
THE UNIVERSITY OF NEW SOUTH WALES

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Native OKL4 Android Stack

Michael Hills

Bachelor of Engineering (Computer Engineering)

Supervisor: Gernot Heiser

Co-supervisor: Nicholas FitzRoy-Dale

Assessor: Kevin Elphinstone

November 2, 2009

Abstract

Embedded devices such as mobile phones are offering increasingly more powerful

environments to users, but the hardware is still characterised by low-power processors,

limited system memory, and less than optimal battery life. Second generation micro-

kernels like OKL4 optimise for embedded hardware and offer high-performance with a

minimal memory footprint.

The Android mobile phone operating system currently uses Linux as its kernel and

offers a Java runtime environment using the Dalvik virtual machine. OKL4 offers

improvements that could benefit the performance of Android. OKL4 is small, sports a

high-performance IPC mechanism, provides support for superpages, and provides the

flexibility of being able to build a minimal operating system environment.

In this thesis, we port various parts of the Android operating system to run Android

applications on the OKL4 microkernel. Using the Android Developer Phone 1, system

comparisons are made between Android running on OKL4 and Android running on

Linux. We conclude that OKL4’s fast IPC mechanism and superpage support can

provide performance improvements to Android, but measured gains are mitigated by

the poor performance of the Dalvik virtual machine.

Acknowledgements

I would especially like to thank Nicholas FitzRoy-Dale, my thesis would not have

been possible without his platform port to the ADP1. Most of all he was always

available to provide guidance throughout the entirety of the thesis.

I would also like to thank my supervisor Gernot Heiser, for his commentary, encour-

agement and the opportunity to undertake such an interesting and challenging thesis.

1

Contents

1 Introduction 5

1.1 Motivation . 5

1.2 Goals . 6

1.3 Thesis Structure . 6

2 Background 8

2.1 Android . 8

2.1.1 Linux . 8

2.1.2 Bionic . 9

2.1.3 Dalvik VM . 10

2.1.4 Binder IPC . 11

2.1.5 The Role of IPC in Android . 12

2.1.6 Licensing . 12

2.2 OKL4 3.0 . 14

2.2.1 Small Memory Footprint . 14

2.2.2 High Performance IPC . 14

2.2.3 ARM Support . 15

2.2.4 Transparent Superpages . 16

3 Approach 18

3.1 Overview . 18

3.2 OS Personality . 19

3.2.1 Component-based Design . 19

3.2.2 Drivers . 20

3.3 Bionic-compatible C Library . 20

3.4 Dalvik VM . 21

3.5 System Server . 21

2

3.6 IPC Mechanism . 22

3.7 File System . 22

4 Implementation 23

4.1 OS Layer . 24

4.1.1 File System . 24

4.1.2 Virtual Memory Subsystem . 24

4.1.3 Process Creation . 25

4.1.4 Thread Creation . 26

4.1.5 Futexes . 26

4.1.6 Timer Driver . 28

4.1.7 Video Driver . 28

4.1.8 Input Drivers . 29

4.2 Dalvik Application Framework . 30

4.2.1 UI Layout . 30

4.2.2 Image Resources . 31

4.2.3 Event Loop . 31

4.3 System Server . 32

4.3.1 InputDeviceReader . 33

4.3.2 InputDispatcher . 33

5 Evaluation 35

5.1 Improving Performance with OKL4 . 35

5.1.1 Input Driver Framework . 35

5.1.2 IPC . 36

5.1.3 Superpages . 36

5.2 Evaluation Environment . 36

5.2.1 Android Developer Phone 1 . 36

5.2.2 Android . 37

5.2.3 OKL4 . 37

5.2.4 Linux . 37

5.3 Benchmarks . 38

5.3.1 CaffeineMark 3.0 . 38

5.3.2 2D Drawing with Superpages 39

5.3.3 IPC Micro-benchmarks . 40

3

5.3.4 Input Framework . 41

5.4 Results and Analysis . 43

5.4.1 CaffeineMark 3.0 . 43

5.4.2 Superpages . 45

5.4.3 IPC Micro-benchmarks . 47

5.4.4 Input Framework . 52

5.5 Conclusions & Discussion . 56

6 Future Work 59

6.1 Limitations . 59

6.1.1 File System . 59

6.1.2 Dynamic Linker . 59

6.1.3 C++ Support . 60

6.2 Additional Features . 60

6.2.1 Transparent Superpages . 61

6.2.2 Binder . 61

6.2.3 Zygote . 62

A System Calls 63

4

Chapter 1

Introduction

1.1 Motivation

Mobile phones of today are becoming increasingly powerful and are now offering a

feature-rich environment allowing users to connect to the internet, check their email,

play 3D games, and much more. These phones are equipped with large complex op-

erating systems derived from solutions that originally targeted desktop architectures.

The Apple iPhone uses a cut-down Mac OS X operating system called OS X iPhone,

and Google’s Android utilises the standard 2.6 Linux kernel with some additions [1].

Such mobile phone operating systems were not designed from the ground up to address

the issues of embedded systems which include a low-power processor, limited system

memory, small caches and possibly operating on battery power.

Embedded systems are not required to provide the complex environments found on

desktops, and compact solutions in the form of microkernels aim to make the most

of embedded hardware. The OKL4 microkernel, developed at Open Kernel Labs, is

a member of the L4 family of microkernels. OKL4 has been designed for embedded

systems to be small and fast and could be used as a base for the user environment on

a mobile phone.

Google’s Android mobile phone operating system is an initiative of the Open Hand-

set Alliance, a consortium of business companies aiming to develop open standards for

mobile devices. Android has been open-sourced and would make an ideal candidate for

replacement of its Linux kernel with an OKL4-based system. OKL4 offers a small mem-

ory footprint, a high-performance inter-process communication (IPC) mechanism, and

has been optimised for processors found in mobile phones. It also runs on the modem

5

software stack for many phones today, including Motorola’s single core phone. This

makes it possible to produce a single-core OKL4-based Android phone, reducing the

cost and power requirements of a handset. By making the most of the limited hardware

available on mobile phones, it may be possible to run more complex software on cheaper

hardware providing a feature-rich platform that is more affordable for end-users.

The main motivation for this thesis is that a minimal Android implementation could

reduce memory usage, and improve performance by executing less cycles, saving power

as a result.

1.2 Goals

The primary goal of this thesis is to port enough of Android to OKL4 to be able to run

Android applications. This system will provide a basis on which comparisons can be

made between an OKL4-based Android and a Linux-based Android. A proof-of-concept

system will be able to demonstrate that microkernels can power large systems without

sacrificing performance. To achieve this goal I need to:

∙ Build an operating system on top of OKL4

∙ Develop device drivers and a user framework for input, video and timing

∙ Port the Dalvik virtual machine

∙ Port the user and system Java runtime framework

∙ Benchmark the system and make meaningful comparisons to Linux-based Android

The true measure of the success of this work will be in whether we have learned how

the change in kernel affects real-world performance in Android. As a result, we will be

able to determine whether it is worth continuing to port Android to OKL4.

1.3 Thesis Structure

Chapter 2: Background

This chapter provides an overview of the OKL4 microkernel, and the Android mobile

phone operating system. This provides necessary background information for the rest

of the thesis.

6

Chapter 3: Approach

This chapter describes the high-level approach taken to build an OKL4-based operating

system to support Android, and discusses what components of Android are required to

be able to run user applications.

Chapter 4: Implementation

This chapter details the low-level implementation of my OKL4-based system and the

design trade-offs chosen. Issues faced while porting Android are also discussed.

Chapter 5: Evaluation

This chapter presents an evaluation of my OKL4-based system, and provides a com-

parison against Linux-based Android. Benchmarks are presented and analysed.

Chapter 6: Future Work

This chapter discusses the shortcomings of my Android port, and proposes future work.

Appendices

Appendix A provides the list of Linux system calls that were required for my Android

port.

7

Chapter 2

Background

2.1 Android

The Android platform is a competitor to Apple’s iPhone and Windows Mobile. Backed

by 50 industry partners such as ARM, Google and Qualcomm, Android has begun to

see an increasing presence in the market. Google predicts there will be at least 18

phones on the market by the end of 2009 [2]. This makes it possible to compare OKL4

and Linux in a mobile phone environment and in a real-world commercial system.

2.1.1 Linux

The general work of this thesis involves replacing the Linux kernel with an OKL4-

based system. Linux has been continuously evolving for over a decade and provides an

environment that is complete enough for desktop machines. While it can be used for

embedded systems and has been over the years, Linux includes many features that are

not required for a mobile phone environment. For example, the highly complex signal

API and process groups serve little purpose for mobile phone applications. There are

also many overlapping IPC mechanisms, D-Bus, pipes, sockets and Binder. While

some have specific uses such as sockets to access the network stack, the amount of code

needed to perform these operations could easily be reduced by separating policy from

the mechanism.

With the kernel consisting of millions of lines of code [3] compared to OKL4’s

measly 15,000 [4] there is likely dead weight, such as mentioned above, that does not

serve the requirement of a mobile phone. An OKL4-based system would be a minimal

system containing only what is required for the platform to operate. OKL4 itself is a

8

Figure 2.1: A system overview of Android

minimal kernel, and the userspace-support to have a complete operating system has to

be written. This bottom-up approach may well have an impact on performance and

memory usage.

2.1.2 Bionic

Google developed a custom C library for Android called Bionic which provides a C sys-

tem interface to the Linux kernel. It has a minimal pthreads implementation to support

thread creation and synchronisation, and contains some Android-specific additions such

as system properties and logging. These changes make Bionic not entirely compatible

with GNU libc [1].

Apart from the new features, Google’s aim was to have a small and fast libc imple-

mentation more suited to embedded hardware. The stripped shared library of Bionic

is 238KiB in size, in comparison to the 1.11MiB stripped GNU libc implementation

compiled with the arm-unknown-linux-gnueabi-4.2.4 toolchain. It is important that

Bionic be small as it is linked against every application, and mobile phones have far

less system memory than desktop machines. The Android Developer Phone 1 (ADP1)

has only 128MiB of RAM, and more importantly has no swap space.

9

2.1.3 Dalvik VM

The core of the user environment is the Dalvik virtual machine. The Dalvik VM

executes Dalvik byte-code and was written by Dan Bornstein, a Google engineer. Java

class files, the compiled format of Java code, are converted into Dalvik dex files through

the use of a developed tool. The end result is that Dalvik VM can execute applications

written in Java. However, the current implementation of Dalvik does not have a just-in-

time compiler. All Dalvik applications are interpreted and therefore will execute much

slower than native code.

Dalvik includes several time- and space-saving optimisations. Firstly, the dex file

format provides several benefits over the standard Java jar format (a collection of

compiled Java class files). An uncompressed dex file is approximately the same size

as a compressed jar file [5]. This provides a memory saving as Dalvik executables do

not need to be decompressed into system memory, and they can also be executed from

a memory-mapped file. The latter means that portions of the dex file that are not

commonly in use can be ejected from memory, and reloaded again on-demand.

Another important optimisation in Android is the Zygote process. The Zygote is a

Dalvik VM process that has loaded core Java libraries and is ready to begin executing

byte-code. Its purpose is to spawn new Dalvik VM instances whenever a new appli-

cation is launched. In that event, the Zygote forks with copy-on-write semantics [5].

This improves process start-up time because new applications have all core libraries

pre-loaded and initialised as done previously by the Zygote, and can begin executing

immediately.

There is also a memory saving as the child process shares Dalvik text and data

with the Zygote. The aforementioned Java libraries are quite large. For example, the

optimised dex of the Java core library is 3.5MiB in size. This is not something you

would want duplicated in every Dalvik VM process.

The Zygote optimisation is possible due to the design of Dalvik where each process

executes its own VM instance, as opposed to running all Java applications in one

process. This guarantees that if one Java application crashes it will not bring down

all Java applications and is made possible by the process isolation provided by the OS.

This is quite important when all user applications run on Dalvik, as having the user

environment crash due to one faulty application would not provide an enjoyable user

experience.

10

2.1.4 Binder IPC

The System Server process provides access to system services such as the Package

Manager and the Power Manager. It also delivers events to applications to notify them

of user input. This process is written in Java and runs on a Dalvik VM instance. User

applications perform Inter-Process Communication (IPC) to the System Server to gain

access to the provided services. It is also the case that user applications themselves can

provide services to other user applications. This is all made possible by the Binder IPC

driver addition to the Linux kernel by Google.

Binder in Android is a reduced custom implementation of OpenBinder, a system-

level component architecture developed at Be Incorporated and then Palm Incorpo-

rated. OpenBinder was intended to be a complete distributed object environment with

abstractions for processes and its own shell to access the Binder environment.

The implementation of Binder on Android allows processes to securely communicate

and perform operations such as remote method invocation (RMI), whereby remote

method calls on remote objects look identical to local calls on local objects. Performing

a remote function call means the function arguments first need to be delivered to the

remote application. This process of converting data into and back out of a transmissible

format is called marshalling, and is achieved through the use of the Android interface

definition language (AIDL). The necessary code to perform marshalling is automatically

generated for both the server and the client to enable seamless remote function calls.

Each registered service runs a thread pool to handle incoming requests. If no threads

are available, the Binder driver requests the service to spawn a new thread. This way

multiple requests to a single service will not result in denial-of-service (DOS).

Binder can be used to facilitate shared memory between processes. One of the

additions to the Linux kernel was an ashmem device driver. Using ashmem it is possible

to allocate a region of memory, represented by a file descriptor. This file descriptor can

be passed through Binder to other processes. The receiver can pass the ashmem file

descriptor to the mmap system call to gain access to the shared memory region. The

key feature of ashmem is that the kernel can reclaim the memory region at any time.

This only occurs if the region is marked by users as “purgeable”.

A distributed object model API is provided in the C++ and Java environments to

use Binder. One example using this API is the android.hardware.SensorManager class.

The SensorManager is instantiated as a local object, but it maintains a private variable

of type ISensorService that uses RMI through Binder to gain access to the device’s

11

sensory information.

Binder implements security by delivering the caller’s process id and user id to the

callee. The callee can then validate the sender’s credentials [6].

In Binder, remote objects are referred to by Binder references. A reference is a

token, or capability, that grants access to a remote object. Having access to a remote

object lets you perform RMI on that object. One process can pass a reference through

Binder to give another process access rights to a remote object. The Binder driver takes

care of this, and blocks a process from accessing a remote object if it does not have the

correct permissions.

2.1.5 The Role of IPC in Android

The layout of an Android system at runtime is shown in Figure 2.2. All services that

run in the System Server are accessed through the use of IPC. If an application wants

to launch a new activity (an application), Binder is used to request this operation of

the Activity Manager. Requesting that the screen be kept on requires an IPC to the

Power Manager. Flushing the contents of a window to the screen requires notifying the

Surface Flinger, and again this is done using IPC.

Each of these managers provides a service by registering with a system component

called the Service Manager. The Service Manager keeps track of different services in

the system and provides dynamic service discovery to user applications. Services are

requested by name. To avoid the chicken and egg problem, the Service Manager is

given a unique identifier, the integer zero. This way user applications do not need to

request of the Service Manager access to the Service Manager.

The most commonly-occurring use of Binder is to notify the Surface Flinger of win-

dow updates, and to dispatch input events from the System Server to user applications.

2.1.6 Licensing

It is important to note that the state of licensing in the Android project does affect

the design and performance of Android. Linux is distributed under the GNU General

Public License (GPL) Version 2 which means the source code is available to the general

public [7]. The restrictions of this license are that source code must be released for any

additions made, including drivers in the kernel.

Manufacturers like Qualcomm protect their intellectual property (IP) by providing

compiled binaries instead of source code. The GPL license means that generic drivers

12

are inserted into the kernel to deliver data generated by a device to a close-sourced

binary executing in userspace [1], and this is bound to have an effect on the system

design as well as performance.

All Android userspace code is either licensed under the Apache License or the BSD

License which are more permissive than the GPL and do not create any issues that

affect manufacturers and their intellectual property.

Under the OKL4 commercial license, there is no obligation for manufacturers to

distribute any source code, and hence no restriction on the system design and imple-

mentation.

Figure 2.2: A runtime overview of Android.

Figure 2.2 shows the System Server that applications must IPC to in order to gain

access to the Package Manager, the component responsible for managing all installed ap-

plication. New Dalvik VM instances such as the Contacts Java application are spawned

from the Zygote.

13

2.2 OKL4 3.0

OKL4 is a high-performance microkernel. It provides a minimal, but portable set

of abstractions to the hardware. Its design and API derives from the L4 family of

microkernels.

2.2.1 Small Memory Footprint

OKL4 targets embedded systems which consists of a wide range of hardware with

varying requirements. In general this means power-saving hardware, limited system

memory and perhaps operating on battery power. As a result OKL4 is very small and

tries to minimise its presence in the caches allowing it to execute with less cache misses

and leaves more room for user applications.

The ARM implementation of OKL4 fits in 78KiB of memory [4], far short of the

3MiB kernel image supplied with the ADP1. Of course this does not include the

userspace support that is necessary for building an operating system on top of OKL4,

but a minimal implementation will be far less featureful and will be smaller as a result.

In short, this presents a lesser memory requirement for the operating system, providing

more memory to applications. Alternatively, lower-end phones with less memory will

be better able to run Android.

2.2.2 High Performance IPC

The performance of inter-process communication (IPC) can have a large impact on

performance in a microkernel-based (or componentised) system. All primary system

services must be implemented in userspace and IPC is used for processes to access

these services. OKL4 recognises the importance of IPC and offers a highly optimised

hand-crafted assembly IPC fast-path to achieve maximum performance. Compared to

first-generation microkernel implementations such as Mach, OKL4’s IPC mechanism is

a factor of 20 faster [4]. This is in part due to the bare-bones nature of OKL4 IPC. It

provides a simple mechanism to transfer data, no more, no less.

As discussed previously in Section 2.1.4, the design of Android is somewhat com-

ponentised with processes receiving input events from another userspace process. A

high-performance IPC mechanism can help to improve performance for these common

operations.

14

Message Registers

Data is transferred from one thread to another using message registers. The platform

implementation of OKL4 I am using provides 32 message registers, allowing an IPC

operation to transfer at most 32 words (4 bytes per word) of data. The message

registers consist of several CPU general-purpose registers, with the rest located in the

thread’s user-level thread control block (UTCB) in main memory. The pre-determined

location of the message registers by the kernel allows for a faster transfer as it already

knows where the data is. The use of shared memory is encouraged for larger transfers

that do not fit in the message registers.

2.2.3 ARM Support

OKL4 supports many processor architectures. More importantly it is optimised for

ARM processors. Cores based on the ARMv5 and ARMv6 architectures are readily

found in mobile phones and this makes OKL4 a great choice for replacing Linux in the

Android platform.

A particular advantage of OKL4 on ARMv5 chipsets is its superior context-switch

handling. One issue with the ARMv5 is that TLB entries do not have an address-space

identifier (ASID). This means TLB entries of different processes cannot be differentiated

from one another and therefore the TLB must be flushed clean to prevent processes

from accessing each other’s memory.

The second issue is the use of virtually-indexed virtually-tagged (VIVT) caches.

Different address spaces can have the same virtual address mapping to different physical

addresses. This is especially common in multiple address space operating systems such

as Linux. To avoid cache aliasing where an incorrect cache entry is present, there should

be only one mapping per virtual page, and therefore the caches must be flushed on every

context-switch.

However, it was demonstrated by van Schaik and Heiser [8] that it is possible to

avoid flushing the TLB and caches on every context-switch on the ARMv5 architecture

by making full use of ARM domains and the Fast Context Switch Extension (FCSE).

It was pointed out that the Linux maintainers refused the offered kernel patches to take

advantage of these features forcing Linux to flush the caches on every context-switch

for ARMv5.

The ARMv6 features virtually-indexed physically-tagged (VIPT) caches and TLB

entries do contain an ASID. The TLB translation process outputs the physical address

15

being mapped to, and this is used to select the correct cache line allowing multiple

mappings of the same virtual page to co-exist. The use of ASIDs ensures processes

access only their own mappings without needing to flush the TLB.

The Android Developer Phone 1 that will be the basis of the Linux/OKL4 com-

parison utilises an ARMv6 processor, and as such these performance benefits will not

be available. However, the ARMv5 is still a popular architecture for low-power and

low-cost applications and should not be overlooked.

The Motorola Evoke QA4 is one such phone that uses an ARMv5 chipset. Its single-

core ARM9 processor runs a virtualised Linux environment on top of OKL4. A native

implementation of Android on OKL4 would allow running Android on a single CPU

like in the QA4. Such a system would mean Android could run on cheaper hardware

and would be more affordable for end-users.

2.2.4 Transparent Superpages

OKL4 supports the mapping of all page sizes for the ARMv5 and ARMv6. From the

ARM11 manual [9], the following page sizes are supported: 4KiB, 64KiB, 1MiB, and

16MiB.

As a microkernel, OKL4 supplies mechanisms without policy where possible. This

is true of the use of superpages in an OKL4-based operating system. The userspace OS

personality is responsible for allocating system memory to user processes, and with the

mechanism supplied by OKL4, it can implement transparent superpages.

Transparent superpages means that user applications allow the operating system to

decide what page size(s) should be used for memory allocations. This is not restricted

to using a single page size, in fact a mixture of page sizes could be used depending on

the implemented policy.

The implications of using large page sizes rather than the standard 4KiB are several.

A larger page size means higher TLB coverage, and therefore less TLB misses and less

time spent processing them. It also means that internal fragmentation, where many

pages are allocated but each does not have complete utilisation, may be higher. A

process that allocates 64KiB for a heap may only use 32KiB, and when using a 64KiB

page size, 32KiB of physical memory has gone to waste. A smaller page size would not

have this problem, as 32KiB fits into 8 4KiB pages.

There is a trade-off between performance and memory usage due to internal frag-

mentation, but any imaginable policy can be implemented. It is feasible that a policy

16

tailored to Android specifically could be constructed to provide a balance between per-

formance and memory usage.

Superpages can be accessed in Linux through the HugeTLB library [10]. Through

examination of the Android source, superpage support is not compiled into the kernel

and is it is not used by any userspace code in Android.

17

Chapter 3

Approach

3.1 Overview

Primarily the thesis will involve porting Android components to my OKL4-based oper-

ating system and benchmarking the performance of the resulting system. A complete

port of Android to OKL4 was not feasible in the time frame. Therefore I decided to

port a subset of Android that would provide a comparison for benchmarks. Investiga-

tion early on in the thesis revealed there were several core system components required

to build a minimal but functional Android system that could run a small subset of

applications.

Figure 3.1: High-level requirement of an OKL4-based Android system.

As shown in figure 3.1, a high-level view of a basic functioning Android system

requires the System Server process communicating to a Dalvik application in a separate

process. A top-down design approach can be applied to determine the lower-level system

requirements.

Firstly, a form of IPC is needed to facilitate the communication between the applica-

tion process and the system process. Secondly, Dalvik VM requires a Bionic-compatible

18

C library and operating system support for Linux system calls. Thirdly, the System

Server needs access to drivers, such as video and input, to be able to perform its role.

Finally, Dalvik needs to load Java libraries at runtime, and this requires a file system.

Therefore the basic requirements to supporting the Android runtime on the OKL4

microkernel are:

∙ OS Personality (with drivers and a file system)

∙ IPC mechanism

∙ Bionic-compatible C library

∙ Dalvik VM

∙ System Server

3.2 OS Personality

A microkernel does not provide a complete operating system. Instead, most standard

OS services are implemented in userspace. This collection of userspace servers form

what is known as the operating system personality. Almost all system policy is im-

plemented in the OS personality, bar a few things which still live in the kernel. For

example, OKL4 still dictates how threads in the system will be scheduled.

3.2.1 Component-based Design

An OKL4-based Android system designed from scratch would appear fundamentally

different to a Linux-based system. Microkernels encourage the design of a compo-

nentised system running in userspace. To make progress in the system, components

communicate via the provided IPC mechanism.

Native code written for Android expects a POSIX API as provided by their libc

implementation (Bionic) working with the Linux kernel. The OKL4 system call API

does not provide POSIX semantics. Therefore, my system will need an OS personality

running in userspace to be able to provide the required functionality normally provided

by Linux and Bionic. This OS layer will also need to provide user applications access

to devices.

19

The OS personality will consist of a server loop processing Linux system call requests

from userspace applications. The thread that handles this main server loop will be

referenced as the rootserver.

The design will be monolithic to simplify programming and to maintain perfor-

mance. Drivers will conceptually be implemented as separate components with their

own thread of control. This is to facilitate the componentisation of unrelated drivers

into separate protection domains at a later date, whereby driver components can be eas-

ily swapped out with different implementations depending on which hardware platform

you are targeting.

The OKL4 3.0 distribution provides a library layer on top of the L4 API called

libokl4 to assist in the construction of OS personalities. It performs a lot of work

common to all OS personalities, such as protection domain and thread creation, and is

the recommended method to maintain compatibility with newer OKL4 releases. The

use of libokl4 will save having to re-invent many wheels.

3.2.2 Drivers

Very few drivers had been written for the Android Developer Phone 1 at the beginning

of the thesis. The approach taken was to implement drivers on a need-by-need basis.

As briefly mentioned in the previous section, each driver will be implemented as a

separate conceptual component in userspace with its own thread of control. This was

chosen because implementing all drivers to be handled in a single thread of control

destroys code portability due to the implementation being affected by the behaviour of

each driver.

On OKL4 there is more processing overhead because the kernel delivers interrupts

using IPC. This requires a context-switch that is not necessary in a monolithic kernel.

However, the overhead is minimal and interrupt latency is largely not an issue with the

devices available on a mobile phone.

3.3 Bionic-compatible C Library

There are two approaches to developing a Bionic-compatible C library. One is to port

Bionic to run on my OKL4-based system by redirecting system calls to the OS personal-

ity. The other is to port any missing features from OKL4’s minimal libc implementation.

OKL4’s libc proved to be lacking in the necessary features and would have required a

20

large porting effort, this approach would also not guarantee the same semantics offered

by Bionic and could lead to compatibility issues that would need to be resolved.

For the above reasons, I chose instead to port Bionic to run on OKL4 and provide

emulation for system calls as needed by the applications running on my system.

3.4 Dalvik VM

The Android runtime is powered by the Dalvik virtual machine. It was written to be

portable to different architectures and different operating systems. As such it links to

very few other libraries, with Bionic libc being the only prominent one.

Dalvik presents one other major porting issue. The core Java libraries are stored

in the file system in an unoptimised format. When Dalvik first loads these libraries

it optimises them and stores a copy into a cache on the file system. As other Dalvik

instances start up, they can use the optimised copy from the cache so the optimisation

process need only be performed once. To perform this optimisation Dalvik invokes the

dexopt tool using fork/exec. This requires a write-capable file system which I did not

have (discussed in Section 3.7), and implementing these system calls would have taken

time away from other porting work.

However, after some investigation I discovered an alternative method. It is possible

to upload the libraries to the Android simulator and invoke the optimisation process

by launching Dalvik with specific parameters. The pre-optimised libraries can then be

downloaded back. I used this method to avoid spending a lot of time implementing and

debugging features that might not be used anywhere else.

3.5 System Server

Porting the entire System Server is a non-trivial exercise as it involves parts of the

system that are not available on my OKL4-based system such as power management.

Instead, I need only a partial port containing the components required for benchmark-

ing. The parts of the system I wished to benchmark were IPC, video and input. At

most the System Server would be ported with these components.

21

3.6 IPC Mechanism

Investigation into the use of Binder in Android revealed that it is used for dispatching

input events to user applications. Completing a full port of Binder is not necessary to

make a comparison for this rather straight-forward duty. However, obtaining a pixel

buffer shared with the video subsystem does require Binder’s shared memory via file

descriptor feature. Again Binder can be bypassed by replacing dynamic allocation of

shared memory buffers with static allocation by my OS at start up. This is possible

because my port will launch pre-determined applications for benchmarking.

Binder is also used to let user applications provide their own services to other user

applications, and as described in section 2.1.4, Binder references can be passed around

to distribute access to a service. This framework cannot simply be substituted by

OKL4 IPC, and without good reason, does not warrant porting the Binder driver,

which consists of 3,500 undocumented lines of source code.

3.7 File System

At minimum a read-only file system is necessary to be able to load Java libraries at

runtime. The OKL4 build system allows you to place files into memory and access

them using libokl4 and the OKL4 environment. The OKL4 environment stores build-

time information, such as the memory location of files that were inserted into the boot

image. The ADP1 does have an SD card device that could have been used, but a driver

and file system implementation did not yet exist.

Using a real device and a real file system implementation provides more flexibility.

Files can be created and written to at runtime, but this functionality is not required for

an initial Android port. The solution of having an in-memory file system was chosen

because it was simpler to implement and allowed me to get started on porting the rest

of the system much sooner than if I had stopped to write an SD card driver and port

a file system implementation.

22

Chapter 4

Implementation

Figure 4.1: System overview of OKL4-based Android.

23

4.1 OS Layer

Building an OS personality on top of OKL4 to support Android requires numerous

subsystems to be implemented. I developed subsystems with the policy of keeping the

implementation minimal and simple, and not to succumb to premature optimisation.

Optimising early not only complicates the design, but may be a complete waste of time

if that component is not in a critical code path. Optimisation of the system would come

at a later date if performance issues presented themselves. A list of Linux system calls

that have been implemented is available in Appendix A.

4.1.1 File System

A read-only in-memory file system as described in Section 3.7 was implemented. Extra

framework was required to let user processes access this file system. As such, each

process is allocated a file table to access files in the in-memory file system. An entry

in the file table contains the state about an open file. This state is simply the address

of the file data in memory, the size of the file, and the current seek position within the

file. This was all that was necessary for Dalvik to operate.

4.1.2 Virtual Memory Subsystem

The VM subsystem is responsible for managing virtual and physical memory. It needs

to handle the demands of Android applications, which most commonly is the mmap

system call. POSIX semantics of the mmap system call expect allocated memory regions

to either be zero-ed out or contain the contents of a specified file.

I was able to implement the required semantics by making use of the callback support

of libokl4 memsections, where a memsection in libokl4 is a block of memory consisting

of a base, a range and a variety of other attributes such as access permissions and

page size. The callbacks enable you to choose when to map a virtual page to a physical

frame. This can be done when the memsection is created, or in response to a page fault.

The physical memory frame can be zero-ed out before allocation to a user. Meeting

the requirement of backing memory pages with the contents of a file was simple due to

the use of an in-memory file system. File contents are already in memory and can be

copied directly without having to access a disk device.

As a result, my system supports pre-mapped and lazily-mapped memsections that

match mmap semantics. Lazy-mapping of pages was a necessity to reduce memory

24

usage. Dalvik allocates several large buffers that are megabytes in size, and my in-

memory file system grew to over 50MiB.

Superpage Support

Specifying the page size of memsections is supported by libokl4. However, I was only

able to implement explicit superpage support. A bug in the platform code meant

that the physical addresses I passed to OKL4 for mapping were only aligned to 4KiB

blocks, causing the mapping of 64KiB pages to fail. For example, the physical address

0x00050000 would translate to 0x1004F000. The misalignment also varied between

different compiles and I was only able to successfully map large pages by manually

offsetting my addresses by the size of the last misalignment.

There was little time remaining to investigate as to why this was happening, but

mentioned work-around was used to enable user applications to allocate regions of mem-

ory using a 64KiB page size. This was sufficient for basic benchmarking purposes. A

simple function malloc 64k was made available to userspace, and has the same interface

and semantics as the standard malloc.

4.1.3 Process Creation

Linux creates new processes using the fork system call to duplicate the address space of

the caller. This can be followed by a call to exec to load a new executable. The require-

ments for fork that have been discussed so far are to launch the Dalvik optimisation

tool, dexopt (section 3.4), and for the Zygote optimisation (section 2.1.3).

Porting enough of Android to be able to perform the Zygote optimisation was not

required and remains as future work, and so process creation was limited to my OS

deciding at build time which applications to execute.

New processes are created by parsing executables located in the in-memory file

system with a custom-written ELF loader. The ELF loader was ported from my project

code in COMP9242 Advanced Operating Systems. File-mapped memsections could

then be created for the text and data segments, and a zero-mapped memsection for the

bss segment. All system calls to the OKL4 microkernel to create new address spaces

were handled by libokl4 which provides the protection domain abstraction for address

spaces.

It was necessary to implement program arguments (argc and argv) to be able to

launch multiple Dalvik VM instances in my system from the same binary. This was

25

achieved by copying the argument data into the new process’s address space, and point-

ing the L4 UserDefinedHandle() (thread-local storage for OKL4 threads) to this piece

of memory. When the process starts up, it finds the arguments and passes them to the

program’s main function.

4.1.4 Thread Creation

Android makes use of multiple threads in its applications and in the system framework.

The process of starting up new threads is a combination of OS and user library code.

In my OS personality, libokl4 is used to create and start new kernel threads. The

pthreads library in Bionic is responsible for creating new threads, and providing syn-

chronisation tools for a multi-threaded environment. During thread creation, the

pthreads library chooses a stack location and places information about which func-

tion to execute above the given stack pointer. The clone system call on Linux, which

handles process and thread creation, consisted of an assembly routine to do the system

call, and then sets up the registers to make a call to the pthreads thread entry func-

tion. A different return value from clone is used to force the parent and child to take

different code paths out of the system call.

On OKL4 this process needs to be a little different due to the lack of a fork imple-

mentation. Start up information (which function to execute) is still stored above the

stack pointer with the area below to be used for the stack. However, the instruction

pointer given to the newly-created thread always points to a specific assembly routine.

The routine reads the function address and arguments from above the stack pointer,

and correctly passes it to the pthreads thread entry function.

4.1.5 Futexes

Linux provides a fast userspace mutex (futex) API as construction blocks for more

sophisticated thread-synchronisation tools, such as semaphores and condition variables.

Semantics

int __futex_wait(volatile void* ftx, int val, const struct timespec* timeout);

int __futex_wake(volatile void* ftx, int count);

The semantics involve synchronisation using the value and physical address of a

single word as pointed to by the variable ftx in the above function declarations.

26

The semantics will be explained by providing an example. Thread A calls futex wait

to go to sleep until Thread B calls futex wake on the same futex variable. In the event

that Thread B calls futex wake first, the futex semantics say that Thread A should

wake up immediately. This is implemented in futex wait by comparing the expected

value of the futex word pointed to by ftx to its real value. The expected value is passed

as the integer val. If the values match, Thread A will go to sleep. However, if Thread

B changes the futex value and then calls futex wake before Thread A performs the

futex wait call, then the value expected by Thread A of the futex word is now wrong,

and a call to futex wait will cause Thread A to wake up immediately as intended.

The important fact to learn from the above, is that in a futex wait, the kernel

compares the expected value of the futex word, to the real value of the futex word.

This requires my OS personality to maintain page tables to be able to translate the

word’s virtual address into a physical address to access its value. More information on

futex semantics can be found in Ulrich Drepper’s article, Futexes Are Tricky [11].

Implementation

The OKL4 3.0 user’s manual states that querying OKL4’s page-table entries is depre-

cated. To stay compatible with future OKL4 releases, the remaining choices were to

re-implement the Android pthreads package to not use futexes, or to simply maintain

userspace page tables in the rootserver. It was foreseen that fork may need to be im-

plemented at some point during the thesis, and a fork implementation would require

userspace page tables. Therefore I made the decision to implement userspace page

tables.

As semantics state that the value must be accessed on a call to futex wait, the page

containing the ftx variable must be mapped in and accessed. The page can be mapped

in via a system call to OKL4, and then accessed, but it is not necessary to un-map

the page. This would mean the page would not need to be mapped in on the next

call to that futex because it was never un-mapped. This would result in less overhead.

However, my aim was to build a solution that worked correctly and I was not interested

in premature optimisations. As such I implemented the simpler map in, access, and

un-map solution. Implementing the performance optimisation of leaving pages mapped

in is future work.

I was presented with more implementation decisions regarding how to store the state

of a futex. An example of futex state is the list of threads sleeping on that futex. There

27

is no formal process of creating and destroying a futex. When a new futex is seen by

the rootserver, the necessary state must be created. Processes in my system do not

exit, so no implementation was required to destroy futexes.

A futex is identified by the 32-bit physical address of the futex word. To access the

state of a futex, the 32-bit address can be used as a key to an associative container

such as a hash table or an associative list. It was unclear whether futex performance

would be a key factor in overall system performance, and it most likely would not be the

case on software designed for a single CPU. Again, I was not interested in premature

optimisations and took the simpler route of implementing an associative list to store

futex state.

4.1.6 Timer Driver

The ADP1 has two timer devices on the bus, the general-purpose timer (GPT) and the

debug timer (DGT). The GPT is already being used by OKL4 to implement timer ticks

for context switching. This left the DGT free for me to use to implement timestamps

and a sleep functionality.

It should be noted that the registers for the GPT and DGT are memory-mapped

to the same virtual page. By mapping in this page to utilise the DGT, it is exposing

kernel functionality into the timer driver. Without knowledge of other timers on the

platform, this is a necessary evil. In this case it would be best to isolate the driver into

a separate protection domain from the OS personality main component and verify that

it does not tamper with the GPT. However, this is not in the scope of the thesis.

4.1.7 Video Driver

Video can be lazily pushed to the display as it has an internal buffer storing the last sent

frame. This is different to VGA monitors which always require a new frame to display,

and makes sense for the performance and power requirements of embedded hardware.

Therefore the video driver simply needs to provide three functions. It needs to

provide access to the frame buffer, allow invoking of Direct Memory Access (DMA)

operations to update the screen, and a notification for when the DMA is complete. DMA

complete notifications were never implemented due to the sizable reverse engineering

effort required to decipher some of Qualcomm’s protocols on the bus. Instead, a busy

wait has been substituted. This makes it impossible to include the video subsystem

28

in real-world comparisons. However, measurements on the client rendering of their

window are still possible.

The original driver was written by my co-supervisor Nicholas FitzRoy-Dale. My

implementation is a port of his driver from the kernel to userspace.

4.1.8 Input Drivers

The ADP1 has several sources of events. There is the touch screen, the keyboard, the

trackball, and various other buttons along the side of the phone. Each device requires

its own driver, and each button press or touch generates an interrupt. As all work is

interrupt-driven, only a simple IPC wait loop was required.

Userspace drivers for the keyboard, trackball and the touch-screen were written by

my co-supervisor Nicholas FitzRoy-Dale. I ported them into my OS and implemented

the framework that is described below.

It should be noted that each touch event consists of several events in the Linux

input framework. These are the absolute x and y coordinates, the touch pressure, the

width of the press, and a sentinel event to mark the end of a complete touch event.

The OKL4 touch driver does not operate exactly the same as on Linux. Reading events

from the touch device in /dev/input reveals the Linux driver interleaves events (reusing

older data) resulting in less data being transferred. It is most likely that data which

has not changed is not sent again and it is up to the userspace code to maintain the

entire state of the touch data. The OKL4 touch driver sends all events every time due

to time constraints. I completed enough of the implementation to be able to detect

touches, but did not interpret the data read from the driver. Instead, hard-coded touch

sub-events were generated per touch interrupt. This was satisfactory to be able to take

benchmarks of the input framework of Android on OKL4.

There were two sane implementations on OKL4 that I could choose from to move

event data out of the driver. The first approach is to synchronously transfer each event

using the OKL4 IPC message registers. The second approach is to use asynchronous

notifications and a fixed-size shared memory region where parties read and write event

data from a single-reader single-writer lock-free queue.

Synchronous IPC can cause the driver to block until the receiver is ready, and

may result in devices dropping events if interrupts are not processed quickly enough.

However, the same issue can occur if the fixed-size shared memory region is full and the

driver has nowhere to place the data. The use of shared memory offers more flexibility

29

than synchronous IPC by allowing the receiver to poll for events rather than block and

wait for them. This increased flexibility is at the single cost of the minimum page size of

4KiB required for the shared memory region. It should be noted that the input driver

framework was developed for the Quake demo that was displayed at NICTA Techfest

2009. For single-threaded game applications, polling of input is desired as blocking

results in the game being unresponsive. This meant the asynchronous approach using

shared memory was chosen.

For the Android input framework, either approach is acceptable but there was little

gain to be had by changing the existing implementation.

4.2 Dalvik Application Framework

Starting up new Dalvik applications is a process that requires the System Server to pro-

vide several services including the Package Manager, the Window Manager and Binder.

Due to time constraints it was necessary to find a way to launch applications without

the full runtime stack. As such, I implemented my own user application framework

under the guise of the standard API to develop a proof-of-concept demonstration that

Android applications can run on an OKL4-based system. This reimplementation is

used only for user applications and not the System Server.

I wished to benchmark the input framework of Android and so the System Server

with all other components disabled. A discussion on the changes made is included

below.

4.2.1 UI Layout

Android applications can supply an XML file describing their UI layout. Entries in

the layout include platform-supplied classes such as TextView or SurfaceView, or even

application-specific classes that inherit from Android framework classes, such as Lu-

narView (in the Lunar Lander application) which extends from SurfaceView. When

an application is packaged for release, this layout file is compiled into binary form for

faster parsing during application launch.

I was unable to locate in the Java framework how this is properly handled and

decided on an alternate approach, to reverse engineer the binary layout file. This

enabled me to extract the class names that formed the UI layout and use Java reflection

to construct Java objects based on these classes.

30

4.2.2 Image Resources

The method by which Android applications access image files is by passing an auto-

generated enumeration to the Java framework. An object representing the image is

returned. Without proper application launching, which involves the Package Manager

in the System Server, this too required trickery to implement.

The auto-generated enumeration is in a class R (short for Resources) located in the

same Java package as your application. Here is an example of the Resources class for

the Lunar Lander application.

public final class R {

...

public static final class drawable {

public static final int app_lunar_lander=0x7f020000;

public static final int earthrise=0x7f020001;

public static final int lander_crashed=0x7f020002;

public static final int lander_firing=0x7f020003;

public static final int lander_plain=0x7f020004;

}

...

}

The enumeration name is generated from the file path of the image. For example,

res/drawable/app lunar lander.png is given the enumeration app lunar lander. Using

Java reflection, it is possible to convert the enumerated integer back into a string that

contains the enumeration name. Using this string I could re-create the file path and

load the correct image.

4.2.3 Event Loop

User applications in Android consist of an event-loop that processes messages from a

queue. Events are pushed onto the queue either in response to external events such

as from input devices, or internally from the user application itself. My event loop

waits on OKL4 IPC to receive key and touch events from the System Server, and thus

replicates the behaviour of native Android applications.

31

4.3 System Server

The many system services that allow access to devices such as input, audio and video all

run in the System Server. My original aims were to port the video and input frameworks,

and substitute calls to Binder IPC with OKL4 IPC where possible. However, time

permitted only a port of the input framework.

The input framework is in charge of getting events from the OS and delivering them

to the appropriate application. It consists of two main components and are given the

names used by Android in the code. These components are threads of control and are

called the InputDeviceReader and the InputDispatcher.

The InputDeviceReader reads events from the kernel and pushes them onto a queue

for the InputDispatcher to do the remaining work whereby the event is eventually

dispatched to the user application using Binder IPC. My implementation also uses

these two components, but has replaced event reading from the OS with my OKL4

equivalent solution as outlined in section 4.1.8, and has also replaced the Binder IPC

dispatch with OKL4 IPC.

Figure 4.2: The input framework on OKL4. The system has been replaced at the input

driver and IPC interfaces.

32

4.3.1 InputDeviceReader

This component is responsible for reading events from the OS and appropriately deal-

ing with input events that may affect the system, such as turning the screen back on,

hanging up a phone call, or just switching applications. If the environment is ready

to accept user input, standard events are placed onto a queue shared with the Input-

Dispatcher. Obtaining events is handled by native C++ code, and event processing is

handled by Java code.

On Linux, a pair of system calls are used to read events from the kernel. First poll

is used to know when events are available, then each event is extracted manually one-

by-one using read. As mentioned in section 4.1.8, each touch event consists of multiple

sub-events containing the data about different parameters. Reading each sub-event on

Linux takes one system call and this will be slower than reading the entire event at

once.

The OKL4 implementation for this component uses asynchronous notifications and

shared memory as discussed previously in section 4.1.8. To obtain a complete touch

event in this implementation requires only two system calls, an IPC notify by the driver

and an IPC wait by the receiver, and the data is read from shared memory. On Linux

anywhere from 3 to 6 system calls are required, one poll, and 2 to 5 touch sub-events

with the variation resulting from the interleaving described earlier. This should improve

the time taken to extract event data from the OS.

Due to missing a lot of system functionality on my OKL4 system, various portions

of code had to be removed to make the event routing path of the InputDeviceReader

functional. This involved removing all calls to power management, battery statistics

and replacing checks to whether the display was on, off or dim, and whether the phone

was locked.

4.3.2 InputDispatcher

This component is responsible for routing events to user applications. First the correct

application is determined and then the event is marshalled and dispatched over IPC.

At the point where the event is ready to be marshalled and sent across process

boundaries, I have replaced the dispatching. Android uses a Parcel class to convert

data into a transmissible form. A Parcel is a dynamically-sized array container used

for packing data to be sent over Binder. It provides functions to place primitives

and Java built-in classes (such as Java Strings) into the array container. The Java

33

implementation of a Parcel mostly enters native code using JNI to perform C++ calls

on the C++ Parcel class.

My implementation also uses the Parcel class for marshalling, however the Binder

call has been replaced with an OKL4 equivalent function that passes the IPC capa-

bility, and the Parcel object to native code, where the Parcel object is written into

the IPC message registers before being dispatched to the event loop on the other side.

It should be noted that the Binder framework transmits the service interface name

as a UTF-16 Java string, which uses two bytes per character. The full name of the

interface used to dispatch input events is android.view.IWindow. Including a null ter-

minator this string is 21 characters in length, and alone consumes 11 of the available

31 OKL4 IPC message registers (there are 32, but one is for the message tag header).

Combined with the MotionEvent data which consumes 21 message registers, this was

one word too many. To make the data fit, the interface was shortened by one char-

acter to form android.view.IWindo. This is a limitation of OKL4 IPC, where the use

of shared memory is encouraged for larger transfers. The modification is not ideal for

the purposes of benchmarking and comparison, however the performance difference of

transferring 2 bytes is unlikely to have a noticeable influence on the results. A complete

implementation, making use of shared memory, is future work.

Like with the InputDeviceReader, various portions of the InputDispatcher had to

be removed to get it up and running on my system. This included calls to power man-

agement, battery statistics, and a large section of code that determines the destination

of the input event. In my system I had only one client application to send events to. I

also had to remove a feature that stores event history within a MotionEvent, the class

that represents touch events. Extra events are stored together to avoid them being

dropped, but investigation into this matter revealed this occurs rarely on Android and

the sending of multiple events together can be safely ignored.

34

Chapter 5

Evaluation

The focus of the thesis up until now had been on porting enough of Android to be able

to run unmodified Android applications so that comparisons could be made between

the two systems. Full system benchmarks such as browsing the web would best stress

an Android system as it requires many subsystems working together. However, this re-

quires a full system implementation which I did not have time for. Instead, I performed

some micro-benchmarks and subsystem benchmarks of the input framework.

5.1 Improving Performance with OKL4

My objectives were to investigate in what areas OKL4 can improve over Linux, and to

compare real-world performance of OKL4 and Linux in Android. The input framework

is a good candidate for microkernel-based optimisation because data needs to be moved

from the driver, to a subsystem component, and then finally to a user application. A

fast IPC mechanism can improve performance in this area. OKL4 also offers the ability

to experiment with different page sizes.

5.1.1 Input Driver Framework

Section 4.1.8 introduced two designs for delivering input events to the System Server

component. Both designs aimed to reduce the processing time it takes to retrieve

touch events compared the implementation on Linux. This is of interest because early

investigation revealed touch events generate a lot of traffic in the input subsystem.

35

5.1.2 IPC

As discussed in section 2.1.4, one of Binder’s primary roles in Android is to dispatch

input events from the System Server to user applications. Improving IPC performance

can reduce the amount of processing done by the dispatch stage of input routing, and

therefore reduce the overall processing time of an input event. Less processing by the

system means there are more cycles available to user applications. It is of interest to

evaluate the performance of both Binder IPC and OKL4 IPC in this role.

5.1.3 Superpages

Section 2.2.4 discussed the benefits of superpages and the possibility of having trans-

parent superpage support. The benefits of increasing TLB coverage on Android could

have a noticeable effect due to the sheer size of Dalvik VM and the Java runtime frame-

work. With less cycles wasted on TLB misses, overall processing time could be reduced

resulting in improved performance across the entire system.

5.2 Evaluation Environment

In this section we describe the hardware and software environments used to evaluate

the two systems.

5.2.1 Android Developer Phone 1

The Android Developer Phone 1 is available for purchase from the Android Market web-

site after signing up. More information can be found on the Android website [12]. It is

powered by a Qualcomm MSM7201A system-on-a-chip (SOC) which has an ARM1136js

processor that Android normally runs at 384MHz. It also has an ARM9 processor for

the baseband software. All experiments are run using the ARM11 processor which is

for the user environment. In terms of processor support for the ARM11, OKL4 and

Linux are on a level playing field (discussed in section 2.2.3).

The ARM1136js has separate 4-way 32KiB instruction and data caches. It also

features a two-level TLB hierarchy with the first level consisting of two 10-entry fully-

associative MicroTLBs implemented in logic for both instruction and data. The second

level contains a single Main TLB made up of two memories, an 8-entry fully-associative

block and a 64-entry 2-way block. All TLB miss measurements made are Main TLB

36

misses to get an idea of the magnitude of the working set of the benchmark scenarios.

The ARM1136js has event counters on-chip that allow you to count cycles, TLB misses

and various other events. These event counters were used to obtain the benchmark

measurements. From this point on, the use of the term TLB miss will refer to Main

TLB misses and not MicroTLB misses. Where both types of TLBs are discussed, their

full names will be used to avoid confusion.

5.2.2 Android

Android version 1.5 release 2 was used as a basis for the port to OKL4, and for bench-

marking and comparing the two systems.

5.2.3 OKL4

OKL4 was compiled with all performance options switched on and kernel tracing dis-

abled. Dalvik was compiled with profiling disabled.

A performance monitoring framework was placed in the OKL4 rootserver (the main

OS thread of control) to be able to take benchmarks across multiple processes. By

performing an IPC to the rootserver, applications can mark the start and end points

of a measurement. A measurement records either cycle count or Main TLB misses, but

exclusively one or the other to reduce the amount of noise in the system. At the end of

a measurement the result is stored in a buffer. When the buffer reaches its maximum

capacity, the results are printed over the serial cable for collection. This minimises the

possible impact on results by not printing each measurement over the serial as it comes.

For simple benchmarks that are taken within one process only and do not need any

results stored, the OKL4 kdebug interface can be used to access the event counters

without invoking my OS personality.

5.2.4 Linux

The Android source was set to release mode, and to match the changes made to the

build in OKL4, Dalvik was also compiled with profiling disabled.

Linux has a built-in profiling framework called OProfile that lets you configure

the event counters on the ARM11 CPU. It is not compiled into the kernel with the

default build. After enabling it I encountered problems getting the OProfile daemon

to communicate to the kernel properly. Instead, I constructed my own framework and

37

placed the code inside the Binder device’s ioctl system call. Binder’s ioctl is the gateway

to all Binder services and is by no means slim. This was not an ideal solution because it

introduces extra code into the Binder IPC path which I wished to measure. Ideally an

extra system call would have been created, but I ran out of time to pursue this option.

However, I performed preliminary benchmarks of Binder IPC to confirm that there was

no measurable difference as a result of the extra branch condition.

Similar to the OKL4 framework, applications can mark the start and end of mea-

surements. Once the benchmark is over, a second application is used at the command

line to copy the results out of the kernel. This helper application can also toggle the

type of measurement taken between cycle count or Main TLB misses. For long-running

benchmarks where the performance monitoring framework would have little impact on

the results, both cycle count and TLB misses were measured together.

5.3 Benchmarks

5.3.1 CaffeineMark 3.0

Before making comparisons between the systems, a sanity check was performed by run-

ning the CaffeineMark 3.0 JVM benchmarking suite. The purpose of this was to ensure

the performance of Dalvik was similar on both systems. Using the same hardware, and

Dalvik VM implementation, but a different OS, it can be expected that performance

should be similar. Wild variations could be attributed to serious issues with my ported

system that would need rectifying before making comparisons with Linux. It evaluates

performance by running the following series of tests:

Sieve Uses the Sieve of Eratosthenes algorithm to find prime numbers.

Loop Uses sorting and sequence generation to measure compiler loop optimization.

Logic Tests the speed with which the VM executes decision-making instructions.

String Measures memory-management performance by constructing large strings.

Method Uses recursion to see how well the VM handles method calls.

Float Simulates a 3D rotation of objects around a point.

While running this benchmark a phenomenon was discovered whereby the number

of loaded Java libraries affected the String score substantially. As a result, multiple

runs were taken using two and then five libraries.

38

CaffeineMark was modified to run on my OKL4 system by redirecting the results to

stdout. This required modifying the Java framework, as normally results are displayed

on the screen. Dalvik was also instrumented to load CaffeineMark’s onCreate function

which runs the test. On Linux this benchmark was carried out by launching the appli-

cation from the menu, and then at the command line using the same instrumentation

and modified Java libraries as used on OKL4. Each benchmark was run 5 times to

minimise variance.

5.3.2 2D Drawing with Superpages

One advantage of building an OKL4-based OS from the ground up is that superpages

can be taken advantage of very easily. The ARM11 CPU in the ADP1 has 72 TLB

entries in the main-TLB. A system using a 4KiB page size has a TLB coverage area

of 288KiB. Using a larger page size can help increase this significantly to reduce TLB

misses to improve performance. For example, the TLB coverage area using a 64KiB

page size is 4.5MiB and can accommodate much larger working sets.

The video subsystem of Android uses a compositing window manager [1] and this

means each application on the display has its own pixel buffer. In addition to this, im-

ages used in applications also consume a lot of memory. A background image or frame-

buffer using the native resolution and pixel format of the ADP1 (480x320, RGB565) is

300KiB in size. This buffer alone exceeds the TLB coverage area. As a result, drawing

a 2D scene will effectively flush the TLB at least once, and most likely multiple times

for more complex applications.

I made modifications to the pixel buffer allocation code in the Android graphics

framework to make use of malloc 64k (discussed in section 4.1.2). The Lunar Lander

application was used as a basis for this experiment. It is launched and kept at the

start up screen drawing a background image, a rocket ship, and a fuel bar. Physics are

disabled and the game loops continuously redrawing the scene. Figure 5.1 displays this

scene.

The number of cycles and TLB misses were measured on separate runs to minimise

noise, and 128 measurements are taken of each. Measurements on drawing a single game

frame were taken using a 4KiB page size for the entire system, followed by measurements

when utilising 64KiB pages for large pixel buffers only. In the Lunar Lander application

there were two large buffers of size 300KiB, one for the background image and one for the

application’s window. The application’s window is copied to the frame-buffer between

39

Figure 5.1: The Lunar Lander application.

measurements to visually verify the scene is being drawn correctly, and this is kept

consistent for both runs.

5.3.3 IPC Micro-benchmarks

IPC is used in the input framework to dispatch input events to the user application

(discussed in the next section). With OKL4 IPC being a minimal implementation of a

fast IPC mechanism, and Binder providing a lot more functionality, performance of the

two are likely to be very different. Therefore it is important to measure the isolated

performance of both IPC mechanisms.

It needs to be considered that IPC performance on native code will be different than

on Java code which needs to use the Java Native Interface (JNI) framework to access

the native IPC functions. As Android applications all run on Java, it is useful to know

the performance penalty on IPC through Java JNI compared to native code. Micro-

benchmarks also present a best-case performance figure that can be used to estimate

how much of an improvement is possible on the current implementation of IPC on Java.

Binder’s framework allows you to set up a simple remote procedure call (RPC)

service. This allowed me to create a simple ping-pong service to measure the round-

trip-time for an RPC. The client sends an integer to the server, who simply sends the

40

same value back. This is repeated thousands of times in a tight loop to minimise noise

and variance in the results. The same scenario was constructed on OKL4 using OKL4

IPC.

The Binder driver API is incredibly complicated and makes it difficult to measure

the raw IPC performance, as the kernel can schedule any number of arbitrary tasks

between send and receive. Android provides a C++ and Java framework API to make

it easier to use Binder. The API allows you to register a remote procedure call (RPC)

service with the system Service Manager. Client applications request a handle to the

service based on the service name, and can then perform RPCs on that service.

An RPC service is one layer of abstraction above delivering raw uninterpreted data,

and data needs to be interpreted in a real environment to make progress. Therefore,

all IPC benchmarks are based on the simplest server/client RPC scenario of executing

a ping-pong.

All tests on Binder and OKL4 IPC are carried out as follows:

1. Set up the server

2. Client executes a test ping to check the server is alive

3. Client executes the ping-pong loop (thousands of iterations)

The last step is wrapped within performance monitoring functions that measure cy-

cle count and main-TLB misses. The average round-trip-time is calculated by dividing

the total number of cycles by the number of ping pong iterations. One-way IPC times

can be estimated by halving the round-trip-time. The average Main TLB misses is

calculated in the same way.

Benchmarks using 1 word and 31 words (4 bytes and 124 bytes respectively) for the

payload (same size payload sent both ways) were run on both native C/C++ code and

on Dalvik using Java. Each benchmark was repeated 5 times to minimise variance. At

the server, every transferred word is passed to a ping function that returns the same

value before preparing it for the return journey. The client ignores the values of the

returned data.

5.3.4 Input Framework

All measurements are based on touch events only, as key events do not occur frequently

enough to have much impact on system performance. All measurements were taken

41

while touching the screen. This generates approximately 80 events per second which

flow through the input framework. To be able to make fair comparisons between OKL4

and Linux, the input framework has been divided into three parts. They are as follows:

1. First the InputDeviceReader obtains an event from the touch driver.

2. The event is then passed back up to Java code and is processed to determine

whether it has some special purpose, e.g. turn the screen back on, or to deliver

it to a user application.

3. Finally, the event is dispatched over IPC to the user application.

The above scenarios will now be discussed in further detail.

Obtaining Events

This process is handled differently on OKL4 and Linux. OKL4 using a single system

call to wake up before accessing the event data from shared memory. Linux uses a read

system call to access the data.

The process of obtaining events from the touch driver is handled differently on OKL4

and Linux. As discussed in section 4.3.1, Linux uses a pair of system calls, poll and

read. OKL4 also uses a system call to wait for a notification from the driver, but it

does not need the second system call to read the event data. This data is read from

shared memory.

Measurements were taken from the point the InputDeviceReader wakes up knowing

it has an event to process, to the point right before it returns the event to the Java

code. Between these points the event is read from the driver, and converted into the

format as expected by Android.

Java Processing

Once the event reaches Java code, there is too much missing in the input routing path of

the OKL4 implementation of the System Server to be able to make a fair comparison to

the Linux implementation. However, measurements were taken anyway to help create

a performance profile of the entire input framework. Measurements were taken from

the end of the previous scenario, until the point right before the event is marshalled

and dispatched.

42

Dispatching the Event

Events are marshalled and dispatched to user applications over Binder IPC. Preliminary

IPC benchmarks showed that OKL4 IPC out-performs Binder IPC and could help to

improve dispatch performance. Measurements were taken from the point right before

the touch event is marshalled and dispatched in the System Server, until the point

right after the event has been reconstructed and identified as a touch event on the user

application side. This is a one-way dispatch.

To determine the cost of marshalling, measurements were taken on the OKL4 sys-

tem without marshalling the data. Instead, dummy data was dispatched to the user

application.

Entire Path

The entire userspace input framework path was measured to be able to determine the

effect on overall performance of the results that we are interested in, obtaining and

dispatching of touch events. Measurements were taken from the first measured point in

obtaining an event, to the last measured point of having reconstructed the touch event

in the user application.

5.4 Results and Analysis

5.4.1 CaffeineMark 3.0

Linux (Menu) Linux (ADB) Linux (ADB) OKL4 OKL4

Libraries 5 5 2 5 2

Sieve 467 466.6 467 490 490

Loop 553 553.2 553 557 557

Logic 397.4 398 397.8 400 400

String 454.8 611.2 633.4 585.4 815.6

Float 342.2 337 340.8 351 356

Method 401 400.6 400.8 404 404

Overall 430.6 451.4 454.8 456 483

Table 5.1: CaffeineMark 3.0 results for both systems.

43

Figure 5.2: Graph of the results in table 5.1.

The label Linux (Menu) refers to launching CaffeineMark from the phone’s menus

and the label Linux (ADB) refers to launching CaffeineMark at the command line over

the Android Debug Bridge (ADB). All results are averaged over 5 iterations.

A phenomenon was discovered that resulted in large variations of the String score

depending on how many Java libraries were pre-loaded. Android has five libraries that

together form the Java runtime framework. However, for the purposes of CaffeineMark

3.0, only two libraries were required.

Initial results used only two libraries and this showed much better performance in

the String score, which stresses the memory-management subsystem of Dalvik by con-

structing large strings. The standard method of launching applications from the phone’s

menus showed the worst performance with a score of 454.8. For this reason I re-ran the

benchmark at the command line using the same modified libraries I used on OKL4, as

to minimise variance in the two setups. This improved the String score by over 30%

compared to launching the application from the menus. The score achieved by OKL4

was much higher again. Due to the nature of the String test stressing the memory-

management subsystem, it suggested that the memory allocator was performing worse

when heap utilisation was higher, but it required further investigation.

After re-running the benchmarks using all five Java libraries, the String score

44

dropped for both OKL4 and Linux, indicating that the number of Java libraries loaded

affects the performance of the memory-management subsystem. Using all five libraries

also brought all benchmark scores within close proximity to one another, and this con-

vinced me there were no serious issues with my implementation. The Sieve score was

consistently better on OKL4 by about 7%, but I was unable to determine why. The

workload of the input framework is quite different to the type of tests performed by this

benchmark. It does not execute a tight-looped algorithm for finding prime numbers,

and does very little memory allocation, thus the variances observed in these results

should not adversely affect the input framework benchmarks.

The results of this benchmark show overall performance with 5 libraries to be very

similar, meaning that all further benchmarks should be carried out using all five li-

braries. The phenomenon exists on both systems and definitely requires further inves-

tigation, but I did not have any more time to spend chasing this down.

5.4.2 Superpages

Page Size 4KiB 64KiB

Avg Cycles 1,633,980 1,594,831 (-2.4%)

Avg Time(µs) 4,255 4,153 (-2.4%)

Avg TLB Misses 489 297 (-39%)

Table 5.2: Benchmarks of Lunar Lander using a different page size for large pixel buffers.

Page Size 4KiB 64KiB

Cycles 3265 (0.2%) 3619 (0.23%)

Time(µs) 8.50 (0.2%) 9.42 (0.23%)

TLB Misses 2.42 (0.49%) 9.45 (3.18%)

Table 5.3: Standard deviation of the results in table 5.2

45

Figure 5.3: Graphs of the results in table 5.2.

As expected, the number of TLB misses was reduced dramatically. However, the

effect on performance was only minimal. It is very likely that performance is being

bottlenecked in the data cache. Reading and writing from large buffers as is done in

the test, will be effectively flushing the 32KiB data cache several times over just to

draw the background, which requires accessing 600KiB of data sequentially. Without

measurements of the data cache misses, and the cost of a data cache miss, I can only

speculate. However, there is still some useful information that can still be drawn from

the results.

Given that the only difference between the two benchmark runs was the page size

for two buffers, a rough estimate of the cost of a TLB miss can be calculated. The

standard deviation as shown in table 5.3 is extremely low for all measurements, but

TLB misses when using a 64KiB page size does show a little more variance than the

others.

There are 192 less TLB misses and there is a saving of 34,149 cycles (102µs) in

processing. This suggests the cost of a TLB miss is 204 cycles (531ns). Accounting

only for the two larger standard deviations in the results (TLB misses), this places the

TLB miss cost between 192 and 217 cycles which is a narrow range.

To confirm this calculation, I measured the cost of uncached memory reads. This

was done by measuring the number of cycles it takes to perform 4 reads to uncached

memory in a tight loop for 16384 iterations. There are 4 reads in the loop to amortise

46

the cost of the branch instruction. The measured cost of a single read to uncached

memory was 95 cycles.

A TLB look-up on the ARM11 CPU first begins by accessing one of the MicroTLBs.

On a MicroTLB miss, a look-up is performed on the Main TLB. A second miss results

in a walk of a two-level page-table by the hardware. This walk requires two uncached

memory reads, and based on the calculated cost of one of those reads, the total cost

is 190 cycles. However, the miss latency of the look-up on the Main TLB from a

MicroTLB is still unaccounted for, and is simply mentioned to take a variable number

of cycles in the ARM11 ARM Reference Manual [9]. It is likely the remaining 14 cycles

can be attributed to this process. This confirms that my calculated complete TLB miss

cost of 204 cycles is likely to be near the real cost.

5.4.3 IPC Micro-benchmarks

OKL4 Binder OKL4 Binder

Iterations 16,384 16,384 16,384 16,384

Payload (bytes) 4 4 124 124

Avg Cycles 1,592 93,053 2,146 106,663

Avg Time (µs) 4.15 242.33 5.59 277.77

Avg TLB Misses 3.59 71.26 3.23 73.56

Table 5.4: C/C++ IPC ping-pong micro-benchmarks.

OKL4 Binder OKL4 Binder JNI

Iterations 16,384 8,192 16,384 4,096 8,192

Payload (bytes) 4 4 124 124 124

Avg Cycles 16,753 284,349 30,700 725,748 379,456

Avg Time (µs) 43.63 740.49 79.95 1,990 988.17

Avg TLB Misses 57.74 500.64 61.43 1,546 841.06

Table 5.5: Java IPC ping-pong micro-benchmarks.

47

Figure 5.4: Average cycles for a two-way ping pong on C/C++.

Figure 5.5: Average TLB misses for a two-way ping pong on C/C++.

Analysis of C/C++ IPC Micro-benchmarks

The results in table 5.4 show that OKL4’s IPC mechanism is much faster than Binder

IPC. Binder is 58 times slower in sending and receiving a 4 byte payload, and 49 times

slower using OKL4’s maximum payload (124 bytes).

Why is OKL4 IPC is much faster than Binder IPC? Firstly, Binder is just another

device in the file system, and the ioctl system call for the Binder device is overloaded

to handle all calls to Binder. In this design there is no IPC fastpath through the kernel

48

Figure 5.6: Average cycles for a two-way ping pong on Dalvik.

Figure 5.7: Average TLB misses for a two-way ping pong on Dalvik.

and this really limits the maximum performance of Binder IPC.

A call to Binder’s ioctl is a series of commands that is interpreted by the Binder

driver. The IPC command is called BINDER WRITE READ (BWR) and signals to

the driver that the user process wants to do a write, or a read, or a write followed by a

read. This path is written entirely in C, and this command could be one of several in

a row.

49

Furthermore, I made an interesting discovery that could affect performance in a large

way when using BWR to do a write followed by a read. Each ping-pong was taking

double the number system calls than required. Investigation into the issue revealed the

following:

1. The write phase generates a TRANSACTION COMPLETE (TC) message that

is appended to the calling thread’s own job queue.

2. During the read phase immediately following, this TC message is read and re-

turned back to userspace.

3. The userspace Binder framework ignores this message, notices it has not yet

received the reply it was looking for, and initiates another BWR to restart the

read operation.

All TC messages in Android appear to be ignored, yet removing the generation of

the TC message causes the system to fail to boot. It’s hard to say whether this is

part of the design or a bug, or perhaps it is a remnant from the original OpenBinder

implementation. Whatever the reason, this occurrence contributes to Binder’s poor

performance.

The Binder implementation is also programmed to allow multiple user applications

to call into Binder at the same time. A global Binder lock must be acquired to make

progress. Threads that are waiting on a read operation release the lock, and wait in the

driver to be woken where they reacquire the lock and continue. Finally, the location of a

user process’s payload can be anywhere in the user’s address space and of unpredictable

size. In contrast, the OKL4 IPC implementation does have an IPC fastpath, it is not

multi-threaded, and accesses user data from a predetermined location (the thread’s

user thread control block, or UTCB). Binder offers not much in terms of optimising

IPC speed, and perhaps this was never a design goal of the developers. Interestingly,

the Android documentation markets Binder as a “lightweight remote procedure call

mechanism” [13], but did not use it to implement a truly component-based system.

The lack of an IPC fastpath can explain why TLB miss rates on Binder are much

higher than OKL4, effectively flushing the TLB once per iteration. This has a large

negative impact on Binder’s performance. Based on the calculated cost of a TLB miss

from section 5.4.2, the cost of 71 TLB misses is 14,484 cycles, or 15.6% of the processing

time. This is quite a large portion of the processing spent handling TLB misses. The

50

use of an IPC fastpath in OKL4 means it can minimise the amount of text and data

touched to reduce TLB misses.

Analysis of Java IPC Micro-benchmarks

It should first be noted that iterations were varied in these benchmarks to prevent the

cycle counter from overflowing and complicating the measurements. Several thousand

iterations is still plentiful to normalise variance. The results are also orders of magnitude

apart which makes noise less of an issue.

The OKL4 IPC results on Java required implementation of a JNI interface to OKL4

IPC. The payload was represented by an integer array, to mirror the OKL4 IPC message

registers, and to minimise the number of JNI calls required to perform IPC. The reason

for doing this is described at the end of this section.

In the C/C++ benchmark, Binder took an extra 35µs when moving from a 4 byte

payload to 124 bytes, but on the Dalvik VM it increased by over 1ms. The change

in payload size does not account for the difference on Dalvik. The only other change

is the use of JNI to fill up the payload of 31 integers. Using a Parcel, the standard

Java class used by Binder to send IPC data, one JNI operation is required to load each

integer for delivery. This is also the case for integer arrays where each integer is still

loaded one-by-one. The last column of table 5.5 measures the cost of all the payload

JNI calls when using a 124-byte payload. This benchmark was conducted only on Linux

due to time constraints. At each iteration the following is performed, two sets of 31

integers are written through JNI, and two sets of 31 integers are read through JNI, and

two calls through JNI are made to reset the Parcels for the next loop. This is a total

of 126 JNI calls, and takes almost a millisecond to perform. A rough estimate of the

cost of a single call can be calculated by dividing the total time by 126. This results

in 7.84µs per JNI call, which is longer than the round-trip-time of a 4-byte ping pong

using OKL4 IPC on C.

From these results it is clear that Java JNI has a devastating effect on IPC perfor-

mance. The number of JNI calls for the OKL4 benchmark was minimised to only one.

The performance benefit of doing this is highlighted with OKL4’s 124-byte round-trip-

time on Java outperforming Binder on C++ using a 4-byte payload.

The TLB miss rate while performing JNI is also incredibly high. Binder in C++

already places considerable stress on the Main TLB, effectively flushing it once per

iteration. Together with Dalvik and JNI, this appears to be the cause of the sharp drop

51

in performance for the 4-byte Binder round-trip-time on Java. Again using 204 cycles

as the cost of a TLB miss (from section 5.4.2), 500 TLB misses costs 102,000 cycles,

or 35.8% of the processing time. This also explains why the 4-byte round-trip-time on

OKL4 did not experience as large of a performance drop as Binder.

5.4.4 Input Framework

For the following tables, the first number presents the average and the second number

in brackets is the standard deviation.

OKL4 Linux

Cycles 3,119 (710.17) 11,825 (9,376)

Time(µs) 8.12 (1.85) 30.79 (24.42)

TLB Misses 2.22 (1.17) 7.93 (1.64)

Table 5.6: Results for obtaining an event.

OKL4 Linux

Cycles 159,952 (11,722) 797,831 (84,361)

Time(µs) 417 (30.53) 2,078 (220)

TLB Misses 200 (8.66) 1,409 (33.65)

Table 5.7: Results for the Java processing stage.

OKL4 OKL4 (no marshalling) Linux

Cycles 237,868 (22,736) 96,934 (12,329) 291,365 (49,723)

Time(µs) 619.45 (59.21) 252.43 (32.11) 758.76 (129.49)

TLB Misses 405.65 (28.84) 149.69 (5.7) 424.41 (11.33)

Table 5.8: Results for the IPC dispatch stage.

52

OKL4 Linux

Cycles 398,687 (32,457) 1,102,831 (100,692)

Time(µs) 1,038 (84.52) 2,872 (262.22)

TLB Misses 603.63 (32.68) 1,847 (26.69)

Table 5.9: Results for the entire input path.

Figure 5.8: Graph of the averages from table 5.6.

Figure 5.9: Graph of the averages from table 5.7.

Analysis of Obtaining an Event

The only real difference between the two implementations is that on Linux a read

system call is used, whereas the OKL4 implementation uses shared memory. Without

even running these benchmarks it is obvious that reading from shared memory is much

53

Figure 5.10: Graph of the averages from table 5.8.

Figure 5.11: Graph of the averages from table 5.9.

faster than performing a system call.

However, as discussed in section 4.3.1, a touch event consists of multiple sub-events.

On Linux there are 2 to 5 sub-events depending on the interleaving being applied. This

means that before a touch event is generated in the Java code and propagated through

the system, this stage of reading an event from the driver is performed multiple times.

However, the benchmark measures the cost of reading a single sub-event and not a whole

event. The saving on OKL4 is much more substantial if the results are multiplied to

cover a whole touch event, but this does not provide any useful data due to the large

variance observed in the Linux measurements. The code being measured was native

C/C++ and extremely small. It is more than possible the performance monitoring

54

framework was influencing the results.

To properly measure the input cost, another benchmark needs to be run that takes

measurements until a complete touch event has been read. This also needs to include

the processing done by the operating system to process the interrupt and wake up the

user process. Unfortunately, I did not have further time to carry this out.

Looking at the rest of the results, especially for the entire input path (table 5.9), it

is obvious that this stage of the input framework is not the bottleneck. Improvements

here will make little difference to the overall processing time.

Analysis of Java Processing

As discussed in section 5.3.4, the implementations on OKL4 and Linux vary, and so

no fair comparison between the two systems can be made here. However, the large

difference in the results is quite interesting. Android normally takes 2ms to process a

touch event, but the OKL4 implementation does it in 417µs. The steps in this stage

include:

1. Checking whether the event has a special purpose (but touch events always go to

user applications when the display is on).

2. Notifying the power management service that there is user activity happening.

3. Logging the event with the battery statistics service (I did not have time to

investigate the purpose of this).

4. Placing the event onto a shared queue, and notifying another thread.

5. Reading the event off the queue and examine what type of event it is.

6. Determining which process to send the event to.

My implementation included only stages 1, 4 and 5. This means the other parts of

this stage are very likely to be responsible for the factor of 5 slow-down experienced on

Linux. The number of TLB misses is a factor of 7 times more, and this will definitely

be contributing to the long processing time. Further profiling is required to determine

the true source of the issue, but JNI is likely to play a part. As observed in the IPC

micro-benchmarks, heavy use of JNI destroys performance.

55

Analysis of IPC Dispatching

The IPC micro-benchmarks more or less present best-case performance figures, but

are no indicator of real-world performance. The IPC dispatch results in table 5.8 are

benchmarks of real-world performance. As expected, OKL4 IPC outperforms Binder

IPC. However, the large differences shown in the micro-benchmarks is now but a small

gap in a real application. Knowing beforehand how expensive JNI can be, an extra set

of results was taken on OKL4 where dummy data was dispatched and no marshalling

was performed. This was done to be able to differentiate the cost of IPC from the cost

of JNI.

This extra data set again shows that JNI is responsible for the majority of the

processing time and TLB misses. In light of this, OKL4 is still 139µs faster than

Binder. Unfortunately, this saving is mostly dwarfed by the overall processing time of

the entire input path. Replacing Binder IPC with OKL4 IPC will improve the overall

time by about 5%. This is still a sizable result, but hardly comparable to the results

of the micro-benchmarks.

It is possible however to achieve near the performance of the results that do not do

marshalling. A custom JNI interface can be written to perform the entire marshalling

operation in one go in native code. This would yield roughly a further 12.8% increase in

performance by removing the JNI marshalling cost. This optimisation can be applied

to work around the slowness of Dalvik for all critical paths.

Interestingly, there have been complaints on the Android Developers Google group

about touch on Android destroying game performance [14]. Applying the above opti-

misation could help reduce the impact of touch processing on the system. Android is

addressing this issue for future releases by throttling the frequency of touch events to

35 per second.

5.5 Conclusions & Discussion

The goal of this thesis as outlined in section 1.2 was to port sufficient parts of Android

to OKL4 to be able to make system comparisons to Linux. The outcome of this goal

was to determine not only whether a complete port of Android is feasible, but whether

it is worthwhile. Continuing to port Android to OKL4 for no gain in performance is a

rather pointless exercise.

Throughout the thesis it was presented that OKL4 could improve the performance

56

of Android in several areas. They were the following:

∙ Memory-usage

∙ IPC performance

∙ Exploitation of superpages

Measuring the memory-usage of my incomplete port provides little indication as to

the usage of a complete port. Therefore this could not be investigated further than

speculation about OKL4’s minimality principle.

IPC performance on the other hand was investigated thoroughly due to Android’s

componentised design with user applications communicating with another userspace

process to access system services and devices, including input, video and audio. The

cost of IPC on Android for user applications was shown to be incredibly expensive, and

OKL4 IPC was shown to be much faster. However, the performance impact of using

an interpreted user environment (Dalvik) renders any performance improvements to be

minimal. The JNI implementation to access native code is amazingly slow, and the size

of Dalvik applies a lot of pressure on the TLB.

Unless Dalvik is improved substantially to be faster and smaller, for example by

making use of just-in-time compilation, the performance of the operating system un-

derneath will not have a large impact. The actual IPC process for OKL4 on Dalvik

accounts for at most 41% of the processing time, with the rest spent marshalling the

payload for delivery.

In Dalvik’s current state, another way to improve performance is to exploit super-

pages. My experiments show that a lot of time is spent handling TLB misses. I was

unable to implement transparent superpages and therefore could not measure the im-

pact this would have on all of the presented benchmarks. However, I believe it would

definitely have a very noticeable effect on overall system performance. With Linux’s

lack of transparent superpage support, OKL4 has the advantage.

The CaffeineMark 3.0 benchmark showed that raw Dalvik performance on OKL4 is

on par with that on Linux. IPC performance of OKL4 was shown to be much faster,

but Dalvik performance mitigates this benefit. Through further work, the benefits

of superpages on overall Android performance can be measured. Previous work by

Peng, Lueh, Wu, Gou and Rakvic [15], showed the use of 64KiB page and 1MiB pages

improved Java virtual machine performance by 9 to 48% and 24 to 48% respectively

57

for a SPECjvm98 workload. If similar results could be reproduced for standard system

workloads on Dalvik, an OKL4-based Android would quite definitely be worth pursuing.

Finally, it should be noted that if Android were to undergo proper componentisation,

by isolating unrelated services from one another, the increase in reliance on IPC would

make OKL4 the better candidate for a more trustworthy platform.

58

Chapter 6

Future Work

6.1 Limitations

My OKL4-based system has several limitations that need to be overcome to further

facilitate the porting process.

6.1.1 File System

Programming a boot image onto the ADP1 is done over a USB connection. The use of an

in-memory file system means that all files have to be transferred on every development

cycle. Initially the size of the file system was small, and the transfer completed quickly.

However, the in-memory file system peaked at approximately 60MiB in size by the

end of the thesis. This not only increased the compile time to package these files into

the boot image, but it also increased the transfer time. As a result, the compiling

and booting process now takes over a minute and hampers development efforts. This

problem will only become worse as the number of files increase. There is also an issue

when the file system size exceeds the ADP1’s memory capacity. Therefore it would be

desirable to make use of the SD card device to relieve these problems.

6.1.2 Dynamic Linker

Currently the system is compiled using static linking only. Most Android libraries are

configured to produce shared libraries. One particular issue is when Dalvik VM loads

a shared library at runtime, it searches for and executes a special function to register

native functions with JNI. I had to work around this by manually calling this special

59

function for each library in use. This was an acceptable solution for the short-term,

but dynamic linking is a necessity in the long-term.

6.1.3 C++ Support

C++ support in my build system and ELF loader is non-existent, and C++ static

initialisers are not being executed. This is a serious issue with a large amount of

Android libraries being written in C++ and results in obscure page faults at runtime.

In my thesis I consistently had to work around this by manually inserting code to

perform such initialisations when necessary. It wasted a lot of my time figuring out

that this was the problem behind many mystery bugs.

In the following example the variable foo is not initialised in my system because it’s

constructor is never being called. However, foo is meant to be constructed with the

default constructor.

class C {

public:

int val;

C(void) {

val = 5;

}

};

static C foo;

int main(int argc, char** argv) {

printf("%d\n", foo.val); // foo.val is not 5

return 0;

}

6.2 Additional Features

A complete port of Android to OKL4 offers many possibilities for future work. Some

of them are discussed below.

60

6.2.1 Transparent Superpages

As discussed in section 2.2.4, the trade-off for the performance of larger page sizes

is that internal fragmentation is likely to be larger and consume more memory. My

experiments have shown there is a lot of pressure on the TLB in Android. Moving from

a 4K page size to a 64K page size could improve overall performance significantly, and

reduce power usage as a result of having to process an order of magnitude less TLB

refills. The ADP1 also has roughly 96MiB of memory available to the user environment.

By inspection of the default build running on the ADP1, almost half of that is being

used to support the file cache in Linux. This is a lot of spare memory, and there

is a trade-off to be investigated between memory-usage, and performance and power.

Further work in this area would yield valuable data on how to improve the performance

of Android.

6.2.2 Binder

Binder is used in many of Androids subsystems. Both video and input require it, and

user applications use it to communicate to the System Server. A complete port without

Binder would not be feasible.

An implementation of Binder on OKL4 would require a monolithic Binder Server

component in the system. Binder’s duties involve:

∙ registering and allowing access to RPC services

∙ reference counting of Binder objects (capability to an object provided by a service)

that are passed through Binder

∙ sharing memory between processes by passing around file descriptors

Registering RPC services and requesting access to them can be handled by the

Binder Server, by keeping a global list of registered services and returning unique han-

dles to users. In the general case, communication between a client and service can

be direct. However, if a reference-counted Binder object is being distributed to an-

other process, the message must pass through the Binder Server to be able to process

the reference-counting. This incurs extra overhead of having to double the number of

IPCs to transfer a Binder reference. I have observed that distributing access to Binder

references is not a critical operation that occurs frequently. Getting access to a ser-

61

vice usually happens once. Using the service is more common and in the proposed

implementation this communication is done directly.

Finally, the Binder Server in a component-system would not have the necessary

capabilities to create and distribute shared memory. An appropriate interface is needed

with another component that does have such capabilities, such as the rootserver in my

current OKL4 system.

6.2.3 Zygote

With a Binder implementation, porting the System Server should be a much smoother

process. The next step is to facilitate launching new Dalvik VM instances. This is

achieved with the Zygote process as discussed is discussed in section 2.1.3, and requires a

fork implementation. OKL4 can support fork through the use of the ExchangeRegisters

system call, which allows you to read the register values of a thread.

In Android, the Zygote listens on a socket and forks new Dalvik VM instances on

request. An OKL4 implementation could simplify this by replacing the use of sockets

with IPC, and provide the System Server with an IPC capability to the Zygote.

62

Appendix A

System Calls

The following function prototypes are the Linux system calls that have been imple-

mented in the Android on OKL4 port.

int __futex_wait(volatile void* ftx, int val, const struct timespec* timeout);

int __futex_wake(volatile void* ftx, int count);

void* __brk(void* addr);

pid_t gettid(void);

pid_t getpid(void);

void* __get_tls(void);

int __set_tls(void* addr);

int __open(const char* filename, int flags, mode_t mode);

int close(int fd);

ssize_t read(int fd, void* buf, size_t length);

ssize_t write(int fd, const char* buf, size_t n);

int stat(const char* filename, struct stat* buf);

int fstat(int fd, struct stat* buf);

off_t lseek(int fd, off_t offset, int mode);

int flock(int fd, int operation);

void* __mmap2(void* addr, size_t len, int prot, int flags, int fd, long offset);

int munmap(void* addr, size_t size);

int mprotect(const void* addr, size_t len, int prot);

int __ioctl(int fd, int op, void* data);

int uname(struct utsname* buf);

int clock_gettime(clockid_t clk_id, struct timespec* tp);

63

int __getcwd (char* buf, size_t size);

int gettimeofday(struct timeval* tv, struct timezone* tz);

int sched_yield(void);

int __getpriority(int which, int who);

int setpriority(int which, int who, int prio);

int __pthread_clone(int(*fn)(void*), void* child_stack, int flags, void* arg);

int prctl(int option, unsigned long arg2, unsigned long arg3, unsigned long arg4,

unsigned long arg5);

int __fcntl64(int fd, int cmd, void* arg);

int nanosleep(const struct timespec* req, struct timespec* rem);

64

Bibliography

[1] Patrick Brady. Anatomy & Physiology of an Android. http://sites.google.

com/site/io/anatomy--physiology-of-an-android, 2008.

[2] Matt Richtel. Google: Expect 18 Android Phones by

Year’s End. http://bits.blogs.nytimes.com/2009/05/27/

google-expect-18-android-phones-by-years-end/, 2009.

[3] David A. Wheeler. Linux Kernel 2.6: It’s Worth More! http://www.dwheeler.

com/essays/linux-kernel-cost.html, 2007.

[4] Gernot Heiser. Advanced Operating Systems Lecture 1. http://www.cse.unsw.

edu.au/˜cs9242/08/lectures/01-intro.pdf, 2008.

[5] Dan Bornstein. Dalvik VM Internals. http://sites.google.com/site/io/

dalvik-vm-internals, 2008.

[6] Jesse Burns. Developing Secure Mobile Applications for Android: An Introduction

to Making Secure Android Applications. http://www.isecpartners.com/files/

iSEC_Securing_Android_Apps.pdf, 2009.

[7] Linux Online - GNU General Public License. http://www.linux.org/info/gnu.

html.

[8] Carl van Schaik and Gernot Heiser. High-Performance Microkernels and Virtuali-

sation on ARM and Segmented Architectures. Proceedings of the 1st International

Workshop on Microkernels for Embedded Systems, 2007.

[9] ARM. ARM1136JF-S and ARM1136J-S Technical Reference Manual. http://

infocenter.arm.com/help/topic/com.arm.doc.set.arm11/index.html, 2009.

[10] LXR linux/Documentation/vm/hugetlbpage.txt. http://lxr.linux.no/#linux+

v2.6.31/Documentation/vm/hugetlbpage.txt.

65

[11] Ulrich Drepper. Futexes Are Tricky. http://people.redhat.com/drepper/

futex.pdf, 2009.

[12] Developing on a Device — Android Developers. http://developer.android.

com/guide/developing/device.html, 2009.

[13] Binder — Android Developers. http://developer.android.com/reference/

android/os/Binder.html, 2009.

[14] Touch *extremely* expensive performance-wise - Android Developers — Google

Groups. http://groups.google.com/group/android-developers/browse_

thread/thread/39eea4d7f6e6dfca.

[15] Jinzhan Peng, Guei-Yuan Lueh, Gansha Wu, Xiaogang Gou, and Ryan Rakvic. A

comprehensive study of hardware/software approaches to improve tlb performance

for java applications on embedded systems. In MSPC ’06: Proceedings of the 2006

workshop on Memory system performance and correctness, pages 102–111, New

York, NY, USA, 2006. ACM.

66

