadline is simply the one at the head of

the queue.
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This modification was also applied to the anticipatory scheduler, but for a different reason.

AS stores the next request for both synchronous and asynchronous requests, and upon switching

data direction, continues where the previous batch (in the same direction) finished. However,

after making a data-direction switch, the scheduler does not know the location of the request

nearest the head, and finding this request would require an O(lg n) search through the request

tree. Thus it makes little sense to “continue” batches across direction switches.

By having AS start new batches at the request with the earliest deadline, we reduce the

probability that deadlines will expire. This can improve throughput, since expiries result in a

less efficient schedule. Moreover, this change reconciles the deadline and anticipatory batching

algorithms.

Benchmarking

To measure the effects of this bug and the effectiveness of the fix, we constructed the following

benchmark. Using FIO, 10 processes are created, each doing direct, sequential, synchronous read

I/O from sector offsets increasing by 7 GiB. Thus, process 1 reads from sector 0, process 2 from

7 GiB, process 3 from 14 GiB, and so on. In addition, a random writer process is created to

cause data-direction switches. The hardware is the same used in Section 3.4.1.

The results of this benchmark are graphed in Figure 3.1. It clearly shows that, under the

original algorithm, processes operating at one end of the disk receive significantly greater band-

width than those reading from the remainder of the disk. In the fixed version, the bandwidths

received by each process differ by less than 200 B/s.

Figure 3.1: Deadline bandwidth distribution before and after applying our start-sector fix.
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It is important to note that the aggregate bandwidth in this benchmark decreased after

applying our fix. This is expected, since by concentrating request service to a small region of

this disk, seeking is reduced. We consider this to be an acceptable trade-off, because the primary

aim of the deadline scheduler is to provide reasonable (though non-strict) quality of service to

all disk users. Given this goal, an order of magnitude bandwidth difference depending on the

region of the disk accessed is clearly not acceptable.

A realistic example of where this bug may manifest is on a partitioned disk. Sustained access

to the first partition may cause starvation of requests on other partitions. Worse still, on logical

volumes backed by multiple physical disks (such as a hardware JBOD1 array), entire disks may

sit idle, severely hurting total throughput.

1JBOD (just a bunch of disks) is similar to RAID 0 but without data striping.
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Chapter 4

Benchmarks

In this chapter, we describe the hardware and software system under which our benchmarks were

conducted. Firstly, Section 4.1 details the hardware of the system, including the disk subsystem.

Section 4.2 describes the two most important software components: the operating system and

the workload-generators. Finally, in Section 4.3, we lay out the details of the benchmarks

themselves.

4.1 Hardware

4.1.1 Host

The host machine is an HP Integrity rx2660 server with the following specifications:

Component Description

Processor 1 Intel Itanium 2, 9010 “Montecito” at 1.6 GHz

RAM 2 GiB

SAS Controller LSI Logic SAS1068 Fusion-MPT PCI-X

Table 4.1: Host system specifications.

4.1.2 Storage subsystem

Two pieces of storage hardware were benchmarked; a hardware RAID controller managing 8

physical disks, and a single disk connected to the host via a SAS (serial attached SCSI) adapter.

The RAID controller used is an HP Smart Array P600 which is connected via a SAS bus to

an HP MSA50 disk enclosure holding 8 SAS disks (discussed in Section 4.1.3). The specifications

of the RAID controller are as follows [HP08]:

While we had 10 disks available for testing, only 8 were used in the RAID array. Another

was used for the single-disk host-controller benchmarks, and the remaining disk kept as a spare.
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Component Description

Controller memory 256 MiB, battery-backed

Queue depth (max.) 512

Disk interconnect SAS (max. 1.5 GB/s)

Host interconnect PCI-X (max. 1 GiB/s)

RAID levels 0, 1, 1+0, 5, 6

Table 4.2: RAID controller specifications.

4.1.3 Disks

The disks used for all benchmarking (both RAID and single-disk tests) are HP DG072A4951

72 GB SAS disks, the specifications of which are shown in Table 4.3.

Component Description

Rotational speed 10 000 RPM

Controller memory 16 MiB

Queue depth (max) 64

Seek time (typical) 3.7 ms

Sustained transfer rate 55–89 MB/s

Heads 2

Platters 1

Zones 20

Table 4.3: Disk drive specifications [Hit08].

4.2 Software

4.2.1 Linux

The Linux 2.6.24 kernel was used for all benchmarks, minimally configured to support only the

necessary features. The corresponding configuration file is available in Appendix B. On top of

the default kernel we applied the FIFO, V(R), and CCISS queue depth patches.

The Linux distribution used on the benchmarking machine was Debian 4.0 “etch”.

4.2.2 Filesystems

For the filesystem-based benchmarks, we selected the EXT2 and XFS filesystems.
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EXT2 has seen wide use in the Linux community since its introduction in 1994 [CTT94].

It is an FFS-like1, block-allocating filesystem that uses bitmap-based free block management.

It attempts to improve locality though the use of block groups, which cluster inodes and the

corresponding data, and block preallocation, which over-allocates blocks during writes to im-

prove contiguity. EXT2 was selected over the more recent EXT3 filesystem since EXT2 does

not implement journalling, in contrast to the second filesystem, XFS.

Silicon Graphics’ XFS filesystem was introduced into the Linux kernel in 2001 [BFH02]. Its

primary goals are maximum scalability in storage capacity, filesystem size, and performance.

It supports metadata-journalling and uses tree-based extent allocation. XFS tries to ensure

maximum contiguity by using delayed allocation and large extents. It also performs write

clustering which, similarly to request merging, results in more sequential I/O.

These two filesystems were chosen since they generate significantly different I/O patterns on

the disk and hence test the I/O schedulers in different ways. Several reasons for this are:

• EXT2 allocates fixed-size blocks, whereas XFS allocates variable-size extents;

• XFS employs a journal which results in highly-sequential writes;

• EXT2 uses indirection blocks for managing data blocks, whereas XFS uses B+ trees;

• XFS employs a tree-based approach to free-space management. EXT2 uses bitmaps.

In all tests, the filesystem creation and mount options were the defaults provided by the

mkfs and mount utilities.

4.2.3 FIO

FIO (the Flexible I/O Tester) is one of two tools we used for I/O load generation. It spawns a

number of processes performing I/O loads specified by the user. Many aspects of the load can

be specified, including: read/write ratio, synchronous or asynchronous, I/O depth, block size,

sequentiality, direct or buffered requests, and think-time. It can operate on both filesystem and

raw block devices.

FIO generates extensive per-process and aggregate performance statistics after a run, includ-

ing: total I/O, run time, read and write request latency (min, max, mean, standard deviation),

read and write bandwidth (min, max, mean, standard deviation), CPU usage, and I/O depth

distribution.

We used FIO version 1.19. More information, including source code, can be found at the

FIO website [Axb08b].

1FFS, the Berkely Fast File System, is a classic UNIX filesystem designed by McKusick et al. [MJLF84]
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4.2.4 Postmark

The second benchmarking tool used was Postmark [Kat97]; a filesystem-level benchmark that

generates a workload typical of an email or news server. Certain parameters of the load can be

modified via a configuration file, generating the following I/O pattern:

1. A pool of text files and directories are created on the specified filesystem. The range of

file sizes and the total number of files and directories can be configured;

2. A configurable number of transactions are performed, each consisting of:

• a random-size file is created, or a randomly-selected file is deleted;

• a randomly-selected file is fully read or appended with a random amount of data;

3. The directory hierarchy (including all files) is deleted.

The ratio of create/delete and read/append operations can be specified, as can the block

size. In addition to configuring the I/O pattern, one can also select buffered or direct I/O. After

completing the workload, Postmark generates a report showing: total run time, transaction rate,

rate and number of creations, reads, appends and deletes, and the read and write throughput.

We ran our benchmarks on Postmark 1.51 using non-default parameters.

4.3 Tests conducted

To test the performance of the I/O schedulers, four different workloads were run against a

number of disk configurations.

4.3.1 Disk configurations

The RAID levels tested were: 0, 1, 1+0, 5 and 6. This reflects the capabilities of the controller

used. We also tested two configurations consisting of a single-disk: the first had the disk

connected directly to the host’s SAS controller, while the other was connected via the RAID

controller in a 1-disk RAID 0 setup. These allow isolation of the effects of the RAID controller,

such as its on-board memory and queueing capacity.

The P600 RAID controller has configurable parameters that may affect its performance. In

our benchmarks, all these parameters remained at their default values, which are outlined in

Table 4.4.

4.3.2 I/O schedulers

The generic FIO and Postmark benchmarks tested the following I/O schedulers:

• noop;
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Parameter Value Description

Accelerator ratio 50/50 Ratio (read/write) of on-board controller memory used

for read-caching and write-back buffering.

Drive write cache false Enables write-back buffering on the disk controllers.

Stripe size varies Size of stripe-units of the RAID array. Depends on the

RAID level used (see Table 4.5).

Table 4.4: Default RAID parameters.

Level Stripe size (KiB)

0 128

1 128

1+0 128

5 64

6 16

Table 4.5: Default RAID stripe-unit size.

• FIFO;

• FIFO with maximum queue depth (“bigq”);

• deadline;

• V(R) configured for SCAN (rev penalty = 0);

• V(R) configured for SSTF (rev penalty = 1);

• AS;

• AS with anticipation disabled (antic expire = 0);

• CFQ;

• CFQ with idle window disabled (slice idle = 0).

This includes each of the Linux 2.6.24 schedulers in their default configurations. AS with

anticipation disabled was tested to isolate the performance implications of anticipation. CFQ

was tested with idle window disabled for the same reason. FIFO and V(R) in SCAN and SSTF

were tested as these algorithms are frequently used as baselines for I/O scheduler performance

evaluations.

The other benchmarks test a subset of these schedulers appropriate for the aims of the

benchmark.
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Tunables

All scheduler-specific tunables remained at their default values, with the exceptions listed above.

Two of the generic block-layer tunables were modified from their default values during the

benchmarks: queue depth and nr requests.

As discussed when motivating the CCISS queue depth modification (Section 3.3), a large

queue is not suitable for benchmarking I/O schedulers. Thus, all the above tests used a depth

of 32, except one of the FIFO runs, which used the maximum supported by the corresponding

hardware (512 for the RAID controller, 64 for the single disk). This was done to simulate the

situation where all requests are immediately offloaded to the hardware with no scheduling on

the host.

The queue depth of 32 was chosen to be as small as possible while ensuring a high probability

that no disk in the array becomes idle. Assuming a randomly-distributed set of 32 requests,

the probability of idle disks (i.e. no requests assigned to them) is approximately 11%2. This

translates to approximately 1.5% lost bandwidth, which we consider to be an acceptable trade-off

in order to minimise perturbations of the host I/O schedule caused by RAID- and disk-controller

scheduling.

The nr requests tunable was set to 4096 to ensure the maximal number of requests are

queued with the I/O scheduler. In the case where I/O is issued when nr requests is exceeded,

the request will not be processed until existing ones complete. This feature is designed to prevent

denial of service attacks. However, since we are interested in the I/O schedulers and not the

I/O subsystem per se, this tunable was increased to maximise the load at the scheduler level.

4.3.3 Micro-benchmarks

The first of our four benchmarks is a series of FIO micro-benchmarks testing each scheduler

on 8-disk RAID 0, 5 and 6 arrays, RAID 1+0 with 2, 4 and 8 disks, and the two single-disk

configurations.

In each test, a number of processes are spawned issuing the same I/O pattern. We tested

32, 64, 96, 128, 160, 192, 224, and 256 processes. Fewer than 32 processes were not considered,

since no host I/O scheduling occurs under such light loads.

Two workloads were tested. The first consists of randomly-distributed 16 KiB reads, cor-

responding to the page size of the benchmarking machine. The second is a sequential test

consisting of 1 MiB read requests issued at a random offset. In both cases, I/O is issued directly

to the raw device (i.e. no filesystem), bypassing the page cache. Each test, corresponding to a

scheduler, RAID setup, and I/O load combination, ran for 200 seconds. In total, this benchmark

ran for 70 hours.

To simplify analysis, the workloads in this benchmark are highly artificial and ignore many

factors that normally contribute to I/O performance. However, the literature [RR06,RW93b]

suggests that they are typical of those seen at the disk on real systems.

2We were unable to determine idle-probability analytically; this figure was determined via simulation.
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4.3.4 Postmark

The second benchmark used the Postmark tool to create a more realistic workload. It was run on

top of the XFS and EXT2 filesystems using buffered I/O, testing the same RAID configurations

as the FIO micro-benchmarks.

The benchmark was conducted as follows:

1. an XFS or EXT2 filesystem was created and mounted on the unpartitioned logical disk;

2. five directories were created at the top-level of the new filesystem;

3. five instances of Postmark were started, each using a different top-level directory.

We ran multiple instances of Postmark to ensure a sufficiently heavy load on the I/O scheduler.

Five was chosen empirically using the blktrace [Axb08a] tool to measure average request load.

The Postmark configuration is shown in Table 4.6. The small file sizes were used for tests

Parameter Value

File size (small) 512 B – 2 MiB

File size (large) 512 B – 4 MiB

Files 10 000

Sub-directories 100

Transactions 15 000

Table 4.6: Postmark benchmark configuration.

with a logical capacity of under 140 GiB; the single disks and the 2-disk RAID 1. The large sizes

were used on the remaining benchmarks. This was done to use sufficient available disk capacity.

Since this results in less sequentiality in disk requests, care must be taken in comparing results

between disk systems.

The length of each benchmark is determined by the number of transactions; hence, the time

of each run differs. The total time to run the Postmark benchmark was 334 hours.

4.3.5 Anticipation

The third benchmark was designed to test the applicability of anticipation on hardware RAID

volumes. FIO was used as the load generator which created a sequential reader (64 sequential

16 KiB blocks) and a number of randomly-reading processes. Two parameters were varied for

each scheduler/disk combination: the number of sequential readers (1, 4, 16, 32, 64, 96 and

128) and the think-time of the sequential process (0, 0.1, 0.5, 1, 2, 4, 6, 8, 10 and 20 ms). The

remaining parameters were the same as the FIO micro-benchmarks: synchronous, direct, raw

I/O, running for 200 seconds per data point.

The anticipatory scheduler was used exclusively in this benchmark, using four different con-

figurations, listed in Table 4.7. In the single-disk host-controller test, a hardware-imposed
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maximum queue depth of 64 was tested; the RAID-controller benchmarks used a maximum of

512.

Test antic expire queue depth

1 default 32

2 0 32

3 default 512/64

4 0 512/64

Table 4.7: Anticipation benchmark configurations.

In addition to the two single-disks configurations, we tested:

• RAID 0 with 2, 4 and 8 disks;

• RAID 1+0 with 2, 4 and 8 disks;

• RAID 5 with 3, 5 and 8 disks.

RAID 6 was not studied, since we did not consider it sufficiently different from RAID 5 to be

worth the time required. In total, this benchmark ran for 171 hours.

4.3.6 Queue depth

The fourth and final benchmark was designed to investigate how performance reacts to different

queue depths. Postmark was used on top of the XFS filesystem and deadline scheduler; the

reasons for this choice will be explained in Section 5.4. As with the first Postmark benchmark,

five instances were run in parallel, with the following configuration:

Parameter Value

File size 512 B – 2 MiB

Files 4 000

Sub-directories 100

Transactions 15 000

Table 4.8: Queue depth Postmark configuration.

The queue depths tested were 1, 8, 16, 32, 64, 96, 128 and 256. We tested the following disk

configurations:

• RAID 0 with 2, 4 and 8 disks;

• RAID 1+0 with 2, 4 and 8 disks;
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• RAID 5 with 3, 5 and 8 disks;

• RAID 6 with 4, 6 and 8 disks.

We did not benchmark any single-disk configurations. The total run time for this benchmark

was 203 hours.

39



40



Chapter 5

Results

This section presents and analyses the results of our benchmarks. Section 5.1 looks at the FIO

micro-benchmarks, separately analysing the four workloads. Section 5.2 presents the results

of the Postmark tests, and Section 5.3 analyses the FIO anticipation benchmarks. Finally, in

Section 5.4 we look at the Postmark queue depth benchmark results.

5.1 Micro-benchmarks

In this section, we look at the results obtained in the FIO micro-benchmarks described in

Section 4.2.3. The main figure of interest is aggregate read bandwidth, which is the sum of the

average per-process bandwidths. Other interesting metrics are:

• Bandwidth standard deviation: deviation among the per-process bandwidths;

• Average read latency: per-read-request latency averaged over all processes. This is the

average time a process must wait for an individual request to complete and is important

for application interactivity;

• Maximum read latency: worst-case latency seen by any request from any process. Also

important for interactivity;

• Read latency standard deviation: per-request latency calculated over all processes.

The complete set of graphs is available in Appendix C.

5.1.1 Random readers

The aggregate read-bandwidth results for this benchmark are graphed in Figure 5.1. On RAID

volumes, large-queue FIFO achieves the highest throughput by a significant margin. For the

single-disk benchmarks, V(R) generally performs the best, with FIFO (large-queue) achieving

good results at low-load, but not scaling above 64 processes.
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Figure 5.1: Random readers aggregate bandwidth.
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In general, reordering schedulers display superior bandwidth performance and scaling com-

pared with the non-reordering schedulers (noop and FIFO), regardless of the disk type or size.

The performance of noop and FIFO is practically identical, since the probability of merges oc-

curring for a random workload is low; less than 0.01% for 32 requests uniformly distributed over

a 100 GiB array, and less than 0.6% for 256 concurrent requests.1

CFQ performs poorly in the random readers tests, notably so in the idle-enabled case, where

it consistently performs 2 to 15 times worse than the other schedulers in bandwidth terms.

The idle-enabled CFQ also displays very high maximum, average, and standard deviation of

per-request service latency. When the idle window is disabled, CFQ performance improves

dramatically. However, it still performs worse than AS, deadline, V(R) and FIFO (large queue)

in most cases.

One would generally expect that an I/O scheduler should be able to extract greater band-

width from a device as the workload increases (particularly when it is purely random), since a

better schedule can be produced. However, with the idle window disabled, CFQ does not scale

with increased load, and indeed scales negatively in some benchmarks.

Performance of the RAID 0, 5, and 6 arrays are very similar. This is expected, since the

on-disk access patterns are very similar; no parity information has to be read or modified under

a pure read load. Interestingly, the RAID 1+0 8-disk array also performs similarly, achieving

only a marginal throughput increase of the order of 5%. This is despite the fact that the inherent

redundancy of RAID 1+0 can be exploited to improve performance [CT96,San03].

The results of the two single-disk benchmarks are also similar, with the host-controller test

achieving a very modest improvement in mean bandwidth, but approximately equal performance

in other metrics.

The V(R) schedulers, SSTF and SCAN, perform practically the same under all tests. This is

also true of the AS schedulers, which are indistinguishable with anticipation enabled or disabled.

The latter can be explained by the anticipation heuristic detecting a workload which is not

improved by anticipation. However, this is a poor test for the quality of the algorithm, since a

purely random workload is a pathological case for an anticipatory scheduler and easily detectable.

The deadline scheduler exhibits interesting behaviour. On larger arrays it performs well, with

similar throughput to V(R) and positive scaling. However, on smaller arrays and the single-disk

tests, it scales negatively after reaching a certain process load. This point corresponds approx-

imately to the load where the average request latency crosses 250ms. This may be due to the

“deadline avalanche” problem discussed in Section 3.2, where the scheduler behaviour degener-

ates to FIFO. This hypothesis is further substantiated by the fact that per-process bandwidth

1The probability of merges given k disk blocks and n requests is (
∏n

i=2(k − i)) /kn−1, which can be derived
from the solution to the birthday problem [Wei08].
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variation drops sharply at the same load point, and that deadline performance approaches that

of FIFO as load increases. It reaches FIFO performance at the point where average latency

cross 500ms—the value of the read-request expiry time.

Interestingly, AS does not suffer from this problem, despite having a read expiry time of

125ms—4 times lower than deadline’s. This is because of differences in their batching algorithms.

While deadline and AS both check for expired requests after each batch, deadline’s batches

contain a single request under a random workload, whereas AS’s batches are much larger.

Hence AS schedules more requests between handling expiries, thus achieving higher throughput.

However, deadline achieves better maximum latency figures.

5.1.2 Sequential readers

The throughput results of the FIO sequential-readers benchmark are graphed in Figure 5.2.

CFQ with idle disabled performs well in the sequential readers benchmark, generally attaining

the highest bandwidth except in the RAID 0 test, where it is outperformed by V(R). FIFO

(large queue) tends to perform well at low loads, often performing the best at 64 processes or

less. However, it does not scale well; not at all on the RAID 6 or small RAID 1+0 configurations,

and even scaling negatively on RAID 5 and the host-controller single-disk test.

While the non-idling CFQ scheduler performs well, this is not so for the idle-enabled version,

which displays bimodal behaviour. In some cases, it performs very well, about equal to the

idle-disabled CFQ. In other cases, it performs very poorly as it does in the random readers test.

There is no clear correlation between the benchmarks that evoke this behaviour and those that

do not.

Noop and FIFO perform similarly, as they do under a random read workload, and for the

same reason: no merging due to randomly-distributed requests. Indeed, merging is less likely

in this case, since the issued requests are already larger than the maximum permitted, and thus

will never be merged. These schedulers generally achieve a bandwidth comparable to other

schedulers at low load, but do not scale. Their performance is approximately constant in most

cases, scaling gently in others.

The V(R) schedulers, SSTF and SCAN, again behave quite similar to one another, generally

somewhere toward the middle in the bandwidth ranking. The notable exception is RAID 0,

where they are at least 10 MiB/s better than the other schedulers at loads above 150 processes,

and second only to large-queue FIFO at lower loads.

In terms of latency, however, SSTF and SCAN perform poorly. They scale approximately

linearly in standard deviation where most of the other schedulers scale sub-linearly. For maxi-

mum latency, they show anything up to 7 times that of other schedulers; up to 58s for the single

disk connected via the host controller and 34s on the 2-disk RAID 1+0. This is almost certainly

due to the lack of deadlines.
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Figure 5.2: Sequential readers aggregate bandwidth.
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In the RAID-based tests, AS performs better with anticipation disabled; approximately 5%

on the larger arrays. However, on the single disk tests, the situation is reversed: the anticipa-

tory version performs better, albeit by a smaller margin. This suggests that the anticipation

algorithm, while fine for single-disks, is either not well suited for hardware RAID volumes, or

needs to be tuned for such devices.

The deadline scheduler behaves poorly in this benchmark, with throughput equivalent to

noop/FIFO at any appreciable load. This is the same scalability problem experience by deadline

under a random-read workload, but occurs at a lower load level. This is because the average

read latency is larger under a sequential workload due to larger requests.

5.2 Postmark

The results of the Postmark benchmark (see Section 4.2.4) are plotted in Figure 5.3 and 5.4,

which shows the average throughput in transactions per second (TPS) per Postmark instance

(with five instances in total). Table 5.1 shows the per-instance throughput averaged over all

disk configurations. For XFS, the standard deviation of the per-instance bandwidths is at most

0.118 TPS, while for EXT2, it is at most 0.253. The complete standard deviation graphs can

be found in Appendix C.

The first and most obvious observation is that XFS outperforms EXT2, on every scheduler,

for the RAID-controller-based tests. However, for the host-controller test, EXT2 has a slight

advantage of 0.3 TPS averaged over all schedulers. In contrast, XFS has an advantage of 1.8

TPS when the single disk is connected via the RAID controller. A possible explanation is that

XFS makes better use of the large buffer and cache of the controller. This might be because XFS

has better request locality (and thus has a higher cache hit rate), or because it is write-bound

and thus benefits greatly from a large write-back buffer.

It is also clear that XFS scales with increasing array size better than EXT2. While XFS

achieves a 35% maximum throughput improvement between a 4-disk and 8-disk RAID 1+0

array, EXT2 gains less than 2%.

Overall, deadline achieves the best throughput with a TPS of 4.12 averaged over all schedulers,

filesystems, and hardware setups, and is always within 10% of the best-performing scheduler.

Interestingly, deadline performs best for the single-disk RAID-controller benchmark, but this

is not so for the host-controller test, for which default AS has the highest TPS. The latter is

also the only test where the anticipation-enabled version of AS shows a significant advantage

over AS with anticipation disabled. These results suggest that the RAID controller might be

undermining the anticipation algorithm. We will have more to say about this in Section 5.3

when the anticipation benchmark results are analysed.
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Figure 5.3: Postmark results 1.
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Figure 5.4: Postmark results 2.
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The two FIFO tests (shallow and deep queue) show very similar performance results; averages

of 3.54 and 3.62 TPS respectively, and a maximum difference of 0.44 TPS (occurring in the

RAID 0 test). This suggests that the I/O schedulers on the RAID and disk controllers are

ineffective, or do not benefit from a large pool of requests to schedule.

The most significant difference between noop and FIFO is that noop merges requests. In

terms of performance, noop always performs at least as well as FIFO, and this is most clearly

seen on EXT2 where FIFO always performs the worst. This is probably because XFS performs

its own merging and EXT2 does not.

On XFS, the average throughput of FIFO is 5.25 TPS, while for noop, it is 5.30 TPS. The

maximum difference between FIFO and noop in any one test is 0.14 TPS. Thus, merging does

not appreciably improve performance in this case. On the other hand, the average performance

of FIFO and noop on EXT2 is 1.84 and 2.49 TPS respectively, with a maximum difference of

1.10, and a minimum of 0.35. Clearly, merging is far more effective in this case, providing an

average 36% throughput improvement.

In this particular benchmark, CFQ behaves almost identically with the idle window both

disabled and enabled; an average of 3.48 TPS in both cases with a maximum difference of 0.03

TPS. Generally, CFQ performs better than AS, but not as well as V(R).

Finally, we note that V(R), in both SSTF and SCAN mode, perform practically the same, with

a TPS of 3.80 averaged over all runs, and a maximum difference of only 0.09. Both algorithms

tend to perform well, achieving an average of 0.32 TPS less than deadline.

Throughput (TPS)

Scheduler EXT2 XFS

noop 2.49 5.31

FIFO 1.84 5.25

deadline 2.78 5.45

V(R) SCAN 2.75 4.85

V(R) SSTF 2.73 4.88

AS 2.35 3.74

AS (no antic.) 2.25 4.32

CFQ 2.50 4.46

CFQ (no idle) 2.50 4.46

FIFO (deep queue) 1.86 5.38

Table 5.1: Average per-instance Postmark throughput.
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5.3 Anticipation

The bandwidth results of the anticipation benchmark are shown in Figures 5.5–5.10. A limited

number of graphs are shown for each disk configuration; the full graphs, including all tested

think-times and metrics, are available in Appendix C.

Table 5.2 shows, for each disk configuration, the maximum think-time for which anticipation

enabled results in improved performance compared with anticipation disabled. Also tabulated is

the approximate process load, for that think-time, where the performance of the two schedulers

is equal.

Configuration Think-time (µs) Max. processes

Disk (host ctrl.) 2000 32

Disk (RAID ctrl.) 2000 22

RAID 1+0 (2) 1000 35

RAID 0 (2) 1000 28

RAID 0 (4) 1000 28

RAID 5 (3) 1000 12

RAID 1+0 (4) 500 28

RAID 5 (5) 500 10

RAID 1+0 (8) 100 16

RAID 0 (8) 100 4

RAID 5 (8) 100 4

Table 5.2: Maximum think-time for effective anticipation and the corresponding maximum

random process load.

As the number of disks in the array increases, the effectiveness of anticipation decreases,

irrespective of the RAID configuration. This is because, by design, AS idles the disk system at

certain times. By increasing the array size, more disk resources go under-utilised when idling.

At a certain array size, think-time and process load, the bandwidth lost due to idling outweighs

the gains due to anticipation. For a given array configuration, we define the set of process loads

and think-times for which anticipation improves performance as the anticipation window.

Over all disk configurations, anticipation is never effective where think-time exceeds 2ms

or the array size equals 8 disk. While the 8-disk arrays do show a very minor performance

improvement through anticipation, the gains occur over a small range of loads. The 4- and

5-disk arrays, however, display significant bandwidth improvements under anticipation.

At think-times of 8ms and above, the large-queue runs perform approximately equal, as

do the small-queue ones. This is because AS internally disables anticipation, which occurs

when the think-time exceeds antic expire, whose default value is 6.7ms. It can be seen that
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Figure 5.5: Anticipation bandwidth results 1.
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Figure 5.6: Anticipation bandwidth results 2.
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Figure 5.7: Anticipation bandwidth results 3.
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Figure 5.8: Anticipation bandwidth results 4.
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Figure 5.9: Anticipation bandwidth results 5.
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Figure 5.10: Anticipation bandwidth results 6.

the anticipation-enabled schedulers still take a small performance penalty, despite anticipation

being internally disabled.

Roughly speaking, the anticipation-disabled curves scale positively with increasing load. This

is not generally true of the anticipation-enabled results, which often scale negatively to a point,

and scale positively thereafter. Two observations lead to the conclusion that this is not due to

the anticipation algorithm itself:

1. The curves are quite smooth (accounting for the sparseness of the data points). One would

expect a discontinuity at the point where anticipation disables;

2. The anticipation-enabled curves do not subsequently reach the performance of the anticipation-

disabled curves.

A likely explanation is that, after a certain process load, the extra bandwidth gained from

additional request concurrency (and hence a better schedule) offsets the bandwidth loss from

bad anticipation.
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At a 32-process load, the two anticipation-disabled curves—identical up to this point—begin

to diverge significantly. This is because the small-queue saturates, causing performance to

plateau, while the large-queue curve continues to grow smoothly. These results mirror what we

saw in the FIO micro-benchmarks (Section 5.1).

The same phenomenon is not seen in the anticipation-enabled curves. Within the anticipa-

tion window, performance is largely independent of the queue depth, even above 32 processes.

However, for larger process loads, the small-queue scheduler achieves greater throughput than

the large-queue, and tends to approach the performance of the anticipation-disabled small-queue

curve.

5.4 Queue depth

The deadline I/O scheduler and XFS filesystem were chosen for this benchmark after analysing

the results of Section 5.2, the first Postmark benchmark. This combination represents the best

average performance over all tests run. The results of the queue depth benchmark are graphed

in Figure 5.11, shown in transactions per second (TPS) per process.

A queue depth of 32 is the optimal point for about half of the RAID arrays, with the others

experiencing optimality at queue depths of 16 or 64 requests. However, in many cases, there is

a significant performance drop at 64 requests and greater.

The optimal queue depth over all configurations is 32 requests. It achieves an average of

3.78 TPS, while 16 achieves 3.73 TPS, and 64 3.59 TPS. This experimentally justifies our

reasoning in Section 4.3.2 for the selection of a 32-deep queue.

Interestingly, there is no obvious correlation between optimal queue depth and RAID level or

array size. Moreover, each RAID level and array size exhibits approximately the same behaviour;

a sharp ramp-up from a unit queue depth to the optimal point at 16, 32 or 64 queue depth,

and a gentle ramp-down from that point to 256. The performance at 256 requests achieves an

average of 80% of that at the optimal point.

The exception to this is RAID 6; with 8 disks, the performance at 256 queue depth is greater

than that at 128. This may be due to the amount of work required by RAID 6 arrays for write

requests; a larger queue depth means the controller has more information and can avoid more

partial-stripe writes, which are very expensive. One would expect to see similar behaviour for

other RAID 5 and 6 arrays, which is not the case. An alternative hypothesis is that, because

RAID 6 has the smallest stripe-unit size of all the array configurations, the benefits of merging

are somewhat lost; requests end up being split-up again in the RAID controller. These is no

further evidence to substantiate either of these claims.

RAID 6 is also interesting in that it is the only array type to show multiple maxima in the

performance curves.
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Figure 5.11: Postmark queue depth results.
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Chapter 6

Discussion

We have shown that I/O scheduling is indeed a useful technique for improving performance

on hardware RAID systems. The classic techniques of seek minimisation, request merging and

anticipation, all apply to hardware RAID arrays of small to medium size. However, as other

studies have found, I/O scheduler performance is heavily dependant on the workload.

6.1 Seek minimisation

Our results suggest that seek minimisation leads to acceptable performance over a wide range

of workloads and disk configurations. While there are several instances where seek-minimising

schedulers are substantially outperformed by FCFS-like algorithms, these can be attributed to

poor heuristics relating to features like deadlines and anticipation. The pure SSTF and SCAN

implementations show consistently good performance in all cases.

For single-disk storage, the literature is very clear about the advantages of seek-optimising

schedulers. Our results indicate this class of algorithms does not harm performance on RAID-

based systems, and indeed can improve performance on some workloads. As such, a good

general-purpose, scalable I/O scheduler should implement seek-minimisation.

Contrary to the literature, our results do not indicate any substantial throughput or la-

tency differences between SCAN and SSTF—the two classic seek-reduction techniques—either

on RAID or on single disks. However, one could argue that SCAN-like algorithms are a superior

choice for a scalable I/O scheduler, since they are generally preferred on single-disk systems and

are inherently free from starvation.

6.2 Merging

The value of merging is clearly demonstrated in the generic Postmark benchmark when run on

an EXT2 filesystem. It shows a throughput improvement in every case, approximately 35% on

average. The same results are not seen in our micro-benchmarks, simply because the workloads

do not issue mergeable requests. Most importantly, in no case does merging reduce throughput.
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On closer inspection, this is not necessarily an obvious result. Because of data striping,

requests may need to be split in the RAID controller at the cost of processor and memory

capacity—particularly when small stripe-unit sizes are used. Quantifying this effect could be

done by varying the stripe-unit size while holding all other conditions constant. However, we

did not have time to conduct such an experiment, so we relegate it to future work. Based on the

available evidence, the performance loss due to splitting is negligible, either in absolute terms,

or compared with the gains of merging in the host.

Queue depth While the results are unambiguous about the importance of merging, doing it

successfully is hindered by an intrinsic feature of RAID hardware: command queueing. Queueing

is necessary on hardware RAID, since otherwise the enormous parallelism benefits of multiple

physical disks are lost. On the other hand, deep queues mean requests are issued to the device

sooner and in greater numbers, leaving less room for merging at the host.

Our queue depth benchmark shows this clearly. On average, a queue depth of 32 is the

optimal balance between request concurrency and merge ratio. Amazingly, this is largely inde-

pendent of the number of disks forming the array. For a 2-disk RAID 0 array, a queue depth of

8 results in a negligible probability (≈ 1%) of under-utilisation, yet a 32-deep queue performs

20% better. Some unknown effects are clearly at play.

We have been unable to determine a model for selecting the optimal queue depth. How-

ever, we have seen that choosing a queue depth that is slightly larger than optimal does not

have a drastic performance effect, while an overly-small one does. Thus, until a model can be

determined, queue depth for a specific RAID-based storage system should be determined by

experimentation with a modest safety margin applied.

In summary, merging is an important feature for RAID-friendly I/O scheduling, but it must

be supported by a sufficiently-small queue depth on the controller to see any real performance

advantage.

6.3 Anticipation

We have seen, perhaps surprisingly, that anticipation is a useful technique even on moderately

large arrays. We have determined that the maximum array size amenable to anticipation is

approximately six disks. However, this is certainly dependent on the performance characteristics

of the individual disks. We conjecture that the effectiveness of anticipation depends on the ratio

of sequential throughput to seek time. This is because anticipation trades the combined random

throughput of many disks (which is proportional to the seek time) for the sequential throughput

of a single disk. Since only a single type of disk was available to us, we were unable to verify

this claim.

Outside the anticipation window, our results show that the penalty for bad anticipation,

especially at low to medium loads, is quite substantial. This is more pronounced on RAID than

a single disk, since a greater amount of potential bandwidth can be lost. As such, the anticipation
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heuristic for a RAID-aware scheduler must be highly conservative. It is also important, more so

on RAID than single disks, that the heuristic is carefully tuned for the hardware and workload

used.

Queue depth is largely irrelevant as far as anticipation is concerned. Neither the performance

gains or the effective load range are dependent on queue depth, since AS must artificially force a

unit queue depth by issuing requests one at a time to ensure they are satisfied in the desired order.

Outside the anticipation window, the anticipation heuristic should ideally disable anticipation,

in which case our non-anticipatory results apply. Thus, the decision to enable anticipation

should not be affected by the queue depth.

6.4 Linux schedulers

We have found deadline to yield the best performance overall, especially at low- and medium-

level workloads. However, under heavy workloads, deadline degrades to FCFS behaviour. This

can be solved by simply increasing the values of read expire and write expire when it is

known that the device will be under high load.

The root of the problem is deadline’s static expiries; when the average request latency ex-

ceeds the expiry time, most requests will expire since the deadlines can not be met. A potential

improvement to deadline is to dynamically scale expiries as a function of the average request la-

tency. This means the deadline avalanche problem is avoided, while resulting in tighter deadlines

when under low load.

We have shown that AS’s anticipation can yield significant performance improvements. How-

ever, the cost of incorrect anticipation is quite high, and our results suggest that the anticipation

heuristic is poorly tuned, even in the case of a single disks—the very situation AS is designed

for.

Since the non-anticipatory version of AS shows no compelling reasons to be used over dead-

line, AS should be used only on small arrays with workloads that are known to be amenable to

anticipation. With appropriate tuning of the anticipation heuristic, we believe AS could be a

good general-purpose scheduler.

CFQ has been shown to perform relatively well in many cases. However, we identified an

implementation issue which can lead to very poor results. The cause of this behaviour is that

CFQ, by design, does not disable its idle window feature for processes doing random I/O.

The motivation for this is that fair distribution of disk time is improved by allowing a small

window in which a process can issue more I/O before the next process is serviced. This only

occurs on devices that are not queueing-capable to prevent high-end disk hardware performance

suffering. A bug in the CFQ implementation prevents detection of queueing-capable devices

when presented with certain workloads.
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As a work-around for this problem, we suggest that the idle window feature should be

manually disabled by setting slice idle=0 whenever using CFQ on hardware RAID, regardless

of the workload or RAID configuration. There is no evidence to suggest this will negatively

affect performance. CFQ with idle window disabled outperforms the idle-enabled version in all

of our benchmarks. Moreover, in normal operation, CFQ internally disables the idle window on

queueing-capable hardware like RAID.

Finally, the noop scheduler has been shown to perform well on some workloads, and poorly

on others. In particular, it does not scale well on purely random or sequential workloads. Thus,

noop should only be used on arrays servicing light to medium workloads.

6.5 Limitations

The main limitation of this work is that only one particular RAID controller, HP’s P600, was

subject to investigation. We also tested only a single type of disk. As such, it is difficult to

determine which conclusions are valid only for the specific controller, and which apply to hard-

ware RAID in general. Features such as I/O scheduling, prefetching, and cache management,

could vary wildly between models and manufacturers. The performance characteristics of the

disks, such as seek time and transfer speed, could also have an effect.

Moreover, we were not able to fully explore the configuration options of the P600 controller

which are present in many hardware RAID devices. This includes parameters such as such as

stripe-unit size and buffer/cache sizes, which we left at their default values.

Another limitation is the broadness of the benchmarks. We ran two benchmarks to test

general performance characteristics: FIO micro-benchmarks and Postmark. These do not cover

a wide spectrum of real-world workloads, so important results may have been missed. Partly,

this is due to the lack of available tools.

In studying the benchmark results, we focused primarily on throughput as a measure of

performance. CPU and memory overheads can also be important. This is particularly true in

large I/O systems like hardware RAID, which can move a much larger amount of data, and thus

has to deal with more interrupts, longer queues, etc.

We did not directly measure CFQ’s fairness properties, nor did we investigate I/O priorities.

Due to hardware availability issues, the maximum array size we were able to test was 8 disks.

However, RAID arrays can be much larger than this. In particular, the P600 can support up

to 38 drives per controller. However, we can extrapolate many of the results obtained to larger

arrays, with a reasonable degree of confidence, where the measurements have shown scaling

limits within the configurations tested. One example is anticipation, which we have shown to

be largely ineffective on 8-disk arrays. It is reasonable to assume that the same is true for larger

arrays.
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Despite our aims to study I/O scheduling on RAID hardware in the abstract, all our bench-

marks were run on a single operating system: Linux. Hence, we were testing particular imple-

mentations of I/O scheduling algorithms. This problem is somewhat mitigated by the use of

custom-built implementations of classic scheduling algorithms, which were not complicated by

the requirements of real-world I/O schedulers. However, we are still at the mercy of peculiari-

ties in Linux’s I/O stack, such as optimisations like queue plugging1, readahead, buffering and

caching policies, and indeed implementation bugs.

6.6 Future work

There are many limitations, described above, that must be resolved before I/O scheduling on

hardware RAID can be considered a “solved” problem. We have also uncovered sub-optimal

performance in Linux’s I/O scheduling, such as the poor anticipation heuristic and bugs in

the CFQ implementation, which we would like to resolve. However, several more fundamental

questions have been uncovered as a result of our work.

Write-back considered harmful One issue is that of write-back buffering, which complicates

I/O scheduling. The problems all stem from the fact that write-back buffers generate completion

events when the request is committed to the buffer, not when it is written to the (non-volatile)

disk medium.

Write-back buffers pose a problem for resource usage accounting, because the actual time to

service a write request is unknown. Measuring short-term (i.e. before buffer saturation) write

bandwidth is also impossible. Thus, truly fair queueing is not possible. Real-time I/O schedul-

ing is also complicated, because the maximum latency depends on the number of outstanding

requests on the device. Under a write-back buffering scheme, this is not known.

Write-back can also compromise robustness, particularly to filesystems, since it is not known

when a write request is physically written to the disk medium. Such problems are currently

ignored or solved at the cost of performance. Several other performance problems are caused by

write-back buffering. For instance, anticipatory scheduling does not function correctly if the idle

time is actually used to issue requests that have been queued in the write-back buffer. Moreover,

write-through buffers are immune to the adversary effect (see Section 2.1.3).

These issues are compounded in hardware RAID systems, since they often have very large

write-back buffers; up to 512 MiB in the P600. Some hardware, including the P600, attempt to

eliminate some of these problems by using expensive battery-backed write-back buffers.

We believe that most advantages of disk-level write-back buffering are provided by command

queueing, so the write-back buffer can be replaced by queued write-through buffers without

adverse performance implications.

1Queue plugging delays new I/O streams until multiple requests have been accumulated, with the aim of
producing a more efficient schedule.
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Propagating information up the I/O stack One of the most challenging factors with

host I/O scheduling on hardware RAID is the lack of information about the underlying device

made available to the scheduler. This is a problem even on simpler hardware, with features like

command queueing becoming commonplace.

Performance optimisations may be possible in the I/O scheduler by providing it with such

information as:

• type of underlying hardware;

• RAID topology and stripe-unit boundaries;

• queue depth.

Knowing the stripe-unit boundaries, for instance, allows us to prevent merging of requests

that would be split in the RAID controller anyway. This may lead to performance gains,

especially on low-end RAID hardware. Additionally, knowing the full details of the RAID

topology, specifically the logical to physical block mapping, may allow per-disk anticipatory

scheduling, whereas current anticipation techniques only work over entire logical devices.

Software RAID Software RAID, while providing similar properties to end-users of I/O sys-

tems, is significantly different from hardware RAID from an I/O scheduling perspective, with a

range of new optimisations available.

Because the volume is managed purely in software, the I/O scheduler can have far more

knowledge about the RAID volume which can be used to produce a better schedule. Moreover,

scheduling policies can be applied over entire logical volumes, like in the hardware RAID cause,

but also on the physical disks forming the array. This allows, for instance, fairness provided at

the volume level, while performance is provided at the disk level where it is most effective.
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Chapter 7

Conclusions

We have studied I/O scheduling on hardware RAID arrays and found that it is indeed a useful

technique for improving performance. In particular, both sorting and merging can lead to non-

trivial performance advantages. Anticipation can also be successfully applied to hardware RAID,

but is only effective on arrays of approximately six disks or less.

Contrary to intuition, reducing the RAID device’s queue depth is important to performance,

because it allows more effective merging to take place on the host system. We found a queue

depth of 32 to be optimal for the specific hardware tested, which is largely independent of the

RAID level or size.

Of the four Linux I/O schedulers, we have found deadline to yield the best performance overall,

especially at low- and medium-level workloads. While deadline degrades to FCFS behaviour

under heavy workloads, we have suggested a simple solution to resolve this problem.

We have shown that, while anticipation can yield significant performance improvements, the

cost of incorrect anticipation is high. Moreover, Linux’s AS scheduler is poorly tuned, and

should be avoided unless the workload is known to be anticipation-friendly.

While CFQ has been shown to perform relatively well in many cases, we have identified a

serious performance issue, and suggested a work-around.

We have also developed two new I/O schedulers for the Linux kernel, FIFO and V(R), and

contributed several performance enhancements.
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Appendix A

Source Code

Source code is available on the accompanying disk in the appendix a directory. The supplied

files are:

• fifo-iosched.patch: adds the FIFO I/O scheduler to Linux 2.6.24;

• vr-iosched.patch: adds the V(R) I/O scheduler to Linux 2.6.24;

• as-fixes.patch: the modifications we made to the anticipatory I/O scheduler. Applies

to Linux 2.6.23, and is included in Linux 2.6.24 mainline;

• deadline-fixes.patch: the modifications we made to the deadline I/O scheduler. Ap-

plies to Linux 2.6.23, and is included in Linux 2.6.24 mainline;

• cciss-qdepth.patch: adds the queue depth tunable to the CCISS device driver in

Linux 2.6.24.
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Appendix B

Configuration Files

The appendix b directory contains the configurations used for the Linux kernel build and Post-

mark benchmarks.

• linux-2.6.24.config: Linux configuration used on the benchmarking machine;

• postmark-large.conf: “large file” Postmark configuration for the benchmarks described

in Section 4.2.4 and analysed in Section 5.2;

• postmark-small.conf: “small file” Postmark configuration;

• postmark-qdepth.conf: Postmark configuration for the queue depth benchmark (Sec-

tion 4.3.6 and Section 5.4).
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Appendix C

Benchmark Results

The complete set of graphs for our benchmark results are available in the appendix c directory.

The included files are:

• fio-microbenchmarks.pdf: results of FIO micro-benchmarks discussed in Section 5.1;

• fio-anticipation.pdf: results of FIO anticipation benchmarks discussed in Section 5.3;

• postmark.pdf: Postmark benchmark results analysed in Section 5.2.
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