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Abstract

The abstraction provided by virtual memory is central to the operation of modern operating systems.

Making the most efficient use of the available translation hardware is critical to achieving high performance.

The multiple page-size support provided by almost all architectures promises considerable benefits but

poses a number of implementation challenges.

This thesis presents a minimally-invasive approach to transparent multiple page-size support for Itanium

Linux. In particular, it examines the interaction between supporting large pages and Itanium’s two inbuilt

hardware page-table walkers; one being a virtual linear page-table with limited support for storing different

page-size translations and the other a more flexible but higher overhead hash table based translation

cache.

Compared to a single-page-size kernel, a range of benchmarks show performance improvements when

multiple page-sizes are available, generally large working sets that stress the TLB. However, other

benchmarks are negatively impacted. Analysis shows that the increased TLB coverage, resulting from the

use of large pages, frequently does not reduce TLB miss rates sufficiently to make up for the increased

cost of TLB reloads. These results, which are specific to the Itanium architecture, suggest that large-page

support for Itanium Linux is best enabled selectively with insight into application behaviour.
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Chapter 1

Introduction

Virtual memory underpins the operation of all modern general-purpose computing. The abstraction of a

virtual address space frees the programmer from many difficult and time consuming memory management

tasks and allows the operating system to implement security and policy.

The smallest unit of memory available is a page. In basic operation, each virtual page corresponds to

a physical frame of the same size. Addresses within a virtual page are translated by hardware to the

underlying physical address when accessed.

To find the virtual page to physical frame translation information, the hardware has a cache termed the

translation lookaside buffer (TLB). The TLB, being a cache, holds only a limited number of entries and

hence a page table is kept by the operating system to store and manage all virtual-to-physical translations.

Filling TLB entries on a miss can either be done by the hardware autonomously navigating these page

tables (hardware-loaded TLB), an exception which invokes the operating system (software-loaded TLB) or

some combination of both.

Traditional operating systems use a fixed base page-size as the lowest common denominator; i.e. all

memory allocations, no matter how large, are decomposed to a fixed size. This is generally a software

limitation, since most architectures have a TLB which supports translations with varied page sizes.

The operating system generally utilises a base page-size somewhere between 4 KiB and 64 KiB. With a

modern system containing gigabytes (or more) of physical memory, this results in millions of pages and

frames requiring management. With such a large amount of translations to keep track of, overheads from

TLB misses and consequent refill costs can easily become a bottleneck to system performance.

TLB coverage refers to how much virtual-memory address space can be translated by the limited number

of TLB entries; more is universally better (for example, a TLB able to hold 16 translation entries for

4 KiB pages covers 64 KiB). Universally increasing the base page-size increases coverage, however this

leads to unacceptable trade offs with internal fragmentation. We are therefore left to consider supporting

translations with differing page sizes within the TLB.

1.1 Motivation

The most efficient way to maximise TLB coverage is to choose a page size for each translation as closely

sized to the memory allocation it represents as possible (e.g., if the program requests 1 MiB of memory it
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is mapped with a 1 MiB page). Ideally, this support should be provided in a manner transparent to the

application programmer as part of the abstraction layer provided by the operating system.

General purpose operating system support for multiple page-sizes varies. The major commercial UNIX

implementations of OpenVMS [NK98], HP-UX [SMPR98], IRIX [GS98] and Solaris [McD04, Low05] have

support for multiple page-sizes in some form. Linux currently provides for non-transparent, pre-allocated

large pages; alternative approaches for transparency have been proposed but have so far not gained

acceptance.

1.1.1 Itanium

Since the TLB is implemented in the processor hardware, effective large-page support is very dependent on

the target architecture. Intel’s Itanium architecture promises the potential for greatly increased translation

coverage by providing a TLB with support for a very wide range of page sizes.

To provide for drastically lower translation refill times than relying on software alone, the Itanium also

provides the ability to hardware load translation entries via two different execution models. Each mode

requires translations in a particular fixed format suitable for the hardware to read and refill the TLB with.

1.2 Research Questions

Therefore effective large-page support for Itanium Linux poses the following questions:

1. How should the operating system transparently choose an appropriate page size when allocating

memory?

2. What are the costs and benefits of modifying the operating system to enable large-page support with

each of the two forms of hardware translation loading? Ultimately, which is better?

1.3 Contribution

Prior work has investigated large-page support schemes for Linux but until now none had been ported

to the Itanium architecture. While the properties of the Itanium virtual memory implementation have

been examined in prior work [CWH03, GCC+05] the interaction with large-page support has not been

considered. The management of multiple page-sizes with the Itanium architecture has been studied with

FreeBSD [Nav04], however the work did not pay particular attention to the processor’s ability to hardware

load translations.

This thesis therefore provides a unique view of the interaction between Linux large-page support and the

Itanium memory management architecture.

1.4 Thesis Overview

The following is an outline that maps out the rest of this document:
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Chapter 2 draws foundations for implementation choices from literature and prior work.

Chapter 3 introduces and describes the operation of the Itanium memory management unit (MMU)

and examines some of its unique features.

Chapter 4 evaluates the tradeoffs of different Itanium MMU configurations.

Chapter 5 discusses the implementation of a transparent large-page scheme for Itanium Linux.

Chapter 6 evaluates the models presented.

Chapter 7 concludes and describes future work.
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Chapter 2

Foundations

This chapter describes the foundations of the work presented in this thesis. We describe the problems with

supporting multiple page-sizes, examine various solutions from prior work and draw conclusions for our

implementation. A more extensive review can also be found in the associated literature review [Wie06].

Section 2.2 and Section 2.3 introduce the hardware and software constraints on supporting multiple

page-sizes. Section 2.4 presents a categorisation and examination of exiting approaches. Section 2.5

presents the conclusions drawn from the examination of prior work.

2.1 Multiple Page-Sizes

It has long been identified that TLB size is not keeping pace with the ever growing amounts of memory

attached to a modern system [Nav04]. Finding methods to expand TLB coverage is therefore a pressing

issue for a modern systems.

Clearly, the easiest way to increase TLB coverage would be to simply design a TLB with more translation

entries! As might be expected, practicalities make this approach extremely difficult. The TLB has a critical

role in the processor pipeline and is required to process lookups in usually as little as one or two cycles.

The fully-associative content-addressable memory (CAM) used to facilitate such low latency lookup is very

expensive in terms of both transistor count and power usage and does not scale linearly.

It is therefore useful to be able to use varying page sizes within the limited TLB translations available.

However, supporting multiple page-sizes raises issues for both hardware and software designers.

2.2 Hardware Constraints

In a single page-size system any virtual address can unambiguously be split into a virtual page number
(VPN) and offset. The VPN is presented to the TLB for translation to the underlying physical page and the

offset is then added to the physical page to construct the final physical address.

With multiple page-sizes a given virtual address no longer uniquely identifies a VPN. The split between

VPN and offset bits now depends on what size page the given address is currently mapped within [TKHP92,
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whilst a base page size has no bits set.

Sez04]. For example, virtual address 0x12345678 would have a VPN of 0x12345 with 4 KiB pages or VPN

0x1234 with 64 KiB pages.

In a fully-associative TLB the VPN in each TLB entry is checked for a match in parallel. Multiple page

sizes can be implemented by extending each entry with a mask field specifying the VPN/offset split, as

illustrated in Figure 2.1. A fully associative TLB requires a large bank of CAM and is thus limited in size. A

larger TLB is usually implemented via set-associativity.

Set-associativity, illustrated in Figure 2.2, separates the TLB into several ways which each hold a portion of

the TLB entries. This is done because it is more practical to create several smaller areas of CAM (the ways)

rather than one very large array. At translation time a number of bits of the virtual address are used to

index into each way; the entry at this index is then checked in each way, in parallel, for a match. Thus

the parallel component of the lookup is restricted to the number of ways rather than the total number of

entries as in a fully-associative cache. The index into the way must be known before the lookup can start;

when presented with only a virtual address the TLB has no information to distinguish the page size and

hence no way to find the split between offset and index bits. This results in a “chicken and egg” problem;

the page size is used to index the TLB, but the page size is kept in the TLB.

Overcoming these problems has been the focus of much research. Models proposed include sub-blocking

TLBs [HS84, TH94], “skewing” [Sez93, Sez04] and “Zip Coding” [Lie96]. Other approaches such as soft-

ware managed address translation [JM97] and in-cache address translation [WEG+86] suggest avoiding

the problem by removing the TLB altogether. None of these schemes have found large scale commercial

implementations (a notable exception is MIPS, which implements a form of sub-blocking TLB). Current

processors tend to implement multiple page-size support with either a small, fully-associative TLB (Stron-

gARM, Alpha, UltraSPARC T1) or multiple TLBs each holding a different page size (UltraSPARC, IA-32).

Itanium differs slightly by tying the first level cache and a small upper level TLB together closely with

fixed-sized “pre-validated” entries (for details see [Lyo05]) but keeps a fully-associative second level TLB.
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problem between the index and page size.

2.3 Software Constraints

Supporting multiple page-sizes is not only problematic for hardware designers, but raises a number of

issues for software designers.

2.3.1 Fragmentation

The tradeoffs of an increased base page-size have been evident since the first virtual memory implementa-

tions:

There is a page size optimal in the sense that storage losses are minimized. As the page

size increases, so increases the likelihood of waste within a segment’s last page. As the page

size decreases, so increases the size of a segment’s page-table. Somewhere in between the

extremes of too large and too small is a page size that minimizes the total space lost both to

internal fragmentation and to table fragmentation. (Denning, 1970 [Den70])

In the quote above, Denning is referring to the concepts of fragmentation. If a page of memory is not fully

used due to the object it stores being smaller than the page size, the left over and unusable space is lost to

internal fragmentation. If the page size is reduced so to is internal fragmentation, however allocations

become more scattered in memory and end up creating many small holes of free memory. Contiguous
memory refers to allocations of consecutive physical frames; a virtual page of a given size must be backed

by contiguous physical memory of the same size. Many small gaps therefore inhibit contiguous allocation,

a situation referred to as external fragmentation.

Wilson et al. [WJNB95] identify fragmentation in general as “an inability to reuse memory which is free”.

They further identify the root cause of external fragmentation as placing objects with dissimilar lifespans in

adjacent areas. The slab allocator [Bon94] is a caching allocator for objects which attempts to ameliorate
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Figure 2.3: The ski-rental problem echos issues with page promotion [ROKB95]. When should the skier
take the fixed cost of upgrading from renting to purchasing? For an operating system, when does the cost
of making a large page outweigh the benefits?

these effects. By pre-allocating a region of memory for a number of objects (a slab) reallocation after

deallocation reuses the same memory, keeping objects together and fragmentation to a minimum. The

requirement of a known object size makes this policy unsuitable for a general purpose memory allocator.

Other schemes rely on the OS being able to move physical frames to create areas of free contiguous

memory [GS98, GW07].

2.3.2 Complexity

Managing multiple page-sizes necessarily adds overheads beyond simply supporting a single page-size.

One major overhead is deciding if and when to promote a base page to a larger page size. This problem

falls into the general category of “competitive algorithms” [MMS90], one of the more famous being the

“ski-rental” problem [Kar92]:

Consider a novice skier. Ski rental is $10 per day, but to purchase the same skis would be $100.

Should the skier rent or buy?

An optimal off-line policy would have the skier purchase the skis if they were sure to ski 10 or more days.

However, given the novice cannot know this before going skiing, they must use an online policy with a

threshold to decide when to make their purchase. Some complexities of this situation are illustrated in

Figure 2.3.

Romer et al. [ROKB95] examine schemes for promoting base pages to a larger page-size (i.e. “buying the

skis”) by tracking page usage in an online fashion. In summary, the scheme records TLB misses against a

large page that, if mapped, would have prevented them. When a certain threshold of preventable misses is

met the large page is instantiated in the system. Keeping complete counters is an expensive proposition;

figures of multiple thousands of cycles per TLB miss are described. Romer shows that the overhead of a

close-to-optimal solution are too great in practice and proposes more approximate solutions which require

less measurement. Subsequent work by Fang el al. [FZC+01] found that on a superscalar machine a low
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instructions per cycle (IPC) fault handler can have a large negative effect on a high IPC application — since

the OS trap generally clears the processor pipeline, hardware resources are wasted as the less efficient miss

handler runs. They also took into account other side-effects such as cache pollution caused by increased

time spent in the fault handlers. The work reinforces the need for simplicity in managing large pages.

These overheads can become quite large and add latency to time-critical virtual memory fault paths. Thus

the implementation of multiple page-size support must focus on ensuring any slowdown in fault handling

is made up by an overall reduced number of faults thanks to greater TLB coverage.

2.4 Software Policy Categorisation

We can divide page size polices into three groups [Szm00, Wie06]

1. Global policies use fixed-sized large pages, either preselected before mapping or chosen closer to

runtime creation of a mapping. Larger pages are never promoted (grown) or demoted (shrunk).

2. Static policies are categorised by a “best effort” promotion and demotion strategy which can grow

and shrink page sizes, but will not copy pages to smaller or larger physically contiguous regions to

achieve this.

3. Dynamic policies implement promotion and demotion, copying frames to be physically contiguous

when appropriate.

Below we classify existing implementations within these categories.

2.4.1 Global Policies

Pinning can be used to map a large, static region such as kernel code or a frame buffer with a single

translation entry. Each pinned entry is exempt from normal refill policy, which usually chooses entries

to remove based on frequency of access. Thus a pinned entry is suitable for a frequently accessed, static

region, but is not a general purpose solution.

Another global policy is to increase the base page-size, which leads to a corresponding increase of TLB

coverage. With very large memory systems and long running processes small losses to fragmentation are

generally not a major concern for running applications. There are, however, subtleties that can arise from

an increased page size. For example, in a modern operating system unused physical memory is used as a

cache for disk storage. Any file with a size not exactly modulo the page size will have a page holding the

file tail which will suffer from internal fragmentation. For many applications accessing many small files,

this can cause a significant decrease in effective disk cache size [KP06].

The current Linux approach to large-page support is HugeTLB which separates a pre-allocated area of

memory at early boot to be mapped with a single larger page size. Application programmers must either

use special mmap flags or open a file on a specially mounted file system to access the large-page backed

memory (a full explanation is provided in Section 3.5). This scheme has the advantage of reduced

complexity — on a fault the system need only check if the faulting address is in the large-page region to

determine the page size. It is not, however, transparent, requiring both API and ABI changes.

Winwood et al. [WSF02] propose a more fine grained approach based upon modifications to the current

Linux virtual memory model, presented in Figure 2.4. Each vm area, which represents an object in a
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Figure 2.4: Linux memory layout [WSF02]. Allocations within a processes virtual address space are
described by a vm area struct. Pages within these areas are mapped by a page-table to the underlying
physical pages tracked in the mem map array.

processes virtual memory, is extended to contain a page size. Lower layers are modified to find and use the

page size where appropriate. Modifications were also made to allow pgd and pmd levels of the page-tables

(shown in Figure 2.4) to contain translations; this results in extra complexity when walking the page table

as each entry must be checked to see if it is a pointer or a translation, but allows for potentially shorter

paths. To avoid problems with external fragmentation Winwood et al. use a special pre-allocated zone.

Thus as implemented, the approach comes under a global classification, however the general principles

could be expanded into a more dynamic system. Page size is set via calls to madvise, meaning there is a

programmer visible API.

Support for large pages in Solaris 2.6 through Solaris 8 was via a specialised form of System V shared

memory referred to as intimate shared memory (ISM) [McD04]. This is similar to the Linux HugeTLB

concept; shared memory is requested as “intimate” via a flag to shmat(). Unlike Linux, however, processes

sharing ISM areas share page table entries as well. Dynamic ISM (DISM) was added to Solaris 8 (Update

3) to allow dynamic resizing of ISM areas; particularly useful for databases which previously required a

shutdown-restart cycle to change the size of ISM caches. Solaris 9 expanded ISM to support intermediate

large-page sizes. Multiple page-size support (MPSS) was introduced with Solaris 9 as a method for allowing

applications to request larger pages without needing to use ISM. Like the HP-UX (Section 2.4.2) and IRIX

(Section 2.4.3) schemes, MPSS requires an application (or administrator) to request certain page sizes for

the application. MPSS support is available via a number of methods including shared library wrappers

and flags in binary headers which can be set via compiler options or administrative tools. Current work is

looking at making these hints automatically [Low05].

2.4.2 Static Policies

When using a static policy, an initial page-size for a region is chosen based on some heuristics. Static

approaches must support demotion to smaller page sizes as this is requirement for correct transparent op-

eration. For example, a common operation is to use the memprotect system call to modify the permissions
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on a region of memory. Since protection is enforced by the TLB at the page level, a reduced page-size

will be required to maintain correct behaviour. Demotion also allows for graceful handling of insufficient

contiguous physical memory and may allow optimisations such as avoiding I/O overheads by splitting

large pages when they are evicted to swap. Unlike dynamic approaches, static approaches do not allow for

arbitrary growth of a region into a larger page.

Subramanian et al. [SMPR98] implemented multiple page-size support for the HP-UX operating system.

As illustrated in Figure 2.5, a page-size hint is suggested by an administrator and added to the attributes of

a binary executable. This information is stored in the pregions (similar to a Linux vma, see Figure 2.4)

and can be used to select a page size on fault. HP-UX will attempt to fulfil this hint unless there is

insufficient contiguous memory or the system is coming under memory pressure. The hinting scheme is

also supplemented by transparent hinting mechanisms; for example, heap pregions which grow to a large

size in small increments are tracked and will have their hints upgraded. Thus an sbrk call may receive

more memory than is requested (16 KiB instead of 4 Kib, for example) if it has been detected as growing.

Hints can also be downgraded under memory pressure to avoid wastage via internal fragmentation.

Rather than modify all virtual memory structures to handle multiple page-sizes, large pages are defined as

a group of contiguous base page-size translations. Using this scheme reduces modifications required to the

virtual memory layers and is often referred to as translation replication (a similar approach was taken with

IRIX [GS98]).
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Figure 2.7: The buddy allocator reduces fragmentation by packing allocations close together. Above
illustrates the process of allocating 256 KiB from a 1 MiB chunk.

Shimizu and Takatori [ST03] propose a transparent multiple page-size implementation for Linux on Alpha,

Sparc64 and IA-32. Their approach lets the kernel provide naturally-aligned large pages to cover a given

mapping at mmap time, as illustrated in Figure 2.6. The frames are marked with their page size when

the virtual memory is allocated by the system. This means until a page is faulted in, there is no memory

backing it. At page-fault time a suitably large region of contiguous memory is requested from the standard

Linux memory allocator. If sufficient contiguous memory cannot be found when a page is faulted the large

page will be recursively divided and a smaller allocation attempted, until the large page allocation has

finally been broken down to the base page-size.

2.4.3 Dynamic Policies

With a dynamic approach, the operating system is able to grow an allocation into a larger page. This policy

implies a fundamental change to OS memory management — one of the prime motivators for mapping

virtual frames to physical frames is that a contiguous virtual region does not require a contiguous physical

region of memory. Below we identify and discuss some of these issues surrounding implementation of a

dynamic approach.

Room to grow

A traditional physical memory allocation scheme is the buddy allocator [Knu97] which reduces fragmenta-

tion by packing allocations together. For example, as illustrated in Figure 2.7, two small 256 KiB allocations

will be placed adjacent, leaving contiguous space for further allocations. The disadvantage of this approach

is it leaves little room for the smaller allocation to grow. Copying the entire allocation into a larger region

is generally not practical because of time overheads and secondary effects such as cache reload.

Keeping a contiguous region of physical memory for a small allocation to grow into implies a reservation
of a larger amount of memory. Navarro [Nav04] proposed reservation methodologies, but encountered

several problems. Firstly, operating systems often use pinned or wired pages which can not be unmapped

and consequently can be the cause of large amounts of external fragmentation. A solution is to modify

the system to allocate pinned pages only from a particular known region. Secondly, as mentioned in

Section 2.4.1, unused memory is used for disk cache. If the system does not allow reserved memory to

be used as cache, overall performance decreases. However, if the reserved memory is used it can cause

additional overheads; for example an allocation growing into a dirty cache region needs to wait for the

data to be flushed to disk before it may continue.
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A background contiguity daemon can be run to reclaim contiguity by migrating existing allocations. This is

done in IRIX [GS98] with varying levels of aggression depending on the current contiguity requirements.

Navarro also proposes algorithms for a contiguity daemon, and shows off-line contiguity reclamation is

practical.

Complexity

Dynamic approaches have the most work to do deciding when to instantiate or promote a large page,

so they are particularly sensitive to the complexity issues discussed in Section 2.3.2. As mentioned,

Romer [ROKB95] and Fang el al. [FZC+01] concluded that simple, low overhead counting schemes (rather

than more complex trace-back or probabilistic counting) provided for the best promotion decisions.

Navarro [Nav04] found that an acceptable methodology for dynamic large-page management of the

four page-sizes supported by the Alpha processor introduced significant overhead when implemented on

Itanium, which can support over 10 different page sizes. He suggested a revised model without these

limitations, but it requires the kernel keep a splay tree of virtual pages present in the process; something

Linux does not provide.

Optimal page-size

To ensure optimal performance it is desirable to allow the operating system to choose from as many

different page sizes as the underlying architecture provides. For one benchmark, Navarro found a

slowdown of 47% when a process was not able to access the largest page-size supported. Flexibility is also

required; Subramanian et al. [SMPR98] found that the largest page-size was not always optimal.

2.5 Conclusions

The analysis of prior work presented in this chapter suggests the following goals for effective large-page

support:

• Page size should be transparent to the application programmer. This both avoids programmers

requiring knowledge of virtual memory internals and maintains API and ABI consistency.

• Overheads of large-page management need to be kept to a minimum. Online promotion tech-

niques are expensive and a potential bottleneck; therefore a static approach is probably most

appropriate [Nav04, ROKB95, FZC+01].

• Large scale modification of the complex Linux virtual memory layers is unlikely to be palatable or

practical. Translation replication has been shown to successfully retrofit existing systems and appears

the most suitable implementation approach [SMPR98, GS98, ST03].

• Itanium provides a wide range of page size choice which should not be artificially limited by

algorithms or data structures which do not scale with the number of available page sizes [Nav04,

SMPR98].

• Contiguity can be considered offline [GS98, Nav04].
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Thus this thesis focuses on the implementation of a transparent, low-overhead multiple page-size infras-

tructure for Itanium Linux. The approach is most closely modelled on that of Shimizu and Takatori.



Chapter 3

Itanium MMU

This chapter presents an overview of the Itanium memory management unit (MMU) design and introduces

the alternative forms of hardware page-table walker (HPW) provided by the architecture. We then examine

how Linux currently supports large pages and how this fits with the architecture.

Section 3.5 introduces the Itanium address space layout. Section 3.2 introduces the available HPW options

and Section 3.3 and Section 3.4 explain the operation of the two available modes. Section 3.5 concludes

with a discussion of existing Linux large-page support.

3.1 Address Spaces

The main goal of virtual memory is for each running process to have a private and unique view of the

virtual address space. The simplest way for the operating system to achieve this is to empty or flush all

translation entries stored in the TLB when a context switch activates a new process (and hence address

space). As the newly activated process accesses its virtual pages the OS will be invoked to populate the

TLB with appropriate translations to physical frames.

There is, however, a significant performance penalty incurred when transitioning to the OS to resolve a

TLB miss. Flushing the TLB on each context switch exacerbates this penalty since it removes any potential

ability to reuse translations if the same processes runs regularly and intervening processes have not caused

capacity misses (leading to potential eviction of older translations). Thus a common enhancement is to tag

each TLB entry with an address space ID (ASID). By combining the ASID of the currently running process

with the ASID recorded for each translation entry, the TLB can ensure only entries for the active address

space are matched, removing the need to constantly empty the TLB.

Programmers often use threads to allow execution contexts to share an address space. Each thread has

the same ASID and hence shares TLB entries, leading to increased performance. However, a single ASID

prevents the TLB from enforcing protection; sharing becomes an “all or nothing” approach. To share even

a few bytes, threads must forgo all protection from each other.

The Itanium MMU considers these problems and provides the ability to share an address space (and hence

translation entries) at a much lower granularity whilst maintaining protection. The Itanium divides the

64-bit address space up into 8 regions, as illustrated in Figure 3.2. Each process has eight 24-bit region
registers as part of its state, which each hold a region ID (RID) for each of the eight regions of the process
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Figure 3.1: A view of the Itanium translation process [GCC+05, ME02].
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Figure 3.2: Itanium regions and protection keys. In this example the processes alias region 1. Each process
has a private mapping and they share a key for another.
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address space. TLB translations are tagged with the RID and thus will only match if the process also holds

this RID, as illustrated in Figure 3.1.

Further to this, the top three bits (the region bits) are not considered in virtual address translation.

Therefore, if two processes share a RID (i.e., hold the same value in one of their region registers) then they

have an aliased view of that region. For example, if process-A holds RID 0x100 in region-register 3 and

process-B holds the same RID 0x100 in region-register 5 then process-A, region 3 is aliased to process-B,

region 5. This limited sharing means both processes receive the benefits of shared TLB entries without

having to grant access to their entire address space.

3.1.1 Protection Keys

To allow for even finer grained sharing, each TLB entry on the Itanium is also tagged with a protection key.

Each process has an additional number of protection key registers under operating-system control.

When a series of pages is to be shared (e.g., code for a shared system library), each page is tagged with a

unique key and the OS grants any processes allowed to access the pages that key. When a page is referenced

the TLB will check the key associated with the translation entry against the keys the process holds in its

protection key registers, allowing the access if the key is present or otherwise raising a protection fault to

the operating system.

The key can also enforce permissions; for example, one process may have a key which grants write

permissions and another may have a read-only key. This allows for sharing of translation entries in a much

wider range of situations with granularity right down to a single-page level, leading to large potential

improvements in TLB performance [CWH03].

3.2 Hardware Page-Table Walker

Switching context to the OS when resolving a TLB miss adds significant overhead to the fault processing

path. To combat this, Itanium allows the option of using built-in hardware to read the page-table and

automatically load virtual-to-physical translations into the TLB. The hardware page-table walker (HPW)

avoids the expensive transition to the OS, but requires translations to be in a fixed format suitable for the

hardware to understand.

The Itanium HPW is referred to in Intel’s documentation as the virtually hashed page-table walker or VHPT

walker, for reasons which should become clear. Itanium gives developers the option of two mutually

exclusive HPW implementations; one based on a virtual linear page-table and the other based on a hash

table. Below we examine the implementation, advantages and disadvantages of each, especially with

regard to large-page support.

It should be noted it is possible to operate with no hardware page-table walker; in this case each TLB miss

is resolved by the OS. The performance impact of disabling the HPW is so considerable it is very unlikely

any benefit could be gained from doing so [CWH03].
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3.3 Virtual Linear Page-Table

The virtual linear page-table implementation is referred to in documentation as the short format virtually
hashed page-table (SF-VHPT). It is the default HPW model used by Linux on Itanium.

3.3.1 Linear Page-Table

A linear page-table consists of a contiguous array of virtual-to-physical translations for an address space. To

locate the target translation, the virtual page number is simply used as an offset from the linear page-table

base (e.g., virtual-page-0 is entry-0, virtual-page-1 is entry-1, and so on).

Since every page must be accounted for, whether in use or not, a physically linear page-table is impractical

with a 64-bit address space. Consider a 64-bit address space divided into (generously large) 64 KiB pages

creates 264

216 = 252 pages to be managed; assuming each page requires an 8-byte translation entry a total of
252

23 = 249 or 512 GiB of contiguous memory is required for the page table of each process!

3.3.2 Hierarchical Page-Table

The usual solution is a multi-level or hierarchical page-table, where the bits comprising the virtual page

number are used as an index into intermediate levels of the page-table. This is illustrated for a three-level

page-table in Figure 3.3.

Empty regions of the virtual address space simply do not exist in the hierarchical page-table. Compared to

a linear page-table, for the (realistic) case of a tightly-clustered and sparsely-filled address space, relatively

little space is wasted in overheads. The major disadvantage is the multiple memory references required

for lookup.

3.3.3 Virtual Linear Page-Table

With a 64-bit address space, even a 512 GiB linear table identified in Section 3.3.1 takes only 0.003% of

the 16-exabytes available. Thus a virtual linear page-table (VLPT) can be created in a contiguous area of

virtual address space.

Just as for a physically linear page-table, on a TLB miss the hardware uses the virtual page number to

offset from the page-table base. If this entry is valid, the translation is read and inserted directly into the

TLB. However, with a VLPT the address of the translation entry is itself a virtual address and thus there is

the possibility that the virtual page which it resides in is not present in the TLB. In this case a nested fault
is raised to the operating system. The software must then correct this fault by mapping the page holding

the translation entry into the VLPT.

This process can be made quite straight forward if the operating system keeps a hierarchical page-table.

The leaf page of a hierarchical page-table holds translation entries for a virtually contiguous region of

addresses and can thus be mapped by the TLB to create the VLPT as described in Figure 3.4.

For reference, Appendix A.1 shows a flowchart of the Linux fault handling code when operating with the

SF-VHPT.
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Figure 3.3: A three level hierarchical page table.
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3.3.4 Discussion

The major advantage of a VLPT occurs when an application makes repeated or contiguous accesses to

memory. Consider that for a walk of virtually contiguous memory, the first fault will map a page full of

translation entries into the virtual linear page-table. A subsequent access to the next virtual page will

require the next translation entry to be loaded into the TLB, which is now available in the VLPT and thus

loaded very quickly and without invoking the operating system. Overall, this will be an advantage if the

cost of the initial nested fault is amortised over subsequent HPW hits.

The major drawback is that the VLPT now requires TLB entries which causes an increase on TLB pressure.

Since each address space requires its own page table the overheads become greater as the system

becomes more active. However, any increase in TLB capacity misses should be more than regained

in lower refill costs from the efficient hardware walker. Note that a pathological case could skip over

page size ÷ translation size entries, causing repeated nested faults, but this is a very unlikely access

pattern.

The hardware walker expects translation entries in a specific format as illustrated on the left of Figure 3.5.

The VLPT requires translations in the so-called 8-byte short format. If the operating system is to use its

page-table as backing for the VLPT (as in Figure 3.4) it must use this translation format. The architecture

describes a limited number of bits in this format as ignored and thus available for use by software, but

significant modification is not possible.

A linear page-table is premised on the idea of a fixed page size. Multiple page-size support is problematic

since it means the translation for a given virtual page is no longer at a constant offset. To combat this,

each of the 8-regions of the address space (Figure 3.2) has a separate VLPT which only maps addresses

for that region. A default page-size can be given for each region (indeed, with Linux HugeTLB, discussed

below, one region is dedicated to larger pages). However, page sizes can not be mixed within a region.

Exact implementation details are discussed further in Chapter 5.

3.4 Hash Page-Table

Using TLB entries in an effort to reduce TLB refill costs, as done with the SF-VHPT, may or may not be an

effective tradeoff. Itanium also implements a hashed page-table with the potential to lower TLB overheads.

In this scheme, the processor hashes a virtual address to find an offset into a contiguous table.

The previously described physically linear page-table can be considered a hash page-table with a perfect
hash function which will never produce a collision. However, as explained, this requires an impractical

tradeoff of huge areas of contiguous physical memory. However, constraining the memory requirements

of the page table raises the possibility of collisions when two virtual addresses hash to the same offset.

Colliding translations require a chain pointer to build a linked-list of alternative possible entries. To

distinguish which entry in the linked-list is the correct one requires a tag derived from the incoming virtual

address.

The extra information required for each translation entry gives rise to the moniker long-format VHPT

(LF-VHPT). Translation entries grow to 32-bytes as illustrated on the right hand side of Figure 3.5.

The hash function is illustrated below [Cha], where PAGE SHIFT is the number of offset bits for the default

page size of the region.
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o f f s e t = (( v i r t u a l a d d r e s s >> PAGE SHIFT) ˆ RID) & (VHPT ENTRIES−1)

The hash table is global, hence the addition of the RID to avoid the same virtual address in two processes

colliding. Each processor keeps its own hash table (SMP issues are discussed in Section 4.7).

For reference, Appendix A.2 shows a flowchart of the Linux fault handling code when operating with the

LF-VHPT HPW.

3.4.1 Discussion

The main advantage of this approach is the global hash table can be pinned with a single TLB entry.

Since all processes share the table it should scale better than the SF-VHPT, where each process requires

increasing numbers of TLB entries for VLPT pages. However, the larger entries are less cache friendly;

consider we can fit four 8-byte short-format entries for every 32-byte long-format entry. The very large

caches on the Itanium processor may help mitigate this impact, however.

One advantage of the SF-VHPT is that the operating system can keep translations in a hierarchical page-

table and, as long as the hardware translation format is maintained, can map leaf pages directly to the

VLPT. With the LF-VHPT the OS must either use the hash table as the primary source of translation entries

or otherwise keep the hash table as a cache of its own translation information. Keeping the LF-VHPT

hash table as a cache is somewhat suboptimal because of increased overheads on time critical fault paths,

however advantages are gained from the table requiring only a single TLB entry. These tradeoffs are

examined further in Chapter 4.

The global nature of the table means RID allocation is important in avoiding hash collisions. Linux assigns

each processes address space a unique, monotonically increasing context identifier. This is implemented

on Itanium with a direct mapping between the context number and the RIDs which make up a processes

address space; for example the address space with context 0x20 has a Region 1 RID of 0x21, Region 2

RID of 0x22 and so forth. The combination of highly aliased UNIX address spaces created by fork() and

high locality of reference produced by the hash function (Section 3.4) can produce regular patterns of

collisions. As a theoretical example, if VPN 0x1000 was accessed by RID 0x100 and then VPN 0x1001 was

accessed by a freshly forked process with RID 0x101, both would refer to a hash-table offset of 0x1100.

The solution is to re-distribute the lower bits of the 24-bit RID to reduce the contiguity of RID allocations

without breaking the Linux rule of a monotonically increasing context identifier. Many other schemes

could be considered if this type of contention becomes apparent in a running system.

Large-page support is still an issue with the hash page-table. The extra room in the long format translation

entry provides for an explicit page size field, unlike the short format entry which specifies it must take its

page size from the default size set for the region. This means that in LF-VHPT mode the HPW will load a

translation into the TLB with an arbitrary page size.

However, there is still the issue of not knowing the page size when hashing the virtual address. The hash

function described in Section 3.4 shifts out the offset bits from the virtual page number, taking the page

size from the default for the region. If using the hash table as a primary source of translation data, this

would mean each sub-page of a large page would require an entry in the table. If using the table as a

cache it reduces the hit rate, since accessing the same large page but on a different sub-page would require

instantiating another translation entry.
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Figure 3.6: Overview of Linux VFS layers

3.5 HugeTLB

Linux currently provides support for large pages via the HugeTLB mechanism. As mentioned in Section 2.4.1

this is a global scheme which allocates static large pages from reserved memory. Below we introduce the

design and discuss the Itanium implementation.

3.5.1 Linux VFS

Linux is an extremely portable and extensible operating system and relies on good use of abstraction to

allow the many supported architectures, drivers and kernel subsystems to work seamlessly with each other.

An understanding of the HugeTLB infrastructure starts with an overview of one of the most important

abstractions in the kernel, the virtual file-system (VFS).
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As with traditional UNIX, the VFS layer is the abstraction layer between userspace file handles and the

underlying file-systems responsible for storing data on disk. The Linux implementation is illustrated in

Figure 3.6. The basic file data structure is the struct file; using the standard open() system call adds

a struct file into the processes open file table. Each struct file has an associated set of function

pointers to operations such as read(), write() and close(), which are used by the system calls of the

same name. Although they may be overridden for special file types (e.g., to provide direct access to

hardware for device files, etc.) by default they are connected to generic functions which interact with the

disk cache and underlying inode.

The inode is a low level representation of a file on disk. It contains information such as the file size, owner

and reference counts for hard links. Each inode is associated with an address space which acts as an

“MMU for inodes” [Gor04]. It describes the link between a file and memory, holding information such as a

quick-list of all memory pages currently allocated to this inode, any memory pages that are currently dirty
(out of sync with the backing store) and a number of reverse pointers to aid lookups. The most important

field is the address space ops which is a list of function pointers provided by the underlying file-system.

The writepage() and readpage() function pointers in this structure are connected to those provided by

the file-system the inode resides within. These functions ultimately provide the method to move data to

and from disk.

Linux includes an intermediary dentry cache to avoid having to traverse the directory hierarchy (and hence

access disk) each time a file is opened. Each struct file is associated with a single struct dentry in

the cache. Each entry in the dentry cache points to the underlying inode. Whilst a file will only ever

point to one dentry, a dentry may have multiple parents due to hard links.

mmap

Memory mapped (mmaped) files are implemented within the VFS hierarchy. A processes virtual addresses

space consists of a linked list of virtual memory areas (VMA) illustrated on the top-left of Figure 3.6

(see also Figure 2.4). Each region of the address space is assigned to, and described by, a separate

struct vma area. When backed by a file the VMA will have its vm file pointer filled in with a pointer

to the struct file which backs the area. A VMA without this pointer is backed by RAM and is termed

anonymous.

Unlike the linear behaviour ensured by accessing a file via a file descriptor, a memory mapped file needs

to handle a request for any page at any time. To facilitate this, each VMA has a struct vm ops which

contains a fault() function pointer (in many older kernel versions this was called nopage()). The process

of mapping a page from disk is illustrated in Figure 3.7. When there is a TLB miss, the virtual memory

subsystem finds the VMA where the faulting address lies. If that VMA is backed by a file then its registered

fault() function is called, which is required to return a pointer to the page the data can now be found in.

This can then be mapped into the TLB and the access retried.

3.5.2 Shared Memory

A mmap may be either private or shared. A private mmap implies the memory should be copy-on-write across

fork() and any changes to the memory mapped area should not be reflected in the backing file. Conversely,

shared mappings ensure the opposite; fork() must create aliased copies with changes propagated to the

backing file.
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Figure 3.8: Illustration of HugeTLB file-system

Private anonymous memory is therefore handled in the same manner as any other private memory

allocated to the process (such as that allocated by brk()). Supporting separate code paths for anonymous

and file-backed shared memory has the potential to greatly complicate the mmap model presented in

Figure 3.6. To avoid this, Linux maintains the file system abstraction for shared anonymous memory by

creating a file system over RAM termed shmfs. The “blocks” that shmfs allocates are pages of physical

memory, just as a traditional file-system manages blocks on disk. This abstraction greatly simplifies the

mmap operation by hiding the details such as page allocation, interaction with the disk cache, swapping

in/out data and general accounting in an encapsulated file-system (for a full discussion of the file-system

operation, see Gorman [Gor04]).

It also significantly simplifies System V shared memory. A shmget() call is internally translated into a

shared anonymous mmap on the shmfs and the System V shared memory implementation need only keep

an index between the shared memory key and the memory mapped area.
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3.5.3 HugeTLB

The file-system abstraction is also maintained with large page support. HugeTLB is implemented as

another file-system over physical memory at the same level as shmfs. However, rather than allocating

base pages of memory from the general system pool, it allocates from large pages preallocated by the

administrator. These pages are then available via two mechanisms; either the mmap of a file mounted on a

special virtual file-system, as illustrated in Figure 3.8, or via a flag when creating System V shared memory.

Using a file-system makes the allocation of large pages architecture independent. However, each architec-

ture implementation will need to ensure it loads larger TLB entries to cover the larger pages. On Itanium

this is achieved by reserving one region (Section 3.1) exclusively for large pages. By default this region

is set to use 256 MiB pages, but can be changed by the administrator. TLB miss handlers are modified

slightly to check if the incoming faulting address lies in the HugeTLB region and, if so, ensure the TLB is

set with the correct page-size for the translation. Since the SF-VHPT HPW is region based its effectiveness

is not reduced for the HugeTLB region.

Benefits

The advantages provided by HugeTLB memory will vary depending on the TLB overhead a program

experiences. Database workloads are known to often exhibit TLB intensive behaviour and therefore one

of the most important users of the HugeTLB architecture is the Oracle database. A large part of Oracle

performance is dependent on the shared global area (SGA), a region of System V shared memory statically

allocated upon initialisation. This area is then used to hold buffers and facilitate communication between

the numerous processes involved in querying the database. The SGA size is set by the administrator;

ideally the entire database will be able to be served from the SGA, with the general rule being a larger

SGA results in higher performance.

The large and static SGA is a perfect use-case for the Linux HugeTLB model. At boot time (via a kernel

command line) or very early after boot the administrator can request a reservation of large pages sufficient

to cover the SGA. If the database is running on a dedicated machine (which is often the case in a production

environment) this reservation can be a very large percent of the total available memory. Oracle will then

claim this memory when it starts.

The orabm benchmark is based upon the TPC-C benchmark [Tra07] which is designed to simulate a high

traffic OLTP environment. The benchmark simulates an order-entry environment of terminal operators

accessing warehouse information and reports the number of transactions per second (TPS), higher being

better. The working set is relatively small (several hundred megabytes) and restricted to read-only

operations, meaning the benchmark is memory and CPU bound. It is useful to remove I/O since the latency

involved in getting to disk may pollute the results and obscure any TLB effects. The benchmark is run

against the Oracle 10g database server on a 900Mhz Itanium2 with 2 GiB of RAM.

Figure 3.9 shows the benefits of using HugeTLB. Each point is an average of four benchmark runs, and

overall an approximate 5% increase in TPS is observed when using HugeTLB. In this case the SGA is

mapped into a 1 GiB region using four 256 MiB pages, which we would assume would essentially eliminate

TLB misses. These results confirm anecdotal evidence of more varied workloads achieving performance

improvements of 5-8%.



3.6. CONCLUSION 29

 0

 100

 200

 300

 400

 500

 0  2  4  6  8  10  12  14  16

T
ra

n
sa

ct
io

n
s 

P
er

 S
ec

o
n
d

Parallel Requests

orabm Results

Standard
HugeTLB (4x256 MiB)

Figure 3.9: Results of the orabm Oracle benchmark.

3.5.4 Discussion

Whilst highly effective in specific situations, using HugeTLB requires significant intervention from knowl-

edgeable administrators and programmers. Intermediate steps of abstracting the interface behind a

shared library wrapper are still under development [GL]. Whilst having the advantage of requiring less

intervention, such approaches are still tied to the HugeTLB implementation and thus will not be able to

grant access to the full range of page sizes available on an architecture such as Itanium.

Although this work does not consider shared anonymous mappings, we believe it can interface with

proposed developments to the Linux memory model (see Section 5.6.2 for a full discussion).

3.6 Conclusion

We have described the operation of the two forms of HPW on Itanium and discussed some of the challenges

of integrating large-page support within them. A detailed examination of the existing Linux HugeTLB

system is also presented. The remainder of this thesis is a discussion of various strategies for enabling

transparent multiple size large-page support for Linux within these constraints.
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Chapter 4

LF-VHPT Evaluation

This chapter presents a detailed analysis of the long-format VHPT (LF-VHPT) hardware page-table walker

(HPW). As described in Chapter 3, the LF-VHPT promises advantages for large-page support via its ability

to load translation entries with differing page sizes. Below we examine the operation of the LF-VHPT in a

static page-size system to gauge its relative performance against the short-format VHPT (SF-VHPT).

Section 4.3 shows results of micro-benchmarks crafted to exercise extreme cases of the two forms of HPW.

Section 4.4 presents results of the CPU and memory intensive SPEC benchmark suite and Section 4.5 shows

the results of the LMBench suite, a series of micro-benchmarks designed to exercise specific subsystems

of the operating system. Section 4.6 then presents results of benchmarks testing more varied single and

multi-process workloads. Section 4.8 then concludes.

4.1 Prior Work

The LF-VHPT implementation was originally implemented by Matthew Chapman [CWH03]. Maintenance

and enhancement of the work was undertaken by both Darren Williams and myself at various times.

4.2 Test Environment

All benchmarks are run on a 1.5 GHz Itanium2 (“Madison”) in a HP rx2600 server. The processor has

16 KiB, 4-way associative split (separate instruction and data) L1 caches, 256 KiB 8-way associative unified

L2 cache and 6 MiB of 12-way associative unified L3 cache.

The processor has separate 32-entry L1 instruction and data TLBs, however these only support a fixed

4 KiB page size and hence do not respond to larger page sizes. The L2 instruction and data TLBs have 128

entries and support a the full complement of page sizes as shown in Table 4.1.

4 KiB 8 KiB 16 KiB 64 KiB 256 KiB 1 MiB 4 MiB 16 MiB 64 MiB 256 MiB 1 GiB 4 GiB

Table 4.1: Page sizes supported by the Itanium 2 Processor [Int00].
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1 #define LOOPS 3
2 #define AREAS 512
3 #define PAGE SIZE 16384
4
5 #define MMAP( i ) ((0x2000000UL ∗ i ) + ( i ∗ PAGE SIZE ))
6
7 char ∗memareas[AREAS ] ;
8
9 in t main( void )

10 {
11 in t i , j ;
12 for ( i =0; i < AREAS; i++)
13 memareas[ i ] = mmap(( void ∗)MMAP( i ) , PAGE SIZE ,
14 PROT READ |PROT WRITE ,
15 MAP PRIVATE |MAP ANONYMOUS, −1, 0) ;
16
17 for ( i =0; i < LOOPS; i++)
18 for ( j = 0; j < AREAS; j++)
19 memareas[ j ][0] = ’ a ’ ;
20
21 return 0;
22 }

Figure 4.1: Benchmark to stress HPW

The system has 2 GiB of RAM and uses the HP zx1 chip-set. The base kernel was a standard Linux

2.6.18 kernel, with benchmarks using the Itanium Linux default base page-size of 16 KiB unless otherwise

specified.

4.3 Extremes

Below we use micro-benchmarks designed to stress particular extreme situations to gain insight into the

operation of the HPW.

4.3.1 Sparse access

To initially validate the operation of the LF-VHPT HPW we wish to analyse a situation with significant TLB

capacity misses. This is achieved with a micro-benchmark touching a large number of individual pages on

32 MiB boundaries as presented in Figure 4.1.

As identified in Section 3.3.4, this is a worst-case scenario for the SF-VHPT HPW. With 16 KiB pages and

8-byte translation entries each page of the VLPT covers 16384
8 × 16384 = 32MiB of virtual address space

and therefore each access the benchmark program makes will cause a nested fault. This results in the

SF-VHPT HPW being not being able to load any translations from the virtual-linear page-table at all.

When using the LF-VHPT HPW the translation will be instantiated in the hash table on the first loop and

subsequently retrieved by the HPW for two of the three passes of the test loop. Profiling reveals this to be

the case, with ≈1024 HPW inserts recorded. The only caveat is the need to perturb the pages across 2 GiB

boundaries (line 5). The test system utilised a 4 MiB hash table and therefore, with 16 KiB pages, the hash
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Metric Triggered By SF-VHPT LF-VHPT
L2DTLB MISSES L2 TLB miss 65619 65619
DTLB INSERTS HPW HPW insert 65570 19

Table 4.2: TLB misses and HPW inserts for contiguous walk of 1 GiB region

function presented in Section 3.4 will alias 2 GiB regions. Not perturbing the pages would result in hash

table collisions.

Further loops are satisfied by the LF-VHPT hash table. To make the test measurable the number of loops

was increased to 100,000 and the results showed a large runtime difference; SF-VHPT runs in 4.42 seconds

whilst LF-VHPT almost halves this at 2.80 seconds.

Although this benchmark is clearly contrived it provides validation and an upper bound estimate of the

benefits of LF-VHPT for a sparse and repeated access pattern.

4.3.2 Linear Access

In contrast to this, Figure 4.2 shows the cycles-per-fault with a single process walking linearly over a

mlocked 1 GiB region. This represents the opposite scenario of a best-case for SF-VHPT and a worst-case

for LF-VHPT. This benchmark is useful as it allows for an examination of the cost of faults.

The no-VHPT case is provided for a baseline comparison in Figure 4.2a. It represents the cost of transition-

ing to the OS and walking the page table.

The SF-VHPT (Figure 4.2b) shows a spike for the first page of every 32 MiB region as the nested fault is

taken. As expected this peaks to around the constant level for the no-VHPT case (i.e., Figure 4.2a) since

at this point both operations are essentially the same — traverse the page tables and insert a mapping.

We expect 1 GiB
16 KiB = 65, 546 TLB misses overall, with most being covered by the HPW. These estimates

correlate with the counter results presented in Table 4.2.

The LF-VHPT (Figure 4.2c) shows a large variation in the cost of faults and results in an average run-time

4.4% longer than the SF-VHPT test. On each page-fault control is returned to the operating system which

walks the page table and inserts the translation into both the TLB and hash table. Therefore we expect the

baseline time to be similar to the no-VHPT case. Closer inspection reveals cache access as the cause of the

very haphazard looking result. Figure 4.3, a zoomed-in extract of Figure 4.2c, shows a regular spike in

access time every fourth fault, corresponding to the LF-VHPT handler accessing another cache line (e.g.,

each LF-VHPT entry is 32 bytes, so four entries fit in one of the Itanium’s 128-byte cache lines). Prior

work has highlighted the importance of maximising cache line affinity of adjacent translations [Elp99].

Although the linear access pattern does exploit this locality property the penalties for accessing fresh lines

are unavoidable.

As shown in Table 4.2, by only accessing the pages once the HPW is never given a chance to reclaim the

extra cycles spent instantiating the hash table.

Micro-architectural analysis

The Itanium processor has a performance management unit (PMU) which is able to attribute cycles to

various events within the processor. These events are organised in a hierarchy where upper layers are
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Figure 4.2: Cycles per miss when faulting linearly over a 1 GiB region (Section 4.3.2).
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Event Triggered by Difference from SF-VHPT
BE L1D FPU BUBBLE.L1D HPW waiting for HPW 212.10%
BE L1D FPU BUBBLE.L1D DCURECIR memory contention 79.45%
BE L1D FPU BUBBLE.L1D L2BPRESS lack of L1D↔ L2D bandwidth -54.44%
BE L1D FPU BUBBLE.L1D TLB L2→ L1 TLB transfer 5.60%

Table 4.3: LF-VHPT cycles accounted to Itanium events for a contiguous walk of 1 GiB of memory, relative
to SF-VHPT cycles.

Figure 4.4: Hierarchy of Itanium back-end bubble performance management counters
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cumulative of their child events; this allows drilling-down to more specific events to better analyse results.

Figure 4.4 illustrates the breakdown of “bubble” events; i.e., cycles where the processor is not retiring

instructions. This figure focuses on the breakdown of the processor “L1D pipeline” which parents a range

of events relating to TLB, HPW and cache performance. Table 4.3 shows the cycle times attributed to L1D

stall events for the SF-VHPT and LF-VHPT.

The major increase in running time for the LF-VHPT can be attributed to the L1D HPW event, which measures

the amount of time spent waiting for the hardware page-table walker. On each fault the HPW must check

if the translation is available for insertion; the large increase in cycles spent waiting reflects the greater

time the 32-byte long-format entries take to access. The variability of the hash table data in the memory

hierarchy contributes to the widely differing timing results.

The L1D DCURECIR (data cache unit recirculation) event can be caused as a secondary effect of other

pipeline events or can be symptomatic of memory contention; the L1 cache does not queue load events so

any that cannot be satisfied immediately must be recirculated. This event is by its nature non-specific, but

we note that architecture manuals suggest time attributed to the HPW is accumulated in L1D DCURECIR

and L1D HPW events. The LF-VHPT will have a less regular memory access pattern which leads to greater

variability in cache wait times.

Conversely the L1D L2BPRESS event is triggered when the L2 caches 32-entry out-of-order “OzQ” queue

becomes full and the L1 cache is asked to stop sending data. The higher count for the SF-VHPT is probably

due to the regularity of access by the HPW when using SF-VHPT; since the benchmark proceeds linearly the

HPW can very quickly access adjacent translation entries which puts high demands on cache bandwidth.

L1D TLB reflects time spent waiting for transfers from the L2 TLB to the L1 TLB. Although Table 4.2 shows

us that the number of faults is the same, the LF-VHPT has fewer chances to reuse L1 TLB entries and thus

spends slightly more time waiting to fill the top-level TLB.

4.3.3 High Contention

Previous micro-benchmarks have considered a single process case. To contrast these benchmarks, Figure 4.5

shows results of an increasing number of processes walking a small mmaped region. Each process repeatedly

accesses a single cache line on 10 contiguous virtual pages in an effort to make as many page faults as

possible. This is expected to be a good case for the LF-VHPT due to the HPW covering the repeated TLB

misses and the greater number of entries available to the benchmark processes.

Overall time results in Figure 4.5a show that LF-VHPT does scale better as more processes compete for TLB

entries. This effect is seen more clearly in Figure 4.5b where the extra TLB entries available when the

LF-VHPT HPW is enabled is reflected by a much lower percentage of data references causing a TLB miss.

The SF-VHPT shows a marked degradation at 64 processes and the inflection point is also prominent in the

cache performance figures presented in Figure 4.5c. A “back of the envelope” calculation suggests this is a

reasonable point where page table data overwhelms L1 capacity; consider the 16 KiB L1 cache is divided

into 64-byte lines, meaning 16384
64 = 256 possible lines. If each process has one cache line for data and

three cache lines for translations (one each for the top level, middle level and current translation entry)

at around 64 processes we would expect the cache to start taking capacity misses (e.g., 64 × 4 = 256).

Further experiments show that this inflection point can be made to move with different combinations of

base page-size. The very different cache profile of the LF-VHPT avoids this behaviour.
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Figure 4.5: Micro-benchmark with multiple processes walking a small 10 page (160 KiB) region.
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One of the major concerns of LF-VHPT is decreased cache utilisation from the larger entries, however for

this micro-benchmark LF-VHPT has a higher cache utilisation than the SF-VHPT. This is probably because

the hash table makes effective use of the entire cache line (as illustrated in Figure 4.3), unlike the SF-VHPT

which brings in a considerable amount of unneeded data as it traverses page tables.

4.3.4 Analysis

Best and worse-case microbenchmark scenarios highlight the relative strengths and weaknesses of both

formats of HPW. However, even in the extreme cases the overall performance impact of either choice

remains minimal. This is because a TLB miss is, even in the best case, expensive — architecture manuals

state at least 25 cycles without cache misses or other microarchitectural hazards. From these results we

can conclude that even worst-case LF-VHPT performance should remain acceptable.

4.4 SPEC

The SPEC CPU2000 suite is the industry standardised CPU intensive benchmark suite which stresses a

system’s processor, memory subsystem and compiler [Hen00]. Since the suite is primarily designed for

CPU evaluation many of the SPEC benchmarks have a small working set and are of limited use in analysing

virtual memory behaviour. However, some of the tests do exhibit interesting behaviour which we analyse

below.

4.4.1 SPEC TLB behaviour

Kandiraju and Sivasubramaniam [KS02] produced an analysis of the TLB behaviour of the SPEC benchmark

suite. On their system they found vpr, twolf and mcf were the most sensitive to increased TLB associativity

and size. They also modelled the temporal separation (time between TLB misses) and spatial access

patterns (range of virtual addresses accessed) of the benchmarks. Results showed that of all the benchmarks

vpr and twolf have the greatest temporal separation between TLB faults and spatial profiles show mcf

having sporadic long periods of sequential access with vpr and twolf exhibiting an essentially random

pattern of virtual address access.

4.4.2 Results

Run times for SPEC CINT2000 with SF-VHPT and LF-VHPT with varying hash table size are shown in

Figure 4.6.

Overall, results show disabling the hardware walker has no effect on four tests (gzip, crafty, eon and

twolf) and only small performance reductions for others (less than 5% for gcc and gap and less than

7% for parser and perlbm). This suggests that for these tests TLB coverage is sufficient and the cost of

refilling TLB entries is not limiting the performance of the benchmark. Consequently we expect no benefit

from either form of HPW. Overall the results are consistent with Kandiraju and Sivasubramaniam [KS02]

— we see the largest penalties with vpr and mcf which were identified as sensitive to TLB behaviour.

Traditional wisdom states translation hash tables should be large enough to cover translations for physical

memory three times, e.g., for the benchmark machine with 2 GiB RAM and 16 KiB pages this is 12 MiB:
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bzip2 1.102 1.093 1.093
twolf 1.000 1.000 1.000

(b) Speed-up compared to no HPW

Figure 4.6: SPEC CINT2000 results. Values were constant over 3 runs.
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Routing Placement
None Short Long None Short Long

Time (s) 71.724 71.803 76.586 122.678 80.901 82.80
% DRa satisfied by

TLB 97.88 98.69 97.94 97.75 97.65 97.68
HPW 0.00 0.00 0.00 0.00 2.34 2.25

Software 2.12 1.31 2.06 2.25 0.01 0.07
total 100% 100% 100% 100% 100% 100%

% L2 TLB miss by HPWb 0.00 0.01 0.00 0.00 99.73 96.95
% DR hit in cache 26.95 27.12 27.11 11.12 10.27 10.33
% DR to cache c 46.74 46.74 46.74 49.01 49.84 49.83

aData References; e.g., a memory operation issued into the pipeline
bi.e., what percentage of TLB misses were then covered by the HPW
cdata memory read references issued into memory pipeline to be serviced by L1D. Includes integer and RSE loads, but does not

include floating-point, VHPT loads or semaphore operations.

Table 4.4: Detailed performance analysis of vpr

hash size =
3×memory

page size
× lvhpt entry size

=
3× 2× 230

16× 210
× (4× 8)

= 12MiB

The LF-VHPT hash table is pinned with a single TLB entry and therefore must be a power-of-two size

supported by the processor; this results in rounding up to a default 16 MiB table for our benchmark

system. The timings from Figure 4.6 show that for the single-threaded SPEC benchmarks no disadvantage

is incurred when artificially decreasing to a smaller 4 MiB table size, suggesting hash table collisions are

not a significant factor.

4.4.3 Analysis of vpr

Of all the SPEC results the LF-VHPT HPW results for vpr compare least favourably to its SF-VHPT

counterpart. This test simulates code used for creating FPGA chips with a “routing” and a “placement”

phase, which are run as separate sequential processes. TLB and d-cache statistics from a sample run are

shown in Table 4.4.

Routing The routing phase shows high TLB coverage (i.e. high percentage of data references covered by

the TLB) but very low HPW usage, suggesting a core amount of frequently accessed data with occasional

random accesses requiring a new translation which are very infrequently reused.

In their studies of the SPEC suite Kandiraju and Sivasubramaniam [KS02] show vpr has a 98.36% hit rate

for a large monolithic TLB, but when modelled on a multi-level TLB show a 43.4% miss rate in the L2 TLB

(they only show results for the overall test, rather than the separate components as shown above). This

agrees with the hypothesis that most of the references are covered by the smaller L1 TLB and occasional

references are largely outside the coverage of even the larger lower translation levels.
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A small and dense working set has advantages for the SF-VHPT, since with 64 KiB pages one TLB entry

given up to map a page of the virtual linear array covers 64 KiB
8 = 8192 potential translations. Although

the overall percentage of TLB misses which result in HPW hits for the SF-VHPT is only 0.01%, raw figures

show around 5 times more hits which can be attributed to this effect (SF-VHPT has 38618 HPW hits,

LF-VHPT has 6774 hits).

The results show that cache effects are negligible, with each version maintaining a very similar hit rate.

This suggests cache effects of the different HPW formats are negligible, with cache references being

dominated by application (rather than OS) data.

Placement The placement phase shows significant benefits from enabling both forms of the hardware-

walker and illustrates the high cost of taking software faults. The effects of “free” mapping of adjacent

translations with the SF-VHPT are again apparent in a slightly higher HPW coverage of TLB misses. The

extra costs of keeping the LF-VHPT table are amortised over the higher HPW hit rate.

This cache exhibits slightly higher cache hits than the no-VHPT case as expected, since it does not have

the extra pollution of VHPT traffic. However, it is interesting to note neither long or short-format has a

particular advantage in cache hit performance.

4.4.4 Conclusions

SPEC benchmarks are primarily designed for CPU evaluation, thus many of the tests have a small working

set and do not stress the MMU and its support structures (as shown by those tests that have little or no

penalty despite no hardware-walker support).

A detailed analysis of the worst-performing LF-VHPT test (Section 4.4.3) showed how a particular com-

ponent of the test exhibiting adverse behaviour was largely responsible for the performance difference.

Cache utilisation did not play a role in the overall results, probably because the relatively large caches on

the test system absorb the effects of the HPW overhead.

Overall, the overheads presented by using LF-VHPT are minimal and we can conclude that there is potential

to make up the small difference through improved efficiencies when loading large pages.

4.5 LMBench

LMBench [MS96] is a suite of micro-benchmarks, each designed to evaluate specific components of a

system. Many of the included benchmarks stress the virtual memory subsystem and are thus useful for

examining HPW choice. The full complement of results are presented in Appendix B, but here we discuss

only significant results.

4.5.1 Latencies

The latency component of the benchmarks exhibits the biggest difference between SF-VHPT and LF-VHPT

performance, as illustrated in Table 4.5.
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Test None LF-VHPT
execve 3.0% 2.3%
fork 5.4% 4.8%
mmap 14.2% 26.4%

Table 4.5: Decrease in performance over SF-VHPT for various LMBench latency tests

Data References
% covered by SF-VHPT no-VHPT LF-VHPT
TLB 99.99% 99.99% 99.99%
HPW 0.01% 0.00% 0.01%
SW 0.00% 0.01% 0.00%

Table 4.6: TLB statistics for the LMbench mmap read bandwidth micro-benchmark.

The mmap latency test makes a single walk of a linear region of memory to establish the overheads of setting

up mappings. This is the ideal case for the SF-VHPT and it is therefore expected to perform well. The

additional latency increase of the LF-VHPT over the no-VHPT case is also expected, as LF-VHPT requires

additional time to instantiate the entry in the separate hash table.

4.5.2 Bandwidth

The second range of benchmarks focuses on bandwidth of various system operations. In general these

tests exercise memory in a linear and regular fashion so are best suited to a SF-VHPT, however the tests

maintain a small working set so the difference is modest. As evidence of this, results in Appendix B show

all but two of the no-VHPT and LF-VHPT results remain within 1% of the SF-VHPT result (the two outliers,

being the Unix and pipe test, differ by less than 2% and the raw difference in results is within one standard

deviation).

Detailed TLB usage for the mmap read bandwidth micro-benchmark presented in Table 4.6 illustrates how

the choice of HPW has little effect on the overall results. In all cases the vast percentage of the data

references performed by the are covered by the L1 and L2 TLB. We see such high coverage ratios because

the test reads in very small increments (i.e., bytes, where page size is 16 KiB), hence the proportion of

total data references to misses is very high.

Since the LF-VHPT will only be effective for pages that are reused, we can assume that the misses covered

in this case are for commonly reused test framework code rather than the core test loop. We consequently

see the the SF-VHPT covers more of the TLB faults, but since software faults are required for less than

0.01% of total data references the result is negligible.

In summary, results show LF-VHPT has a less than 1% overhead for bandwidth related micro-benchmarks.

4.5.3 Context Switching

The final component of the LMBench suite tests the overhead of context switching. This range of micro-

benchmarks should be very TLB intensive due to the high number of address spaces competing for TLB

entries and thus we expect better results from the more TLB-friendly LF-VHPT.

The numeric results from Appendix B are presented in Figure 4.7. In general the graph is highly uniform,

suggesting that, similar to bandwidth micro-benchmarks (Section 4.5.2), the overall differences are
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negligible.

However, towards the upper-right end of the scale with many large processes some differentiation is

evident. This is greatest at the peak of 96 processes of 64 KiB each; here we see the LF-VHPT with

the lowest context switch time due to the dual combination of more available TLB space and ability to

hardware fill misses. The no-VHPT case is slightly slower, but still beats the SF-VHPT case, again due to

more available TLB entries. SF-VHPT suffers at the extreme as each processes becomes active and pollutes

the TLB with extra entries to map page tables.

4.5.4 Conclusions

It is difficult to draw general conclusions from micro-benchmarks as they tend to exercise very specific

and occasionally pathologic cases. Latency tests (Section 4.5.1) showed the worst results for LF-VHPT

but under circumstances known to be adverse. Bandwidth tests (Section 4.5.2) showed SF-VHPT has a

measurable but close to insignificant (<1%) advantage over LF-VHPT. Conversely, TLB intensive context

switching benchmarks (Section 4.5.3) show a small advantage to LF-VHPT in the most extreme cases.

4.6 System Performance

The following benchmarks are of a more general nature and are used to gain insight into overall system

behaviour rather than the more memory subsystem intensive benchmarks presented previously.
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4.6.1 AIM

The OSDL AIM-7 benchmark [AIM] is a system-wide benchmark which runs an increasing number of tasks

simulating various user workloads. For a well-behaved system we expect to see a sharp increase in jobs

per minute (JPM) throughput as the system comes to full load, then a long plateau and eventual decrease

in throughput as the system goes into overload.

Figure 4.8 shows OSDL AIM-7 results ranging from 1 to 200 clients. Small variations in the results are

accounted for by the design of the benchmark to have clients randomly select their workload profile (CPU

intensive, disk intensive, etc.).

Overall the choice of hardware page-table walker, or indeed even turning it on at all, has little impact on

overall throughput. A very slight trend of higher throughput for SF-VHPT can be perceived, but raw results

are well within one standard deviation.

The ambiguous result is an accurate reflection of performance characteristics on a busy, varied workload

multi-user system. The benchmark does have a hardware walker friendly component of work searching

and sorting large datasets, but the CPU and disk intensive workloads perturb the system far too much for

the gains to be recognised.

4.6.2 Kernel Compile

A typical developer task is compiling a kernel, which involves extracting a compressed archive and many

repeated small compilation tasks. The overall process is not expected to be limited by TLB coverage but

will be largely CPU limited (and to some extent I/O limited, but ample memory for disk cache largely

avoids this). The test does however provide insight into costs of typical address space life-cycle. The build

process consists of compiling slightly over 1000 object files which are linked into the final binary image.

The results presented in Table 4.7 are an average of 3 runs building a 2.6.18 Linux kernel.

The results show that for the CPU and memory intensive decompression and extraction phase either HPW

is approximately an equal improvement. For the build phase the LF-VHPT has a slight penalty, as we might

expect due to overheads in maintaining the hash table.
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HPW Extract Build
None 18.41 708.89
SF-VHPT 15.55 693.33
LF-VHPT 15.60 696.43

Table 4.7: Time (in seconds) for a kernel build benchmark.

Kernel Indicative SPECweb99
SF-VHPT 94
LF-VHPT 96

Table 4.8: SPECweb99 results

4.6.3 SPECweb99

SPECweb99 [SPE] performs a load test of a web server. For the benchmarking server we used Apache

2 with 5 worker processes. The dynamic content portion of the test was handled by the provided PERL

CGI script, but to avoid constantly forking the PERL interpreter was run under FastCGI. The benchmark

starts a number of client processes, each requesting a fixed proportion of static and dynamic data from the

target machine. The SPECweb99 result is based on the maximum number of connections the server can

maintain at given throughput level (≈300Kb/s). The benchmark was produced with a relaxed version

of officially required SPECweb99 conditions (run time, etc.) and with an untuned Apache server, but all

parameters were constant between the two tests.

This situation is similar to the high-contention case presented in Section 4.3.3 since the long running

Apache processes are each trying to service very similar requests as fast as possible.

As shown in Table 4.8 the overall benefit is small but noticeable, representing an extra two clients sustained

at the required rate.

4.6.4 NAS

The Numerical Aerodynamic Simulation (NAS) parallel application benchmarks [BBB+91] are a series of

tests designed for performance evaluation of highly parallel machines. The benchmarks represent typical

scientific applications; they are long-running, have large working-sets and are processor and memory

intensive. For this particular case they are run in a non-parallel fashion and artificially limited to a single

processor to best analyse the interactions with the HPW. To reduce the time taken this benchmark was run

on a faster 1.5GHz machine with the same specifications as previously mentioned. Tests were compiled

with the Intel ifort compiler with the highest level of optimisation.

Results are illustrated in Figure 4.9. The various tests represent common fluid-dynamics problems and are

run with an increasingly large dataset (from the smallest A through C). We see that over the considerable

life-span of the longest running tests both LF-VHPT and SF-VHPT offer considerable benefits and differ

only slightly in the speed-up achieved. The slight deviations can be attributed to interaction between the

aggressive optimisation of the compiler (most importantly cache pre-fetching requests) and the different

cache profiles presented by by SF-VHPT and LF-VHPT.
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cg.C 1.573 1.563
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Figure 4.9: Results of selected NAS benchmark tests for datasets A, B and C. bt = Block Triangular, cg =
Conjugate gradient, lu = LU solver, sp = Pentadiagonal solver. Speed-up is relative to no-HPW.

4.7 Scaling

Efficient multi-processor and non-uniform memory architecture (NUMA) support is currently future work.

A discussion of the many possible implementation strategies and potential effects follows.

4.7.1 Multi-processor

There are two fundamental options for the LF-VHPT hash table — either giving each CPU a private hash

table or sharing a single hash table between all CPUs.

A private hash table for each CPU eliminates concurrency concerns when updating the hash table. The

OS can keep track of which CPUs the process has run on; flushing unmapped entries therefore involves

visiting only the relevant hash tables.

The hardware implementation allows for a shared table by reserving the top bit of the LF-VHPT tag field

(Figure 3.5) as a valid bit which signals to the HPW if the translation can be inserted. Atomic instructions

can be used to disable this bit when the system is updating the other fields of an entry. The implementation

must also ensure correct memory fencing operations are followed to ensure the update is seen globally.

Each model therefore has tradeoffs which is somewhat influenced by the affinity of processes to a given

CPU. A CPU private hash table can avoid the costs of atomic updates, serialisation and cache coherency

and is appropriate for a process with high affinity. On the other hand, a constantly migrating process may

benefit from being able to retrieve translations from cache rather than needing the OS to instantiate them

in the CPU private hash table.

Threads create further complications by sharing the same address space across multiple CPUs. Multiple

tables may produce greater pollution but may also reduce expensive cache coherence traffic. It is difficult

to predict a priori the overall impact in this situation.
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Figure 4.10: Illustration of a NUMA system

4.7.2 NUMA

A NUMA system is a collection of interconnected nodes which present a shared global memory as

illustrated in Figure 4.10. For each node, local memory access is preferred to avoid the cost of traversing

the interconnect. The interconnect is usually modelled as a crossbar for smaller systems or a hypercube

for larger ones.

It is not uncommon for a large NUMA Itanium machine to contain more than 1TiB of physical memory.

Given rules of thumb that hash table size should be enough to cover 3-times physical memory, with 16 KiB

pages this equates to 3×240

16,384 × 4 = 768MiB of hash table per-processor. Current NUMA nodes often have

4 physical CPU sockets which, with multi-core packages, offer potentially 16 or more processors. Apart

from the tremendous cost of allocating this memory, the large size makes it quite likely the hash tables will

overflow the node-local memory and incur remote access penalties.

However, a shared hash table would also not seem like a practical solution for a component as critical to

overall performance as translation performance. A un-replicated, globally shared table is by its nature

node-local to only one node and all others will experience increased latency accessing it; on a large system

this penalty may be so great as to make walking the quite possibly node-local OS page-tables cheaper.

There would also be increased cache coherency traffic to keep the replicated data in the many processor

caches coherent. Sharing access to such a highly utilised data structure is likely to lead to heavy contention

and delays from locking and/or serialisation.

There are also many implementation challenges posed by large commercial hardware such as the ability to

handle hot-plugged memory, CPUs and nodes. Another complicating factor is compute only nodes which

have no node-local memory.

The most plausible solution would be for the hash table to cover translations only for node-local memory.

This constrains the per-processor hash table to a practical size which will reside in node-local memory; that

is if a translation describes a remote address it is not entered into the hash table. With current versions

of Linux there is an implementation challenge to avoid large overheads when determining if an address

is node-local. Existing memory layout information provided for Linux is not easily accessed from the

fast-path fault handlers and would require a transition from assembly to C. Relocating the information

would require constraints on its ability to cause faults when accessed, necessitating it be in pinned per-CPU

data. It may also be possible to constrain addresses based upon platform specific knowledge about possible
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physical memory location.

4.8 Conclusion

The overheads of LF-VHPT over the current SF-VHPT implementation are at worst small and under extreme

TLB load show a small performance improvement. While the large data caches appear to ameliorate

concerns over larger translation entries with LF-VHPT the implementation does suffer from not being the

primary source of translation information, leading to higher latencies when resolving faults. The LF-VHPT

poses particular scalability challenges, especially when combined with a NUMA system.



Chapter 5

Large-Page Implementation

This chapter describes the implementation of a transparent large-page infrastructure for Linux. Section 5.1

gives an overview of the Itanium fault handling process. Section 5.2 describes the modifications required

to transparently support large pages and Section 5.3 gives details of the translation replication scheme.

Section 5.4 and Section 5.5 describes the interaction with the Itanium HPW and implementation within

Linux respectively. Section 5.6 concludes with some discussion of page allocation.

5.1 Fault Handling Overview

Loading a translation on the Itanium architecture involves four main registers, as illustrated in Figure 5.1.

On a TLB miss the hardware pre-loads the interrupt fault address (IFA) register with the faulting address

(vpn) and the interrupt insertion register (ITIR) with the default page size (ps) information as taken from

the page-size set in the region register of the region the faulting virtual address lies within. The software

fault handler then loads a general-purpose register with translation information from the operating system

page tables. This register (GR in Figure 5.1) describes the physical page number (ppn), access rights (ar),

privilege level (pl), the present (p), dirty (d) and accessed bits (a) and memory attributes (ma) such as

cache policy. Finally, the appropriate region register (RR) for the faulting address gives the region id (rid)

for the translation.

Once these four registers contain appropriate information, the processor is instructed by software to insert

the translation into the TLB.

63 53 52 51 50 49 32 31 12 11 9 8 7 6 5 4 2 1 0

GR[r] ig ed rv ppn ar pl d a ma rv p

ITIR spyekvr rv

npvAFI ig

RR[vrn] rv rid ig rv ig

Figure 5.1: Registers used for translation insertion (replicated from [Int00]). See Section 5.1 for field
descriptions.
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5.1.1 Page Table Operation

Linux uses a hierarchical multi-level page-table as shown in Figure 5.2. In standard operation each level

directory is one page in size and each entry is a 64-bit pointer. In unmodified Itanium Linux, the leaf

entries (which describe the virtual-physical translation information) mirror the GR format from Figure 5.1.

This allows sharing of the translation entries between Linux and the SF-VHPT HPW and also facilitates

quick fault handling since the GR register can be loaded directly from the leaf entry.

5.2 Page Size Modifications

As described in Section 5.1, at fault time the hardware loads the ITIR register with the preferred page

size for the region the faulting virtual address lies within. Unmodified Linux supports only a single page

size per region, so this value is always correct. For example, the HugeTLB infrastructure discussed in

Section 3.5 marks a particular region as having a larger page size and therefore any faults in this region are

known to be backed by this larger page size. To support multiple page sizes within a region the operating

system must maintain a record of the relevant page size for any given virtual address and “reset” the ITIR

with this information before TLB insertion.

5.2.1 Page Table Modification

The first option for maintaining page sizes for translations is a complete re-implementation of the Linux

page table with data structures especially designed for multiple page-size support. Re-engineering is likely

to be able to optimise fault handling; for example a guarded page-table has been shown to be a high

performance alternative [LE95]. Unfortunately, current Linux implementations “open-code” the page

table abstraction, and thus the page-table implementation is not sheltered by an easily modifiable API.

Consequently re-implementation would require an unpalatable amount of change.

A translation replication scheme (as discussed in Section 2.4.2) is an appealing alternative. Under this

scheme translation (leaf) entries of the standard hierarchical page-table are modified to hold the size of

the page the translation entry currently resides within. The disadvantage of this scheme is wasted storage
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Figure 5.3: Example of double-size translation entries. In contrast to Figure 5.3, note the leaf level has
been expanded with an extra word to facilitate storage of extra information such as page size or protection
key information.

overheads from the replicated translation entries, but this is offset by the significant advantage of reduced

modification of the OS virtual memory code. This approach was taken in the Shimizu and Takatori [ST03]

work, possibly inspired by similar approaches in HP-UX [SMPR98].

5.2.2 Translation Modification

To maintain the existing core page-table structure an implementation must find room to keep additional

page size information. Although the top ten “ignored” bits of the existing translation entry (Figure 5.1)

are sufficient to store the page size, additional features such as protection keys require even more space

which can be gained only by increasing the size of a translation entry.

The smallest possible increase in translation entry size is a CPU word, which effectively doubles the existing

size. With an additional word in each translation entry the ITIR register can be “shadowed” and directly

loaded by software, rather than having to move the page-size information into the ITIR via a separate

general purpose register. This gives the potential to save cycles on the fault-path. This scheme is illustrated

in Figure 5.3.

A negative impact of doubling the translation size is a reduction of available virtual address space by

one bit. Consider that an unmodified 16 KiB (214) page-size system with three levels and 64-bit (8 byte)

pointers can address a total of 128TiB of virtual address (Equation 5.1).

(
214

8

) (
214

8

) (
214

8

)
214 = 247 = 128TiB (5.1)

Using double-size 128-bit (16-byte) entries for leaf entries thus allows one less bit and reduces the available

virtual address space to a more modest 64TiB. However, this limitation can be exceeded by adding an

additional fourth level to the page table, which is already an optional feature of unmodified Itanium

Linux. With 16 KiB pages this adds another full 14-bits to the virtual address space, giving a total of 1EiB

(Equation 5.2).
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(
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) (
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) (
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) (
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16

)
214 = 260 = 1EiB (5.2)

Dedicating more space to page tables increases their cache footprint, which could potentially have an

adverse effect on overall performance.

Analysis

Double-word translation entries were implemented as an extension to the LF-VHPT patches.

LMBench The LMBench micro-benchmarks (presented in full in Appendix B) make precise measurements

of small effects and thus illustrate the specific costs of double-size translation entries. For the processor

and process tests the slow-down is a noticeable but small 1–2%. The context switching benchmarks show

a larger penalty which can be attributed to the larger page tables. The results show a higher standard

deviation (and thus less uniformity) which suggests the larger page tables are contributing to cache

pollution.

Figure 5.4 illustrates the results in the manner of Figure 4.7. For the larger context switching tests the

graph shows the double-word translation kernel (based on LF-VHPT) still maintains its advantage over the

SF-VHPT, but overall performance remains extremely close to LF-VHPT.

SPEC SPEC CPU2000 results (Figure 5.5) are indistinguishable from an unmodified LF-VHPT single-word

translation based system. The primary performance concern was higher cache pollution from the extra

word in each translation entry. Although there is some indication of this on the microbenchmark results

the overall effect appears not to be significant enough to perturb results on these longer running and more

intensive tests.
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Discussion

Initial investigation suggests doubling of translation entries could be done with a generally small overhead.

This approach would be required for advanced features such as protection keys (Section 3.1.1) but, as

described above, not strictly necessary for supporting storage of differing page sizes. Undertaking this

approach for large-page support means decreased maintainability and increased divergence from base

Linux code and thus the alternative approach of reusing the available reserved bits appears to be a better

solution.

5.3 Translation Replication

As described in Section 5.2.1, replication of translation entries provides a minimally invasive method of

providing transparent large-page support in Linux. An overview is presented in Figure 5.6. The operating

system keeps translations for each sub-page of a large-page mapping, but the hardware (i.e., the TLB and

HPW) treats the mapping as a single large page.

To illustrate the methodology, consider an mmap of anonymous memory. Linux implements anonymous

mmap “lazily” by initially filling out blank (not-present) translation entries in the page table and only

backing virtual pages with physical pages on reference. It is therefore possible to mark each of the

not-present translation entries with a size (based on the size of the mmap) during the initial setup phase of

the mmap call. The second part of the operation therefore requires checking the allocated page-size when

handling a translation fault. At this time a request for contiguous memory to back the large page is made,

and each of the entries marked as present. This large-page translation is then loaded into the TLB.

This implementation has a number of advantages:

1. The OS retains the concept of each base page having a single translation entry. OS virtual memory

code needs to be modified to understand that an operation on a single translation entry may need to

be propagated to all sub-pages of a large page, but these changes are practical and self contained.

2. The existing highly efficient fault-path is, for the most part, retained. Alternative schemes often

require additional checks as the page table is walked to determine page size; e.g. if the upper levels



54 CHAPTER 5. LARGE-PAGE IMPLEMENTATION

PGD

PMD

Physical Memory

HPW Walker

Processor

PFN VPN SIZE  ... 

Virtual Address

OS page−table

E
n
c
o
m

p
a
s
s
e
d
 b

a
s
e
 p

a
g
e
s

PFN

SIZE

LF−VHPT

PTE

L
a
rg

e
 P

a
g

e

To OS Page Table

TLB

SIZE

PFN

SIZE

PFN

SIZE

PFN

SIZE

PFN

Figure 5.6: Translation replication. Translation entries are expanded to include a page size; thus the OS
page tables keep a record of each sub-page. When translations are loaded to the TLB, hardware treats the
translation as a single large page.

can be either a pointer to a lower level or a translation entry additional checks are required when

walking the page table.

3. Physical memory allocation is abstracted from the large page implementation. Having sufficient

free contiguous memory is required for efficient large-page support, however keeping free memory

contiguous can be can considered separately. This abstraction means policies for allocation, avoiding

fragmentation, etc. are not needlessly tied to large-page implementation concerns. This is discussed

further in Section 5.6.

4. In the worst case scenario of no contiguous memory being available the failure case is straight-

forward. The large page can be split recursively until enough contiguous memory is found, or it will

reach the termination case of being split to the base page-size.

5.4 Hardware Interaction

5.4.1 Page-Table Walker

A full introduction to the Itanium HPW has been given in Chapter 3. Below we examine the challenges

presented by the interaction of the two forms of HPW and large-page support.

Short-Format VHPT

As described in Section 3.3.4, the SF-VHPT reserves the top of a region’s address space for a virtual linear

page-table. On fault the hardware can check for a translation entry by simply dividing the faulting virtual
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address by the page size of the region and checking this offset in the virtual linear page-table. In Linux the

virtual linear page-table maps back to the operating system page tables directly.

The SF-VHPT HPW provides no support for loading a translation with a page size different from the page

size of the faulting region. Thus the only solution is to keep the underlying OS translation entries for

large pages in an invalid state to avoid the HPW inserting them automatically. The SF-VHPT therefore

introduces a number of potential inefficiencies when using multiple page sizes:

1. If the page of the virtual linear page-table does not have a TLB entry mapping it to the underlying

OS page-tables the fault handler will map one. The penalty of taking an extra TLB entry is assumed

to be recovered by allowing quick access to nearby translation entries on the assumption that

faults will exhibit high spatial locality. This assumption may not be true when using a large page,

because accesses which previously may have covered several pages may now be covered by a single

translation. This means the extra TLB entry is under-utilised and increases its marginal cost.

2. If the page of the virtual linear page-table is mapped the hardware will be “fooled” into not loading

a large-page translation because there is no way to communicate the page size. The processor has

wasted time checking for a translation that it will not be able to fill.

One advantage is that the virtual linear page-table can still be used by the OS fault handler. As described

in Section 5.5.5, the OS fault handler still attempts to access the translation entry via the virtual linear

page table using the tpa instruction. The OS accessing the virtual linear array has two possible outcomes:

1. The virtual linear array page is not mapped, causing a nested fault. This fault will cause the virtual

linear page to be mapped, requiring a walk of the OS multi-level page table to find the correct page

table leaf page. After this is complete the original translation can be inserted.

2. The translation entry is correctly accessed through the virtual linear page-table.

Thus whenever a nested fault is avoided, so is an expensive walk of the OS multi-level page table. When

inserting the translation, unlike the hardware walker the OS code is able to examine the entry to establish

if it is a large-page and set the TLB accordingly.

Long-Format VHPT

When in long-format mode, the hardware checks a per-processor hash table filled with translation

information on fault. Each hash table entry in the LF-VHPT is four words (as-per Figure 5.1) and contains

page size information. This allows the hardware fault handler to load translations with any page size.

As described in Section 3.4 the hash function locates the entry partially based on the base page-size of

the region the faulting address is within. Therefore, in order to implement complete hardware reloading

support each sub-page of a large page requires an entry in the hash table as illustrated in Figure 5.8. This

suggests two solutions.

Firstly, the implementation could fill every possible hash table slot for a large page with translation

information. This means that no matter where a fault happens, the hardware can load translation

information without software intervention. On a single processor, the main concern is increasing cache

pollution (and possibly increasing hash collisions) by writing to the hash table for many entries that are

unlikely to be used. Since the hash table is kept per-processor we might also consider replicating the

entry for the other processors in the system to cover the case of the process migration. This would seem

unlikely to improve performance; it will incur more cache pollution (which is already a concern due to
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Figure 5.8: Sub-pages of a large page will hash to different entries in the long-format VHPT. Sub-page size
is dependent on the region of the faulting address, so can not be modified dynamically. Filling out the
extra entries in the hash table will increase cache pollution and, if access proceeds in a linear fashion will
not provide any performance benefits, as sub-pages are not likely to be faulted on.

larger entries), increase the fault handling time as more data is written to memory, increase potential for

lock contention and will not scale as more processors are added. Additionally, hash table memory may not

be node local in a NUMA system. The additional penalties for reading or writing to non-local memory may

be larger than simply handling the fault via the OS.

Thus the second option is to simply fill in only the first base-page of a large-page in the hash table of the

faulting processor on the assumption access will generally be localised and linear. For the usual case this

would seem to be a suitable approach, however if an application accesses data in a more haphazard fashion

or the TLB entry for the large page is evicted during processing this will require falling back to slower

software faults. In this case, as with the invalid short-format entries, there is also extra overhead from the

hardware probing for a translation that can not be filled. Our implementation takes this approach.

Although the hardware can load translations from the hash table directly, populating the hash table

requires traversing the OS page tables as described in Section 5.5.5. The LF-VHPT does not have the

advantage of being able to “short-cut” access to the translation entries via the virtual linear page-table

afforded to the SF-VHPT.

Comparison summary

A summary of the advantages and disadvantages for each form of HPW are presented below.
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HPW Model Advantage Disadvantage

SF-VHPT The SF-VHPT has no ability to load anything

but the standard base page-size

Minimal modifications are required to keep

large page translation entries in an invalid

state so they are handled by software.

The OS software fault handler can use the

virtual-linear page-table to quickly access

translations

Large page entries must be disabled in the

virtual-linear page-table, but the HPW has

no knowledge of this and will still waste

time checking them

LF-VHPT Single pinned entry for translation hash

table provides for more TLB entries.

OS must maintain translation hash table

separately from internal page tables.

HPW can directly load translation entries

from hash table with an arbitrary page size

OS fault handler must always do a full page-

table walk to locate translation entry

5.4.2 Alignment

On almost all commercial hardware, translations must be naturally aligned; i.e. the virtual address modulo

the page size must be equal to zero. Any mapping naturally aligned is also naturally aligned for a smaller

page-size boundary (e.g., a 1 MiB naturally aligned page is also naturally aligned for 512 KiB, 256 KiB,

128 KiB and so on). To provide maximum possibilities for instantiating large pages, choosing placements

on large natural alignment boundaries is useful.

This can become a major constraint on a 32-bit system such as x86 where aligning to a 4 MiB page size

can rapidly lead to running out of virtual address space. On a 64-bit platform such as Itanium the problem

is less pronounced, but making the address space more sparse by spreading mappings out is sub-optimal

because it reduces spatial locality, which the page tables and HPW are designed to take advantage of.

5.5 Implementation Details

5.5.1 Prior Work

The generic (non-architecture dependent) large-page support is heavily based upon the work by Shimizu

and Takatori [ST03]. I re-implemented their work on current kernels, originally using the Itanium with

LF-VHPT as a base. As I finished moving the work to the SF-VHPT I became aware of simultaneous work by

John Marvin [Mar]. Since the code shared the same parent, in an attempt to reduce duplication the final

work is based on a merge with his published patch.

5.5.2 Scope

The scope of the implementation is limited to the mmap of anonymous memory. File-backed memory maps

do not gain benefits from large pages, meaning for this implementation program code is not mapped with

large pages (this also means instruction TLB performance is unaffected). However, memory requested via

the standard malloc call is allocated from a pool of anonymous mapped memory, meaning it is mapped

with large pages.
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5.5.3 Tuning Parameters

Although the implementation is transparent to system users, there are still a number of useful tuning

parameters. These parameters are created by the large-page implementation, exported via /proc/sys/

and can be tuned with sysctl(8).

Page size selection A bitmap provides the ability to restrict page order (and hence page size). Bit 1 of this

bitmap represents validity of an order-1 page, bit 2 an order-2 page and so forth.

Alignment padding As mentioned in Section 5.4.2, aligning mappings on larger boundaries can help with

alignment of larger pages.

The code achieves this by padding the distance between allocations, as explained in Section 5.5.4.

Statistics The implementation also provides statistics for pages pre-allocated in virtual space, large pages

faulted in and large pages unable to be satisfied due to insufficient contiguous memory.

5.5.4 Initial mmap

A call graph of the functions to implement mmap is presented in Figure 5.9. Functions in grey are unchanged,

the other functions contain minimal changes as described below.

• The user makes a mmap system call, requesting a region of memory. The current implementation

handles only MAP ANONYMOUS (i.e. memory backed, rather than file backed) requests.

• arch get unmapped area is called to find a region of virtual memory for the new mapping.

• Linux implements mmap with an indirection through the mmap2 system call which requires the

mapping size specified in pages, rather than bytes. Calling mmap2 directly can be useful on some

systems when implementing large file support.

• do mmap pgoff is called to find a region of virtual memory for this request. It calls into the

architecture-specific function arch get unmapped area.

• arch get unmapped area walks the processes VMA list (see Figure2.4) to find an appropriate virtual

location for the new allocation. During this loop, the code is modified to pad from the end of any pre-

vious allocations to a specified alignment (kept in the /proc tunable variable superpage vm align).

This ensures all starting addresses will be aligned on a given boundary.

• After choosing an appropriate address do mmap pgoff registers a VMA to describe the region as

taken.

• Finally the new function make ptes present is called to mark all base page-size translation entries

within the mapped region with a page size; for example mapping a 4 MiB region would require

marking each of the 256 16 KiB sub-pages. This function attempts to find the largest pages possible

to map the region based on its location and alignment restraints.
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make_ptes_present
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map at

alignment

padding

Figure 5.9: mmap call chain graph

5.5.5 Page Fault

SF-VHPT

With SF-VHPT the architecture can raise the following faults:

vhpt miss is raised when the HPW attempts to access a page of the virtual linear array which is currently

not mapped.

On an unmodified system this fault is handled by walking the process page-table to find the translation

entry for the original faulting address. Assuming it is valid two entries are inserted into the TLB; the

translation information for this fault and a translation for the leaf page is mapped for the virtual linear

page-table. When using large pages the process is similar, except extra information about the page size is

extracted from the translation entry, and the itir register re-loaded with this size.

[d|i]tlb miss is raised when the HPW attempts to load a translation entry but finds it is invalid. The

fault handler attempts to access the translation entry via the virtual linear array, a situation which may

cause another TLB miss if the virtual linear array page is unmapped. This “double” fault is referred to

as a nested fault and is handled by walking the page table as described for vhpt miss. The handler then

checks the present bit of the translation, and if not set will then call the OS page fault handler (described

in Section 5.5.5).

When using large pages this fault is raised for otherwise valid translations with a non-base page-size, since

the HPW has no ability to insert translations with a page size different from the region of the faulting
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address. Thus the exit path of the handler is modified to load the ITIR register with page-size information

from the translation entry before insertion.

LF-VHPT

The LF-VHPT hash table is kept pinned with a single fixed TLB entry, thus a vhpt miss or nested TLB

fault can not be raised. The [d|i]tlb miss fault handlers walk the page table to find the appropriate

translation entry. If the translation is not present or is invalid, the OS page fault handler is invoked.

Once satisfied, the translation is inserted in the LF-VHPT hash table (hopefully to be used again) and into

the TLB. Large-page support requires extracting the page-size information from the translation entry to

correctly modify the LF-VHPT entry and load the ITIR register.

OS page-fault handler

If the fault cannot be resolved from the existing page table the OS fault handler is invoked. The major

core functions involved with handling a page fault are shown in Figure 5.10. Again, functions with no

modifications are in grey.

• ia64 do page fault sanity checks the page fault.

• handle mm fault is the generic, architecture independent code for handling a page fault.

• handle pte fault : decides what “type” of fault has been taken, for example a page swapped to

disk, a fault on a region backed by anonymous memory or a fault on a region backed by a file. It

then calls the appropriate helper function.

• do anonymous page is the helper function for anonymous memory faults (e.g., in a region mmapped

as MAP ANONYMOUS). This function establishes the page size for the fault (as stored in the translation

entry).

• alloc pages requests physical memory, and is passed the order of the page size requested.

• If there is sufficient contiguous free physical memory to satisfy the request a success value is returned

and do anonymous page marks each of the sub-pages as present in the page table.

• If the allocation cannot be satisfied down pte sp is called to divide the large page. This function

walks along the sub-page entries of the large page and marks each as the next lower page-size.

The request is then retried and the process continued until either the page is allocated or, once the

allocation reaches the base page-size, an out of memory error is returned.

Once complete, the page fault handler restarts the faulting process which will attempt to access the address

again. The translation entry should now be valid and able to be loaded by either the HPW or the fault

handlers.

5.6 Page Allocation

This work does not consider details of page allocation, however below we describe a number of areas

under active development.
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ia64_do_page_fault
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Figure 5.10: Page fault call-chain graph

5.6.1 Defragmentation

Problems stemming from memory fragmentation were previously discussed in Section 2.3.1. A full discus-

sion of techniques is beyond the scope of this report, but better support for large contiguous allocations via

defragmentation of memory is currently an area of active research within the Linux community [GW07].

The large-page implementation presented currently interfaces with the page allocation subsystem in only

one place; the call to page alloc() illustrated in Figure 5.10. Advanced defragmentation support would

give this call a greater possibility of succeeding, especially when higher-order pages are requested.

5.6.2 Clustering

As described in Section 3.5, the Linux shared memory architecture is embedded within the VFS layers.

The assumption of a single, consistent page size is prevalent throughout the design of Linux, particularly

within the VFS and page cache API. The ability to remove this assumption would provide for a number of

benefits.

Firstly, shmfs could be modified to request larger physically contiguous anonymous shared memory

allocations. Allocations could then be mapped with larger TLB entries by the same translation replication

process as described above. This would avoid the situation of having to reserve large pages as separate

pool (HugeTLB) but does require additional controls to avoid excessive fragmentation. Secondly, allowing

file systems to transfer larger contiguous blocks into the page cache may provide a significant performance

boost.

Modifications to these layers have been proposed but have so far not achieved wide support. The general

approach is some form of clustering [Irw03], where base pages are tracked as part of a larger allocation
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(analogous to the translation replication scheme described in Section 5.3). The most recent work by

Christoph Lamenter of SGI tags multiple pages as part of a single larger page and modifies several file

systems to move data in larger sizes. At this stage the work does not handle the modification of translation

entries and fault handlers to instantiate these larger pages in the TLB.
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Chapter 6

Large-Page Evaluation

This chapter presents a detailed analysis of the transparent large-page implementation described in

Chapter 5.

The analysis follows the outline presented in Chapter 4. Section 6.2 shows the results of micro-benchmarks

crafted to exercise extreme cases and thus to highlight best and worse case scenarios. Section 6.3

presents results of the CPU and memory intensive SPEC benchmarks to provide analysis of standard loads.

Section 6.4 presents the results of a more varied range of single and multi-process workloads to illustrate

the performance under more general conditions. Section 6.5 presents a summary of the benchmark results

and Section 6.6 concludes the chapter.

6.1 Test Environment

The test environment is the same as that described in Section 4.2.

6.2 Extremes

The results below are from micro-benchmarks designed to stress the large-page implementation. They are

very TLB intensive and hence provide a best case scenario for the implementation.

6.2.1 Matrix Transposition Benchmark

A favourable micro-benchmark for large pages is matrix transposition, which equates to large stride data

movements creating high TLB pressure. The process involves copying the rows of a given matrix to the

columns of a second matrix, as illustrated in Figure 6.1.

A micro-benchmark was written to read the incoming matrix (A in Figure 6.1) in either row-major order

(0,1,2,3,4...) or column major-order (0,3,6,1,4...). Reading in row-major order increases cache

hits because of locality of adjacent values, whilst reading in column-major order will present lower cache

use and higher cache pollution due to the large stride. Writes therefore go to the second matrix in the
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Figure 6.1: Matrix transposition. Rows of matrix A are transferred to columns of matrix B.

Row Major Order

1 for ( i = 0; i < dim ; i++)
2 {
3 jdim = 0;
4 for ( j = 0; j < dim ; j++)
5 {
6 a[ jdim + i ] = b[ idim + j ] ;
7 jdim += dim ;
8 }
9 idim += dim ;

10 }

Column major order

for ( j = 0; j < dim ; j++)
{

idim = 0;
for ( i = 0; i < dim ; i++)
{

a[ jdim + i ] = b[ idim + j ] ;
idim += dim ;

}
jdim += dim ;

}

Figure 6.2: Pseudo-code for the core of the matrix transposition micro-benchmark

opposite manner, but write-buffering keeps this overhead more consistent. The micro-benchmark was

based on one previously used by Shimizu and Takatori [ST03].

Analysis

Figure 6.3a presents results for increasing matrix size reading in a row-major order, while Figure 6.3b

presents the same test when reading in column-major order. A benchmark run consists of gradually

increasing the matrix dimensions; the upper axis shows the working-set size at various points.

Overall, the graph shapes are as expected. Once the mapped area expands past the 6 MiB of cache on the

test processor, performance drops dramatically. As the working set continues to become larger, contention

for cache space and TLB entries increases (and performance decreases) until a “saturation point” is reached

where performance levels out.

The lower performance of the fixed page-size LF-VHPT implementation compared to the fixed page-size

SF-VHPT implementation can be attributed to higher cache latencies; profiling shows the less cache friendly

LF-VHPT suffers, on average, almost two cycles greater latency when updating the cache in row major

order (line 6 of Figure 6.2). This is to be expected, as HPW traffic is high during the benchmark and the

longer LF-VHPT entries pollute the cache more.

Figure 6.3b shows the matrix transposition done in column-major order in order to deliberately perturb

the cache. A side-effect of this is closing some of the gap between fixed page-size LF-VHPT and SF-VHPT

tests, since the SF-VHPT gets less chance to benefit from its smaller cache footprint. The test also exhibits

greater “jitter” before settling; this appears to be caused by particularly bad cache conflicts at particular

points causing long cache latencies.
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Figure 6.3: Matrix transposition benchmark. The upper axis marks the size in megabytes of the total area
mapped (i.e. the beginning and end matrices are half this size each).
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Kernel DTLB hit HPW-satisfied
rate (%) TLB miss (%)

No HPW 78 0
SF-VHPT 72 99.73
LF-VHPT 72 99.93
SF-VHPT+LP 100 56.10
LF-VHPT+LP 100 19.71

Table 6.1: TLB hit rate for a run of the matrix micro-benchmark presented in Figure 6.3a.

Figures 6.3a and 6.3b show that when multiple page size support is enabled, both SF-VHPT and LF-VHPT

have almost exactly the same performance characteristics. The kernel can very effectively map large pages

for this benchmark as confirmed by the results presented in Table 6.1, which shows TLB misses essentially

eliminated with large page support. Therefore, with no TLB misses the result is a reflection of the ability

of the hardware to transfer data rather than the effectiveness of any particular translation scheme.

Although this table shows a large percentage difference in HPW efficiency between the LF-VHPT+LP and

SF-VHPT+LP kernel, the actual results are negligible; over ≈11 billion data references, of the 3476 TLB

misses for the SF-VHPT+LP kernel 1950 were resolved by the HPW, as compared to 679 of the 3445

misses reported by the LF-VHPT+LP kernel. Consequently the overall increase in bandwidth is attributed

to the much reduced page fault rate and the consequent reduction in HPW traffic freeing the cache for

data transfer.

6.2.2 Tlbcover

Tlbcover is a TLB intensive workload used for system testing at Hewlett Packard’s Open Source and Linux

Organisation (OSLO), kindly made available for this work by Lee Schermerhorn. The benchmark is derived

from a customer code base and makes random transformations of an in-memory table. The results of

repeated runs with increasing working sets ranging from 1 MiB to 512 MiB are illustrated in Figure 6.4.

Profiling presented in Figure 6.4a shows increasing TLB pressure as the working set increases. As expected,

large-page support kernels effectively remove TLB overheads by mapping the table with large pages. This

results in good run time decreases; for the largest working set run time decreased from 114 to 104 seconds,

or 8.8%. Despite causing significant TLB stress, the benchmark does not produce significant HPW pressure;

results in Figure 6.4b show only a gradual decrease in TLB misses being covered by the SF-VHPT HPW

as the highest working sets are reached. Combined with the timing information, Figure 6.4c illustrates

increase in run time as the HPW becomes less effective. The non-linear graph illustrates that modest

decreases in HPW effectiveness can result in greater than proportional runtime increases.

To analyse the cache effects of this HPW activity the average instructions retired per cache miss results

are shown in Figure 6.5. In an attempt to analyse the HPW in the best light possible these results were

obtained from a more modern Montecito processor with 16 KiB L1 cache, 256 KiB of shared L2 cache and

9 MiB of L3 cache. A higher result indicates more efficient use of the available cache. Figure 6.5a shows

that once the L1 cache is overwhelmed an equilibrium is quickly sustained with all tested kernels. On the

other hand, the L2 cache figures show a slight advantage in cache efficiency due to the large-page kernels

as the higher working sets are reached. With large pages there are no interjections from HPW traffic and

almost twice as many instructions are retired for each cache miss. This test serves to highlight the benefits

of lower cache pollution from avoiding HPW traffic.
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(a) Runtime and DTLB coverage

Run 1 2 3 4 5 6 7 8 9 10 11
SF-VHPT HPW % 99.98 99.98 99.98 99.96 99.90 99.85 99.73 99.58 99.50 99.30 99.10

(b) HPW Coverage (% of TLB misses covered by HPW)
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Figure 6.4: Results of the Tlbcover benchmark
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Figure 6.5: Cache efficiency for the Tlbcover benchmark
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Figure 6.6: Results of Tlbcover with reduced 4 KiB page size. Note the 4 KiB+LP results are overlapped
with the 16 KiB+LP results as the same large pages are chosen for both.

Effect of smaller page size

By default, Itanium Linux uses a 16 KiB fixed base page-size. This is large even by contemporary standards;

in particular it is considerably larger than the 4 KiB base page-size provided by the ubiquitous IA-32

processor.

Figure 6.6 shows the results of the Tlbcover benchmark run on a SF-VHPT kernel with a reduced 4 KiB base

page-size. The reduced page size leads to a considerable increase in runtime as the working set increases,

however enabling large-page support results in performance exceeding the 16 KiB base page-size kernel

and equal to the 16 KiB kernel with large-page support. The large-page kernel results overlapping is

expected since the kernel has the ability to map the same larger pages independent of base page-size.

Table 6.2 shows the relative speed-up afforded by the large-page kernels. The results show that the

4 KiB kernel scales better than the 16 KiB kernel as the working set increases. The results also suggest

that a considerable component of the benefits can be realised by statically increasing the base page size.

However, Figure 6.7 shows that further increasing the base page-size to 64 KiB brings no further benefits;

the additional improvements are from the multi-megabyte pages allowed by the large-page kernels.

6.3 SPEC

The relative performance of a multiple page-size kernel for SF-VHPT and LF-VHPT is shown in Figure 6.8.

Performance results are not uniformly better and, in some cases, show a performance decrease. Over the
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Speed-up
Run 4 KiB+LP 16 KiB+LP

1 1.00 1.00
2 1.14 1.17
3 1.38 1.15
4 1.18 1.12
5 1.12 1.09
6 1.10 1.09
7 1.11 1.08
8 1.17 1.08
9 1.24 1.07

10 1.30 1.07
11 1.45 1.09

Table 6.2: Speed-up relative to base page-size kernels for Tlbcover benchmark
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Figure 6.8: SPEC CPU2000 results with large-page support. Speed-up is relative to the same kernel without
large-page support.
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to the smallest 4 KiB base page size.
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Figure 6.10: TLB misses and HPW inserts for for vortex with various base page-sizes and large-page
support.

runs there were no demotions of large pages for want of contiguous memory, hence effects of fragmentation

are not being felt.

6.3.1 vortex

The vortex benchmark shows the greatest slowdown when run with large-page support. To initially

ascertain the TLB requirements of the benchmark the page size was reduced to 4 KiB as in Figure 6.9.

Somewhat as expected the relatively small increase in running time with smaller pages indicates the test is

not creating significant TLB pressure. This is confirmed when looking at statistics gained from hardware

profiling in Table 6.5 where we can see 99.5% of data references were covered by the TLB. This benchmark

therefore is useful to help quantify some of the overheads related to large-page support.

Hardware profiling of TLB operations is presented in Figure 6.10. The left-hand side shows a marked

reduction in the number of TLB misses for kernels with large page support enabled, consistent with

increased TLB coverage. However, the right-hand side shows a drastic decrease in the proportion of
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Kernel Gradient Cycles @ 1.5 GHz
SF-VHPT 1.28181× 10−8 19.23
SF-VHPT+LP 4.09793× 10−8 61.47
LF-VHPT+LP 5.35105× 10−8 80.27

Table 6.3: Average cost of a TLB miss for large-page kernels (see Figure 6.11).

Kernel % misses Overall Breakdown
covered by HPW miss cost HPW Software

SF-VHPT 99.53 19 19 <1
SF-VHPT+LP 34.94 61 21 40
LF-VHPT+LP 34.88 80 28 52

Table 6.4: Breakdown of HPW and software fault costs (cycles).

translations inserted by the hardware page-table walker. It therefore appears the slower run time of the

benchmark can be attributed to increased TLB refill costs due to the reduced effectiveness of the hardware

page-table walker.

6.3.2 TLB Refill Costs

To attempt to quantify the TLB refill costs the benchmark was repeated whilst artificially reducing the

number of TLB entries available to it by pinning “fake” entries. This causes an increase in TLB misses and

provides data suitable for creating a linear regression. Results are presented in Figure 6.11, where each

point represents a benchmark run with one fewer TLB entries available. Taking the gradient of the best-fit

line gives an approximation of the extra time taken for each TLB miss, and multiplying by clock speed of

the processor estimates the average cycles required for each TLB miss (Table 6.3).

We can combine these results with the results from Figure 6.10 to gain an approximate breakdown of time

spent in the HPW and time spent in software, presented in Table 6.4. These results give us some idea of

the relative costs summarised in Section 5.4.1.

Due to the extremely high coverage of the SF-VHPT HPW the software fault component is negligible and

the result therefore essentially a measure of HPW overhead. As we would expect the SF-VHPT with large

page support suggests a very similar overhead; the inability to take advantage of hot cache lines full of

translations may lead to the small extra overhead. We see that the LF-VHPT with large-page support runs

slower again due to the longer variable cache latencies as described in Section 4.3.2.

6.3.3 TLB Effectiveness

Given the fault timings derived in Table 6.3, the fraction of cycles which are not used for translation

management operations (i.e. are retiring useful computational instructions) can be derived. We will

refer to this ratio as “effectiveness”; results given the previously derived TLB miss costs are illustrated in

Figure 6.12. The graph asymptotically approaches 100% effectiveness with the steepest gradients below

around 1000 cycles, although it takes up to ≈5000 cycles for all three cases to be within 1% of each other.

Relative results for vortex running on SF-VHPT with and without large-page support are presented in

Figure 6.13. Here we see that the reduction in TLB misses with large pages does lead to greater average

time between TLB misses. However, the movement is not sufficient to maintain the same effectiveness as
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Figure 6.11: TLB Reduction test. Each point represents a run of the benchmark with one fewer TLB slot
available. The results were normalised to an unmodified system and a line of best-fit added. The gradient
of the line (presented) represents the average cost of a TLB fault.
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Figure 6.12: TLB effectiveness given various fault latencies (as per Table 6.3)

the plain SF-VHPT with its lower TLB refill time. Therefore, for the SF-VHPT+LP line to reach the same

effectiveness (0.97) it would need to increase average cycles between misses to 1972 cycles. Working the

results into the parameters of the effectiveness equation (Equation 6.1, below), gaining a sufficient increase

would require reducing the number of TLB misses from Figure 6.13 to that derived in Equation 6.2, a cut

of a further 46%.

effectiveness =
cycles
misses

cycles
misses + latency

(6.1)

0.97 =
213,254,629,975

misses
213,254,629,975

misses + 61.47
213, 254, 629, 975 = 0.97× (213, 254, 629, 975 + 61.47×misses)

misses ≈ 107, 296, 307 (6.2)

6.3.4 HPW Effectiveness

The results presented in Section 6.3.3 represent the combined behaviour of both the OS TLB refill handlers

and the HPW. If the HPW covers more refills the lower overheads will raise the efficiency ratio.

Previous discussion has identified the memory access patterns of an application as important to the

effectiveness of the HPW. For example, large strides can cause more nested faults with a virtual linear

table and little re-use of entries creates more overhead in managing the LF-VHPT hash table.
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Figure 6.13: TLB effectiveness extract for the vortex benchmark (see also Figure 6.12).
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Kernel DTLB hit HPW-satisfied
rate (%) TLB miss (%)

SF-VHPT 99.65 99.53
SF-VHPT+LP 99.75 34.95
LF-VHPT+LP 99.75 34.88

Table 6.5: TLB miss rates for vortex. Column 2 shows data references covered by the TLB, column 3 is
TLB misses covered by the HPW.

To gain a better idea of how efficient we can expect the HPW to be with this benchmark, we instrumented

the kernel to report the virtual address of faults during a benchmark run. The results for vortex are

illustrated in Figure 6.14a.

The first thing to notice is the small range of the y-axis, which covers ≈25 MiB of address space. This small

area is very favourable for the SF-VHPT, since with a 16 KiB page size a single TLB entry can hold enough

translation entries to map 32 MiB of virtual address space via the virtual linear page-table.

This measurement is instrumented within the kernel at the point of allocation of physical pages (do anonymous page)

thus repeated accesses to the same virtual address represents a new mapping and implies a free() oper-

ation in between. We can therefore see that the test creates, accesses and frees many small allocations

across its lifespan.

The SF-VHPT with large-page support shows some benefit from the tight address space; the very slightly

higher HPW fill rates in comparison to LF-VHPT illustrated in Table 6.5 can be attributed to greater ability

to find adjacent mappings.

However, the latency of misses remains three times greater than the original test. We know that faults

covered by a non-base page-size cannot be satisfied by the SF-VHPT HPW, hence the reduced HPW coverage

in Table 6.5 is to be expected.

Table 6.6 shows the large page allocations for a single benchmark run as a proportion of all pages allocated.

There is a particularly large proportion of order-2 allocations (with 16 KiB pages this works out to a

64 KiB page) with over 80% of the address-space used by the process being mapped with a non-base

page-size. With most of the allocations being relatively small and having a short life span, the extra costs

of transitioning to a software fault handler are not amortised across the benchmark run, leading to the

negative performance impact.

This behaviour is also unfriendly to LF-VHPT. Firstly, the test shows an extra 20 cycles of latency over the

SF-VHPT. This is due to the extra page table walks done by the LF-VHPT fault handler; unlike the SF-VHPT

which can use the virtual linear page-table mapping to access the translation entries the LF-VHPT handler

must traverse the page table to the translation entries on every miss.

The heavy allocate-use-free cycle is also unfavourable since freeing a mapping invalidates the hash-table

entry meaning it is both not reused by the HPW and needs to be frequently re-instantiated. This shows up

in Table 6.5 where we see the smaller number of misses the HPW is able to satisfy.

6.3.5 Comparison with mcf

It is interesting to compare the negatively impacted vortex test with the positively impacted mcf bench-

mark.
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Figure 6.14: Faults recorded in do anonymous page whilst running two SPEC benchmarks with the HPW
disabled. Addresses have been normalised to the lowest virtual address accessed
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Order (2n) Allocated %
0 4872 17.53%
2 3374 48.56%
4 545 31.38%
6 11 2.53%

Table 6.6: Large pages allocated (in do anonymous page) for a run of vortex (order-0 is the base page-size
of 16 KiB). Column 2 represents the percentage of total address space allocated with pages of order-n size.

Kernel Benchmark Cycles TLB Misses Cycles/Miss
SF-VHPT 167,011,979,645 767,849,589 218
SF-VHPT+LP 154,402,232,842 402,959 383,171

Table 6.7: Cycles per TLB miss for mcf benchmark

Table 6.7 is analogous to the vortex results presented in Figure 6.13. We see that with this benchmark

large-page support has been extremely effective at reducing TLB misses, and thus longer refill time falls to

insignificance given the improvements.

The access profile, illustrated in Figure 6.14b, gives more insight into why large-page support is so effective.

A larger address space range of 85 MiB is covered in a very linear fashion which is ideal for large pages.

There is very little repeated access meaning much less cyclic allocate-free behaviour.

Table 6.8 reinforces that the kernel effective at creating large pages and essentially eliminates TLB faults.

Table 6.9 shows that the benchmark creates many high-order large pages which further helps to spread

the cost of higher latency fault handlers.

6.3.6 Comparison

Several other large-page implementations have used the SPEC CPU suite to analyse their implementation.

Navarro The most direct comparison to prior work can probably be made with Navarro [Nav04] who

implemented variable large-page support for Itanium on FreeBSD. Table 6.10 shows a comparison of

relative speed-ups for the SPEC suite.

There are a number of points to note about the comparison:

• FreeBSD uses the LF-VHPT HPW by default, although the original work did not document any

measurements of interactions with the HPW.

• The Itanium architecture is by its nature very sensitive to compiler techniques. Navarro implies use of

the gcc compiler which is known for sub-optimal code, especially in older versions. Our benchmarks

Kernel DTLB hit HPW-satisfied
rate (%) TLB miss (%)

Vanilla 97.21 93.42
SF-VHPT+LP 100.00 0.22
LF-VHPT+LP 100.00 0.09

Table 6.8: TLB miss rates for mcf. Column 1 is data references covered by the TLB, column 2 is TLB misses
covered by the HPW (100% represents < 0.001% of data references causing a TLB miss).
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Order (2n) Allocated %
0 5497 20.20
2 1028 15.11
4 96 5.65
6 39 9.17
8 17 15.99

10 9 33.87

Table 6.9: Large pages allocated (in do anonymous page) for a run of mcf (order-0 is the base page-size).
Column 2 represents the percentage of total address-space used allocated within pages of order-n size.

Speed-up
Benchmark Navarro LF-VHPT+LP Difference
gzip 1.000 0.995 -0.005
vpr 1.300 1.032 -0.268
gcc 1.012 0.986 -0.026
mcf 1.707 1.125 -0.582
crafty 1.083 1.000 -0.083
parser 1.081 1.009 -0.072
eon 1.000 1.002 +0.002
perl 1.031 0.984 -0.047
gap 1.068 1.007 -0.061
vortex 1.125 0.960 -0.165
bzip2 1.082 1.016 -0.066
twolf 1.137 0.996 -0.141

Table 6.10: Comparison of SPEC2000 benchmark results with Navarro [Nav04] (Page 65). Speed-up is
LF-VHPT+LP compared to LF-VHPT.

were built with the current Intel icc compiler. This may have some influence on memory access

patterns, especially since icc does more aggressive pre-fetching of data.

• The test was performed on older Itanium 1 hardware which has significantly smaller caches and a

smaller 64 entry L2TLB.

One particularly large difference is the mcf test which is improved by almost an additional 60% for Navarro

compared to our work. As identified in Section 6.3.5, this test is extremely friendly to large pages and it is

possible to essentially eliminate TLB misses for the test.

Table 6.8 shows how our implementation has expanded TLB coverage to 100% and it is fair to assume

Navarro’s work has achieved this as well (although, as mentioned detailed TLB performance counter

results are not presented). Therefore, this suggests Navarro’s larger speed-up reported is in the most part

due to the poorer performance of the code used for the base comparison.

Visual inspection of the FreeBSD fault handling code would seem to confirm this suspicion. For example,

there is very little use of instruction level parallelism or the large register-space available: every instruction

of the DTLB fault handler uses its own bundle.

Similar evidence for this hypothesis can be found in the results of the C4 [Tro] which simulates the well

known game Connect Four. The essential data structure is a 64 MiB hash table which is traversed by a

number of CPU intensive algorithms. Table 6.11a shows that despite a large number of TLB misses, in

comparison to the overall data references the misses are small. Further the SF-VHPT HPW is very effective

here, although the SF-VHPT+LP essentially eliminates TLB misses.

However, as shown in Table 6.11b, despite a greater reduction in TLB misses performance increase is not
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Kernel SF-VHPT SFVHPT+LP
TLB Misses 636,254,917 240

as % DR 0.15 0
HPW Inserts 635,071,787 188

as % TLB Misses 99.81 78.33
(a) Hardware counter statistics

Kernel TLB Miss Reduction (%) Speedup
Navarro 95.65 1.360
SF-VHPT+LP 100 1.015

(b) Comparison to Navarro

Table 6.11: Detailed results of the Fhourstones benchmark

Benchmark Speed-up
gzip 1.123
vpr 1.167
gcc 1.092
mcf 1.094
crafty 1.152
parser 1.163
eon 1.120
perl N/A
gap 1.059
vortex 1.222
bzip2 1.143
twolf 1.124

Table 6.12: SPEC CPU2000 results from Winwood et al. [WSF02] (Table 2) presented for comparison.

commensurate with Navarro’s work. The speedup seen in our work is almost exactly as we expect from

our results; for 635 million misses at 19 cycles on a CPU running at 1.5GHz works out to ≈6 seconds,

which is 1% of the 10 minute run time.

Unlike the more widely deployed Linux, the Itanium port of FreeBSD has not received close scrutiny

from an army of experienced developers looking to optimise performance-critical code paths. Therefore

avoiding software faults has a relatively greater performance impact on Navarro’s work. Removing the

out-lier of mcf we calculate Navarro averaged a speed-up of 1.08 whilst our work remains essentially

constant at 0.999.

Shimizu and Takatori Unfortunately exact overall results of Shimizu and Takatori [ST03] are difficult to

ascertain due to the resolution of the graphs in the paper. Visual inspection shows considerable variation

and illustrates enabling larger page sizes is not always a performance improvement, corresponding to our

results.

Winwood et al. Winwood et al. [WSF02] (Section 2.4.1) cite extremely impressive results with an average

15% speed-up; full results are reproduced in Table 6.12. We note, however, that their benchmarking

modified sbrk to return much larger areas of memory and consequently the malloc implementation does

not fall back to the presumably slower mmap. Their work was also implemented on IA-32 which only

supports a large 4 MiB large page, thus presumably there was considerable resource under-utilisation

when mappings did not fully use their allocation.
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Figure 6.15: Results of the OSDL AIM-7 benchmark from 1 to 200 clients with large-page support.

HPW Extract Build
None 18.41 708.89
SF-VHPT 15.55 693.33
SF-VHPT+LP 15.04 694.09
LF-VHPT 15.60 696.43
LF-VHPT+LP 15.05 694.10

Table 6.13: Time (in seconds) for a kernel build benchmark with large-page support. See also Table 4.7.

6.4 System Performance

6.4.1 AIM

The AIM benchmark does not appear to rely heavily on TLB performance; Section 4.6.1 showed little

difference between cases with the HPW enabled and disabled. Results from benchmark runs with large-

page support are shown in Figure 6.15.

The test only generates modest amounts of large pages. The largest page allocated order-6 (1 MiB) and

≈10% of the total pages allocated for a benchmark run are order-2 (64 KiB) pages.

6.4.2 Kernel Compile

Results of a kernel compile benchmark (previously discussed in Section 4.6.2) are presented in Table 6.13.

Results show large-page support makes an improvement in the CPU and memory intensive decompression

phase but and for the LF-VHPT HPW recovers the costs incurred by extra management of the hash table.
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Figure 6.16: TLB statistics for gcc building a large kernel file.

SF-VHPT SF-VHPT+LP
TLB Misses 5,711 2,127
Covered by HPW 5,554 378
Software (@ 61 cycles) 9,577 106,689
Hardware (@ 18 cycles) 99,972 31,482
Total 100,929 138,171

Table 6.14: Cycles spent handling TLB refill for a trivial compilation.

Breaking the results down, large-page support drastically reduces the number of TLB misses incurred

by each compiler process. Figure 6.16 shows the TLB performance for each HPW combination when

compiling a single large and complex file. However, the nature of a compiler is such that it will have to

process quite different amounts of work depending on the size and complexity of the input. To illustrate

this point details for the compilation of a trivial “hello, world” program are presented in Table 6.14.

We use the miss timings derived in Section 6.3.2, generously estimating the SF-VHPT software cost as the

same as that for SF-VHPT with large pages. Despite the large reduction in TLB misses the overall estimated

cycles spent handling TLB reload increases. At 1.5GHz this small difference is imperceivable, however as

seen in the slight increase in runtime for the SF-VHPT+LP kernel, over the more than 1000 varied gcc

iterations of the kernel compile benchmark small extra overheads can accumulate.

6.4.3 NAS

The NAS benchmark suite represents the workload of a typical scientific application (full details in

Section 4.6.4). Results with large-page support are presented in Figure 6.17. The results show some

variation but in general show a considerable performance improvement. The TLB efficiency results shown

in Table 6.15 (derived as per Figure 6.13) show that large-page support is very effective in increasing the

cycles between TLB misses significantly enough to achieve performance improvements. Table 6.16 shows

the large-page allocations for the benchmark run. For the tests with the largest dataset we see a significant

number of very large (64 MiB and 256 MiB) pages being allocated; each order-14 page can save up to

16,384 faults.
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NAS Benchmark

bt cg lu sp

Speed-up
Benchmark SF+LP LF+LP

bt.A 1.069 1.053
bt.B 1.004 1.004
bt.C 1.103 1.068
cg.A 1.193 1.193
cg.B 1.176 1.177
cg.C 1.083 1.083
lu.A 1.047 1.048
lu.B 0.883 0.892
lu.C 1.053 1.058
sp.A 1.007 1.008
sp.B 0.969 0.970
sp.C 1.144 1.146

Figure 6.17: NAS Benchmark results for kernels with large-page support. Speed-up is over a standard
SF-VHPT kernel.

TLB Efficiency
Benchmark SF SF+LP LF+LP

bt.A 0.981 1.000 0.981
bt.B 0.977 0.943 0.927
bt.C 0.975 1.000 0.957
cg.A 0.998 1.000 1.000
cg.B 0.998 1.000 1.000
cg.C 0.996 1.000 1.000
lu.A 0.981 1.000 1.000
lu.B 0.980 1.000 1.000
lu.C 0.965 1.000 1.000
sp.A 0.983 1.000 1.000
sp.B 0.962 1.000 1.000
sp.C 0.934 1.000 1.000

Table 6.15: TLB Efficiency for the NAS benchmark suite, using results from Table 6.3

Benchmark
Page Order (2n)

2 4 6 8 10 12 14
(64 KiB) (256 KiB) (1 MiB) (4 MiB) (16 MiB) (64 MiB) (256 MiB)

bt.A 40 4 6 5 1
bt.B 67 25 26 29 12 1
bt.C 294 125 116 120 98 56 10
cg.A 47 9 10 10 1
cg.B 71 28 29 34 18 2
cg.C 300 129 121 125 102 62 10
lu.A 56 16 18 17 6
lu.B 84 36 35 41 25 7
lu.C 314 138 129 131 108 74 12
sp.A 63 20 22 23 7
sp.B 91 41 39 45 31 8
sp.C 328 143 134 134 112 80 13

Table 6.16: Large page allocations for NAS runs on LF-VHPT. Base page-size is 16 KiB.
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Metric SF-VHPT SF-VHPT+LP
L1D DCURECIR 225,388,161,352 242,224,154,417
L1D L2BPRESS 332,504,678,771 439,962,001,684
L1D TLB 3,119,659 18,863
L1D HPW 46,051,582,991 16,563

Table 6.17: Performance counter results for the lu.B test (see Figure 4.4)
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Benchmark SF-4K SF+LP-4K

bt.A 0.954 1.007
bt.B 0.941 1.004
bt.C 0.938 1.093
cg.A 0.750 1.193
cg.B 0.569 1.177
cg.C 0.330 1.083
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lu.B 0.893 0.887
lu.C 0.902 1.054
sp.A 0.843 1.008
sp.B 0.759 0.971
sp.C 0.787 1.146

Figure 6.18: NAS Benchmark results for kernels with a 4 KiB base page-size. All kernels are using the
SF-VHPT HPW. Speed-up is over a standard 16 KiB base page size SF-VHPT kernel.

The lu.B benchmark shows a particular anomaly which suggests further investigation. Section 4.3.2

previously discussed the Itanium PMU and the hierarchy of events used to account cycles to a range of

processor resources (Figure 4.4).

Investigation found the extra cycles for the lu.B were attributed to L1D pipeline events as shown in

Table 6.17. As expected, these results show higher cycles accounted to TLB and HPW events for the

fixed page-size kernel but the large-page kernel has a very large number of extra cycles attributed to the

L2BPRESS event, indicating the L2 cache read queue is full and hence the processor is stalled waiting

for data. The code in question is very loop based and it is possible that aggressive pre-fetching requests

inserted by the compiler could end up flooding the cache when there is no interruption for TLB misses.

This anomaly would require human intervention (most likely with a range of profiling and monitoring

tools) to solve and serves to illustrate that the elimination of TLB misses may have unexpected flow-on

effects to other areas of the program.

Figure 6.18 shows the results of running the tests with a smaller 4 KiB base page-size kernel. As with the

results presented in Section 6.2.2 the smaller page-size kernel responds well to large-page support and

(modulo the inconsistencies examined above) generally equals or beats the standard 16 KiB base page size

kernels.

6.4.4 Other Results

The SPECWeb benchmark from Section 4.6.3 was repeated with large-page kernels but did not show any

significant variations.

A selection of other benchmarks used in Navarro [Nav04] were also considered. In general, any benchmarks

done in that work not presented here were not found to have a significant dependence on TLB behaviour
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in our tests. For example the rendering process with the standard Povray [Pov] benchmark is largely

CPU bound with a working set of less than 10 MiB. large-page support does reduce the number of TLB

misses but since fault overheads are a small percentage of total time it is not enough to make a significant

difference. Similar results were seen with a JPEG transformation test.

Investigation of database loads was also undertaken. The Open Source Database Benchmark [OSD]

was run against a MySQL and again despite a considerable reduction in TLB misses a difference able to

be considered significant was not observed. As mentioned in Section 3.5.3 this work does not support

mapping the Oracle SysV shared global area with large pages at this stage so no direct comparison was

undertaken.

6.5 Summary

There is no doubt that a range of applications can benefit from the advantages of transparent large

pages. The extreme example of the matrix transformation benchmark presented in Section 6.2.1 achieves

100% TLB coverage with large pages and becomes limited only by memory bandwidth. The commercial

workload simulator Tlbcover (Section 6.2.2) and scientific applications in the NAS suite also respond

well (Section 6.4.3). However, the benchmarks have highlighted a number of important factors for the

effectiveness of large-page support.

6.5.1 SF-VHPT HPW Performance

On Itanium large-page support “competes” against the fast and efficient HPW. Section 6.2.2 showed that

on a commercial type workload the SF-VHPT HPW is very effective and in general was shown to cover a

very large percentage of TLB misses. Although the SF-VHPT is not immune to extreme adversarial cases

such as the sparse access across 32 MiB boundaries presented in Section 4.3.1, it would be a very rare

application which would exhibit this behaviour. Good programming practice strives to exploit locality, but

if profiling were to reveal such behaviour it could be combatted by increasing the base page-size to 64 KiB

(expanding the area covered by a single virtual linear page to 65536
8 × 65536 = 512MiB).

6.5.2 Effect of Base Page-Size

The HPW is particularly effective when combined with the relatively large 16 KiB static page-size provided

by Itanium Linux. Section 6.2.2 showed that for a TLB intensive benchmark, a great proportion of the

benefits of large pages were gained by increasing from a 4 KiB to a 16 KiB page size.

However, results presented in Section 6.2.2 and Section 6.4.3 show that large-page support effectively

removed the penalty of using a smaller page size. Smaller pages allow for a lower protection granularity

and, combined with a system such as protection keys (Section 3.1.1) may lead to higher performance via

greater potential for sharing translation entries.

6.5.3 Changed Behaviour

Several benchmarks showed quite different profiles when their micro-architectural behaviour was studied

with an alternative HPW or large-page support (Section 4.3.2, Section 6.4.3). This is to be expected,
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as tool-chains, operating systems and programmers tune their work to the status quo and fundamental

changes such as multiple page sizes can therefore have many unintended implications. These anomalies

can usually be removed or avoided via optimisation after analysis of the problematic code, so we can

expect that over-time performance would only further improve.

6.5.4 Cost of Faults

As explained in Chaper 5, hardware limitations of dynamic large-page support on Itanium are expected to

result in an increased TLB miss costs for large pages. This expectation was confirmed with a measurement

of the costs presented in Section 6.3.2.

The ramifications are summarised in the TLB effectiveness results presented in Figure 6.12. This graph

represents how many extra cycles of useful work must gained per TLB miss to absorb the costs of the

more expensive TLB miss cost with large pages. The very long and flat tail of this graph means that as

the average cycles between TLB misses gets higher it becomes significantly more difficult for large-page

kernels to gain enough cycles to show significant performance improvements.

Two components of the SPEC suite highlight the extremes of this effect. The vortex benchmark shows

the extra 300 cycles per TLB miss provided by large-page support does not raise the TLB effectiveness

of the vortex benchmark above that of the unmodified SF-VHPT level (Figure 6.13). In contrast the mcf

benchmark shows an extremely large increase in cycles between TLB misses (Table 6.7) and consequently

gains the greatest speed-up. The access patterns of the applications, presented in Figure 6.14, highlight

the reason for the difference. Large-page kernels are heavily penalised when required to constantly create

and destroy small order pages (Figure 6.14a) and benefit from long, linear mappings (Figure 6.14b).

A consequence of these results is that, for some applications, the penalties outweigh the gains. This is

most likely in smaller, short-run applications such as the kernel compile process presented in Section 6.4.2

where the cumulation of small overheads resulted in a performance decrease. Small working set and short

lived processes have a much higher probability of suffering negative effects from large-page support.

6.6 Conclusion

This chapter has undertaken a detailed analysis of the effects of transparent large pages for Itanium on

a wide range of benchmarks. The results have shown the implementation universally achieves its goal

of increasing TLB coverage and reducing TLB misses. Transparent operation resulted in no benchmark

requiring modification to take advantage of large-page support. Many of the benchmarks responded

extremely well as their overheads from TLB misses were essentially eliminated. Results also showed that

large-page support can allow the system to use a smaller base page-size without penalty.

The costs associated with this support are largely related to interactions with the Itanium HPW mechanisms.

The disablement of the SF-VHPT for large pages leads to an increase in fault handling time which can

often equal or in some cases outweigh the benefits of fewer TLB misses. Despite the ability of the LF-VHPT

to hardware load large pages, the overheads discussed in Chapter 5 manifest in a large overhead with

fault processing. Overall the LF-VHPT did not live up to expectations of providing higher performance

with large pages.
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The results therefore suggest that, for the Itanium platform, large-page support can be very useful for

gaining a significant performance improvement from a range of applications. Whilst transparency is

extremely useful for reducing programming effort and supporting unmodified applications, caveats apply

such that users and administrators should enable large-page support selectively.



Chapter 7

Summary and Conclusions

7.1 Summary

Chapter 2 formed a foundation for the work, based upon analysis of the literature and prior work. It

provided a taxonomy of existing implementations of large-page support. The chapter concluded that page

size should be transparent to the user and implemented via a minimally invasive translation-replication

scheme.

Chapter 3 introduced the Itanium MMU model, and in particular the SF-VHPT and LF-VHPT hardware

page-table walkers. The general tradeoffs between the two forms of HPW were examined; SF-VHPT

consumes more TLB entries but has a smaller cache footprint than LF-VHPT. The interaction between both

forms of HPW and the proposed implementation of large-page support was also examined. The SF-VHPT

is unable to load anything but the base page-size and needs to simulate a software-loaded TLB by marking

large-page translation entries as invalid. The software walker can use the virtual linear table to access

the underlying translation entry, but has the penalty of an expensive transition to kernel mode. On the

other hand, the LF-VHPT can directly load large-page translations kept in a separate backing hash table.

However, in the current implementation, this hash table is not shared by the operating system and thus

creates higher virtual memory management overheads. Finally the infrastructure and implementation of

the existing Linux support for non-transparent large pages, HugeTLB, was described in detail.

Chapter 4 evaluated the operation of the LF-VHPT HPW implementation on Linux. The results showed that

although the cost of handling a fault is generally higher with the LF-VHPT implementation, the benefits

of reduced TLB overhead become apparent under high TLB contention. Overall the performance impact

compared to SF-VHPT is negligible.

Chapter 5 described implementation details of transparent large-page support.

Chapter 6 evaluated the implementation. The results show that the goal of reducing TLB misses and

increasing coverage is achieved. However, the overall goal of increased general-purpose performance is

shown to rely upon interactions with the Itanium HPW. The fundamental challenge is the delicate balance

between higher latencies when resolving faults and the advantages of increased TLB coverage. Using the

highly-tuned and effective Linux SF-VHPT for baseline comparison lead to less impressive improvements

than in some previously published work which had started with greater TLB overheads.

In general, modifying the page tables via a translation-replication approach has again shown to be practical
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with a successful port to the Itanium architecture.

The work has shown that although the LF-VHPT model has greater potential to load translation entries via

the HPW, it is disadvantaged by not being the primary source of translation information in the system.

This results in more page-table walks and higher overheads from fault latencies, leading to reduced

effectiveness. Additional concerns include inefficiencies from the hash functions reliance on page size,

significant code modifications required for integration into Linux and expanding the work to achieve the

required scalability. Despite the advantages shown in some situations, the LF-VHPT did not in general

meet expectations of higher performance.

7.2 Future Work

7.2.1 Greater Integration

This work has only examined the case of anonymous memory allocation. However, it should be possible to

integrate with the page clustering work discussed in Section 5.6.2 to allow large pages to be instantiated

for disk-backed and shared memory allocations. This would allow large pages to be used with a greater

range of applications.

There is also potential to integrate the work with translation sharing features such as protection keys as

discussed in Section 3.1.1. Increased translation sharing may benefit from a smaller protection granularity

and hence smaller page size; benchmarks showed that large-page support could ameliorate overheads of

lower base-page-size kernels.

7.2.2 Optimised Implementation

The “many eyes” advantage of open source software leads to implementations becoming more optimised

over time. For example, there may be cycles able to be reclaimed from the hand-written assembly miss

handlers which could lead to lower fault latencies or smarter algorithms for predicting the best possible

page size. Any regressions on non-TLB intensive benchmarks are small and there is a high possibility of

further work making positive incremental changes.

7.2.3 Transparency Heuristics

Expanding the implementation to better implement transparency is another area of future work. The

simplest solution is a static approach where the operator annotates program binaries as being suitable for

large pages, as is done in other systems. It may be possible for the kernel to keep some track of memory

allocations and dynamically make a “best guess” about when to enable large pages. The trade-off is that

this kind of measurement may further complicate and slow the fault-processing path, resulting in less

applications being suitable candidates for larger pages. There is also a policy issue about the persistence of

this data; ultimately a hybrid implementation with the kernel notifying a userspace daemon which keeps a

record of a programs suitability for large pages may provide the best solution.
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7.2.4 Page-Table Abstraction

This work has presented a minimally-invasive approach to enabling transparent large pages. Although

the translation-replication scheme has been shown to be successful, there is a possibility a more radical

approach to storing translation information that might achieve even higher performance (this was discussed

in Section 5.2.1).

Abstraction of the page-table layers to eliminate the assumption of a hierarchical page-table would make

it much easier to implement new and innovative data structures. In particular, this may benefit large-

page support by making it practical to use the LF-VHPT as the primary source of translation information.

Although these abstraction layers will incur a small performance penalty due to indirection costs, the largest

barriers to implementation for Linux are probably related to concerns over stability and maintenance of a

re-architectured virtual memory subsystem.

7.2.5 HPW Modification

The SF-VHPT HPW is very effective at covering TLB misses in a wide range of situations. From a software-

implementation point of view, the ideal situation would be the ability of hardware to load the page size

from a modified translation format (as discussed in Chapter 5).

A future implementation on an alternative architecture with more support for hardware loading of large

pages may provide for an interesting comparison. For example, the ARM architecture allows hardware

loading of a range of page sizes with translations stored in a hierarchical page-table. For large pages the

hardware can skip a translation level, presenting the possibility that loading large pages may even be

faster than loading smaller pages.

7.2.6 Portability

The transparent large-page support approach presented has previously been implemented on IA-32, Alpha

and SPARC. The implementation on Itanium offers more evidence of the general portability of the approach

and suggests it will be appropriate for other architectures.

Compared to other processors, Itanium offers great flexibility in choice of page size. Whilst this allows for

greater opportunities to create large pages this work has shown a tradeoff with the costs of instantiating

those pages. This balance is very specific to the MMU architecture of the processor and any new

implementation would require careful analysis of effectiveness.

7.3 Conclusion

The isolation, resource allocation and security provided by the virtual memory abstraction is fundamental

to the operation of modern operating systems. Reducing address translation overheads is therefore

essential to achieve the highest possible performance. This work has examined transparent large-page

support on Itanium Linux as a method to achieve this.

Large pages have been shown as effective in reducing TLB misses and increasing coverage. However, on

Itanium large-page support comes at the cost of more expensive reloads. While there is an overall benefit
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for those applications doing large-stride data transfers or long, linear and non-repeating contiguous access,

when compared with the existing highly-tuned implementation many other benchmarks were shown to

actually suffer with large pages enabled. However, large-page support was shown to make a small base

page-size (4 KiB) feasible, which may be desirable for other reasons.

Transparent large-page support is only likely to be generally effective when large pages are not penalised

with higher reload overheads. Since large-page support offers many benefits, architects need to look at

providing systems with little or no penalty for large page reloads.

Therefore, transparent large-page support for general-purpose operation is unlikely to consistently provide

a benefit to Itanium Linux. However, users with identified TLB intensive working sets are very likely to

achieve increased performance; in this case transparency provides important benefits by avoiding costly

programmer and administrator time spent modifying or tuning applications.

Ultimately, large-page support has been shown to have the ability to provide significant performance

improvements and therefore remains a worth-while goal.
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[ME02] David Mosberger and Stéphane Eranian. IA-64 Linux Kernel: Design and Implementation.

Prentice Hall, 2002.

http://developer.intel.com/design/itanium/family
http://www.opensolaris.org/os/project/muskoka/virtual_memory
http://lkml.org/lkml/2006/10/30/193
http://lkml.org/lkml/2006/10/30/193


BIBLIOGRAPHY 97

[MMS90] Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator. Competitive algorithms for server

problems. J. Algorithms, 11(2):208–230, 1990.

[MS96] Larry McVoy and Carl Staelin. lmbench: Portable tools for performance analysis. In Proceedings
of the 1996 Annual USENIX Technical Conference, San Diego, CA, USA, January 1996.

[Nav04] Juan E. Navarro. Transparent operating system support for superpages. PhD thesis, Rice

University, Houston, Texas, April 2004.

[NK98] Karen L. Noel and Nitin Y. Karkhanis. OpenVMS Alpha 64-bit very large memory design.

Digital Technical Journal, 9(4):33–48, 1998.

[OSD] Open Source Database Benchmark. http://osdb.sourceforge.net/, Cited 21st Dec 2007.

[Pov] POV-Ray – The Persistence of Vision Raytracer. http://www.povray.org, Cited 21st Dec

2007.

[ROKB95] Theodore H. Romer, Wayne H. Ohllrich, Anna R. Karlin, and Brian N. Bershad. Reducing

TLB and memory overhead using online superpage promotion. In Proceedings of the 22nd
International Symposium on Computer Architecture, pages 176–87, Santa Margherita Ligure,

Itay, June 1995. ACM.
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Appendix A

Linux Fault Paths

Below are flow-charts describing the overall fault handling path for Linux Itanium long and short format

VHPT.

A.1 Short-Format VHPT
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A.2 Long-Format VHPT



Appendix B

LMBench results

Below are tables of lmbench[MS96] results for various configurations of hardware page table walker. See

Section 4.5 (page 41) for analysis.

• None : no HPW.

• Short : Virtual-linear array based short format HPW.

• Long : Hash-table based long format HPW.

• Long-PTE : As above, but with OS page table leaf entries doubled to accommodate page-size

information.
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Processor, Processes
Null null stat fstat open signal process

Kernel call I/O close install handle fork execve
None 0.035 0.25091 1.162 0.316 2.683 0.319 1.810 72.3 299.0
Short 0.035 0.25050 1.190 0.319 2.701 0.319 1.812 68.6 290.2
Long 0.035 0.25882 1.187 0.316 2.723 0.305 1.878 71.9 297.7
Long-PTE 0.035 0.24389 1.245 0.315 2.690 0.302 1.831 73.5 301.1

Mmap Prot Page
Kernel Latency Fault Fault
None 193.6 0.645 1.00
Short 169.6 0.597 0.00
Long 214.6 0.610 1.00
Long-PTE 215.6 0.609 1.00

Table B.1: lmbench process microbenchmarks.

Local Communication bandwidths
AF/ File Mmap Bcopy Memory

Kernel Pipe Unix TCP reread reread (libc) (hand) read write
None 4069.10 4064.30 2040.42 1661.58 801.47 720.80 483.71 801.26 672.70
Short 4056.04 4022.15 2041.02 1661.21 806.84 726.45 486.20 806.89 675.6
Long 4008.63 4020.95 2028.96 1661.57 804.26 723.78 484.86 804.32 673.08
Long-PTE 4008.63 4020.95 2028.96 1661.57 804.26 723.78 484.86 804.32 673.08

More Local Communication bandwidths
File Mmap Aligned Partial Partial Partial Partial

open open Bcopy Bcopy Mmap Mmap Mmap Bzero
Kernel close close (libc) (hand) read write rd/wrt copy HTTP
None 1657.46 760.77 728.12 726.33 960.93 1545.17 711.93 2177.81 28.922
Short 1659.84 766.49 729.14 731.41 966.07 1550.92 716.22 2193.91 29.046
Long 1656.61 759.34 726.08 729.59 963.25 1545.83 713.88 2180.87 28.686
Long-PTE 1662.06 759.28 724.73 726.51 963.06 1543.09 714.10 2171.42 29.150

Table B.2: lmbench communication bandwidth results
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Context switching with 0K
Kernel 2proc 4proc 8proc 16proc 32proc 64proc 96proc
None 1.666 1.684 1.798 1.798 1.880 3.404 3.838
Short 1.628 1.682 1.924 1.800 2.112 3.144 3.524
Long 1.704 1.704 1.938 1.856 1.902 2.122 2.486
Long-PTE 1.732 1.732 1.944 1.834 1.876 2.168 2.520

Context switching with 4K
Kernel 2proc 4proc 8proc 16proc 32proc 64proc 96proc
None 2.102 2.160 2.396 2.424 2.858 4.460 5.226
Short 2.094 2.162 2.402 2.434 2.820 4.232 4.884
Long 2.066 2.108 2.332 2.380 2.540 3.038 4.442
Long-PTE 2.170 2.202 2.436 2.438 2.588 3.012 4.020

Context switching with 8K
Kernel 2proc 4proc 8proc 16proc 32proc 64proc 96proc
None 2.372 2.424 2.736 2.866 3.362 5.012 5.852
Short 2.386 2.426 2.748 2.876 3.312 4.642 5.402
Long 2.340 2.384 2.648 2.774 3.022 3.470 4.644
Long-PTE 2.440 2.474 2.714 2.902 3.074 3.578 4.536

Context switching with 16K
Kernel 2proc 4proc 8proc 16prc 32prc 64prc 96prc
None 2.910 3.044 3.464 3.770 4.456 6.370 7.762
Short 2.938 3.046 3.496 3.802 4.246 5.996 6.898
Long 2.820 2.956 3.314 3.644 4.026 5.090 6.380
Long-PTE 2.942 3.082 3.506 3.784 4.090 5.502 7.004

Context switching with 32K
Kernel 2proc 4proc 8proc 16prc 32prc 64prc 96prc
None 3.958 4.300 5.478 5.750 6.442 8.896 12.910
Short 3.984 4.314 5.502 6.006 6.170 8.100 12.310
Long 3.890 4.208 5.354 5.700 5.870 7.566 11.960
Long-PTE 4.020 4.260 5.466 5.744 6.004 7.650 12.158

Context switching with 64K
Kernel 2proc 4proc 8proc 16prc 32prc 64prc 96prc
None 6.318 8.486 9.478 9.960 10.534 19.598 59.092
Short 6.204 8.458 9.470 9.634 9.988 23.494 57.580
Long 6.316 8.364 9.412 9.412 9.884 20.464 54.512
Long-PTE 6.368 8.416 9.508 9.454 9.924 19.414 55.230

Table B.3: Results of lmbench context switch overhead microbenchmarks.
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