UNSW

AUSTRALIA

School of Computer Science and Engineering
Faculty of Engineering

The University of New South Wales

Trianqles: Porting Qubes to selL 4

by

Adam Felizzi

Thesis submitted as a requirement for the degree of

Comp Sci & Eng (Honours)

Submitted: November 2017 Student ID: z3463674
Supervisor: lhor Kuz Topic ID: 3289

Adam Felizzi Trianqgles: Porting Qubes to sel/

Abstract

Qubes is a security-oriented desktop operating system architecture, aiming to provide security through
compartmentalization and isolation. This approach focuses on separating applications and operating
system services across separate virtual machines (VMs), preventing exploited applications from compro-
mising the entire operating system.

An integral part of Qubes system architecture is its use of the Xen hypervisor to provide all of its under-
lying virtualization. Qubes has currently reported 27 CVE’s (Common Vulnerabilities and Exposures)
relating to Xen in 2017 alone [Pro17a], and multiple more since its inception in 2010, a substantial por-
tion of which directly compromises the security of Qubes users. Thus Qubes security guarantees are
dependent on a relatively heavyweight and unsecure hypervisor to enforce its isolation. Porting Qubes to
a more secure architecture becomes increasingly justifiable, motivating a project to move Qubes to sel.4,
a formally verified microkernel to provide stronger guarantees for achieving isolation and security.

This thesis aims to start laying the necessary implementation framework for achieving a port of Qubes
on sel.4. This is demonstrated by porting a viable subset of the Qubes architecture to run on sel.4.

Adam Felizzi Trianqgles: Porting Qubes to sel/

Acknowledgements

I would like to thank my supervisor Thor Kuz for giving me valuable guidance and feedback throughout
the past year. It was a privilege to receive Thors mentorship throughout the thesis as he helped me keep
on track. I would like to thank Kent and Anna for sharing their technical knowledge and giving valuable
advice when it came to dealing and managing thesis studies. Thank you to my assessor Gernot for taking
the time to review my work and for giving me valuable feedback from thesis part A. I would lastly like
to generally thank the people at Data61 for welcoming me, giving me the resources and opportunities to
learn and grow throughout the course of my thesis, it was a privilege.

ii

Adam Felizzi

Abbreviations

OS Operating System

IPC Inter-process Communication

VM Virtual Machine

VMM Virtual Machine Monitor

PV Paravirtualisation

HVM Hardware Virtual Machine

APIT Application Programming Interface
TCB Trusted Computing Base

GUI Graphical User Interface

iii

Trianqgles: Porting Qubes to sel/

Adam Felizzi

Contents

1 Introduction

2 Background

2.1 Monolithic Operating Systems
2.1.1 Monolithic Operating System Design
2.1.2 Security vulnerabilities

2.2 Virtualisation
2.2.1 Type 1 Hypervisor
2.2.2 Type 2 Hypervisor

2.3 Paravirtualisation

2.4 Virtualisation for Security

25 Xen ...
2.5.1 Xen Paravirtualisation

26 seld
2.6.1 Microkernel
2.6.2 Capabilities
2.6.3 CAmkES
2.6.4 CAmKES specification
265 VMM

3 Qubes

3.1 Overview of Qubes

3.2 Qubes 3.2 architecture

33 XenTools
3.3.1 Event Channels (evtchn)

iv

Trianqgles: Porting Qubes to sel/

Adam Felizzi

Trianqgles: Porting Qubes to sel/

3.3.2 Grant Tables (gnttab) L 13
333 Xenstore.o 13
3.3.4 Libxenlight (libxl) 14

3.4 VChan Library e 14
35 QTeXeC . . . v oo e 15
3.6 Qubes VM Classes v v v v i it e e e e e e e e e e 16
3.6.1 Admin VM (domO) 16
3.6.2 Service VM 18
3.6.3 AppVM . . . 18
3.6.4 Template VM L e 19
3.6.5 Additional VM Classes oo 19

3.7 Hypervisor Abstraction Layer (HAL) 19
4 Related Work 21
4.1 Application Security for Operating Systems 21
4.1.1 Virtics . . . oL 21
4.1.2 Genode e 21
4.1.3 Dune. e e 22
4.14 Bromium 22

4.2 Compartmentalization and Isolation L. 22
4.3 Past work e 22
5 Design 24
5.1 Risk and Roadblocks 24
5.2 Designing a Minimal Viable Qubes (MVQ) 24
5.3 Minimal Viable Qubes on sel.4 & CAmkKES 27
5.3.1 Porting VChans e 27
5.3.2 Libvirt and VM Manager o 28
5.3.3 Porting Qrexec and Qubes Admin Modules L. 28
5.3.4 Ethernet Component 29

Adam Felizzi Trianqgles: Porting Qubes to sel/

5.3.50 Fileserver 29
5.3.6 MVQ Architecture L 29

6 Implementation 30
6.1 MVQ Configuration 30
6.1.1 Guest VM Images 30

6.2 seldstore 30
6.2.1 seldstore CAmKES component 30
6.2.2 Cross-VM RPCs e 31
6.2.3 Library APT. 32

6.3 Event Channels e 32
6.3.1 Library APT. o e 32
6.3.2 Kernel Driver 33
6.3.3 VMM Handler e 34
6.3.4 Event Channel CAmkKES Component 34
6.3.5 Future Work & Improvements Lo 35

6.4 Share-Allocator e 35
6.4.1 CAmkES component 36
6.4.2 Kernel Driver 36
6.4.3 VMM handler. e 37
6.4.4 Library API. o e 37
6.4.5 Future Work & Improvements L L o 38

6.5 Porting VChans & Qrexec 38
6.6 vm-manager 38
6.7 Porting Qubes Admin Modules & qvm-tools Lo 39
6.8 Linux File Server 39
6.8.1 Future Work & Improvements 40

vi

Adam Felizzi

Trianqgles: Porting Qubes to sel/

7 Evaluation 41
7.1 Benchmark Configuration 41
7.1.1 Hardware Setup 41

7.1.2 System Setup and Testing L 41

7.2 Benchmarking Event Channels o o 42
7.2.1 Benchmarking Program 42

7.2.2 Benchmarking Results 42

7.3 Benchmarking VChans L 43
7.3.1 Benchmarking Program 43

7.3.2 Benchmarking Results 43

8 Roadmap 45
9 Conclusion 46
Bibliography 47
Appendix 1 - Library Interfaces 49
Appendix 2 - CAmKES Specification 53
Appendix 3 - Lines of Code 60

vii

Adam Felizzi Trianqgles: Porting Qubes to sel/

Chapter 1: Introduction

The primary goal of this thesis is to evaluate the viability of seL.4 as a virtualisation platform for
Qubes. Qubes is a security-focused desktop operating system (OS) architecture which leverages
virtualisation as a means to isolate monolithic operating system services. The thesis seeks to enable
Qubes on sel.4 through utilising existing sel.4 virtualisation services, and in doing so, we:

e Assess the viability of sel.l4 as a virtualisation platform for supporting the Qubes framework
e Propose solutions that would enable Qubes to run on sel.4

e Identify the challenges, requirements and road-blocks to support a full Qubes port to sel.4.

Qubes is an open-source desktop operating system architecture developed by Invisible Things Labs,
designed with a focus on security. Key to Qubes approach towards security is to minimise the trusted
computing base (TCB) of traditional monolithic desktop operating systems by moving untrusted
system services (e.g. device drivers and applications) into isolated domains. To achieve this Qubes takes
advantage of isolation mechanisms provided through modern virtualisation systems (e.g. hypervisors)
and hardware technologies, such as Intel VT-x, VT-d and Intel Trusted Execution Technology (TXT).
Through virtualisation, Qubes presents a compartmentalised OS, where dedicated virtual machines
(VMs) are used to run untrusted applications, sandboxing their potential bugs and vulnerabilities that
could otherwise compromise the entire system in a traditional monolithic OS. Currently underpinning
Qubes’ virtualisation is the Xen hypervisor.

Critical to enforcing Qubes’ isolation is the virtualisation service it runs on, making it one of the most
security critical elements in the system. Exploiting a bug in the hypervisor could potentially result in
an attacker compromising the entire system. Further motivating this problem is that such
vulnerabilities have unfortunately been found in Xen. Qubes has currently reported 27 CVE’s
(Common Vulnerabilities and Exposures) relating to Xen in 2017 alone [Prol7al, and multiple more
since its inception in 2010. A large majority of these vulnerabilities break the fundamental isolation
mechanisms Qubes relies on which significantly impacts the security of a Qubes user.

The security concerns introduced by Xen motivates the goals of this thesis. By porting Qubes to sel.4,
we ask:

e Would sel.4 provide stronger security guarantees?

e What engineering would be required to enable Qubes on sel.4?

sel4 is a high performance microkernel which is noted for its comprehensive formal verification of
implementation correctness [KEH1T09] [KAE*14]. As a microkernel, seL4 provides a small core subset
of machine abstracts for controlling access to physical and virtual address spaces, threads, scheduling,
page tables and interprocess communication (IPC). Thus sel.4’s microkernel architecture provides the
necessary minimal base to build a virtual machine monitor (VMM) solution, which in combination with
its formal verification provides for a convincing alternative to Xen when investigating security benefits.

Qubes however relies on a comprehensive set of virtualisation toolstacks and services supported by Xen.
This presents the challenge of engineering. Through this thesis I aim to deconstruct Qubes, identify the

Adam Felizzi Trianqgles: Porting Qubes to sel/

various services and toolstacks Qubes relies on and look to implement them in an sel.4-based
environment.

The result of this thesis was not the full port of Qubes to seL4, rather the focus throughout the thesis
was on porting a minimal viable subset of the Qubes architecture, to serve as both a stepping stone and
proof-of-concept for a full Qubes port in the future. The final product, which will be discussed in
proceeding sections, is completed in a static environment which is not representative of a complete
dynamic Qubes system. Contributions through this thesis focus on:

e Identifying and understanding the Qubes code base, the inner workings of its various services and
its dependencies.

e An implementation of a core set of services that facilitate inter-VM communication mechanisms
and virtualization API’s, such that it can support the Qubes code base.

Though the implementation is within a static environment we will explore designs that allow the
discussed system to be easily migrated to a more dynamic solution in the future.

This thesis presents a discussion of relevant background information in Chapter 2. Chapter 3 will
expand on background information relating to Qubes. We will investigate existing approaches and
related works in Chapter 4. Chapter 5 introduces my approach to porting Qubes and Chapter 6
subsequently analyses the specific implementation details behind my designs. Chapter 7 evaluates my
implementation and future work based from the implementation will be outlined in Chapter 8. Lastly
Chapter 9 concludes my thesis.

Adam Felizzi Trianqgles: Porting Qubes to sel/

Chapter 2: Background

To understand the background of Qubes and its underlying motivations, we will first identify what a
monolithic operating system (OS) is, unpack key design elements and fundamental security issues that
suggest an alternative OS design. The primary concepts of virtualization and the state of hypervisor
solutions with regards to both Xen and sel.4 are addressed.

2.1 Monolithic Operating Systems

At a high level, an OS plays two distinct roles [TB14]. The first of which being the OS acts as an
extended machine. In doing so, the OS provides a clean representation of system resources of which
programmers can utilize to develop applications. These abstractions allow applications to become
hardware agnostic, enabling them to run in a diverse set of environments, irrespective of the underlying
hardware resources. The second role of the OS is that it acts as a resource manager, organizing the
underlying hardware to provide a controlled and shared interface to the various programs utilizing them.

In this shared environment it becomes necessary to protect applications from potentially malicious or
incorrect behaviours of other applications running on the same system. In the case of incorrect or
malicious behaviour it becomes critical for the OS to enforce system wide policies, which introduces a
variety of unique OS designs such as Qubes.

2.1.1 Monolithic Operating System Design

A monolithic kernel is an OS architecture where a large majority of the system components reside in
the kernel, executing in a privileged mode. This includes device drivers, file systems, IPC systems,
schedulers and memory management. In a traditional monolithic kernel design, this composition allows
privileged components to call any other part of the system, which without restriction can often make
understanding the system complicated and cumbersome. Structure is however defined between the
privileged kernel level and a unprivileged user level from which applications are run. Additionally
applications are able to interact with the abstractions provided by the OS through an extensive system
call interface. Performing a system call will usually initiate a trap instruction that results in
transferring control to the underlying OS to handle the privileged operation.

Monolithic kernel designs are seen to be used in many modern OSes including Unix, Linux, BSD and
Windows.

Adam Felizzi Trianqgles: Porting Qubes to sel/

2.1.2 Security vulnerabilities

“Can we rely on a big, fat, and buggy kernel that has hundreds of drivers inside, networking
stacks, and so forth to enforce strong isolation?... People who regularly release kernel
exploits for popular OSes (Linux being no exception) seem to be yelling: NO!”
— Joanna Rutkowska, Founder of Qubes, Interview, Qubes OS: An Operating System
Designed For Security, 2011 [Dan11]

Today monolithic OSes, such as Windows or Linux, are being deployed on an increasing number of
different hardware platforms with varying configurations. To accommodate for such support, the
number of services and components within the kernel also increases. This directly impacts the size and
complexity of the OS code base. In 2017, the Linux 4.12 kernel has 20+ million lines of code, averaging
795 line additions per hour during its 63 day development [KH17]. Hence a monolithic OS consists of a
large trusted computing base resulting in a complex attack service. The growth and size of such a code
base introduces multiple security concerns.

An increasing number of new components and drivers introduces a potential set of new bugs and faults.
In a monolithic system, faults in a privileged mode can often make it difficult for the kernel to recover,
often compromising the entire system. This is increasingly problematic however as that there is little
effective isolation between the various drivers and components within the kernel. An exploit of a kernel
bug can in effect compromise the security of other components in the system and the applications using
them. If a bug is exploited through a user application or core system service (e.g. Ethernet driver), the
OS is unable to guarantee protection over other applications and user data from being compromised.

Finally as the monolithic kernel code base grows so does its complexity, which makes it increasingly
difficult to verify and reason that the kernel is fault-free. Traditional approaches to dealing with found
bugs and exploits are reactive whereby developers release security patches on a bug-by-bug basis. This
particularly doesn’t scale well as it does not assure protection against future vulnerabilities.

2.2 Virtualisation

Virtualisation refers to the method of running software, such as an OS, within a virtual environment
that emulates native hardware. This technology allows a single computer to host multiple virtual
machines each of which host different operating systems. Advantageous to this approach is that a
failure of a single virtual machine won’t impact other virtual machines running on the same computer.
This introduces a fault tolerance model that is both cost effective and easy to maintain [TB14].

Virtualisation generally works by establishing a hypervisor (or virtual machine monitor) that runs the
guest OS in user mode. The guest OS faults whenever it tries to execute a privileged instruction,
allowing the hypervisor to emulate the sensitive instruction. There are two general approaches to
implementing hypervisors, being Type 1 and Type 2 hypervisors.

2.2.1 Type 1 Hypervisor

A type 1 hypervisor runs on bare metal. In a sense, a type 1 hypervisor becomes the host OS being the
only program that runs in kernel mode. Guest virtual machines run on top of the hypervisor as a user
process in user mode. Therefore when the guest OS executes a sensitive instruction that traps into the

Adam Felizzi Trianqgles: Porting Qubes to sel/

hypervisor, the hypervisor inspects the instruction and emulates it on behalf of the guest. In placing
the hypervisor in kernel mode it becomes the most privileged software in the system. In comparison to
a monolithic kernel, the complexity and code size of a hypervisor is an order of magnitude smaller than
a full operating system, thus having a reduced attack surface and potentially less bugs.

2.2.2 Type 2 Hypervisor

In contrast to the privileged operation of a type 1 host, a type 2 hypervisor runs as a user program
within a host OS. A type 2 hypervisor is able to host a virtual machine, interpreting the guest OS
machine instruction set. Popular type 2 hypervisors such as VMware & Virtualbox run as ordinary user
programs on top of a host operating system such as Windows and Linux. When starting guest
operating system, these hypervisors often use a form of binary translation, executing the guest OS
binary but translating sensitive instructions to call internal hypervisor procedures that emulate the
sensitive instruction.

2.3 Paravirtualisation

The discussed methods of trapping and emulating sensitive instructions and performing binary
translations in a fully virtualised environment can however have negative impacts on the performance of
the virtual machines. Support for full virtualisation wasn’t originally part of the x86 architecture,
where executing certain instructions with insufficient privileges would silently fail without ever causing
a trap. Solutions to this problem often involved dramatic changes that would introduce performance
inefficiencies. Examples including hypervisor solutions [BDFT03] dramatically rewriting portions of the
binary to emulate non-trapping instructions and all updates to system structures (page tables).
Processing and emulating these sensitive instructions introduces extra cycles, significantly impacting
the performance of the guest OS if it frequently accesses these instructions with the assumption that it
is the most privileged process.

To deal with these problems, paravirtualisation techniques were developed. In a paravirtualised system,
the guest OS is aware that it is being run on a hypervisor and explicitly makes calls to the host
OS/VMM to perform privileged operations. The VMM often defines a custom interface with which the
guest OS is able to access. This interface can be designed around to reduce the total number of entries
and exits performed between the VMM and guest OS.

2.4 Virtualisation for Security

Virtualisation provides a possible solution to isolating the processes found in a monolithic operating
system, enabling multiple operating systems to be instantiated and run on top of a hypervisor. This
functionality is leveraged by Qubes to create isolation containers, where applications and system
services are executed within separate user defined virtual machines (VMs). Advantageous to this
approach is a simplified interface that exists between a VM and a hypervisor where the number of
services and interfaces provided by a hypervisor are orders of magnitude smaller than a traditional OS
(e.g. hypervisors don’t provide services such as file-systems and networking). This effectively reduces
the overall trusted computing base, providing a smaller attack surface and enforcing stronger isolation
between processes. Further motivating this approach is the maturity of hardware support for

Adam Felizzi Trianqgles: Porting Qubes to sel/

virtualisation on modern desktop computers such as Intel VT-d, providing effective I/O sandboxing
mechanisms for hardware, e.g. isolating a networking card code prone to compromise.

2.5 Xen

The Xen hypervisor is an open source type 1 (bare metal) hypervisor that makes it possible to run
multiple operating systems in parallel on a single machine. Xen provides support for two different types
of virtualisation, being Paravirtualisation (PV) and Hardware-assisted Virtualisation (HVM), both of
which can be run at the same time on the single hypervisor. Xen PV enabled kernels exist for Linux,
NetBSD, FreeBSD and OpenSolaris [Prol7d], being configured with PV drivers.

Xen also supports paravirtualisation in a HVM guest to by-pass disk and network I/O emulation. The
Xen project also introduced a new virtualisation mode called PVH in version 4.5, which involves a
kernel using PV drivers for boot and I/0, whilst using HW virtualisation extensions for the remaining
parts of the system.

The standard Xen configuration involves a control domain VM, known as dom0. Dom0, typically
configured as a Linux guest (though support for NetBSD and OpenSolaris exist), is the first VM to
boot in a Xen system. Dom0 typically contains special privileges to access hardware directly, handles
system I/O and is able to interact with other guest VMs (domU’s). In addition dom0 contains a control
stack that enables it to start, stop, destroy and configure other guest VMs on the hypervisor.

The Xen hypervisor provides all the virtualization facilities for Qubes.

2.5.1 Xen Paravirtualisation
Paravirtualisation in Xen is used to support [Prol7c]:

e Disk and Network drivers
e Interrupts and timers
e Emulated Motherboard and Legacy Boot

e Privileged instructions and Page Tables

In the Linux kernel, paravirtualisation support is added through a combination of PV frontend and
backend I/O drivers and paravirt operation extensions (PVOPS). PVOPS are a specific piece of Linux
kernel infrastructure that allows the kernel to be optimised for low level operations within the
virtualisation stack. PV frontend and backend I/O drivers act in a client-server fashion whereby a VM
with passthrough hardware access will host a backend driver that communicates to another guest VM
hosting a frontend driver. The frontend driver presents a virtual interface within the guest OS for I/0O
devices such as block and network interfaces. This is also known as a split-driver configuration. The
split driver model is illustrated in Figure 2.1, involving a guest OS interacting with various other
domains that have passthrough access to hardware.

Adam Felizzi Trianqgles: Porting Qubes to sel/

Applications
DomO Guest OS Kernel Driver Domain
[PV Backend }4 ******** >{ PV Frontend] . r{ PV Backend]
[Driver] [PV Frontend [« [Driver |
x x
Xen
------- Sy papupupayuapat Aupupupapupupapay

Figure 2.1: Overview of the Xen Paravirtualisation

2.6 sel4

2.6.1 Microkernel

In contrast to monolithic operating systems, microkernels look to reduce the amount of functionality in
the kernel. This involves reducing the kernel to a minimal core subset of functionality and machine
abstractions needed to implement an OS. A reduced code base that operates in kernel mode makes for a
strong case as its reduces the potential attack surface and the opportunity for bugs.

Additional OS functionality, such as file systems and device drivers are then implemented as user
processes running on top of the microkernel. This adds a layer of fault tolerance such that when a
driver crashes it significantly reduces the chance that the entire system will crash. When a driver faults,
the fault occurs at the user level which the kernel can then capture and deal with appropriately without
impacting the other processes running on the same system.

Message passing communication between processes is then achieved through an Inter-process
Communication mechanism (IPC). In addition, the microkernel implements a core subset of
functionality such as scheduling, memory management and access control.

sel4 is a high performance microkernel, noted for its comprehensive formal verification of
implementation correctness. The implementation of seL.4’s formal specification means that if initialised
and used properly, according to the proof and hardware assumptions, the microkernel enforces the
strong security properties: integrity, confidentiality, and availability [KAE*14]. There are also further
proofs that extends sel.4’s formal specification and functional correctness to the binary [KAET14].

As a microkernel, sel.4 provides a minimal set of machine abstractions for controlling access to physical
and virtual address spaces, threads, scheduling, page tables and a mechanism for inter process

Adam Felizzi Trianqgles: Porting Qubes to sel/

communication (IPC).

2.6.2 Capabilities

User land access to kernel services and objects on selL4 is mediated through a capability-based access
control system. In sel.4, every kernel managed object has a capability associated with it that in turn
specifies the rights of the user application when using the object. Each process stores its capabilities in
its own capability space (cspace). When a process performs an action on a given object it will pass its
capability which sel.4 will verify before performing the action. Through its capabilities, seL.4 provides a
strong security model that prevents resources from being accessed without the necessary capability.

Some of the objects and resources you can create on sel.4 include threads, page directory objects,
notification endpoints, synchronous endpoints, memory (RAM) frames and device memory.

2.6.3 CAmkES

CAmkES, a Component Architecture for microkernel-based Embedded Systems is a software
development and runtime framework that enables for the rapid and reliable development of static
multi-server operating systems based on the sel.4 microkernel. A CAmkKES system typically consists of
a series of software components, interconnected though statically defined connections. The CAmKES
framework provides a language to describe components and connections in the system, a toolstack to
automatically generate necessary glue code for a complete, bootable system image and integration with
the selLl4 environment and build system.

It is important to note that CAmKES is used to define static multi-server systems whilst as we expand
on Qubes in later sections, we will find that Qubes is a dynamic system. In the context of this thesis,
CAmkES has mature and up-to-date VMM support whilst also providing the convenience of rapidly
prototyping a Qubes-like system. This allows the focus of the thesis to move towards Qubes specific
systems, however the need for a dynamic platform as future work is a topic that will be identified and
expanded on in future sections.

2.6.4 CAmKES specification

A CAmKES specification defines the components, interfaces and connectors in the multi-server operating
system. The composition of these objects are described through a language provided in the CAmkES
framework. Some of the CAmKES terminology will be expanded upon in the following subsections.

Interfaces

An interface is an exposed interaction point of a component. There are different types of interface types
that a component can interact with, being procedures, events and port type interfaces. A procedure
interface can be seen as a series of function/ procedure prototypes which software components in the
system will either implement or use. An event is an asynchronous signal interface similar to that of an
interrupt. Lastly a port represents a shared memory interface between two components.

Adam Felizzi Trianqgles: Porting Qubes to sel/

Components

A component is a single software item that is configured to implement or use a series of interfaces
defined in its specification. In the context of this thesis, a component is a C program. Components can
be in either an active or passive state. In an active state a component has a thread of control,
containing a main function. In contrast, a passive state component lacks a thread of control.

In the context of seL4, a component has its own cspace that stores the capabilities of all the kernel
objects it will use. In addition, active components will have their own virtual address spaces, page
directories and thread control blocks (TCB).

Connectors

Connectors are a type of link between component instances. A common connector type includes a
Remote Procedure Call (RPC) connector, allowing one component to invoke a procedure in other
components. From the component programmers point of view, invoking a connection would simply
involve calling a function however behind the scenes the CAmKES build system generates glue code to
implement the specific connection.

2.6.5 VMM

Fundamental to developing a Qubes-based system on sel.4 is the ability to instantiate VMs within the
selL4 run-time environment. selL4 currently has a VM library implementation with mechanisms for
constructing VMMs. sel.4 has virtualisation support for x86 and ARM architectures, where sel.4 runs
as the hypervisor (in Ring-0 mode on x86 or hyp-mode for ARM), forwarding virtualisation events to a
de-privileged VMM for emulation (running in Ring-3 mode on x86 or supervisor mode for

ARM) [Kuz16]. Furthermore, VMs are supported in seL4 CAmkKES. A CAmkES VM component
consists of one VM per VMM, with support for communication mechanisms between VMs (dataports
and events). Currently there is only 32-bit VM support on sel4.

VMM Library

selL4 has a library, libseldvmm, that provides methods for constructing,initialising and managing
VMMs. More specifically, this can be used to initialise the relevant VMM kernel objects, including a
TCB, cspace, VCPU, Fault IPC endpoint, memory frames and extended page table (EPT) directory.
The VMM library also provides mechanisms for booting the VMM, managing Direct Memory Access
(DMA), catching VM exits and generating interrupts within the guest OS.

CAmKES Init Component

To use the VMM implementation in CAmkES on x86 a special initialisation component, Init, is used.
Init is an active component required to perform the creation of kernel objects for the guest, initialise
the necessary devices and setup a VM exit handler that waits for and handles VM exits.
Implementation details discussed through this thesis will involve extending the VM exit handler to
accommodate for necessary PV interfaces Qubes utilizes.

Adam Felizzi Trianqgles: Porting Qubes to sel/

Cross VM Connectors

The CAmKES VM project also introduced mechanisms to connect guest Linux processes to regular
CAmKES components. The connectors include:

e Dataports: mechanism to share memory between a CAmKES component and guest Linux process
e Consume Event: mechanism to wait for or poll for an event emitted by a CAmkES process

e Emit Event: mechanism to emit an event to a CAmkES process

The connectors are implemented through 3 kernel drivers in the guest Linux, in addition to Linux
library syscall wrappers and utility programs to interact with the cross-vm mechanisms. These are
compiled into the root file system image.

10

Adam Felizzi Trianqgles: Porting Qubes to sel/

Chapter 3: Qubes

3.1 Overview of Qubes

Qubes OS is a security-oriented OS that is both free to use and open source. Qubes’ approach towards
security is through introducing a compartmentalised OS architecture. A compartmentalised approach to
security focuses on separating the various services and applications that exist in a traditional monolithic
kernel into separate isolated domains. In the case of Qubes, the seperate domains are VM’s, typically
hosting Linux guest operating systems. FEach domain, also referred to as a “Qube”, is isolated from each
other preventing domains from being able to compromise others. An example application where this is
useful can involve web browsing. In this scenario a domain is dedicated for visiting untrusted websites
whilst another domain hosts user critical data e.g. online banking details. This way if the web browser
application is compromised in the untrusted domain, the users online banking details will still be safe.

Qubes is currently supported on Xen with the ability to instantiate 64-bit Fedora, Debian, Archlinux and
Whonix Linux VMs. Qubes is built to run on x86-64 processor architectures, utilizing specific hardware
virtualisation support such as Intel VT-x, enabling multiple virtual machines to efficiently and safely
utilize x86 processor resources.

The version of Qubes this thesis will focus on is release 3.2, however it is important to note that during
the implementation of this thesis the Qubes team released version 4.0. The significant difference between
these versions is that the Qubes development team decided to forego paravirtualisation support, opting
to enforce hardware-based virtualisation (HVM) for all VM domains [Rut17]. A significant factor behind
this decision is that a large majority of Xen security vulnerabilities that impacted Qubes throughout is
development were due to bugs founds in Xen’s paravirtualisation support.

3.2 Qubes 3.2 architecture

At a high level, the types of VMs the Qubes architecture relies upon can be divided into two general
categories:

e System VMs: focused on providing system wide services e.g. networking and block device access.

e AppVMs: typically used to host user applications such as web browsers or email clients.

Tllustrated in Figure 3.1, Service VMs include the Network VM and USB (Storage) VM. Interfacing
Service VMs to hardware is an extensive use of Intel’s VT-d extension, a virtualisation technology most
important to Qubes’ security model. Intel VT-d provides an IOMMU, allowing devices to perform direct
memory accesses (DMA) to communicate with software. Intel VT-d is used to restrict devices in specific
memory domains, preventing malicious devices from accessing regions of memory that would compromise
system security. The components highlighted in blue make up the TCB of Qubes, being Xen and Domain
0. These components in particular manage the VMs and enforce system-wide policies.

11

Adam Felizzi Trianqgles: Porting Qubes to sel/

A A l
: VT-d VT-d

VT-d , |

"Work" "Personal” "Random" .
AppVM AppVM AppVM e

Figure 3.1: Overview of Qubes Architecture [RW10]

Further detail of the elements that exist within each of these VM’s are illustrated in Figure 3.2. Unpacking
the specifics of Qubes’ architecture will be used as a means for identifying the critical components that
would be essential to develop a Qubes-based system on selL4. Further subsections will identify each of
these critical components and discuss their intended function.

Xen Hypervisor

x i Xen Block Driver Protocof

FirewallVM

AppVM 1

i Xen Disk.
libxenlight
libvirtd JU N ., Xen Net Backend
st Xen Net Frontend 5
G Xen Net Frontend S
1P Tables
2
‘ 2 User Apps QubesDB
§
g
Y 2
g 2
A ¢
i 2
H 5
<
:
H =2 s
: = £
2 3 5
g H
Qubes Core |€--- g = 3
E Xen Net Backend
Qubes GUI Agent
qum-tools — N Qubes GUI Agent
- Py & § §
8 £ S Networking Stacks
& H
—

Qubes Core Agent

>
-~

AppVM 2

AppVM 3

Figure 3.2: Qubes 3.2 Architecture

Adam Felizzi Trianqgles: Porting Qubes to sel/

3.3 Xen Tools

Forming the basis of the Qubes architecture and its vchan infrastructure is its low-level usage of Xen
toolstacks and libraries. The various libraries discussed form a paravirtualised interface, enabling the
various domains in the system to communicate and share information with each other.

3.3.1 Event Channels (evtchn)

Event channels in Xen are the equivalent of interrupts, this being an asynchronous mechanism that enables
Xen domains to become signaled in the event there may be data available for processing [Pro14]. Through
Xen’s event channel implementation, domains are free to dynamically create and close channels between
one another, allowing for inter-domain signalling. There exist two implementations for event channels in
Xen, the first being a shared memory+hypercall protocol in the guest OS kernelspace. The second being
a userspace library implementation that interacts with a /dev/xen/evtchn device file. Interactions with
the device file through a system call interface (e.g. open,read,write,close,ioctl) invokes the kernel level
driver to carry out the event channel procedure.

Event Channels form the backbone of many Xen PV implementations, where through a combination of
events and shared memory mechanisms allow for effective communication semantics between domains.
For this thesis, event channels form the basis of vchans, a guest OS userspace protocol for sharing data
between domains.

3.3.2 Grant Tables (gnttab)

Xen Grant Tables provides a generic mechanism for sharing memory between domains. Each domain in
Xen holds a grant table. A grant table is a data structure which records the permissions of other domains
with regards to accessing its pages [Prol3]. A domain is able to allocate one of its own pages and set
up a grant reference, similar to a capability, which describes the permissions an unprivileged domain
has over the page. The grant reference is an index into the granters grant table. Given the appropriate
permissions, a grantee is then able to map the shared page into its address space.

Similar to event channels, grant tables underpin many of the split PV driver implementations as well as
the shared memory mechanisms of vchans. It is also implemented through a hypercall protocol in the
guest OS kernel space and exported to a device file for userspace library implementations.

3.3.3 Xenstore

The Xenstore is a filesystem-like database that enables applications and drivers in guest operating systems
to share configurations and status information [Prol5]. Information is stored in key-value pairs with the
ability to also create nested keys in a hierarchical structure. An example of the values that can exist in
the xenstore can be seen in listing 3.1.

#xenstore-1s -f
/local = ""
/local/domain =
/local/domain/@ = ""
/local/domain/@/name = "Domain-0"
/local/domain/@/memory = ""
/local/domain/@/memory/target = "524288"

nn

13

Adam Felizzi Trianqgles: Porting Qubes to sel/

/local/domain/@/memory/static-max = "524288"
/local/domain/@/memory/freemem-slack = "1254331"
/vm = ""

/libxl = ""

Listing 3.1: Example Xenstore values

Each domain gets its own section in the store which it can then overlay with permissions for other domains
to read and write to. Additionally applications are able to set watches for specific keys allowing them to
recieve notifications when specific key values are created or changed. The stored information is meant
for small values thus is not a suitable system for large data transfers. The xenstore is however convenient
for sharing information such as grant table references and created event channels, allowing domains to
create shared channels in a dynamic manner.

The implementation is again similar to event channels and grant tables, having both a kernel driver and
a userspace library implementation. The xenstore data is hosted in dom0.

3.3.4 Libxenlight (libxl)

Libxenlight is a low level C library intended to provide a simple API to the Xen toolstack. Libxl provides
various mechanisms including the ability to create, shutdown, reboot and pause guest VMs, hotplug and
unplug devices to guest VMs and perform live migrations of VM. Thus libxl provides a valuable interface
for VM management.

3.4 VChan Library

The key mechanism that allows for inter-VM communication is a VChan library. The vchan library is a
Xen specific library exposing a socket-like (datagram-based) interface for VMs to perform inter-domain
communication. The vchan library is implemented for userspace applications running in the guest oper-
ating systems, allowing for the applications to communicate across domains. The vchan implementation
initially originated out of the Qubes project but was later adopted by Xen and integrated into the Xen
4.2 release [Proll].

A vchan refers to a single channel created between a client and server domain, strictly being a 1-1 channel.
Internally the vchan library uses grant tables and event channels to establish client/server communication.
Abstracting over the shared memory and event semantics the library provides a set of asynchronous and
synchronous mechanisms to read and write from a vchan.

14

Adam Felizzi Trianqgles: Porting Qubes to sel/

Shared Data Structure

A e

Server Write Server Read
Client Read Client Write

. el /local/domain/0/ring-ref : "X" | __...oocca--- S
Writes to - | /local/domain/0/event-channel : y" [- Reads from

Offers Page ™. Maps Page

Xen Event Channel

Figure 3.3: VChan Initialization [XZh16]

When creating a vchan between two domains, a server domain will allocate a shared memory region
(through grant tables) to host two ring buffers (being a write buffer each for the server and client) and an
event channel port to signal the client domain with. Both domains will read from each others write buffer.
The server domains will offer the grant pages to the client VM who in turn will map the region into its
own address space. To do so, the server will store the event channel port and the grant table reference
into the xenstore. This being readable by the client domain who will then use the grant references to
map the buffers into its own address space. The client will then proceed to listen on the created event
channel. A highlevel overview of this process is seen in Figure 3.3.

3.5 Qrexec

The vchan library underpins Qubes’ core RPC mechanism Qrexec. Qrexec enables dom0O-to-VM and
VM-to-VM remote execution. An example of an important use case includes using Qrexec to start an
application in an AppVM. The key components making up the Qrexec system are demonstrated in Figure
3.4. This mainly consists of a qrexec-daemon (in dom0) for every AppVM. Every AppVM contains a
qrexec-agent daemon to communicate with their corresponding qrexec-daemon in dom0. The qrexec-client
and qrexec-client-vim components are programs to initiate an RPC call between two VMs.

The flow of a dom0-to-VM qrexec call involves the user running qrexec-client in dom0, specifying the
target VM and procedure to execute in the VM. This triggers an IPC with the grexec-daemon (within
dom0) that manages the vchan server interface for the specific target VM. The grexec-daemon subse-
quently forwards the command to the qrexec-agent in the target VM to be executed.

15

Adam Felizzi Trianqgles: Porting Qubes to sel/

VM-to-VM RPC behaves similarly however all initial communication is mediated through dom0, where
the grexec-agent (invoked by qrexec-client-vm) forwards the command to its corresponding qrexec-daemon
in dom0. The grexec-daemon then translates the call to invoke dom0’s qrexec-client, executing the
command in a similar fashion as the dom0-to-VM RPC sequence. Illustrated in Figure 3.4, a VM will
invoke an RPC service (”qubes.someRPC”), which corresponds to a policy file in dom0. The policy file
defines what VMs are permitted to use the RPC service. Making domO the centralised controller in the
sequence allows the administrative domain to enforce policies for VM-to-VM qrexec (e.g. preventing
bash execution) adding an extra layer of security over the RPC mechanism. The administrative user can
further install policy files in domO to enable or disable qrexec services between VM’s.

grexec-client -d domX [-] local_program]
user:some_command

dom0 domX
o rexec-
qrexec-< > qrexec €] - & o 9 qgrexec-
' daemon S agent |
client > X client-vm

qgrexec-client-vm domX qubes.SomeRpc

local_program [params] user:QUBESRPC qubes.SomeRpc domY
domY domO domX
grexec-
qrexec-T ¢ "P daemon grexec- «-f-i o s >grexec-
grexec- | 7 agent £ - /| daemon £ *agent - grexec-
client-vm > qrexec-} = client-vm
client

Figure 3.4: Qrexec configuration: Dom0-to-VM & VM-to-VM

3.6 Qubes VM Classes

3.6.1 Admin VM (dom0)

In Qubes OS, all administrative tools and utilities to manage the system exist within dom(. Given
dom0’s management facilities and hardware access privileges in a standard Xen configuration, domO
becomes almost as privileged as the hypervisor. Being a security critical element, compromising dom0O
would essentially compromise the entire system. With a design goal of Qubes OS being to minimize the
overall TCB of the system, special care was given to limiting the amount of world-facing code running in
dom0, decreasing the likelihood of an attack. Subsequently a significant portion of hardware facing code
was stripped out of domO (e.g. no networking card access).

Significant programs that reside in the Admin VM include:

Block/Disk Backend Drivers (blkback): A PV backend driver with passthrough access to disk. The
kernel and root file system images for the various VM’s Qubes can create are stored on disk,
managed by the Admin VM. The blkback driver allows the Admin VM to export virtual block
device interfaces, which host the kernel and file system images, for other domains to boot, read
and write from. More specifically, this mechanism allows us to configure the file systems of our

16

Adam Felizzi Trianqgles: Porting Qubes to sel/

AppVMs. This configuration is illustrated in Figure 3.5. The illustrated configuration allows us to
serve the root file system images as a read-only block device, in addition to a discardable per-VM
copy-on-write image to allow for a RW root file system. We can then share the root file system
between multiple AppVMs, discarding the copy-on-write image once the VM is destroyed.

Qubes Admin Modules: A python library that is responsible for managing the Qubes framework.
The python modules provides mechanisms for creating, starting and configuring VMs and book
keeping all the VMs the user has created. The admin framework maintains a “qubes.xml” file in
domO to track all the VMs the user has created, its various configuration settings and the location
of its kernel and filesystem images.

Libvirt API: This is a generic virtualisation API that is designed to be compatible with a variety
of different hypervisors and virtualisation solutions. The Qubes admin module utilises the libvirt
libraries to create and destroy VMs within the system.

qrexec-daemon and policies: A daemon that manages the RPC interface with another VM in the
system. The admin VM also contains a series of policy files that define the restrictions of VM-VM
RPC services.

qvm-tools: A series of python based command line utilities that invoke the various mechanisms within
the Qubes Admin modules. This involves creating, starting, and destroying VMs and running
executing services in other VMs.

GUI subsystem: involves running an X Server, a Window Manager (e.g. xfce, i3) and a special GUI
daemon that catches the X11 graphical content from AppVMs to be rendered to the display. Ac-
cordingly, the GUI subsystem needs direct access to the graphics device as well as input devices,
such as keyboard and mouse. The interface to the devices is mediated with Intel VT-d.

Qubes DB An additional key-value database, similar to Xenstore, used to store and share Qubes con-
figuration information. This is implemented using vchans.

AppVM-1
SR
/boot
Ioin 4_@ root.img
letc

Nib

L Jusr) oooooc JAev/XVda2 |- D > app-vm-'l -cOW.img

S » app-vm-1-priv.img

/home o rdevivdar oo Vol] -vm-2-Cow.im

P > app-vm-2-priv.img

AppVM-2

Storage

/dev/xvdai

Nib /dev/xvda2

lusr

/home f----- /dev/xvda3 |-------cmmiee oo '
Ivar

Figure 3.5: Storage Configuration

17

Adam Felizzi Trianqgles: Porting Qubes to sel/

3.6.2 Service VM

The Service VMs are used as a means of moving core system services that would typically exist in the
one monolithic kernel out into separate VMs. These VMs typically contain code with physical hardware
access, delegated with the responsibility of exposing the hardware as virtual device interfaces to the other
VMs. Core service VMs in Qubes are the NetVM and USBVM, with an overview of their configuration
seen in Figure 3.6. The benefit of this compartmentalized scheme is that it effectively sandboxes potential
bugs and vulnerabilities found in the mentioned system services (e.g. device drivers), preventing an
attacker from compromising the entire system if exploited.

AppVM
USB VM e NetVM
iptables
| /dev/xvd*
) etho ». TCP/IP 802.11
Xen block backend ¢~ Yvif1.0 Stac gtack
1 e | Xen Netback
VT_d—-—» a 4 vif2.0
D]" Drivers | |FS Modules ; I NIC Driver wilan0
/dev/xvd otho |
]

Figure 3.6: Service VM Configuration

Net VM

The NetVM has direct access to the networking hardware, granted via Intel VT-d, and the associated
drivers and protocol stacks that make up the networking subsystem. Furthermore, Xen Netfront and
Netback drivers are used to facilitate a virtual networking interface to AppVMs. Components such as
iptable configurations can be further brought out into separate VMs, forming a FirewallVM. FirewallVMs
look similar to a NetVMs in that they host backend network drivers that AppVMs interface with, whilst
they also use a frontend network driver to communicate with a NetVM that has hardware access.

USB VM

The USB domain is similar to the NetVM in that it has physical block access to USB controllers. It also
exposes a virtual interface for other VMs to access, through a front and backend driver configuration.

3.6.3 AppVM

The AppVMs in Qubes are used to host user applications. These are typically Linux VMs, although
Qubes can support Window-based VMs. The configuration of an AppVM is relatively minimal compared
to its Service VM counterparts. Each AppVM consists of a virtualised X server and a special GUI agent
daemon to send frame buffers back to the secure GUI subsystem in dom0. The interface between these
VMs is minimal, using Xen Shared Memory as an efficient zero-copy mechanism to send graphical content
to dom0. An overview of this configuration is shown in Figure 3.7. On start-up of an AppVM, the root
file system images of each VM is served by dom0 as a read-only block device, in addition to a discardable
per-VM copy-on-write image to allow for a RW root file system. Additionally, VM-specific private data

18

Adam Felizzi Trianqgles: Porting Qubes to sel/

(e.g. /home) is kept on a per-VM block device backed by dom0. Figure 3.5 depicts an overview of this
configuration.

AppVM
¢ . ;
gui-agent ~-|.
omory . Dom0
Stub Stub [—
Input Graphics -
i - |. App | App
Driver o W
v BIAYOk o Viewer Viewer
gui-daemon [Desktop
Xen Shared : !
AppVM —{e| @
e gui-agent .| (
Stub Stub
Input Graphics
Driver Driver

Figure 3.7: AppVM GUI Configuration

3.6.4 Template VM

AppVMs are based on pre-defined configurations known as TemplateVMs. A TemplateVM in Qubes
defines a kernel and root filesystem image which AppVMs are able to derive off. This being beneficial as
it dramatically saves disk space, only needing to maintain a private image for AppVM specific data.

3.6.5 Additional VM Classes

In addition to the VM classes mentioned there also exist Firewall VMs, VPN/Proxy VMs and Disposable
VMs. These VMs are considered as extensions to the basic VM types already discussed in that they
introduce additional attributes to the base NetVM and AppVM classes. Supporting these VM classes
was out of the scope of this thesis and hence are not a primary focus of design and implementation
discussion.

3.7 Hypervisor Abstraction Layer (HAL)

With the third release of Qubes (R3), Invisible Things Labs introduced the Hypervisor Abstraction
Layer (HAL) [Rutl3]. The goal of HAL is to abstract and modularise the core Qubes services from the
hypervisor. This effectively removes hard coded Xen dependencies by decoupling Qubes from Xen. The
aim of HAL is to make Qubes relatively easier to port to an alternative hypervisor architecture. To port
Qubes to an alternative VMM, the HAL backend requires two core parts:

e A libvirt driver: Libvirt is a virtualisation API providing a general framework for interacting
with hypervisors. Through the API, a user can manage VM instances and hardware devices without
having to rely on specific hypervisor control stacks. Libvirt functions as a driver within dom0 with

19

Adam Felizzi Trianqgles: Porting Qubes to sel/

which Qubes heavily uses to start and stop VMs. In Xen, the libvirt driver depends on libxl, in a
sense being a wrapper around its functionality.

e A vchan library: A library to facilitate inter-VM communication. When moving to an alternative

VMM, a port of the library is necessary to utilize the given inter-domain communication mechanisms
exposed by the VMM API.

20

Adam Felizzi Trianqgles: Porting Qubes to sel/

Chapter 4: Related Work

4.1 Application Security for Operating Systems

The goal to secure desktop operating systems through sandboxing applications has been explored in
various works, reflecting similar themes found in Qubes’ design.

4.1.1 Virtics

The Virtics project [PJ10], introduces an operating system primitive that involves instantiating unpriv-
ileged Linux VMs (HVM) using KVM to run applications when dealing with untrusted data. Similar to
Qubes’ concept of AppVMs, each Linux VM runs a virtualised X server whose graphical content gets
mapped to the display by a trusted Linux host. A key point of difference in Virtics is that the deploy-
ment of VMs are transparent to the user, being automatically created when a user works with a separate
application or document. In contrast, Qubes users need to be proactive when creating VMs for different
applications. The application of Virtics was demonstrated through armored versions of a PDF and web
browser application where VMs would be created for separate documents and tabs. The project was
reported to be in “daily use for over a year” when the technical report was published however there
hasn’t been any further discussion on the project since, thus the current state of the project is unknown.

4.1.2 Genode

An active and regularly updated project is the Genode OS framework [Fes16], which further explores the
concepts of creating secure sandboxed environments for operating system applications and processes to
execute within. The Genode framework organises the processes in the system into a hierarchical fashion,
where a parent process is able to create a sandboxed environment, being granted with specific access
rights and resources to fulfill its specific purpose. A parent can only give the child process the resources
it has permissions to use, which in turn applies to the child when it creates it own processes. This in
turn creates a structured tree of processes where each parent maintains full control over its children and
their relationship to other resources in the system. To bridge compatibility to existing applications, the
Genode framework also supports virtualisation, enabling VMs to run within their own secure sandboxed
subsystems. With ready to use drivers, GUI and networking stacks, Genode and Qubes share similar
design goals in building secure compartmentalized operating systems.

Further, Genode is supported on a variety of L4 family kernels including sel.4. In particular, Genode has
recently made significant strides to supporting its framework on sel.4 with its release of the Genode OS
Framework 17.08 [Lab17b]. This added support to ARM and 64-bit x86 architectures and multiprocessor
support. Given Genode’s current support for seL4 combined with a framework that reflects similar themes
in Qubes’ design, using Genode to support Qubes is also a feasible solution that aligns with the goals
of this thesis. Qubes on Genode is a project Genode developers have expressed interest in [Labl7a],
however Genode’s current support for sel.4 does not include VMM support (based on release 16.08 notes
[Labl16]). Nevertheless future work based from this thesis should still be applicable to a Genode-based
system as its support for sel.4 continues to mature.

21

Adam Felizzi Trianqgles: Porting Qubes to sel/

4.1.3 Dune

Dune [BBMT12] explores an alternative strategy for application security, leveraging hardware virtuali-
sation features, such as ring protection, page tables and tagged TLBs, to create sandboxes for user-level
program execution. Belay introduces a Dune kernel module, running within an existing host OS kernel
that initialises and mediates safe access to VT-x and privileged hardware features for user programs to
utilize. Thus similar to the effect of Qubes isolating applications in VMs, Dune enforces security through
sandboxing processes in privilege ring protection modes. This approach allows Dune to effectively filter
and restrict the behaviour of an untrusted binary by catching unsafe operations as exceptions. Compared
to VM based sandboxing solutions, Dunes approach can be seen as advantageous where its kernel module
offers a simplified and efficient solution to isolating processes, avoiding the overheads of creating VMs to
run applications. Secondly a process using a Dune module doesn’t need to be separated from its host
OS, this avoiding the process from being decoupled from the core services of its host e.g. file system and
devices. Whilst beneficial, the Dune kernel module relies on running within Linux, keeping the monolithic
kernel as the TCB of the system. In contrast, Qubes’ overall design seeks to break away from making
a monolithic kernel the TCB of the system. Thus a sandboxed Dune application may still have access
to a multitude of APIs found within a monolithic kernel, presenting a large attack surface to potentially
compromise the system.

4.1.4 Bromium

Sandboxing applications on the host OS is similarly achieved through the Bromium microvisor [Brol7],
a commercial type-2 hypervisor solution derived from the Xen code base and developed upon by initial
Xen developers. Developed to run within the Windows operating system, the microvisor platform is able
to instantiate specialised micro-VMs to host specific user tasks e.g a web browser tab or PDF document.
Therefore, if a program was compromised by any malicious process, it would effectively be contained
within its sandboxed environment, preventing it from compromising the rest of the system.

4.2 Compartmentalization and Isolation

Operating system compartmentalisation is a significant focus of Qubes, moving system services that make
up a significant portion of the attack surface for a monolithic kernel out to isolated unprivileged domains,
with the key goal being to reduce the OS TCB to a minimum. The idea of compartmentalising OS
system services can be seen in the Xoar project [CNZ™11]. Incorporating the modularity and isolation
principles from microkernel based architectures, Xoar introduced a modified version of the Xen platform
by compartmentalizing the control VM, dom0, into single purpose service VMs. Service VMs included
domains dedicated to managing physical block and network devices, exposed as virtual devices to guest
VMs. This idea is similarly carried over in Qubes’ architecture, for example, delegating network card
access to a NetVM.

4.3 Past work

The idea of porting and developing a Qubes system on sel.4 has been a discussed and explored topic for
numerous years. A series of projects have been undertaken to look into making various steps towards
achieving a full Qubes port. Notable investigations into the area involve the development of a vchan

22

Adam Felizzi Trianqgles: Porting Qubes to sel/

library and demonstration of a basic qrexec RPC protocol from 2014 and 2016 Taste of Research projects
(Muir [Muil4] and Tugai [Tugl7]). The vchan implementation has since been absorbed into the CAmkKES
VM project. The implementation of vchan however was limited, such that a vchan connection and size
was statically defined in the CAmKES specification. This was unfortunately unsuitable to support higher
level Qubes code that would dynamically create and close vchans with other VM’s. In addition the qrexec
port had since been lost. The following design and implementation sections will describe a new approach
to achieving vchans and its ability to support the Qubes code base with little to no modifications of its
code.

23

Adam Felizzi Trianqgles: Porting Qubes to sel/

Chapter 5: Design

To a significant extent, the primary hurdles of porting Qubes to sel.4 comes down to engineering. There
are a variety of risks and roadblocks that will be identified in further sections that made a full port of
the Qubes architecture unfeasible in the time frame of this thesis. Rather we focus on implementing and
porting a series of identified sub-systems in Qubes’ architecture that can together make up a minimal
viable representation of a Qubes OS. The components that make up a minimal viable Qubes will be
identified in the following subsections.

5.1 Risk and Roadblocks

Prior to breaking down the design for porting Qubes to sel4 it is important to identify the various risks
and roadblocks of the project that motivated the various design choices of the implementation. The
following roadblocks that exist which prevent a full unmodified version Qubes to run on sel.4 include:

e 64-bit virtualisation support: Currently only 32-bit VMs are supported on sel.4. An unmodified
Qubes is built only to support 64-bit VMs. Developing support for 64-bit VMs is an involved task,
where a 64-bit VM requires a greater range of general-purpose CPU registers and larger address
range support. Due to the complexity of the task, developing 64-bit virtualisation deviated from
the main aim of the thesis and thus was out of scope during the implementation. Instead the focus
was taking individual components out of Qubes’ build system and porting them to run in a 32 bit
Linux VM system.

e Dynamic VM management: At present there is no dynamic system for managing VMs on sel4.
Qubes on Xen is a dynamic system where VMs can be instantiated and destroyed when needed. A
user desktop operating system is a highly dynamic ecosystem where users at any point can start
and stop applications on request, thus dynamically managing VMs is an important requirement for
Qubes. Developing a dynamic system for VMs is however a significant task which again deviates
from the main focus of the thesis. The implementation rather focused on running Qubes components
in a static CAmkES system.

Finally, it is important to realise that Qubes is a complex system, being continuously developed and
iterated upon since its inception in 2010. Qubes is a fully featured desktop operating system with a
huge number of services, applications, utilities and Ul widgets that make it a complete package. These
components are tightly coupled and interwoven in a complex build system. Successfully taking compo-
nents out of the Qubes build system to run in an alternative environment required careful attention to
dependencies that where either provided, revised or removed.

5.2 Designing a Minimal Viable Qubes (MVQ)

Given the complexities of the Qubes architecture, the focus of this thesis was not to achieve a full port of
Qubes to selLl4. The goals were rather to determine the feasbility of a Qubes system on sel.4 and to start

24

Adam Felizzi Trianqgles: Porting Qubes to sel/

making incremental progress towards acheiving a Qubes-based system. The end result being to create a
minimal viable version of Qubes that demonstrated these goals.

To achieve minimal viable Qubes, a key focus was to identify a subset of systems that would make up
a usable Qubes-based system. In identifying these system, an important first step was to first assess
whether it was feasible to take the chosen components out of the Qubes build system and run them
in a minimal environment. Furthermore it was important to learn if this was even possible in a native
Xen system. Thus the first milestone of the thesis was to develop a minimal viable Qubes on Xen. The
Xen MVQ served importance in influencing the final design of the sel.4-based implementation with the
benefits being two fold. Firstly it helped identify all the required dependencies of a component when
detaching it from its complete build. Secondly, with all the dependencies and source files identified, it
simplified the migration of an MV(Q build to sel.4 and ultimately contributed to a stronger understanding
of Qubes inner-workings. Discussion of the Xen MVQ is intended to identify the basic design building
blocks where further discussion as to how the components work in an sel.4-based system will be found in
the implementation section of the report.

A refinement of the Qubes 3.2 architecture (shown in Figure 3.2), produced the Xen MVQ design illus-
trated in Figure 5.1.

Xen Hypervisor Dl
A
A ‘.‘

Y AdminVM (alg:a "dom0") AppvM 1

Xen Block Driver Protocol

v i
- i [Xen Disk
‘ libxenlight ‘ { Backend }7
A
libvirtd "0

Xen Disk Frontend
NetvMm

qubes.xml
2
£
= i i
A — [—ox] | Networking Stacks 1P Tables
| . 2 . —ox] |
i g Qubes Core Agent > > i
d sl 3 f
v 21 g —_ -— : Qubes Core Agent
sl 2 :
Qubes Core [€- = \ 4
aqum-tools N
8
rrrrr :
L I R :
arexec-policy - A"\ i
A4 H

AppvM 2

AppVM 3

Figure 5.1: Overview of the Xen MVQ Architecture

The components being integrated in the MV(Q build are taken from the Qubes 3.2 release. At the time
of development the 4.0 code base wasn’t available, however inspection of the 4.0 code base post-release
reveals the changes between releases aren’t too significant with regards to the components we are using
in the MVQ. When developing the MVQ, some of major components omitted from the full Qubes system
where the GUI infrastructure and the Firewall, USB, Proxy and Disposable VM types.

25

Adam Felizzi Trianqgles: Porting Qubes to sel/

The primary components in the Xen MVQ where:

Xen Hypervisor: This of course being the fundamental building block of the MVQ. An x86 64-bit
build of Xen 4.9.0 release was used for the MVQ (based on the “RELEASE-4.9.0” tag from Xen
git project [Prol7b]). Domain 0 hosted a Ubuntu 16.04 LTS 64-bit Linux OS (PV).

VChan Library: VChans are a critical component in Qubes, forming a backbone for RPC mechanisms
and VM management in Qubes. In the MVQ, VChans are necessary to support the Qrexec frame-
work. In turn the Qubes Admin stack invokes the Qrexec binaries to execute programs/commands
in other VMs. Thus a working vchan library is a base dependency to have established in an MVQ
build. Since vchans have been integrated into the upstream Xen toolstack, getting vchans to work
is a fairly trivial exercise as the libraries are already installed in the Xen-based system that is being
used. The VChan library are implemented in C with library dependencies to Xen tools (xenstore,
gnttab, evtchns).

Qrexec: The qrexec components were identified critical to have in the MVQ to faciliate RPC function-
ality between VMs. The only dependency required to build and use the Qrexec programs were the
vchan libraries. With the establishment of a working vchan library, building and using Qrexec was
again a fairly simple exercise. Care had to be taken however to ensure the binaries where installed
at the right locations in the Admin and AppVM file systems. The qrexec binaries are rarely exposed
to the user, rather they are utilized by the Qubes Admin modules, expecting the binaries to exist
in specific locations. The qrexec programs are implemented in C.

Libvirt Installation: Libvirt is extensively supported on the Xen platform and it was possible to recycle
it for the Xen MVQ. The Libvirt 3.7.0 API was built against the Xen 4.9 libraries and then installed
into the MVQ system. Important to the libvirt installation was the installation of its python library
bindings which the Qubes Admin code base uses to manage VMs.

Qubes Admin Modules: The Qubes admin code base is implemented as python library modules. A
basic Qubes VM is represented as a python class. The various Qubes VM types (e.g. AppVM,
NetVM) are also represented as python classes that extend the basic VM class with additional
attributes. When a user creates a new VM, the python class for that VM is instantiated. Further-
more the state, name and configuration attributes are recorded in a central xml file (qubes.xml) so
that the class can be re-instantiated at a later point. The python classes make extensive use of the
libvirt python binding to start, pause, resume and shutdown the VMs on Xen. When integrating
the python code base into the MVQ, careful modifications needed to be made to remove usages
of unsupported features e.g usages of GUI code and unsupported VM types. The final implemen-
tation of the modules were installed with in the admin VMs system python libraries folder (e.g.
/usr/lib/python2.7/).

qgvm-tools: A subset of the qvm-tools where chosen to be integrated into the MVQ. The gqvm-tools
represent an interface that allows the user to invoke the mechanisms in the Qubes admin stack.
The key tools chosen are qvm-create (creates a VM), qvm-start (starts a VM), qvm-run (run a
command on a specified VM), qvm-kill (kills a VM), gvm-remove (removes a created VM from the
qubes.xml file) and qvm-Is (lists all the created and running VMs).

AppVMs: A sample set of AppVM kernel and filesystem images I created for the MVQ. Creation of the
AppVM images was a manual process that involved creating new Fedora Linux VM installations
that were manually configured to have the qrexec binaries and Xen VChan libraries installed. In
addition, initialisation (systemd) scripts needed to be installed to ensure the Xen PV drivers where
loaded (evtchn, gnttab and xenstore) and the grexec-agent daemon was started on boot.

26

Adam Felizzi Trianqgles: Porting Qubes to sel/

TemplateVMs: The newly created AppVM kernel and filesystem images formed the basic images that
make up a TemplateVM. These were manually installed in the appropriate AdminVM library folders
(/var/lib/qubes/vm-templates).

5.3 Minimal Viable Qubes on selL4 & CAmkES

When moving to the selLl4-based implementation of the MVQ, we want to achieve the following:

e Minimal to no modification of higher level Qubes code

e Code reusability for future iterations of Qubes on sel.4

As discussed, Qubes is a complex system. The first goal is particularly important in order to reduce
the engineering cost of bringing Qubes to sel.4. Thus a significant focus of the implementation involved
targeting the components below the Hypervisor Abstraction Layer such that higher level Qubes code
would not be need to be modified.

On the issue of code reusability, the MVQ implementation on sel.4 involved using a static system on
CAmKES with a set of predefined pooled VMs as components. An important future iteration of Qubes
will ultimately invole moving to a more dynamic solution. Despite the static restrictions of a CAmkKES
base, my implementation focused on hiding the static nature of the system from a VMs perspective, in a
sense mocking a dynamic system. This would mean little to no modification of the code within the VMs
for later iterations of Qubes.

5.3.1 Porting VChans

The first component to focus on in the hypervisor abstaction layer was the vchan library. The CAmkES
VM project had a vchan implementation from previous Qubes projects [Muil4], however using this
implementation to support higher level Qubes code proved problematic. The main limitation of the
implementation was that a single, fixed buffer size vchan connection between two VMs was statically
defined within the CAmKES spec. The creation of vchans in Qubes is however a dynamic process where
a Qubes VM can start up and close multiple connections (of varying buffer sizes) with the same VM
on demand, this being particularly exercised by the qrexec framework. Our focus is on keeping the
behaviour of vchans as close to Xen implementation as possible, whilst also maintaining the minimal
modification approach. This was done by reusing the Xen vchan implementation but supplying my own
library implementations of the lower level vchan dependencies, being xenstore, event channels and grant
tables.

Xen Toolstack Equivalents

VChans depend on the implementation of three libraries: xenstore, event channels and grant tables.
Below we see the approach to supplementing these dependencies on sel.4.

Event Channels: The basic functionality of event channels involves a VM allocating a channel, desig-
nated for a specific domain (using its domain id). In return, the allocator gets back a port number,

27

Adam Felizzi Trianqgles: Porting Qubes to sel/

identifying the event channel. The only other domain that can use the event channel is the des-
ignated domain. The recievee will open the event channel with the identifying port number. The
VMs require a user level library implementation to use the event channels and a Linux kernel driver
to perform hypercalls. The managing of event channels ports and permissions on Xen is an internal
hypervisor implementation. For an sel.4 based solution we require a seperate sel.4 userland process
(CAmKES component) to manage the event channel bindings. We also require extensions to the
VMM implementation to handle a event channel hypercalls. Significant focus was spent on imple-
menting the kernel driver, VMM handers and the event channel component. The userland Linux
library implementation was recycled from the Xen project meaning the vchan libraries use of event
channels did not need to be modified.

seL4store: The sel4store is a re-implementation of xenstore. The xenstore implementation uses dom0 to
host all the key-value data. Keeping the xenstore in dom0 however increases the TCB of the system,
thus my implementation looks to take the xenstore out of dom0 and run it as a CAmkES component.
Aside from loosely basing my Linux library API on Xen’s version, the seli4store implementation
was developed from the ground up. The implementation involves a CAmkKES component, Linux
userland library, kernel driver and VMM hypercall handling mechanisms.

Share-Allocator: My equivalent to grant tables is the share-allocator component. Given the static na-
ture of a CAmKES system, all kernel objects and capabilities required by the system are pre-defined
by a generated CapDL spec. Thus dynamically allocating untyped memory becomes problematic for
my sel4 based implementation. Given this limitation, my approach involves defining a large pool
of memory (dataport), shared between all VM components. This is managed by a share-allocator
CAmkES component, similar in nature to a frame table implementation managing physical memory.
Through a Linux userland library and kernel driver, guest VMs make calls to the share-allocator
component to allocate pages of memory. In return they recieve an index corresponding to an offset
into the shared pool, representing the contingious shared memory region they allocated. Allocation
is at a page-level (4K) granularity.

5.3.2 Libvirt and VM Manager

The second item to focus on in the hypervisor abstraction layer is the Libvirt layer. Unfortunately, due
initial difficulties cross-compiling the libvirt platform for my 32 bit Linux platform and time restrictions
during the thesis, a libvirt driver port was not feasible. Rather the approach taken was to emulate
the python libvirt API in-order to satisfy the admin module code-base. A ’libvirt’ python library was
implemented, providing an identical API that the admin module code was able to import and use.

The python libvirt implementation invoked my vm-manager implementation. The vm-manager abstrac-
tion is in similar nature to libxl on Xen. A userland Linux library provided methods to create and free a
VM and also get the callers domain ID. Similar to seL4store and event channels, a CAmKES component
was used to manage available VMs (being spooled), and a Linux kernel driver was implemented to carry
out the hypercall procedure.

5.3.3 Porting Qrexec and Qubes Admin Modules

The intention of the above design was to avoid modifying qrexec and the python admin modules. Qrexec
was able to be built against my new library headers and the admin modules was able to simply import
my libvirt python library.

28

Adam Felizzi Trianqgles: Porting Qubes to sel/

5.3.4 Ethernet Component

To supplement the functionality of a NetVM, an existing implementation of an ethernet driver component
in CAmKES was used. This work being recycled from from the CamkES VM project involves an eth1000
driver implementation running as a seperate component on sel.4. VMs interact with the component
through a virtio interface, a paravirtualisation standard for network and disk drivers. This could be seen
advantageous over a using another VM to provide network access, having a smaller code base and memory
footprint. Disadvantageous to this approach however is that the configuration become less portable when
moving to different ethernet hardware.

5.3.5 Fileserver

A late design decision during the implementation of the thesis was to use a VM as a file server, having
passthrough access to disk and USB hardware. This was necessary as compiling multiple Linux kernel
and rootfile systems images into the boot image consumed a significant amount of memory at runtime.
Thus a minimal file server kernel and rootfile system image is compiled into the boot image and booted
at run time. Once booted, it accesses the remaining kernel and rootfile system images stored on USB,
serving the images to the other VMM components.

5.3.6 MVQ Architecture

In summary of the discussed items, an overview of the architecture is illustrated in Figure 5.2. The
demonstrated configuration shows one Admin VM and two AppVMs and the various CAmkKES compo-
nents in the system.

Evtchn seldstore share alloc
sela | cAmies S Component Component Companent

€

" AdminVM (aka "dom0") AppVM 1

Ethernet P
": >

root.img Component I

virtio Backend

i i FileServer/AppVM
| -a [—ox] | (trusted)

root.img PR, =
§o

Qubes Core Agent

Figure 5.2: Overview of the seL4 MVQ Architecture

29

Adam Felizzi Trianqgles: Porting Qubes to sel/

Chapter 6: Implementation

In this section we focus on the implementation details of the various features and components that make
up the MVQ. The structure of the discussion will look at the implementation from a bottom-up view to
help identify the lower level dependencies that provide the hypervisor abstraction layer.

6.1 MVQ Configuration

The selL4 CAmKES-VM project was used as a base for the project. Implementation focused on the x86
32-bit architecture, with x86 32-bit guest Linux VM’s.

6.1.1 Guest VM Images

Admin VM (dom0): T used a Tiny Core Linux (TCL) distribution guest image for the Admin VM.
TCL is a minimal Linux distribution noted for its small image size, making it suitable for the
MVQ build. In addition, TCL provides a small set of community driven tools and libraries. This
was useful for installing a python interpreter, being a major requirement of the Admin VM for
the admin modules and tools. Additionally Tugai [Tugl7] established an automated TCL image
building process within the se.4 CAmkKES VM project, being used to build the TCL images within
the project.

AppVM: The configuration of the AppVMs were relatively minimal (e.g not requiring a python inter-
preter). Hence our AppVMs use a Buildroot-based Linux image, being already supported in the
CAmkKES VM project. Buildroot is a tool that allows developers generate embedded Linux systems.
This compiled a small Linux image suitable for the MVQ build.

6.2 sel4store

The seL4store is a system-wide database equivalent to the xenstore. The implementation consists of three
distinct areas:

6.2.1 seL4store CAmkES component

The seL4store component is an active component that implements an RPC interface. The component
implements 5 main functions, being write,read, set key permissions and set read watch. The key-values in
the store are overlayed with access control rights. When writing a key to the store, the permissions of the
key default to read and write access to the writer domain. The writer can then extend those permissions
to other domains (through the set key permissions interface). A domain does not have permission to
write a sub-key value if it doesn’t have permission to write in the parent key. The use of these permissions
are illustrated in Figure 6.1.

30

Adam Felizzi Trianqgles: Porting Qubes to sel/

selL4store
,,,,,,,,,,,, i test,
Write /test > ;testfexample'l U Read /test/example
VMO | Write /test/example : 1- > ’ Result =1 VM 1
‘ /hello <.
L [test/example . R Y Write /hello/world ™™
“RW permission for VM1 i %

" Write /hello

Figure 6.1: seL4store Access Control

Lastly, a domain can register a watch on a specific key. This means a domain can register to receive a
notification whenever a specific key is written or changed. If the waiting domain has read permissions
on the key, then the domains will receive a notification. A hashtable implementation is used to store the
watch requests. When a key write occurs, the hashtable is checked to see if a domain is waiting on the
specific key. The component will notify the VM domain by emitting a CAmKES event (seL4_Signal) to
the corresponding VMM component.

6.2.2 Cross-VM RPCs

Cross-VM RPCs is an extension to the Cross-VM Connector mechanisms. In addition to the dataports
and events, the Cross-VM RPC mechanism exports an RPC interface to guest Linux processes, allowing
them to communicate with CAmkES components. This was implemented to simplify interaction with
the RPC connections to the selldstore, where the selldstore library API implementation involves invoking
the CrossVM RPC mechanisms. The Cross-VM RPC mechanism is implemented through a combination
of a Linux kernel driver, VMM hypercall handlers and syscall library wrappers. The system flow of a
Cross VM RPC call is demonstrated in Figure 6.2.

’ sel4store_read ‘
] ibseL4store \

’ Iibcros;vmrpc ‘

Cross VM RPC| Linux Kernel

Ly selL4store

X selL4store_res sei_—4storefread()

VMM "

Figure 6.2: seL4store using Cross VM RPCs

The implementation of Cross-VM RPCs is complicated by the fact the RPC function definition needs
to be understood by the Linux process and the VMM. Hence a second layer of marshalling occurs (in
addition to the VMM to component RPC), where the syscall library wrapper marshalls the RPC data

31

Adam Felizzi Trianqgles: Porting Qubes to sel/

and the VMM handler identifies the RPC, appropriately unmarshalls the data and invokes the CAmkES
RPC connector. To achieve this the function definitions were shared between the VMM and guest Linux
OS through a common header file. The marshalling and unmarshalling functions were automatically
generated at compile time through C Preproccesor macros. The marshalling process is as follows:

e The cross-vm rpc library packs the arguments into an allocated buffer which then performs an ioctl
to the RPC kernel driver

e The driver copies the user memory buffer to kernel space and then hypercalls into the VMM. The
hypercall arguments include the guest physical address of the parameters buffer, a guest physical
address for a return value buffer, and an identification number of the RPC.

e The VMM identifies the RPC and unpacks the memory according to the parameter definition in
the shared header file.

e On return, the VMM populates a return buffer allocated by the Linux process with RPC return
data.

6.2.3 Library API

The Cross-VM RPC library generates methods for the RPCs defined in a shared header file. The seL4store
library simply wraps around the generated RPC functions to implement the read, write, set key permis-
sions and set watch functions. The sel4store library header can be seen in Appendix 9.

6.3 Event Channels

Event channels provide an asynchronous signalling mechanism between VMs. Despite being in similar
nature to the consume and emit Cross-VM connectors, event channels provide a more dynamic interface
with which VMs can open and close various event ports between VMs. This means that a VM can
have multiple event ports open with another VM but can selectively listen, block and poll on individual
ports. This being particularly useful if a VM hosts multiple vchan connections. Similar to seL4store,
the implementation of event channels is achieved through several distinct areas, these being through a
library syscall interface, kernel driver, VMM handler and CAmkES component.

6.3.1 Library API

The syscall API is implemented to match the Xen evtchn implementation. The key methods to interact
with event channels from a Linux process is summarised in Listing 6.1. The event channel implemen-
tation is heavily based around the use of a Linux file descriptor. The library implementation involves
opening a file descriptor (fd) to the event channel driver, being a Linux character device (exported as
“/dev/evtchn”). With the opened fd, a user will be able to bind event channel ports to the specific
descriptor enabling them to interact with the event channel through the various API methods.

int selL4evtchn_open(int xfd);

int selL4evtchn_close(int fd);

int selL4evtchn_bind_interdomain(int fd, uint32_t domid, uint32_t remote_port);
int selL4evtchn_bind_unbound_port(int fd, uint32_t domid);

int selL4evtchn_notify(int fd, int port);

32

Adam Felizzi Trianqgles: Porting Qubes to sel/

int selL4evtchn_unbind(int fd, int port);
int selL4evtchn_unmask(int fd, evtchn_port_t port);
int selL4evtchn_pending(int fd);

Listing 6.1: Event Channels API

Important methods worth to elaborate upon include:

evtchn_bind_unbound_port: Allocate a new event channel port to be used with a specific domain
(‘domid’). The returned event channel (e.g. 2) will only permit the allocator and destination
domain to bind to it. The library performs an ioctl syscall on the opened fd.

evtchn_bind_interdomain: Bind the passed fd to the event channel port (‘remote_port’). Ounly the
domain the allocated the channel or it the channel was assigned to can bind to the event channel.
The library performs an ioctl syscall on the opened fd.

evtchn_pending: With a bound fd, the library can check (poll) if any events have occurred. Note that
multiple event channels can be binded to the one fd. Invoking evtchn_pending will return a port
that an event occurred. Multiple pending calls need to be made to drain the fd if there are multiple
pending events. The events are registered /returned in FIFO (first-in-first-out) order. The library
performs an read syscall on the opened fd.

evtchn_unmask: With a binded fd, the user can unmask an event channel on an fd, making it available
to receive events on the given channel. Whenever an event occurs on a specific, subsequent events
on the same port are disabled. Calling unmask re-opens the port for future signals.

6.3.2 Kernel Driver

The event channel driver is based on the Xen evtchn implementation, in order to match the asynchronous
behaviour the vchan library expects. As mentioned prior, the event channel kernel driver is exported as
kernel character device (/dev/evtchn). The event channel driver facilitates three main functions, handling
library syscalls, handling event channel interrupts from the VMM and performing hypercalls.

Syscall Interface

Through opening an fd, the driver is available to handle various syscalls, being ioctl, read, write, open
and close (release). Important for handling these syscall methods enables the kernel to cover important
operations regarding the initialisation, binding of and closing of event channels. When opening an event
channel, the private data field of the Linux file descriptor struct (struct file *filp) is populated with a
event channel specific data-structure. The data-structure keeps track of all the event channels binded to
the fd, a notification ring (for tracking incoming events) and a wait queue for waiting processes (when
no events have occurred).

When a fd managed by the kernel driver is released, the driver is able to handle the necessary cleaning
up of the fd specific data structures and also the unbinding of the event channel port, enabling other
domains to recycle the port.

33

Adam Felizzi Trianqgles: Porting Qubes to sel/

Interrupt Handling

When an event occurs, the VMM injects an interrupt (pre-defined IRQ number) into the guest OS. In
addition, the VMM will populate a shared memory region (only between the driver and VMM) with the
incoming event channel port. I developed an IRQ handler within the driver to inspect the shared memory
region and update the appropriate event channel, corresponding to a specific data-structure. The specific
data structure maintains a global state of all fd-evtchn bindings, the interrupt path will go through each
fd binding and populate a ring buffer associated with the fd for the incoming event channel port.The
mentioned ring buffer is a standard producer-consumer FIFO queue, specific to each fd. The interrupt
being the producer and a process calling evtchn_pending being the consumer. If any process was waiting
on the event channel port at the time of the interrupt, it will also be resumed.

Hypercall Interface

To allocate or free an event channel port and/or emit an event, the driver will hypercall into the VMM.
Upon initialisation, our driver allocates a shared memory region, and passes the guest OS physical address
of the shared region to the VMM (through a hypercall). This allowing the VMM to map in the shared
memory region into its own virtual address space. Subsequent hypercalls from driver to VMM populate
the shared memory region as a means of passing the event channel command and its associated arguments.

6.3.3 VMM Handler

The VMM Init component was extended to contain a handler for event channel related VMM calls. The
interface captures the VM exits invoked by the event channel driver and then subsequently uses the shared
memory region to decode the specific event channel request and its arguments. The VMM component
is linked to the CAmkES event channel component through RPC connectors. The VMM component
performs an RPC to the CAmkES component to carry out event channel creation, destruction and event
emits.

In addition the VMM handler sets up a callback for incoming CAmKES events (seL4_Signal). The callback
forwards the event to the event channel driver by generating an interrupt (pre-defined IRQ value) into
the guest OS.

6.3.4 Event Channel CAmkKES Component

The CAmKES event channel component is an active component, implementing the RPC methods the
VMM Init component interfaces with. The component maintains all global state regarding the set of
allocated event channel ports, this including information regarding what domains the channel is binded
between.

In addition, the component has an event connector to all VMM components in the system, allowing
the component to generate CAmkKES events (sel.4_Signal). This is used to emit an event on a port. A
VMM will thus go through the event channel component to notify another VMM. When going through
the component to emit an event, the process performs a lookup of the event channel, translating the
port into a destination VM. The event channel will then populate a pre-allocated shared memory region
between itself and the destination VMM with a bitmask and emit the CAmKES event. The bitmask has
the bit that corresponds to the event port set (e.g. 3rd bit translates to port 3).

34

Adam Felizzi Trianqgles: Porting Qubes to sel/

An immediate concern of this solution is the introduced inefficiencies from the extra context switch. The
reason behind this design is due to the centralised state of the event channel component and the static
bindings of event connectors in the CAmKES configuration.

An example flow of an event channel being used in the system is illustrated in Figure 6.3. In our example,
event channel port 3 is bound between our two VMs. Using a bound file descriptor, a VM can emit an
event on port 3, travelling through the event channel driver and CAmkES component. The CAmkES
component then generates an selL4_Signal to the destination VMM. The destination VMM generates the
appropriate interrupt signal to the kernel driver. The driver populates a notification ring buffer of an fd
that is bound to the event channel port 3. The event is then returned to the destination user process
when it next reads from the file descriptor.

,,,

event_fd_2

event_fd_1 3
: H Emit Port 3

Return 3\ Poll fd j
\ Event Channel CAMKES
Component
3 1
Event Channel Driver
Event Channel Driver
Generate Interrupt Linux Kernel
Linux Kernel v
|
5] VMM
VMM ‘
sel4_Signal Emit Port 3

Figure 6.3: Event Channel Flow

6.3.5 Future Work & Improvements

The event channel component could be significantly improved when moving to a more dynamic system.
Improvements would involve dynamically allocating notification endpoints between VMMs on the creation
of an event channel, foregoing the extra context switch on event emits. To make a more reasonable
evalution compared to a Xen implementation (in Chapter 7), we will see a variant of this system that
added direct event connectors between each VMM Init component, avoiding the need to passthrough
the CAmkES component for emitting events. This however breaks the centralised consistent view the
CAmkES component holds on allocated event channels, allowing VMM components to notify other VMMs
on ports it hasn’t allocated.

Additionally, optimisations could be made between the VMM handler and Linux driver interface. The
VMM will generate an interrupt per event channel emit. Improvements such as batching emits would
avoid the need to continually switch between the VMM and guest OS. I was however unable to investigate
this optimisation during the timeframe of this thesis.

6.4 Share-Allocator

The share allocator is an equivalent implementation to grant tables in Xen. The share-allocator provides
a coordinated mechanism for VMs to dynamically allocate shared regions of memory. The approach

35

Adam Felizzi Trianqgles: Porting Qubes to sel/

involves defining a large pool of memory (dataport), shared between all VM components. The share-
allocator CAmKES component provides an interface to manage the shared dataport region, allowing VMs
to allocate sections of contiguous memory. The intention behind the share-allocator was to provide a
mechanism for our vchan library to allocate buffers of varying sizes to communicate over. Similar to
our sel4store and event channels implementation, the implementation of the share-allocator is achieved
through several distinct areas, these being through a library syscall interface, kernel driver, VMM handler
and CAmKES component.

It is important to note, our implementation doesn’t accurately emulate the behaviour of Xen grant
tables, rather its behaviour is more unique due to the static nature of the environment it operates.
There is opportunity to rework this implementation to better suit later iterations of Qubes on sel.4. We
significantly base the share-allocator off the existing Cross-VM dataport connector implementation. We
make modifications that allow for mapping separate segments of the shared memory space at a time
(as opposed to the whole dataport region). We also layer permissions over the shared dataport region,
preventing processes from mapping regions it doesn’t have permission to access.

6.4.1 CAmKES component

The CAmKES component is responsible for managing the shared data region. We manage the region
at 4K page boundaries, effectively creating a one-dimensional page table. Each page entry tracks the
domain that allocated the page, and in addition other domains that have permission to read and write
to the page.

The component is active, implementing an RPC connector for other VMMs to interact with. The com-
ponent involves supporting allocation of shared pages, freeing pages, setting permissions on pages and
checking if we have access rights to a given set of pages.

6.4.2 Kernel Driver

We require the kernel driver to manage the shared memory region and map the shared region into the
processes address space. Upon initialisation, the driver allocates a region of kernel memory that intends
to be backed by the physical frames of the shared region. When a process needs to map the shared
memory into its virtual address space, it invokes an mmap syscall to create a new mapping. Our driver
has an mmap syscall handler that in turn backs the processes mmap memory segment at the offset which
aligns with the memory region allocated by the kernel upon initialisation. Whether the mmap region is
actually backed by the physical frames of the shared memory segment depends if the VM domain has
been granted access to the corresponding pages.We verify this by hypercalling into the VMM who in turn
performs an RPC to the CAmkES component that verifies the rights of the domain. If the rights are
valid the VMM handler will back the appropriate pages in the kernels memory region with the frames
that correspond to the shared dataport memory region. The relationship between the kernel memory
buffer and shared memory region is illustrated in Figure 6.4

36

Adam Felizzi Trianqgles: Porting Qubes to sel/

Process Process
mmaps regW /
Kernel Kernel
{
backs guest|paddr VMM \ VMM

has capabilities\ %as capabilities

Shared Memory

Figure 6.4: Share Allocator Memory Structure

6.4.3 VMM handler

Relying on the VMM handler to perform the mapping elevates the MVQ TCB to include the VMM
component. We generally however don’t assume that the VMM is ever malicious, rather the guest OS
can be. Without the VMM enforcing permission checks over the shared dataport region we allow a
malicious guest OS to gain access to the entire shared region, which it can use as a channel to listen and
tamper with other inter-domain communication.

To allow the VMM to dynamically map in the frames we use the ‘seL4SharedDataWithCaps’ template
in CAmkES. This is a dataport connector which exposes the frame capabilities to the VMM, enabling us
to map pages into the guest OS vspace.

6.4.4 Library API

To interact with the various allocation mechanisms we implement a library which the Linux user process
can call. A process can allocate shared page, free shared pages and also choose to share the pages it has
allocated with other domains. The API is shown in Listing 6.2. Our library involves the use of the Cross-
VM RPC driver to invoke the RPC allocation methods implemented in the CAmkES component and
the share-allocator kernel driver to mmap the shared region into the process virtual address space. Note
the share-allocator driver is necessary to get the VMM to back the mmap region with the physical frames.

int alloc_share_init(int *fd);

void alloc_share_close(int fd);

int alloc_share_pages(int share_malloc_fd, size_t *offset, size_t size);

void alloc_free_share_pages(int share_malloc_fd, size_t offset, size_t size);
int alloc_share(int share_malloc_fd, int to_domain, size_t offset, size_t size);

Listing 6.2: Share-Allocator API

37

Adam Felizzi Trianqgles: Porting Qubes to sel/

6.4.5 Future Work & Improvements

The behaviour we discussed revolves around having a static pre-defined shared memory pool. Improve-
ments we could make for future iterations of the MVQ, when moving out of a CAmKES based system,
would involve the VMM allocating untyped memory into frames on demand. Furthermore the imple-
mentation we explored doesn’t apply fine-grained permissions. It is either R/W or no permissions at
all. Extending the implementation to support this should be trivial however it was not explored in the
timeframe of this thesis.

6.5 Porting VChans & Qrexec

Given our substitutes for xenstore, evtchns and gnttabs, porting the Xen vchan library to sel.4 involves
modifying the library calls with our own. A majority of the logic was left unchanged, however modifi-
cations had to made to the initialisation of the shared memory buffer due to differences with our API
against gnttab. In addition to using the Xen vchan library, the Qubes project also implements a minimal
vchan library wrapper around the Xen vchan library. This has an identical API to the Xen vchan library
where most functions directly call through to the Xen implementation. Modifications are added to server
and client initialisation methods where a client sets a store read watch in the case the client attempts to
establish a connection before the server has started. We require small modifications to make read watch
usage consistent with our libraries. Lastly modifications were made to log printing macro usage and C
include paths to match our build system.

Qrexec requires minimal changes. Modifications made reflect different include paths to match our build
system.

The changes involved for porting vchans and qrexec is show in Table 6.1.

Table 6.1: Porting vchan and qrexec: LoC Differences

Program/Library | LoC Xen | LoC seL4 | Same | Modified | Added | Removed
libvchan 616 762 395 186 181 35

qubes libvchan 262 157 86 61 10 51

Qrexec Library 1098 1098 1084 14 0 0

Qrexec Programs 2728 2727 2698 25 4 5

6.6 vm-manager

The vm-manager in our MVQ is a simple management toolstack, similar in nature to libxl. We use
the vim-manager API to implement our libvirt python wrapper. The vim-manager is implemented in the
same manner as prior components, involving a syscall library, vin-manager kernel driver and CAmkES
component. Through a combination of these components, the functionality we implement includes:

Get Domain ID: This returns the domain ID the calling process exists in. The VM’s are statically
assigned domain id attributes in the CAmKES specification. A special template connector was
implemented to export this variable to be accessed by the VMM component.

38

Adam Felizzi Trianqgles: Porting Qubes to sel/

Create New Domain: This allows the user to ‘create’ a new VM. In our static MVQ system, the
VMs are pooled. Our CAmKES vm-manager component maintains knowledge of the free and used
VMs. On invocation, our vin-manager component finds a free VM and returns its domain-id. VMs
are created with a domain name and a UUID (universally unique identifier) value.

Lookup Domain Name: Returns the domain id that corresponds with a given name. The vm-
manager component maintains state of all created VMs and their given names and UUID values.

Lookup Domain UUID: Returns the domain id that corresponds with a given UUID value.

Free Domain: Free’s the domain id, allowing it to be recycled for future domain creation calls.

6.7 Porting Qubes Admin Modules & qvm-tools

The porting effort surrounding the qubes admin modules and qvm-tools in our Xen MVQ was able to
directly translate to our seL4 MVQ implementation. The modifications made during the development of
our Xen MVQ involved removing code relating to the use of the Qubes GUI and various unsupported
vm classes. The modification summary can be seen in Table 6.2, measured with the use of the CLOC
(Count Lines of Code) tool [Danl5].

Table 6.2: Porting admin modules and qvm-tools: LoC Differences

Program/Library | LoC Xen | LoC seL4 | Same | Modified | Added | Removed
Admin Modules 2758 1736 1331 155 250 1272
qvm-tools 1292 1019 935 46 38 311

To integrate the qubes admin modules and qvm-tools into our seL4 MVQ, we make modifications to the
TCL image generation script to include the new python libraries and tools into the rootfile system image.

6.8 Linux File Server

A slight divergence from focusing on the development of the MV(Q was the need to implement a Linux
fileserver. The CAmKES VM project involved the implementation of a file server that ran as a separate
active component. The file server managed a cpio archive, compiled into the boot image, compacting
the Linux kernel and file system images used by the VMMs. The file server implements a POSIX based
interface with which a VMM connects to, through an RPC connector, to open and read the images
required to boot the guest OS.

Problematic to compiling the Linux file system and kernel images into the seL.4 boot image was that it
consumed a large amount of memory, limiting the amount of memory we could give to a guest OS once
booted. Hence we introduce a Linux based file server with passthrough access to USB. This allowing
VMMs to read their images off disk. This is achieved by extending an implementation of the file server
RPC interface to a VMM Init component. In addition, the file server OS starts a file server kernel driver
upon boot. When the VMM recieves an I/O request, we generate a pre-defined interrupt into the guest
OS, passing the I/O request arguments through a shared memory buffer between the VMM and driver.
The driver handles the interrupt, parses the arguments and performs the I/O request. The returned file
I/0 data is placed into the shared buffer between the VMM and driver, subsequently processed by the

39

Adam Felizzi Trianqgles: Porting Qubes to sel/

VMM and transferred to another shared buffer between the server VMM and client VMM. A general
overview of this architecture is illustrated in Figure 6.5.

file_server.ko

A
selL4
- open
/jzmogrt;offs.cplo read
lomO_| zlmage. seek
/appvm_rootfs.cpio
close

/appvm_bzimage

Figure 6.5: Linux Fileserver

6.8.1 Future Work & Improvements

Our fileserver implementation could be further optimized. For simplicity, file I/O requests are handled
in a synchronous fashion, where the kernel driver can only handle one I/O request at a time. This
could be improved by implementing mechanisms to queue I/O requests, avoiding the cost of blocking and
continually entering and exiting the VM.

A useful extension to this framework would be implementing paravirtualized block device support. This
would allow the file server VM to export virtual block device interfaces to other VMs, which they could
boot and read directly from. The implementation would require substantial engineering however the
current file server implementation could serve as a base to build off.

40

Adam Felizzi Trianqgles: Porting Qubes to sel/

Chapter 7: Evaluation

7.1 Benchmark Configuration

7.1.1 Hardware Setup

Benchmarking experiments were carried out to investigate the performance difference between Xen and
sel4 for event channels and vchans. The experiments were performed on the same x86_64 platform. The
test machine details are shown in Table 7.1.

Spec Value
Arch x86
ISA x86_64
SoC haswell
CPU i7-4770
Cores 4
RAM 16GB
Max CLK | 3.4Ghz

Table 7.1: Testing Hardware

7.1.2 System Setup and Testing
The systems we will evaluate and their configurations are described below:

seL4d MVQ: The sel.4 MVQ is the system we implemented. This being a CAmkES based system, built
with all the discussed components (event channels, share-allocator etc). The kernel is compiled with
with user debugging and kernel prints disabled and VTx support enabled. The MVQ has been setup
to only start two VMs, the Admin VM (32-bit TCL OS) and an AppVM (32-bit buildroot OS).
The event channel implementation was modified to allow VMM components to directly notify other
VMDMs rather than going through the event channel component. We do this to better represent a
dynamic configuration that is comparable to Xen.

Xen: We use a x86 64-bit build of Xen 4.9.0 release (based on the “RELEASE-4.9.0” tag from Xen git
project [Prol7b]). Domain 0 on Xen hosts a Ubuntu 16.04 LTS 64-bit Linux OS (PV). A 64-bit
Fedora OS (PV) is started as a domU to carry out the test.

Both configurations are given the same benchmarking programs. The event channel and vchan APIs
between sel.4 and Xen are identical with the exception of the method names e.g. libseL4vchan read vs
libxenvchan_read. In addition we disable network activity on both platforms in order to minimize noise
in the system.

We perform our measurements in the guest OSes, using the ‘clock_gettime’ library to retrieve monotoni-
cally increasing clock values, independent of system time.

41

Adam Felizzi Trianqgles: Porting Qubes to sel/
7.2 Benchmarking Event Channels

7.2.1 Benchmarking Program

To benchmark event channels, a simple ping-pong application was implemented. A server sends a client
domain a notification which the client immediately responds to by sending an event back. The server
measures the round-trip time (RTT) of the process in microseconds. The benchmark performs 50 ping-
pong rounds (plus 5 rounds warmup) in a given test. We measure the average RTT of a ping-pong
round. We run 10 tests and present the mean and standard deviation across those 10 tests. Changing
the iteration and test values gave litte difference, with minimal variance between the measured times.

7.2.2 Benchmarking Results

The results of the ping-pong benchmark can be seen in Figure 7.1.
evtchn ping—pong
20 T T
18
16
14
12
10

M sel4
- | Xen

Execution Time (microseconds)

S N B~ O ®
T

RTT One—Way

Figure 7.1: Round Trip Latency of Event Channels

The benchmark shows an average increase of 5 microseconds in a RTT measurement over the Xen event
channel implementation. The sel.l4 one-way latency being roughly 9.5 microseconds. We assume one
way latency is half the round trip time as the path between the VMMSs are symetrical when emitting an
event. Definitive reasons as to why there is extra latency was unable to be identified when benchmarking.
The extra latency may be possibly introduced by going through the Init component when sending and
recieving an event. The event path being from the guest OS to its Init component to the destination Init
component into the destination guest OS.

42

Adam Felizzi Trianqgles: Porting Qubes to sel/
7.3 Benchmarking VChans

7.3.1 Benchmarking Program

To benchmark vchans, we extend our ping-pong application to write and recieve increasing message buffer
sizes between a server and client. We establish a ring buffer of a fixed size to send the messages and
measure the overall, accumulative time it took to complete the read and write operations. VChans will
internally segment write buffers into multiple messages if the message size is greater than the ring buffer
size. We expect to see increasing reading and writing times for increasing message sizes.

Similar to the event channel ping-pong benchmark, for every message, we perform 50 ping-pong rounds
(plus 5 rounds warmup) in a given test. The server writes a message buffer (containing random data)
which is in turn read by the client and written back to the server. We perform benchmarking runs prior
to measurement to validate vchans are working correctly and the server is recieving the correct data back
from the client. We measure the average time it took to write the entire message and read the entire
message on the server end .

7.3.2 Benchmarking Results

The resulting read and write performance of the vchan benchmark can be seen in Figures 7.2 and 7.3.

VChan Read Latency ring=4096

1,600 T T T T T T
1,400 | {~ .
1,200 .
1,000] .
M sel4
800 - |0 Xen

600 T

400 .
ol - | '
0 ! |
8K

4K 16K 32K 64K 128K
Message Size (KB)

Execution Time (microseconds)

Figure 7.2: VChan Read Benchmark

43

Adam Felizzi Trianqgles: Porting Qubes to sel/

VChan Write Latency ring=4096
700 T T T T T T

600 T

500 —

400 - 7 [m seL4

[J Xen

300 -

200 —
100 - -
0 o J_I—I
4K 8K 16K 32K

64K 128K

Execution Time (microseconds)

Message Size (KB)

Figure 7.3: VChan Write Benchmark

The read and write performance for vchan on sel.4 follows the trend of increasing read and write times for
increasing message sizes. This is also the same for Xen with regards to vchan reads. Write performance
however is not consistent on Xen. Xen has less latency when writing larger buffers, whilst also having
signicantly higher latencies for smaller workloads. For 128K message sizes, seL.4 shows an average increase
of 220 microseconds. The experiment is consistent and repeatable whereby Xens latency consistently
drops when handling >=64K messages. The reason behind these results could not be determined. Xen
could possibly have grant table optimizations for larger mappings, however this could not be confirmed.

44

Adam Felizzi Trianqgles: Porting Qubes to sel/

Chapter 8: Roadmap

Qubes is large framework and there are a lot more items to implement before being able to support a
full Qubes port. We will discuss the future work here, laying out a roadmap to bring us closer to a full
Qubes port.

Dynamic VMs on seli4: As discussed in earlier sections, the next step would involve moving the
MVQ build out of CAmKES environment. The items implemented rely on statically defined con-
nections and kernel objects. A first step would involve breaking away from the static definitions,
providing the ability to create the necessary kernel objects out of untyped memory on demand.
The ability to dynamically start and shutdown VMs would be the next necessary iteration.

64-bit VMs: Identified as an earlier road-block, Qubes requires 64-bit VM support whilst we only have
32-bit VM support on sel.4. This limitation lead us to take a bottom-up approach, taking individual
items in the build system and building them as 32-bit targets. Supporting 64-bit VMs would allow
the selLl4 implementation to better merge with the Qubes architecture and build system.

Paravirtualised Drivers: Split driver models are used extensively in Qubes on Xen as a mechanism
to export virtual interfaces to hardware in other domains. This being the key mechanism behind
service vin’s. Further work can look into developing more split driver models for various hardware
devices e.g. block devices, ethernet card. Additional approaches can look into using unikernels to
provide virtual device interfaces, reducing the memory footprint in comparison to using a Linux
kernel for hardware access.

Libvirt Driver: A proper libvirt driver port is the next major requirement in fulfilling Qubes’ hyper-
visor abstraction layer. This would involve extending the libvirt driver framework to support seL.4’s
virtualisation API e.g. vim-manager.

Secure GUI: A significant subsystem omitted from the developed MVQ were the secure GUI daemons.
This being necessary to create a streamlined desktop experience. Modifications need to be made to
the guest images such that they contain the appropriate X-org libraries and drivers as well as a port
of the Qubes GUI infrastructure. Further work would also involve developing graphics passthrough
in order to render the desktop on a screen.

In summary, there are multiple tasks and opportunities that would be beneficial to support a future full
port of Qubes on sel4.

45

Adam Felizzi Trianqgles: Porting Qubes to sel/

Chapter 9: Conclusion

The goal of this thesis was to assess the viability of sel.4 as a virtualisation platform for Qubes. To reach
this goal we sought to port a subset of the Qubes architecture to prove we could support the Qubes
framework on seLL4. Our approach involved targeting lower level toolstacks and virtualisation API’s that
existed in the Xen ecosystem, providing a means to emulate behaviours the Qubes framework expects on
a virtualisation platform.

Through this thesis, we explored background information regarding virtualisation and mechanisms to
reduce the TCB of monolithic operating systems. We explored the Qubes architecture and identified the
key sub-systems that power the system. Through the related work, we further investigated alternative
solutions in the same space as Qubes. We presented a design of an approach to porting the Qubes
architecture to sell4, an implementation to execute our desired design and improvements that can be
made to improve the future iterations of Qubes on sel.4.

Taking our approach, we’ve demonstrated that we can support the Qubes framework. This work laying
a basic foundation to further develop Qubes upon as we move to a more complete port of Qubes to sel.4.
Importantly, through unpacking the Qubes architecture we’ve identified the requirement and roadblocks
of the Qubes framework and where development needs to focus to better support a more complete port
of Qubes on selLl4. The next step would involve breaking the MVQ implementation away from the static
CAmkES base, moving to a more dynamic system.

Lastly we evaluated the basic performance of Qubes and Xen components as we implemented them on
selLl4. This offering a basic framework and starting point which can be further analysed, improved and
expanded on in future iterations.

46

Adam Felizzi Trianqgles: Porting Qubes to sel/

Bibliography

[BBM*12] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazieres, and Christos

[BDF+03]

[Brol17]

[CNZ*T11]

[Danl1]

[Dan15]
[Fes16]

[KAE*14]

[KEH™09]

[KH17]

[Kuz16]

[Lab16]

[Labl7a]

Kozyrakis. Dune: Safe user-level access to privileged CPU features. In Presented as part of
the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12),
pages 335-348, Hollywood, CA, USA, October 2012. USENIX.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. SIGOPS
Operating System Review, 37(5):164-177, October 2003.

Bromium. Our technology. https://www.bromium.com/platform/our-technology.html, 2017.
Accessed: 2017-05-18.

Patrick Colp, Mihir Nanavati, Jun Zhu, William Aiello, George Coker, Tim Deegan, Peter
Loscocco, and Andrew Warfield. Breaking up is hard to do: Security and functionality in a
commodity hypervisor. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP 11, pages 189-202, New York, NY, USA, October 2011. ACM.

Alan Dang. Qubes OS: An operating system designed for security.
http://www.tomshardware.com/reviews/qubes-os-joanna-rutkowska-windows,3009.html,
August 2011. Accessed: 2017-05-18.

Al Danial. Cloc. http://cloc.sourceforge.net/, 2015. Accessed: 2017-10-24.

Norman Feske. GENODE: Operating System Framework 16.05. Genode Labs, Dresden,
2016.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal
Kolanski, and Gernot Heiser. Comprehensive formal verification of an OS microkernel.
ACM Transactions on Computer Systems, 32(1):2:1-2:70, February 2014.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. sel.4: Formal verification of an os kernel. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP
'09, pages 207-220, New York, NY, USA, October 2009. ACM.

Greg Kroah-Hartman. Linux 4.12 is big, really big, like bigger than you thought big.
https://plus.google.com /photos/photo/111049168280159033135/64389231604585435547
icm=false&iso=true, 2017. Accessed: 2017-10-24.

Thor Kuz. Virtualisation on seL4.
https://sel4.systems/Community /Devdays/Workshop2016 /ihor-sel4ws2016.pdf, 2016.
Accessed: 2017-05-18.

Genode Labs. Release notes for the Genode OS Framework 16.08.
https://www.genode.org/documentation/release-notes/16.08, 2016. Accessed: 2017-05-18.

Genode Labs. Future challenges of the Genode project.
https://genode.org/about/challenges, 2017. Accessed: 2017-05-18.

47

Adam Felizzi Trianqgles: Porting Qubes to sel/

[Labl7b] Genode Labs. Release notes for the Genode OS Framework 17.08.
https://genode.org/documentation /release-notes/17.08, 2017. Accessed: 2017-10-19.

[Muil4] A.J. Muir. Taste of research: Qubes on sel.4. Technical report, NICTA, 2014.

[PJ10] Matt Piotrowski and Anthony D. Joseph. Virtics: A system for privilege separation of
legacy desktop applications. Technical Report UCB/EECS-2010-70, EECS Department,
University of California, Berkeley, May 2010.

[Prol1] Xen Project. http://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=README;h=
c9bf699be6bb938e3b263fbad9dbld5cdc8a881e;hb=
834f076e77c4a88df2f87de276debb12048f7eca, 2011. Accessed: 2017-10-24.

[Prol13] Xen Project. Grant table. https://wiki.xen.org/wiki/Grant_Table, 2013. Accessed:
2017-10-24.

[Pro14] Xen Project. Event channel internals. https://wiki.xen.org/wiki/Event_Channel Internals,
2014. Accessed: 2017-10-24.

[Prol15] Xen Project. Xenstore. https://wiki.xen.org/wiki/XenStore, 2015. Accessed: 2017-10-24.

[Prol7a] Qubes OS Project. Qubes security bulletins. https://www.qubes-os.org/security /bulletins/,
May 2017. Accessed: 2017-05-18.

[Prol7b] Xen Project. http://xenbits.xen.org/gitweb/?p=xen.git;a=commit;h=
¢30bf55594a53fael8aae08aabfl6fc192faad7da, 2017. Accessed: 2017-10-24.

[Prol7c] Xen Project. Paravirtualization (pv). https://wiki.xen.org/wiki/Paravirtualization_(PV),
2017. Accessed: 2017-10-24.

[Prol7d] Xen Project. Xen project software overview.
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview, 2017. Accessed:
2017-10-24.

[Rut13] Joanna Rutkowska. Introducing Qubes Odyssey Framework.
https://blog.invisiblethings.org/2013/03/21 /introducing-qubes-odyssey-framework.html,
2013. Accessed: 2017-05-18.

[Rutl7] Joanna Rutkowska. Qubes Os 4.0-rcl has been released.
https://www.qubes-os.org/news/2017/07/31/qubes-40-rcl/, 2017. Accessed: 2017-10-24.

[RW10] Joanna Rutkowska and Rafal Wojtczuk. Qubes OS architecture. Technical report, January
2010.

[TB14] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems. Prentice Hall Press,
Upper Saddle River, NJ, USA, 4th edition, 2014.

[Tugl7] G. Tugai. Qubes on sel.4. Technical report, Data61, 2017.

[XZh16] XZhang. Xen vchan port. https://www.cs.uic.edu/~xzhang/vchan/, 2016. Accessed:
2017-10-24.

48

Adam Felizzi Trianqgles: Porting Qubes to sel/

Appendix 1 - Library Interfaces

#ifndef __EVTCHN_H
#define __EVTCHN_H

#include <inttypes.h>
#include

int sel4evtchn_open(int xfd);

int sel4evtchn_close(int fd);

int selL4evtchn_bind_interdomain(int fd, uint32_t domid, uint32_t remote_port);
int sel4evtchn_bind_unbound_port(int fd, uint32_t domid);

int selL4evtchn_notify(int fd, int port);

int sel4evtchn_unbind(int fd, int port);

int selL4evtchn_unmask(int fd, evtchn_port_t port);

int selL4evtchn_pending(int fd);

#endif

Listing 1: evtchn Interface

#ifndef __SEL4_STORE_H
#define __SEL4_STORE_H

#include <stdint.h>

#define SEL4STORE_PERM_NONE @

#define SEL4STORE_PERM_READ 1

#define SEL4STORE_PERM_WRITE 1

#define SEL4STORE_PERM_OWNER 1

#define SEL4STORE_KEY_EXISTS 9

int selL4store_write(int selL4store_fd, char * key, char * value, uint32_t value_length);

int sel4store_read(int selL4store_fd, char * key, uint32_t length, char x*x*res);

int sel4store_set_key_perm(int selL4store_fd, char *x key, int read, int write, int owner,
unsigned int to_domain);

int sel4store_read_watch(int sel4store_fd, char * key);
int sel4store_init(int *fd);
void sel4store_close(int fd);

#endif

Listing 2: seL4Store Interface

#ifndef __VM_MANAGER_H
#define __VM_MANAGER_H

int get_domain_id(int fd);

int create_new_domain(int fd, char xname, char *uuid);
int lookup_domain_name(int fd, char =*name, char *xuuid);
int lookup_domain_uuid(int fd, char *uuid);

49

Adam Felizzi Trianqgles: Porting Qubes to sel/

void free_domain(int fd, int domain_id, char =xuuid);

#endif

Listing 3: vm-manager Interface

#ifndef __SHARE_MALLOC_H__

#define __SHARE_MALLOC_H__

int alloc_share_init(int *fd);

void alloc_share_close(int fd);

int alloc_share_pages(int share_malloc_fd, size_t *offset, size_t size);

void alloc_free_share_pages(int share_malloc_fd, size_t offset, size_t size);
int share_pages(int share_malloc_fd, int to_domain, size_t offset, size_t size);

#endif /» __SHARE_MALLOC_H__ =*/
Listing 4: Share-Alloc Interface

struct libselL4vchan_ring {
/* Pointer into the shared page. Offsets into buffer. =*/
struct ring_sharedx* shr;
/* ring data; may be its own shared page(s) depending on order x/
voidx buffer;
/**
* The size of the ring is (1 << order); offsets wrap around when they
* exceed this. This copy is required because we can’t trust the order
* in the shared page to remain constant.
*/
int order;

15

/*x%

* struct libselL4vchan: control structure passed to all library calls
*/

struct libselL4vchan {

/* Pointer to shared ring page x/
struct vchan_interface *ring;

uint32_t ring_ref;

/* event channel interface x*/
int event_fd;

int dataport_fd;

int share_mem_fd;

uint32_t event_port;
/* informative flags: are we acting as server? x/
int is_server:1;
/* true if server remains active when client closes (allows reconnection) x/
int server_persist:1;
/* true if operations should block instead of returning @ x/
int blocking:1;
/* communication rings x/
struct libsel4vchan_ring read, write;

BE

VEXS

* Set up a vchan, including granting pages

* @param domain The peer domain that will be connecting

* @param sel4store_path Base sel4store path for storing ring/event data

* @param send_min The minimum size (in bytes) of the send ring (left)

* @param recv_min The minimum size (in bytes) of the receive ring (right)

50

Adam Felizzi Trianqgles: Porting Qubes to sel/

* @return The structure, or NULL in case of an error
*/
struct libselL4vchan *libselL4vchan_server_init(int domain, const char* sel4store_path,
size_t read_min, size_t write_min);
[**
Connect to an existing vchan. Note: you can reconnect to an existing vchan
safely, however no locking is performed, so you must prevent multiple clients
from connecting to a single server.

@param domain The peer domain to connect to
@param selL4store_path Base selL4store path for storing ring/event data

* @return The structure, or NULL in case of an error

*/

struct libselL4vchan xlibselL4vchan_client_init(int domain, const char* selL4store_path);
/**

* Close a vchan. This deallocates the vchan and attempts to free its

* resources. The other side is notified of the close, but can still read any
* data pending prior to the close.

x/
void libselL4vchan_close(struct libselL4vchan *ctrl);

* % %k %k X X X

/x%x

* Packet-based receive: always reads exactly $size bytes.

* @param ctrl The vchan control structure

* @param data Buffer for data that was read

* @param size Size of the buffer and amount of data to read

* @return -1 on error, @ if nonblocking and insufficient data is available, or $size
*/

int libselL4vchan_recv(struct libselL4vchan *ctrl, void xdata, size_t size);

/**

* Stream-based receive: reads as much data as possible.

@param ctrl The vchan control structure

@param data Buffer for data that was read

@param size Size of the buffer

@return -1 on error, otherwise the amount of data read (which may be zero if
* the vchan is nonblocking)

*/

int libselL4vchan_read(struct libselL4vchan *ctrl, void xdata, size_t size);

VEES

* Packet-based send: send entire buffer if possible

* @param ctrl The vchan control structure

* @param data Buffer for data to send

* @param size Size of the buffer and amount of data to send

* @return -1 on error, @ if nonblocking and insufficient space is available, or $size
*/

int libselL4vchan_send(struct libselL4vchan *ctrl, const void xdata, size_t size);
/*%*

* Stream-based send: send as much data as possible.

@param ctrl The vchan control structure

@param data Buffer for data to send

@param size Size of the buffer

@return -1 on error, otherwise the amount of data sent (which may be zero if
* the vchan is nonblocking)

*/

int libselL4vchan_write(struct libselL4vchan xctrl, const void *data, size_t size);
/*%*

* Waits for reads or writes to unblock, or for a close

*/

int libselL4vchan_wait(struct libselL4vchan xctrl);

VEES

* Returns the event file descriptor for this vchan. When this FD is readable,

* libselL4vchan_wait() will not block, and the state of the vchan has changed since
* the last invocation of libselL4vchan_wait().

*/

int libselL4vchan_fd_for_select(struct libselL4vchan *ctrl);

/x%x

*
*
*
*

* % %k %

51

Adam Felizzi Trianqgles: Porting Qubes to sel/

* Query the state of the vchan shared page:

* return @ when one side has called libselL4vchan_close() or crashed
* return 1 when both sides are open

* return 2 [server only] when no client has yet connected

int libselL4vchan_is_open(struct libselL4vchan*x ctrl);

/**x Amount of data ready to read, in bytes =*/

int libselL4vchan_data_ready(struct libselL4vchan *ctrl);

/** Amount of data it is possible to send without blocking =/
int libselL4vchan_buffer_space(struct libselL4vchan x*ctrl);

Listing 5: VChan Interface

52

Adam Felizzi Trianqgles: Porting Qubes to sel/

Appendix 2 - CAmKES Specification

#include <autoconf.h>
#include <configurations/vm.h>
import <std_connector.camkes>;

#define FILE_SERVER_VM_NUM 2

procedure CrossRPC {
include g
seL4_store_retmsg_t vm_rpc(in selL4_store_sockmsg_t msg);

}

procedure ShareMallocRPC {
include g
share_request_res_t vm_rpc(in share_request_t request);

}

procedure EventRequestRPC {
include H
evtchn_ret_wire_t vm_rpc(in int cmd, in evtchn_wire_t request);

3

procedure VmManagerRPC {
include ;
int vm_rpc(in vm_manager_request_args_t req_args);

3

procedure Lock {
void lock(void);
void unlock(void);

3

component Init@ {
VM_INIT_DEF (ADMIN_VM)

uses Ethdriver ethdriver;

consumes selL4EventNotification dom_notify;
consumes selL4StoreWatchNotification watch_notify;

uses DomInfoInterface dom_info;

has mutex cross_vm_event_mutex;

uses CrossRPC sel4store_request;

uses ShareMallocRPC share_malloc_request;
uses EventRequestRPC event_request;

uses VmManagerRPC vm_manager_request;

dataport Buf (4096) selL4store_request_buf;
dataport Buf (1474560) vchan_buf;

dataport Buf (4096) event_port_status;
dataport Buf (4096) vm_manager_request_buf;

has mutex evtchn;
provides Lock evt;

}

component Initl {

53

Adam Felizzi Trianqgles: Porting Qubes to sel/

VM_INIT_DEF (USER_VM)
uses Ethdriver ethdriver;

consumes selL4EventNotification dom_notify;
consumes selL4StoreWatchNotification watch_notify;

uses DomInfoInterface dom_info;
has mutex cross_vm_event_mutex;

uses CrossRPC selL4store_request;

uses ShareMallocRPC share_malloc_request;
uses EventRequestRPC event_request;

uses VmManagerRPC vm_manager_request;

dataport Buf (4096) selL4store_request_buf;
dataport Buf (1474560) vchan_buf;

dataport Buf (4096) event_port_status;
dataport Buf (4096) vm_manager_request_buf;

has mutex evtchn;
provides Lock evt;

component Init2 {
VM_INIT_DEF (FILE_SERVER_VM)

uses Ethdriver ethdriver;

consumes selL4EventNotification dom_notify;
consumes selL4StoreWatchNotification watch_notify;

uses DomInfoInterface dom_info;
has mutex cross_vm_event_mutex;

uses CrossRPC sel4store_request;

uses ShareMallocRPC share_malloc_request;
uses EventRequestRPC event_request;

uses VmManagerRPC vm_manager_request;

dataport Buf (4096) selL4store_request_buf;
dataport Buf (1474560) vchan_buf;

dataport Buf (4096) event_port_status;
dataport Buf (4096) vm_manager_request_buf;

has mutex evtchn;
provides Lock evt;

3

component SEL4Store {
control;
provides CrossRPC request_in;
emits selL4StoreWatchNotification watch_notify;

dataport Buf (4096) sel4store_request_bufo;
dataport Buf (4096) selL4store_request_bufl;
dataport Buf (4096) sel4store_request_buf2;

has mutex store;

3

component ShareMalloc {
control;
dataport Buf (1474560) vchan_buf;
provides ShareMallocRPC share_malloc_request_in;

54

Adam Felizzi Trianqgles: Porting Qubes to sel/

has mutex share;

}

component EventChannel {
control;
provides EventRequestRPC event_request;
emits selL4EventNotification dom_notify;
dataport Buf (4096) event_port_status;
has mutex event;

uses Lock evt_porto;
uses Lock evt_portil;
uses Lock evt_port2;

3

component VmManager {
control;
provides DomInfoInterface dom_info;
provides VmManagerRPC manager_request_in;

dataport Buf (4096) manager_request_bufo;
dataport Buf (4096) manager_request_buf1;
dataport Buf (4096) manager_request_buf2;

has mutex manager;

}
component VM {
provides Ethdriver ethdriver_interface;

composition {
VM_COMPOSITION_DEF ()
VM_PER_VM_COMP_DEF (@, ADMIN_VM, FILE_SERVER_VM_NUM)
VM_PER_VM_COMP_DEF (1, USER_VM, FILE_SERVER_VM_NUM)
VM_PER_VM_COMP_DEF (2, FILE_SERVER_VM, FILE_SERVER_VM_NUM)

component SEL4Store selL4_store;
component ShareMalloc share_malloc;
component EventChannel event_channel;
component VmManager vm_manager;

/* When vchan is set up, everyone will be able to notify everyone elsex*/
/* Need to modify consume and emit init extensions to handle domain notifications*/
/* Might need to find a way to compact these into one interface/component =*/
connection selL4RPCCall event_request(from vm@.event_request, from vml.event_request,
from vm2.event_request, to event_channel.
event_request);
connection selL4DomNotification dom_notify(from event_channel.dom_notify, to vm@.
dom_notify, to vml.dom_notify,
to vm2.dom_notify);
connection seL4DomNotification watch_notify(from selL4_store.watch_notify, to vmo.
watch_notify, to vml.watch_notify,
to vm2.watch_notify);

connection seL4RPCCall request_rpc(from vm@.selL4store_request, from vml.
selL4store_request,
from vm2.selL4store_request, to selL4_store.
request_in);
connection selL4SharedDataWithCaps request_rpc_buf@(from selL4_store.
selL4store_request_bufo,
to vm@.selL4store_request_buf);
connection selL4SharedDataWithCaps request_rpc_bufl1(from seL4_store.
seL4store_request_buf1,
to vml.selL4store_request_buf);
connection selL4SharedDataWithCaps request_rpc_buf2(from selL4_store.

55

Adam Felizzi Trianqgles: Porting Qubes to sel/

selL4store_request_buf2,
to vm2.selL4store_request_buf);

connection seL4RPCCall request_malloc(from vm@.share_malloc_request, from vml.
share_malloc_request,
from vm2.share_malloc_request, to
share_malloc.share_malloc_request_in);
connection selL4VChanDataWithCaps vchan_buf(from share_malloc.vchan_buf, to vmo.
vchan_buf, to vml.vchan_buf,
to vm2.vchan_buf);

connection selL4RPCCall request_manager (from vm@.vm_manager_request, from vml.
vm_manager_request,
from vm2.vm_manager_request, to vm_manager.
manager_request_in);

connection selL4SharedDataWithCaps manager_rpc_buf@(from vm_manager.
manager_request_bufo,
to vm@.vm_manager_request_buf);
connection selL4SharedDataWithCaps manager_rpc_buf1(from vm_manager.
manager_request_buf1,
to vml.vm_manager_request_buf);
connection selL4SharedDataWithCaps manager_rpc_buf2(from vm_manager.
manager_request_buf2,
to vm2.vm_manager_request_buf);

connection selL4DomInfo conn_dom_info(from vm@.dom_info,from vml.dom_info,
from vm2.dom_info, to vm_manager.dom_info);

connection selL4SharedData evtchn_port_status(from event_channel.event_port_status, to
vmo@ .event_port_status, to vml.event_port_status,
to vm2.event_port_status);
connection seL4RPCCall evtchn_port_lock@(from event_channel.evt_porte, to vm@.evt);
connection seL4RPCCall evtchn_port_lockl(from event_channel.evt_portl, to vml.evt);
connection selL4RPCCall evtchn_port_lock2(from event_channel.evt_port2, to vm2.evt);

// Ethernet driver that we share to Linux
component Ethdriver82574 ethdriver;
component HWEthDriver82574 HWEthdriver;

// Hardware resources for the ethernet driver

connection selL4HardwareMMIO ethdrivermmio(from ethdriver.EthDriver, to HWEthdriver.
mmio);

connection selL4HardwareInterrupt hwethirq(from HWEthdriver.irq, to ethdriver.irq);

// Connect vml ethernet to the ethdriver

connection selL4Ethdriver ethdriver_conl(from vml.ethdriver, to ethdriver.client);

connection selL4Ethdriver ethdriver_con2(from vm2.ethdriver, to ethdriver.client);

// For ssh access
connection selL4Ethdriver ethdriver_con@(from vm@.ethdriver, to ethdriver.client);

//connection selL4DomNotification direct_notify_1(from vm@.direct_dom_notify_out, to
vm2.direct_dom_notify_in);

//connection selL4DomNotification direct_notify_2(from vm2.direct_dom_notify_out, to
vm@ .direct_dom_notify_in);

export ethdriver.client -> ethdriver_interface;

}

configuration {
VM_CONFIGURATION_DEF ()
VM_PER_VM_CONFIG_DEF (@)

56

Adam Felizzi Trianqgles: Porting Qubes to sel/

VM_PER_VM_CONFIG_DEF (1)
VM_PER_VM_CONFIG_DEF (2)

vm@.simple_untyped24_pool = 6;

vmo . guest_ram_mb = 150;

vmo@ . heap_size = 0x10000;

vmo . kernel_cmdline = DOM@_VM_GUEST_CMDLINE;

vm@ . kernel_image = DOMO_FILE_SERVER_KERNEL_IMAGE;

vm@ . kernel_relocs = DOM@O_FILE_SERVER_KERNEL_IMAGE;

vm@.initrd_image = DOM@O_FILE_SERVER_ROOTFS;

vm@ .iospace_domain = @x0f;

vm@_config.ram = [[0x20800000, 23], [0x21000000, 24], [0x22000000, 25 1, [@
x24000000, 2611;

vm@_config.pci_devices_iospace = 1;

vml.simple_untyped24_pool = 6;

vml.guest_ram_mb = 130;

viml.heap_size = 0x10000;

vm1.kernel_cmdline = VM_GUEST_CMDLINE;

vml.kernel_image = APPVM_FILE_SERVER_KERNEL_IMAGE;

vml.kernel_relocs = APPVM_FILE_SERVER_KERNEL_IMAGE;

vml.initrd_image = APPVM_FILE_SERVER_ROOTFS;

vml.iospace_domain = 0x10;

vml_config.ram = [[0x30800000, 23], [0x31000000, 24], [0x32000000, 25 1, [©
x34000000, 261];

vml_config.pci_devices_iospace = 1;

vm2.simple_untyped24_pool = 2;

vm2.guest_ram_mb = 80;

vm2.heap_size = 0x10000;

vm2.kernel_cmdline = VM_GUEST_CMDLINE;

vm2.kernel_image = KERNEL_IMAGE;

vm2.kernel_relocs = KERNEL_IMAGE;

vm2.initrd_image = ROOTFS;

vm2.iospace_domain = 0x11;

vm2_config.ram = [[0x40800000, 23 1, [0x41000000, 24], [0x42000000, 25 1, [@
x44000000, 2611;

vm2_config.pci_devices_iospace

0]
-

/* selL4store request buffer x/
vmo .seL4store_request_buf_id =
vm@ .selL4store_request_buf_size
vml.selL4store_request_buf_id =
vml.selL4store_request_buf_size
vm2.selL4store_request_buf_id =
vm2.selL4store_request_buf_size

4096;

4096;

n =1 =11 =

4096;

/* vchan buffer =%/
vm@ .vchan_buf_id =
vm@ .vchan_buf_size
vml.vchan_buf_id =
vml.vchan_buf_size
vm2.vchan_buf_id = 2;
vm2.vchan_buf_size 1474560;
share_malloc.vchan_buf_id = 2;
share_malloc.vchan_buf_size = 1474560;

1474560

1474560

[ST | SN TR O]

vmo.vm_manager_request_buf_id =
vm@.vm_manager_request_buf_size
vml.vm_manager_request_buf_id =
vml.vm_manager_request_buf_size
vm2.vm_manager_request_buf_id =
vm2.vm_manager_request_buf_size

4096,

4096 ;

N w Il w Il w

4096;

/* VM domain information =/

o7

Adam Felizzi Trianqgles: Porting Qubes to sel/

vm@ .domain_num = 0;
vm1l.domain_num = 1;
vm2.domain_num

I
N

selL4_store.heap_size = 0x30000;
share_malloc.heap_size = 0x10000;
vm_manager .heap_size = 0x8000;

vm2_config.pci_devices = [

{ 3 :

.0, :0x1d, 0,
[
{ :0xf7f37000, :0x400, 2123,
15

1%
13
vm2_config.irqs = [

{ : , 123, 01, 01, :14%,
s
ethdriver.simple = true;
ethdriver.cnode_size_bits = 12;

ethdriver.iospaces = ;
ethdriver.iospace_id = 0x12;
ethdriver.pci_bdf = ;
ethdriver.simple_untyped2@_pool = 2;
ethdriver.heap_size = 0x10000;
ethdriver.dma_pool = 0x200000;

HWEthdriver.mmio_paddr = 0xf7f00000;
HWEthdriver . mmio_size = 0x20000;
HWEthdriver.irq_irq_type = ;
HWEthdriver.irq_irq_ioapic = 0;
HWEthdriver.irq_irq_ioapic_pin = 20;
HWEthdriver.irq_irq_vector = 20;

vml.ethdriver_attributes = g
vml.ethdriver_global_endpoint = ;
vml.ethdriver_badge = ;
vml.ethdriver_mac = [6, @, 0, 11, 12, 13];
vml_config.init_cons = [

{ : , 1134479872, : 3,

I3

vm2.ethdriver_attributes = g
vm2.ethdriver_global_endpoint = H
vm2.ethdriver_badge =
vm2.ethdriver_mac = [6, @, 0, 12, 13, 141;
vm2_config.init_cons = [

{ : , 1134479872, : 3,
1

//For ssh access

vmo .
vmo .
vmo .
vmo .
vmo _

ik

ethdriver_attributes = g
ethdriver_global_endpoint = ;
ethdriver_badge =

ethdriver_mac = [6, @0, 0, 13, 14, 15];
config.init_cons = [

{ : , 1134479872,

58

Adam Felizzi Trianqgles: Porting Qubes to sel/

59

Adam Felizzi Trianqgles: Porting Qubes to sel/

Appendix 3 - Lines of Code

Program/Library LoC Program/Library LoC
VMM Handler 310 VMM Handler 160
Linux Driver 649 Linux Driver 303
Linux Library 125 Linux Library 142
CAmkES Component | 196 CAmkES Component | 296
Total 1280 Total 901
Table 1: Event Channel Code Base Table 4: vm-manager Code Base

Program/Library LoC Program/Library LoC
VMM Handler - VMM Handler 129
Linux Driver - Linux Driver 144
Linux Library 270 Linux Library 137
CAmkKES Component | 992 CAmKES Component N
Total 1262 Total 410
Table 2: seL4 Store Code Base Table 5: Cross-VM RPC Code Base
Program/Library | LoC

VMM Handler 234

Linux Driver 183

Linux Library 178

CAmkES Component | 395

Total 990

Table 3: Share Allocator Code Base

60

