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Abstract

This thesis investigates the feasibility of adapting a modern multicore mixed-criticality schedul-

ing architecture & resource sharing protocol (previously only evaluated on monolithic kernels),

to run at user-level on a high-assurance microkernel. Such an architecture has advantages

in terms of �exibility and integrity when compared to more conventional approaches, and

remains unexplored in literature – likely due to the absence of a microkernel able to facilitate

it until recently. To that end, in this work we construct a multicore user-level scheduler &

associated mixed criticality resource sharing protocol on a microkernel. We implement tracing

infrastructure to evaluate the system, and investigate properties of our scheduler with respect

to similar-class monolithic systems. Finally, we propose changes to the kernel API to improve

user-level scheduling performance & discover that our scheduler is performance-competitive

with a Linux-based monolithic approach.



Abbreviations

OS Operating System

seL4 Secure Embedded L4 - a secure, high performance microkernel

MCS Mixed Criticality System

SRT Soft Real-Time

HRT Hard Real-Time

SMP Symmetric Multiprocessing

WCET Worst-Case Execution Time

IPC Inter-Process Communication

MC-IPC Mixed-Criticality IPC

API Application Programming Interface

EDF Earliest Deadline First - a real time scheduling policy

P-EDF Partitioned EDF - one EDF scheduler per processor core

G-EDF Global EDF - one EDF scheduler shared by all processor cores

C-EDF Clustered EDF - hybrid of P-EDF and G-EDF

SC Scheduling Context

RMPA Rate-Monotonic Priority Assignment

TCB Thread Control Block

IPI Inter Processor Interrupt

1



Contents

Abbreviations 1

Contents 2

List of Figures 6

List of Tables 9

1 Introduction 10

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background 13

2.1 Operating Systems & Microkernels . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 seL4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Real-time systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Mixed-criticality systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Criticality modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Uniprocessor real-time schedulers . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Sporadic Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.3 Multiprocessor real-time schedulers . . . . . . . . . . . . . . . . . . . 19

3 Related Work 22

3.1 User-level real-time scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2



3.1.1 RASP – Real-time Application Scheduling Platform . . . . . . . . . . . 23

3.2 Mixed-criticality resource sharing . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 MC-IPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Kernels for multicore mixed-criticality scheduling . . . . . . . . . . . . . . . . 27

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 seL4-MCS 29

4.1 Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Object types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 IPC & System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 IPC System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 seL4 scheduling model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Scheduling Contexts (SCs) . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 Active & Passive Threads . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.3 In�uencers on scheduling behaviour . . . . . . . . . . . . . . . . . . . 35

4.3.4 seL4 User-level Scheduling Example . . . . . . . . . . . . . . . . . . . 35

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Approach 38

5.1 High-Level Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Approach: User-level MCS on seL4 . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1 Scheduler: C-EDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.2 Resource Sharing: MC-IPC . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Approach: Tracing & Instrumentation . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Evaluation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Implementation 46

6.1 Tracing & Benchmarking Infrastructure . . . . . . . . . . . . . . . . . . . . . . 46

6.1.1 Kernel Log Bu�er Changes . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1.2 schedplot visualisation application . . . . . . . . . . . . . . . . . . . 49

6.2 C-EDF Scheduler Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.2 Priority Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3



6.2.3 Bootstrap & Capability Distribution . . . . . . . . . . . . . . . . . . . 55

6.2.4 Tour of the Scheduling Loop . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.5 Sources of Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.6 Link-Based Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.7 Scheduling a Job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 MC-IPC Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3.2 Per-Cluster & Per-Server Properties . . . . . . . . . . . . . . . . . . . 66

6.3.3 Walkthrough of an MC-IPC Request . . . . . . . . . . . . . . . . . . . 67

6.3.4 Multi-cluster Bandwidth Inheritance & Idling Reservations . . . . . . 69

6.3.5 MC-IPC Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Evaluation & Analysis 72

7.1 Evaluation Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 Tracing Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2.1 Log Overhead Accounting . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2.2 Logging Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2.3 schedplot accounting accuracy . . . . . . . . . . . . . . . . . . . . . . 76

7.2.4 schedplot debugging case study . . . . . . . . . . . . . . . . . . . . . 78

7.3 C-EDF Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3.1 Dissecting the Total Invocation Time . . . . . . . . . . . . . . . . . . . 79

7.3.2 Overheads of Time Sources . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3.3 Scheduler Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3.4 Criticality Mode Switch . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3.5 Overheads & Schedulability Analysis . . . . . . . . . . . . . . . . . . . 85

7.4 MC-IPC Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.4.1 schedplot trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.4.2 Invocation Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.4.3 Implementation Complexity . . . . . . . . . . . . . . . . . . . . . . . . 96

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4



8 Future Work 98

8.1 Changes to seL4 API for MC-IPC . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.2 Extended Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.3 Scheduler WCET Accounting & Admission Control . . . . . . . . . . . . . . . 100

8.4 Prototyping framework in a high-level language . . . . . . . . . . . . . . . . . 101

9 Conclusion 102

Bibliography 103

Appendix A: Log-Bu�er Mappings 107

Appendix B: C-EDF Measurement Details 109

Appendix C: ARM C-EDF Measurements 111

Appendix D: x86 4-PEDF null-result tests 113

Appendix E: Implementation Metrics 114

5



List of Figures

2.1 Monolithic and microkernel-based systems . . . . . . . . . . . . . . . . . . . . 14

2.2 A partitioned scheduler (EDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 A global scheduler (EDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 RASP architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Example of an IPC rendezvous . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Scheduling Context Donation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Example of user-level scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Abstract C-EDF architecture on seL4 . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Simpli�ed MC-IPC design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1 Di�erent components of our implementation (circled red) . . . . . . . . . . . . 46

6.2 Contents of a log bu�er entry (original in blue, debug extensions in green) . . 48

6.3 Contents of a log bu�er entry (lite/trace mode) . . . . . . . . . . . . . . . . . . 48

6.4 schedplot GUI screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5 schedplot high-level architecture . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.6 Every G-EDF cluster has its own set of queues and CPU links . . . . . . . . . 53

6.7 States which tasks may move between . . . . . . . . . . . . . . . . . . . . . . 53

6.8 How capabilities are distributed under C-EDF . . . . . . . . . . . . . . . . . . 55

6.9 Link scheduler CPU associations . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.10 Basic 2-cluster MC-IPC structure . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.11 Per-cluster and per-server MC-IPC properties . . . . . . . . . . . . . . . . . . 66

6.12 A single uninterrupted MC-IPC request . . . . . . . . . . . . . . . . . . . . . . 67

6.13 Bandwidth inheritance example . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6



7.1 Measured event duration by kernel logging infrastructure (not to scale) . . . . 73

7.2 multi-task system, kernel invocations in yellow (schedplot) . . . . . . . . . . 74

7.3 ARM log bu�er overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.4 x86 log bu�er overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.5 Cycle breakdown of logging overhead on x86 . . . . . . . . . . . . . . . . . . . 76

7.6 Quadcopter case study schedplot trace . . . . . . . . . . . . . . . . . . . . . . 78

7.7 x86 4-GEDF scheduler invocation time . . . . . . . . . . . . . . . . . . . . . . 79

7.8 x86 4-GEDF invocation times with di�erent time sources . . . . . . . . . . . . 80

7.9 x86 4-PEDF invocation times with di�erent time sources . . . . . . . . . . . . 81

7.10 x86 4-PEDF time sources with 1ms average task periods . . . . . . . . . . . . . 82

7.11 x86 G-EDF core scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.12 x86 P-EDF core scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.13 x86 4-GEDF task scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.14 x86 4-PEDF task scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.15 x86 4-GEDF invocation times with criticality mode switch . . . . . . . . . . . 85

7.16 Our approach, 4-GEDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.17 LITMUSRT , 4-GEDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.18 RASP, 4-GEDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.19 Our approach, 4-PEDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.20 LITMUSRT , 4-PEDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.21 (mean) 4-GEDF schedulability, 1mS to 10mS task period distribution . . . . . . 91

7.22 (worst) 4-GEDF schedulability, 1mS to 10mS task period distribution . . . . . . 91

7.23 (mean) 4-GEDF schedulability, 100µS to 1mS task period distribution . . . . . 92

7.24 (worst) 4-GEDF schedulability, 100µS to 1mS task period distribution . . . . . 92

7.25 (mean) 4-PEDF schedulability, 100µS to 1mS task period distribution . . . . . . 93

7.26 (worst) 4-PEDF schedulability, 100µS to 1mS task period distribution . . . . . . 93

7.27 2x2-CEDF MC-IPC trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.28 x86 MC-IPC invocation latency . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.1 MC-IPC design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

1 Types of log-bu�er mappings tested (existing above, prototype below). . . . . 107

2 Example of 4-GEDF overhead measurement components (Sabre) . . . . . . . . 109

7



3 ARM 4-GEDF invocation times with di�erent time sources . . . . . . . . . . . 111

4 ARM 4-PEDF invocation times with di�erent time sources . . . . . . . . . . . 111

5 ARM 4-GEDF invocation times with criticality mode switch . . . . . . . . . . 112

6 ARM 4-PEDF overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 ARM 4-GEDF overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8 (mean) 4-PEDF schedulability, 1ms to 10mS task period distribution . . . . . . 113

9 (worst) 4-PEDF schedulability, 1mS to 10mS task period distribution . . . . . . 113

8



List of Tables

7.1 Hardware platform details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 Worst-case accuracy of schedplot log-bu�er overhead adjustments, per call. . 76

7.3 Error of x86 schedplot log-bu�er overhead adjustments, simple EDF scheduler. 77

7.4 Code required to implement MC-IPC (excluding C-EDF scheduler & testbench) 96

9



1 | Introduction

Modern cyber-physical systems (such as autonomous vehicles) are normally constructed using

physically isolated processors for fault containment. Such an arrangement ensures that low

criticality software cannot interfere with high criticality components (with potentially life-

threatening failure consequences). Unfortunately, physically isolated hardware is expensive,

results in low per-CPU utilisation, and higher power draw.

Recent developments in operating systems have heralded methods for ensuring the required

level of isolation between software components on a single processor. Combining high- and

low-criticality software components in this fashion forms a mixed-criticality system (MCS),

which overcomes the disadvantages of traditional hardware isolation. Multicore processors

are of particular interest in this context, as they facilitate greater density of compute power

per watt (and per unit size) than previously possible with similar-class unicore processors.

State-of-the-art multicore mixed-criticality scheduling & resource sharing techniques are

predominantly built on monolithic kernels – extremely complex pieces of software consisting

of millions of lines of code (for example, PREEMPT_RT Linux) which must be trusted for

correctness if isolation enforcement is required. Fortunately, recent work in microkernel

design (particularly [Lyons et al., 2018]) has resulted in the construction of operating system

kernels that are both high-assurance (through in-progress formal veri�cation), and provide

mechanisms for constructing mixed-criticality systems at user-level (see chapter 2 for more

information on monolithic & microkernels).

This thesis investigates the feasibility of adapting a modern multicore mixed-criticality

scheduling architecture & resource sharing protocol (previously only evaluated on monolithic

kernels), to run at user-level on a high-assurance microkernel, seL4. Such an architecture

remains unexplored in literature – likely due to the absence of a microkernel able to facilitate

it until recently [Lyons et al., 2018].
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1.1 Motivation

There are four key reasons microkernel-based user-level scheduling is appropriate for mixed-

criticality systems, and worth exploring further:

1. Flexibility: There is a signi�cant lag behind MCS scheduling theory of MCS scheduling

practice in industry [Mollison and Anderson, 2013]. Customization of scheduling be-

haviour at user-level allows system designers to more easily use cutting-edge scheduling

techniques, and without compromising high-criticality schedulers, by compartmentalis-

ing them (or using an in-kernel scheduler).

2. Performance: Real-time schedulers in monolithic kernels are generally complex [Ca-

landrino et al., 2006], and thus incur high context-switching overhead. This thesis will

investigate whether the comparatively small context-switching cost of fast microkernels

outperform monolithic kernels, even if user-level scheduling logic is in-between.

3. Kernel Investigation: Multicore MCS schedulers have not yet been evaluated at user-

level on microkernels in literature [Burns and Davis, 2018]. As a result, kernel design

trade-o�s with respect to this use-case remain unexplored.

4. Assurance: Since modern microkernels are constructed from small (in rare cases

mathematically-veri�ed) codebases, system designers can rely on the trustworthiness of

a modern microkernel to enforce user-level isolation properties.

1.2 Thesis Outline

We seek to demonstrate that user-level mixed-criticality schedulers deployed on a multicore,

microkernel-based system, are in fact performance competitive with the same class of system

constructed with a monolithic kernel. To that end, we construct a clustered multicore user-

level scheduler & associated mixed criticality resource sharing protocol on a high-assurance

microkernel, and investigate its properties with respect to similar-class monolithic systems.

1.2.1 Contributions

The key contributions of this thesis are as such:

11



1. An implementation & performance investigation of a microkernel-based multicore hard-

realtime user-level scheduler with mixed-criticality support.

2. A tool for tracing of user-level schedulers which allows the collection of performance

metrics and correctness testing of a scheduler implementation.

3. Test implementations & proposed changes to said microkernel’s API for improving

user-level scheduling performance.

1.2.2 Structure

Chapter 2 provides an introduction to real-time and operating systems basics. Chapter 3

explores di�erent ways of constructing multicore mixed-criticality systems as published in

existing literature. Chapter 4 explains a relevant subset of the seL4 programming model and

kernel architecture. Chapter 5 provides a high-level overview of how we construct & evaluate

multicore mixed-criticality systems on seL4. Chapter 6 explores our implementation in detail.

Chapter 7 covers our results, and our interpretation of them. Chapter 8 & Chapter 9 provide

an outline of possible future work, and our conclusion.
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2 | Background

This chapter outlines real-time theory and operating systems concepts as they relate to this

thesis.

2.1 Operating Systems & Microkernels

An operating system (OS) is a piece of software which interfaces with physical hardware and

peripherals to provide services to applications through a common interface. At the core of an

OS is the kernel, software which has privileged access to the CPU and manages resources at

the lowest level.

Many kernels that underpin commodity operating systems (such as Android or Windows)

can be broadly described as monolithic kernels1. In our context monolithic indicates that many

of the services that the operating system provides to applications exist as part of the kernel

(for example device drivers or �lesystem implementations). This lies in contrast to the design

goals of microkernels (such as seL4), which attempt to reduce the kernel size (hence amount of

privileged code in a complete system) as much as practically possible. Liedtke [1995] described

the microkernel minimality principle – a concept which still underpins modern microkernel

design [Heiser and Elphinstone, 2016]:

A concept is tolerated inside the µ-kernel only if moving it outside the kernel, i.e.

permitting competing implementations, would prevent the implementation of the

system’s required functionality.

Device drivers, memory management, �lesystems & schedulers (which are the focus of

this thesis) – all conventionally components of monolithic kernels; can exist as user-level

components in modern microkernels. See Figure 2.1 for a comparison.
1The Windows NT kernel is sometimes denoted a hybrid kernel, but it is de�nitely not a microkernel. Take

‘broadly’ with a grain of salt
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Figure 2.1: Monolithic and microkernel-based systems

Placing key operating system services (such as device drivers) at user-level allows for

graceful recovery in the event of faults. In a monolithic kernel, if a security vulnerability in

a particular driver is exploited, it may be possible to (at best) crash the kernel or (at worst)

gain control of the whole system & steal information. In a well-constructed microkernel-based

system, exploitation of vulnerabilities in a particular driver are contained – the driver may crash

(in which case the driver could be restarted), or the driver could be otherwise compromised

(e�ecting only the driver and perhaps any other user-level services it has permissions to). For

these reasons, smaller kernel size inherently decreases our trusted computing base [Rushby,

1981], which is the combination of a kernel and processes whose correctness must be ensured

to protect a system from crashes or security vulnerabilities. In the context of high-assurance

systems, the reduced trusted computing base and generality of microkernel mechanisms

provides us with a strong foundation for building more complex systems.

2.1.1 seL4

seL4 is a high-performance, formally veri�ed microkernel which recently gained support for

mixed-criticality mechanisms [Lyons et al., 2018]. A formal, machine-checked proof exists

which states that if the kernel is initialized correctly, then the kernel binary will not deviate in

behaviour from an abstract formal speci�cation [Klein et al., 2014]. Although such a proof

for the recently-added mixed-criticality mechanisms is still in development, it is expected

to be completed in the near future. An evaluation of the properties of complex user-level
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arrangements which use these MCS primitives is an area unexplored – which is partially

why we chose seL4 as an experimental platform upon which to perform our research in later

sections. Further details on the speci�cs of seL4 will be covered in chapter 4, where we describe

a subset of the seL4 programming model and kernel architecture that is most relevant to this

research.

2.2 Real-time systems

Much of mixed-criticality systems scheduling work stems from ‘ordinary’ real-time theory.

Consequently this section introduces some real-time basics. For a comprehensive review of

real-time models, scheduling and locking protocols, the reader is encouraged to explore the

work by Brandenburg [2011].

In the context of real-time systems, a task denotes a unit of execution that has some

temporal constraint. In practical systems, there is often a direct correspondence between tasks

and threads. Mok [1983] describes the sporadic task model, under which real-time tasks are

characterised by 3 parameters – (ei, pi,di):

• pi denotes the minimum inter-arrival time, i.e the minimum period between successive

arrivals of jobs for a particular task.

• ei denotes the maximum execution requirement, often determined by estimating or

statically computing the worst-case execution time (WCET) of a job.

• di denotes the deadline of a job – at least ei units of execution time must be allocated to

a job before its deadline, for the deadline to be met.

Often, the deadline of a task is simply ‘before the next job release’ – i.e task deadlines and

periods match (pi = di) – allowing representation of real-time tasks in terms of 2 parameters

only (ei, pi). This is denoted an implicit deadline task (in contrast to explicit deadline tasks)

(we will later discover that implicit deadline speci�cation is roughly how real-time tasks are

denoted in seL4).

In terms of temporal correctness, deadline misses are not tolerated in so-called hard real-time

(HRT) systems, whereas (bounded) lateness is permitted in soft real-time (SRT) systems. Tasks

which have no HRT or SRT requirements are often denoted best-e�ort tasks [Brandenburg,

2011].
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2.3 Mixed-criticality systems

Mixed-criticality systems extend the real-time models with additional constraints. We will

start with a generic mixed criticality system model (based on work by Burns and Davis [2018]),

and then brie�y look at more detailed models.

A mixed criticality system generally consists of a set of components. Each component

has a criticality level, and contains a set of sporadic tasks. The component criticality level

indicates how important a component is to the system’s functional correctness. For example,

the stereo software in a car is less relevant to the vehicle’s functional correctness than the

engine management unit. It is a requirement in mixed-criticality systems that low criticality

components do not interfere with high-criticality components. The non-interference property is

thus asymmetric - high-criticality components may interfere with low-criticality components,

but not vice-versa. This means, for example, that components must not use more than their

assigned computation time, and resource sharing across criticalities is either carefully controlled

or forbidden. To enforce such a constraint, temporal & spatial isolation are required. Systems

which rely on the correctness of components (rather than the operating system or user-level

scheduler) for isolation require low-criticality tasks to be engineered to the same degree

of rigour as high-criticality tasks. This is undesirable – constructing software to meet (for

example) high-criticality certi�cation requirements is expensive and requires huge amounts of

engineering work.

2.3.1 Criticality modes

Many works on MCS consider criticality modes [Burns and Davis, 2018]. In a system with

criticality modes, only components with criticality greater than a particular criticality level

(indicated by the current mode) receive CPU time. Initially, the system starts at the lowest

criticality mode. If any job attempts to execute for longer than ei, the criticality mode is raised.

In some cases, systems only have 2 criticality levels, commonly called LO and HI. In binary-

criticality systems with criticality modes, the system is said to be in either LO-criticality or

HI-criticality mode, allowing all components, or only high components to execute respectively.

Vestal [2007] observed that it is often desirable for ei (WCET) to have di�erent values in

di�erent criticality modes. For example, if we had a very pessimistic WCET estimate (for safety)

and a more realistic WCET estimate, it is desirable to run the component using the realistic
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WCET estimate (to allow more time for low priority components to run) when possible. If

the realistic WCET estimate is violated, then the system raises the criticality mode and all

components are scheduled based on pessimistic WCET estimates.

Now that we have explored the basics of real-time & mixed-criticality systems, we will

explore how real-time systems can be scheduled, and later extend this to mixed-criticality

systems.

2.4 Schedulers

A scheduler is the part of an operating system that determines when execution abstractions

(such as processes, threads, or real-time tasks) are allocated physical CPU time.

2.4.1 Uniprocessor real-time schedulers

Real-time schedulers can be classi�ed by how jobs (which are released by tasks) are prioritized

over time according to some prioritization function. When jobs from a particular task always

have the same scheduling priority, this class of schedulers is �xed priority – explored further

below. There also exist real-time schedulers in which the priority of any one job remains

constant, but di�erent jobs from the same tasks may have di�erent priorities – this is called a

job-level �xed priority scheduler (of which an EDF scheduler is an example, see below). Fully

dynamic schedulers also exist, but they can have unpredictable real-time behaviour and su�er

from more preemptions than the above two approaches in the general case [Brandenburg,

2011], so we omit them here.

Fixed priority schedulers

Rate monotonic priority assignment (RMPA) is a classic way of allocating priorities for a �xed-

priority scheduler. Under RMPA, each task is assigned a �xed priority directly proportional

to its frequency (lowest inter-arrival time (period) is of the highest priority). If tasks are

independent, then RMPA guarantees that tasks will meet their deadlines if the sum of task

utilisations (i.e ei
pi

) is below some upper bound (0.69 in the limit of in�nite tasks).

In the context of a mixed-criticality system however, the priority of a task does not nec-

essarily correspond to its criticality level. RMPA only guarantees schedulability if all tasks

meet the deadlines speci�ed during system design, which implies trust in low-criticality tasks
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if, for example, such a low-criticality task has a high scheduling priority due to RMPA. A

simple way to solve this in the �xed-priority case is period transformation [Sha, 1986]. Under

period transformation, both ei and pi of high criticality tasks are split successively into parts of

parameters ei
2 and pi

2 (i.e the jobs are interleaved), until the �nal priority assignment matches

criticality levels. The resulting priority assignment ensures that high-criticality tasks will not

miss deadlines due to interfering low-criticality tasks, eliminating the need for trust in low-

criticality tasks (as long as tasks do not share resources across criticalities). Unfortunately this

approach su�ers from unnecessarily large context switching overhead, and a developer must

�gure out how to accurately split up a potentially complex task into separately schedulable

subtasks.

Earliest Deadline First (EDF) schedulers

Under uniprocessor EDF, a job with the earliest deadline always possesses the highest schedul-

ing priority. A key advantage of EDF (a job-level �xed priority scheduler) over more classic

�xed-priority schedulers (such as RMPA) is higher schedulability. In fact, EDF is optimal in the

uniprocessor case, meaning it has a utilisation upper bound of 1 (ignoring overheads of the

scheduler itself).

Unfortunately, since jobs are prioritized at runtime, it becomes di�cult to reason about

how the system might behave in a mixed criticality scenario if a job overruns its deadline.

Baruah et al. [2011] proposed a solution to this, EDF-VD (EDF-Virtual-Deadline), under which

high criticality tasks have their EDF deadlines reduced under certain circumstances so that

high-criticality tasks are always scheduled when required. Many such modi�cations to EDF

for MCS exist [Burns and Davis, 2018].

2.4.2 Sporadic Servers

A server (in the context of real-time) is an algorithm for enforcing an execution upper bound.

The sporadic server model [Sprunt et al., 1989] is a scheduling policy for budget enforcement

that is compatible with other real-time scheduling algorithms (particularly �xed-priority). It is

of particular relevance to mixed-criticality systems, as sporadic servers provide a principled

way of enforcing an upper bound on thread execution time at high priorities. We will later

discover that maximum execution time enforcement in seL4 is based on sporadic servers.

Sporadic servers preserve a sliding window constraint. Using the parameters ei and pi of an
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implicit-deadline task, the sliding window constraint is that during any pi window of time, no

more than ei execution time can be consumed. This constraint is maintained by keeping track of

budget replenishments – partial budget consumption is tracked, and later restored at pi units of

time in the future. In the POSIX case, a task which overruns its budget under SCHED_SPORADIC

has its priority reassigned (to a background priority) until its budget is replenished. For more

information on sporadic server algorithms, see Stanovic et al. [2010].

2.4.3 Multiprocessor real-time schedulers

Partitioned, global & clustered real-time scheduling

The question remains as to how uniprocessor scheduling algorithms might be extended to

multicore scenarios.

Figure 2.2: A partitioned scheduler (EDF)

The simple case is partitioned scheduling, in which each processor is scheduled indepen-

dently (this has the advantage that we can just use existing uniprocessor analysis on each core).

Partitioned scheduling is the scheduling approach most often used in practice, due to ease

of analysis, and has been demonstrated preferable in the hard real-time case [Brandenburg,

2011]. The downside of partitioned scheduling is low utilisation – tasks must be statically

assigned to partitions at design time such that no processors are overloaded. For example,

if we had 3 tasks of utilisation 0.6 (utilisation sum 1.8), this would not be schedulable under

partitioned scheduling on 2 cores, despite the utilisation sum being less than 2. Heuristics exist
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for computing solutions to this bin-packing problem, however we deem partition assignment a

system design issue (and out of scope for this thesis).

Figure 2.3: A global scheduler (EDF)

Global scheduling takes a di�erent approach, with one (global) scheduler which exercises

control over all processors. Since all processors share a single logical ready queue, partitioning

is not required and hence global scheduling does not su�er from low utilisation due to bin-

packing problems. Unfortunately, the high overheads of frequent cross-core communication

(and context migration) associated with global scheduling reduces available scheduling capacity

[Brandenburg, 2011].

Clustered scheduling is a generalisation of partitioned and global scheduling, where clusters

of processors are scheduled by a single logical scheduler per cluster. A clustered scheduler

with cluster size 1 is a partitioned scheduler, whereas a clustered scheduler with cluster size

equal to the core count is a global scheduler. We will examine some design issues with respect

to clustered schedulers in following chapters. Brandenburg [2011] demonstrated that in the

general case, the ability for clustered scheduling to trade o� between bin-packing partitions

and global scheduling communication overhead makes it desirable for soft real-time systems.

Multicore scheduling and cross-core interference

It is possible for tasks on di�erent cores to interfere with each other even if no resources are

explicity shared between them. For example, if a low-criticality task has a high cache footprint

and shares a cache with a high-criticality task, then the low-criticality task could adversely
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in�uence the WCET of the high-criticality task (a threefold slowdown is demonstrated by

Pellizzoni et al. [2010] in this situation). In addition to standard caching mechanisms, modern

CPUs contain (in many cases undocumented) shared microarchitectural state, which can

cause undesired cross-core interference. A naive solution might be to make task WCETs

more pessimistic – unfortunately arriving at an accurate WCET estimate (by accounting for

cross-core interference) is an active area of research, and requires deterministic CPU behaviour.

Yun et al. [2012] describe a memory throttling mechanism to mitigate cache-related cross-

core interference, by measuring cache evictions and dequeueing o�ending tasks. Using cache

evictions as a scheduling heuristic implies potentially intolerable reponse latency (for example,

if a low-criticality task pathologically moves from no cache usage to cache thrashing just

before a latency-sensitive critical interrupt arrives for a high-criticality task on another core).

Gang scheduling [G. Feitelson and Rudolph, 1992] is a scheduling approach where only

the groups of threads associated with a single process are scheduled at any one time. If CPU

state is �ushed on every context switch, this reduces the possibility of cross-core interference

between di�erent processes (which may be of di�erent criticalities in an MCS). Gang scheduling

provides a performance improvement if threads of the same process communicate heavily, but

su�ers from low utilisation if threads do not saturate cores.

Although this thesis does not directly address the in�uence of cross-core microarchitectural

e�ects on scheduler design, it is important to be aware of these concerns. Our scheduling

architecture should not introduce more cross-core interference opportunities or unintended

information sidechannels.
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3 | Related Work

To investigate the feasibility of adapting a mixed-criticality scheduling architecture to run at

user-level, we require three components – a real-time aware user-level scheduling architecture,

a mixed-criticality resource sharing policy and a microkernel with user-level scheduling

support. This chapter sequentially examines previous work in relation to each of these elements.

3.1 User-level real-time scheduling

In this section, we will �rst examine some uniprocessor architectures, move to multicore,

and then evaluate whether they are applicable to our MCS use-case. Scheduler activations

[Anderson et al., 1992] are a kernel construct which facilitates user-level scheduling by having

the kernel notify user-level schedulers on a kernel scheduling event. Oikawa and Tokuda

[1994] implement a unicore user-level real-time scheduler on the RT-Mach microkernel based

on scheduler activations from RT-Mach for user-level scheduling events. Scheduler activations

as a feature in monolithic kernels have slowly disappeared over time [Mollison and Anderson,

2013]. Anantaraman et al. [2004] built a user-level EDF scheduler on Linux, but do not address

synchronisation or handling of Linux system calls from tasks (which is a key reason for using

Linux in the �rst place). Unlike the above monolithic work, Ruocco [2006] implement a

unicore user-level real-time scheduler on the L4::Pistachio microkernel for adaptive scheduling,

with user-level interrupt handlers triggering scheduling events - an approach also possible

under seL4. Huang et al. [2012] build a user-level �xed-priority mixed-criticality scheduler on

Linux based on period transformation, but do not address synchronisation between tasks or

multicore. Lyons et al. [2018] demonstrate a microkernel-based user-level EDF scheduler, but it

was only evaluated in a unicore situation1. RASP [Mollison and Anderson, 2013] is a framework
1 Lyons et al. [2018]’s scheduler was actually the basis for some of our early uniprocessor EDF prototypes in

this thesis – we ended up almost entirely rewriting it. Still, some code remnants remain.
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for preemptive multicore real-time user-level scheduling which addresses synchronisation

between tasks and supports clustered scheduling. Since the design goals of RASP super�cially

map closely to this thesis, we shall explore its architecture in detail.

3.1.1 RASP – Real-time Application Scheduling Platform

Mollison and Anderson [2013] describe RASP – an open-source userspace library for multicore

real-time scheduling, which uses the PREEMPT_RT Linux kernel as an underlying RTOS (whether

it is portable to microkernels will be discussed in this section).

Figure 3.1: RASP architecture

A system based on RASP consists of a single kernel-level thread pinned to each CPU core,

and a user-level thread for each real-time task (see Figure 3.1). The kernel-level threads can be

conceptualised as ‘virtual CPUs’, where user-level threads (real-time tasks) execute within the

appropriate kernel-level thread. C-EDF is the only scheduling algorithm available in RASP. For

preemption, the library makes use of POSIX timers to interrupt real-time tasks, which signal

the kernel-level threads to perform a scheduling operation. The kernel-level thread is then able

to perform an appropriate scheduling operation, which could include communicating with

other kernel-level threads if a cross-core migration is required. For synchronisation between

tasks, RASP includes support for Flexible Multiprocessor Locking Protocol [Block et al., 2007],

which is similar to ordinary semaphore-based locking protocol, but with some extra analysis

and protocol complexity such that it has predictable behaviour on multicore.
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PREEMPT_RT Linux is of course a monolithic kernel – a dependency on such a kernel

requires a massive trusted computing base. That being said, there exist microkernel-based

operating systems which present a POSIX-like interface (such as QNX), to which RASP could

be ported. Even if RASP was ported to such an architecture (and we assumed the underlying

kernel was correct), enforcing temporal isolation between untrusted tasks (with RASP in its

current state) is not possible. RASP’s reliance on conventional, lock-based synchronisation

protocols means that all tasks must adhere to the locking protocol, else other tasks may starve

(for example, one task locks a mutex, never releases it). This places trust in the implementation

correctness of (potentially low-priority) real-time tasks, which is unacceptable in our case.

From a performance perspective, any implementation of RASP on top of a microkernel requires

a POSIX compliance layer – a layer which all RASP preemption/scheduling operations must

traverse. Such a layer cannot be without overhead – which we quantify when comparing RASP

to our approach in chapter 7. For the reasons described above, we deem RASP’s architecture

di�erent enough to our research goals such that extending RASP to meet our goals would be

impractical.

3.2 Mixed-criticality resource sharing

With respect to sharing resources cross-criticality, there are two dominant approaches [Burns

and Davis, 2018] – extending conventional locking protocols, and encapsulating shared re-

sources in resource servers (to be explained shortly). The main problem with conventional

locking protocols is that locking implies trust across criticalities. If a low-criticality task locks a

resource, a high-criticality task must trust that the lock is eventually released by that task (even

if the low-criticality task was moved to the highest possible scheduling priority, we still have

to trust its implementation). Resource servers on the other hand, when carefully implemented,

do not su�er from this problem. Well-studied in microkernel literature, resource servers are

threads which encapsulate shared resources. [Lyons et al., 2018] describe kernel mechanisms

to support mixed-criticality resource servers, as well as some examples of how to build systems

with resource servers. Essentially, real-time tasks are allocated an upper-bound on CPU band-

width (using sporadic servers), and must ‘donate’ their time allocation to a resource server in

order for the server to use it. If the bandwidth allocation is depleted (which can be indicated

by a ‘timeout fault’), the server may be rolled back or exhibit some other behaviour whenever
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the next resource request arrives. However, the example systems in [Lyons et al., 2018] do

not directly account for some (multicore) edge cases to do with non-reentrant servers and

dynamic task numbers. We will explore this further by studying the work of [Brandenburg,

2014], below.

3.2.1 MC-IPC

[Brandenburg, 2014] describes MC-IPC – a multicore, mixed criticality resource sharing

protocol based on resource servers and carefully de�ned IPC semantics. Since MC-IPC forms

part of our implementation approach (chapter 5), we will spend some time studying it here.

At a high level, MC-IPC employs a 3-level hierarchical queueing structure and scheduling

reservations to enforce worst-case resource server invocation times. Although this protocol

was initially evaluated as part of a monolithic kernel (LITMUSRT [Calandrino et al., 2006]),

Brandenburg denoted implementing MC-IPC in a commodity microkernel as future work. This

was acknowledged in later work on mixed-criticality microkernel design [Lyons et al., 2018],

however the complexity of MC-IPC made it undesirable to implement as a core microkernel

mechanism (given the microkernel goal of policy freedom).

At the heart of MC-IPC’s unique isolation properties is an invocation bounding theorem,

which we restate here in very condensed form for convenience. Under clustered scheduling,

if we take C as the cluster size, K as the number of clusters and L as the server worst-case

budget consumption for a single request, the following theorem holds. For a highest-criticality

task invoking a shared resource server, the reservation associated with the invoking task will

consume at most (1+2CK) ·L units of budget. A key observation is that unlike previous work

on shared resource servers, the invocation bound presented by Brandenburg is (if an invoking

task is of highest or equal-highest criticality):

1. Independent of the number of tasks in the system

2. Independent of the runtime behaviour of any other task in the system

These statements are quite broad, so let us consider some concrete examples by comparing

this behaviour to conventional FIFO based and priority-queue (which we will denote PRIO)

based L4-style inter-process communication (IPC). If we consider the �rst property with respect

to FIFO-IPC, a swarm of low-criticality tasks could saturate a resource server’s FIFO queue

and the invocation bound experienced by a high-criticality task would increase. PRIO-IPC
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(currently employed by seL4-MCS) does not su�er from this, however it does not completely

solve the problem. Instead, considering the second property above with respect to PRIO-IPC,

in a situation where a swarm of equally-high-criticality tasks malfunction and swamp the

resource server we end up with a similar problem – the invocation bound experienced by a

high-criticality task increases (an amount proportional to the number of interfering tasks).

MC-IPC does not su�er from this class of problems by employing its 3-level queue structure

with speci�c request pruning rules.

Despite the aforementioned strong invocation bound properties, MC-IPC is not without its

limitations. Nested requests for resource servers are common in real systems – for example,

if we wanted a resource server which performed sensor fusion, it may use a resource server

that reads an accelerometer, which in turn requires another resource server that provides

bus-level communication (e.g I2C). This is a use-case that MC-IPC does not currently support,

and systems using MC-IPC must therefore be constructed by putting more functionality in

individual servers than would otherwise be necessary. Additionally, the protocol’s analysis

currently assumes non-reentrant servers – that is, a partially-executed resource request cannot

be aborted (by, for example, deleting partial work and reverting the server to a good state). In

cases where it makes sense for a server to be able to abort requests that have been partially

executed, the worst-case invocation latency under MC-IPC may increase signi�cantly, as this

behaviour is not de�ned by the protocol. In comparison, seL4-MCS de�nes primitives that

support nested server requests and reentrant servers (using scheduling context donation and

timeout faults respectively). Unfortunately, a simple application of the mechanisms provided

by the kernel in this case (for resource sharing) still su�ers from PRIO-IPC invocation latency

blowout in the event of malfunctioning high-criticality tasks (as described above). This is the

key limitation that MC-IPC is able to address.

With respect to this thesis, MC-IPC remains of interest as it addresses an issue with using

PRIO-IPC for resource sharing in multicore, mixed criticality situations. Additionally, a protocol

whose performance relies deeply on IPC naturally lends itself to an e�cient microkernel

implementation – so it is of interest to see how easily it may be implemented using seL4

primitives. For these reasons, a user-level implementation of MC-IPC is presented in later

sections as part of our experimental framework.
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3.3 Kernels for multicore mixed-criticality scheduling

We established that seL4-MCS will be our target kernel, but have not yet justi�ed the choice.

Some isolation kernels with multicore support rely on hard partitioning across cores and

eradication of shared resources between partitions (such as PikeOS [Burns and Davis, 2018]).

We desire more �exibility in our case. Additionally, we limit our exploration of kernels to those

which are open-source.

In the microkernel world, deferring scheduling to user-level allows for implementation of

complex scheduling policies. Unlike earlier work on real-time user-level scheduling (such as

[Stoess, 2007] in the L4 case), the COMPOSITE microkernel [Gadepalli et al., 2017] provides

Temporal Capabilities, which facilitate temporal isolation between tasks. Unfortunately, as of

the time of writing, these temporal capabilities have only been evaluated on unicore systems.

Additionally, COMPOSITE does not possess a trusted in-kernel scheduler – implying that

system designers are required to build a trusted user-level scheduler for high-criticality tasks.

In contrast, seL4-MCS has multicore support, a trusted in-kernel scheduler and sophisticated

temporal isolation mechanisms (which will be explored in detail in the next chapter).

LITMUSRT [Calandrino et al., 2006] is a monolithic kernel based on Linux designed as a

benchmarking framework for multicore scheduling algorithms. It includes (in-kernel) scheduler

plugins for multicore real-time scheduling algorithms such as C-EDF, and modern mixed-

criticality resource sharing protocols (including MC-IPC). LITMUSRT does not directly support

user-level schedulers, but should serve as a realistic monolithic comparison target against our

implementation, given its Linux heritage.

Dual-kernel architectures such as Xenomai [Gerum, 2004] and Nizza [Hartig et al.] allow

hard real-time scheduling of userspace tasks on a microkernel alongside a monolithic kernel

(i.e Linux) on the same system, however modi�cation of the real-time scheduler requires kernel

modi�cations and the approach su�ers from multicore scalability issues.

3.4 Summary

In this section we explored existing user-level scheduling approaches with real-time support,

a mathematically-backed mixed-criticality resource sharing protocol, existing monolithic

architectures with mixed-criticality support, and other kernels of interest. As we have observed,

modern mixed-criticality schedulers (in particular multicore-applicable �exibly partitioned
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architectures that support synchronisation) remain untested in a user-level context. In the next

chapter, we explore the seL4 microkernel in detail as it forms the base of our implementation

plan in chapter 4.
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4 | seL4-MCS

This chapter introduces the principles of seL4-MCS – our implementation platform – published

by Lyons et al. [2018] as an extension to previous work on seL4. We will begin by exploring the

basics of resource management & permission control (in the form of seL4’s capability system),

as well as IPC (used for communication between user-level processes). Following this, the rest

of the chapter will cover the seL4 scheduling model, how it can be used to construct user-level

schedulers, and how mixed criticality systems can be constructed.

4.1 Capabilities

As seL4 is a capability-based kernel, it is essential to understand seL4’s capability system before

exploring the rest of the kernel. In the context of seL4, a capability represents an access right

to a resource. On system initialisation, the �rst thread (or ‘root task‘) is given capabilities to all

available resources by the kernel. This collection of capabilities exist in the thread’s capability

space or cspace. In seL4, there is a direct correspondence between the abstract idea of a

‘resource’ and kernel objects. Generally, the concept of a resource is represented in userspace by

capabilities to a kernel object, where the kernel object abstracts a physical resource or another

type of OS primitive. As a concrete example, there exist capability types associated with

mappable physical memory (to frame kernel objects), processor time (to scheduling context

objects), and other basic OS primitives. Capabilities can be invoked to perform an operation

on a resource, by executing a system call with the capability as an argument (more details in

section 4.2).

4.1.1 Object types

• Thread Control Blocks (TCBs) represent threads in seL4. TCB capabilities can be

invoked to start & stop threads, con�gure scheduling priorities, set up fault handlers
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and other operations.

• Scheduling Contexts (SCs) represent processing time on a particular CPU in seL4.

For each CPU core, the root task receives a SchedControl capability that enables the

creation of SCs with allocations of CPU time for a particular core. More details on SCs,

as well as the way that the kernel scheduler interacts with TCBs & SCs will be explored

in section 4.3.

• Endpoints are objects which represent a synchronous communication channel between

threads (IPC). An endpoint capability can be invoked to Send() information (or capa-

bilities) to a second thread, assuming the second thread expects information over the

endpoint (i.e Recv()). IPC is discussed further in section 4.2

• Reply objects serve two purposes. When (for example) a resource server is invoked

by a client (i.e. Call()), reply objects are used to represent a single-use reply endpoint

used to respond to the call by the server. Additionally, when calls such as this are nested,

reply objects are used to keep track of scheduling context donation (more in section 4.3).

• Noti�cation objects provide a method of asynchronous signalling between threads.

They behave like a set of binary semaphores implemented using a bit�eld. A noti�cation

can be signalled (bits set), polled (the state of the bit�eld is checked), or waited on (a call

does not return until any bits are set).

• Interrupt objects provide threads with the ability to subscribe to hardware interrupts,

and acknowledge them after the interrupt is handled. Once an interrupt �res, the

kernel will mask future occurrences of the same interrupt. Interrupt objects are usually

associated with a noti�cation object, so that the arrival of an interrupt will signal a

noti�cation. After an interrupt is handled, a thread may invoke the interrupt object to

signal IRQ acknowledgement to the kernel - which unmasks it.

• Untyped memory objects represent physical memory that has not yet been converted

into kernel objects. On system boot, most of the device’s memory is represented as

untyped memory objects. Untyped memory objects can be split into smaller untyped

objects, and also ‘retyped’ into mappable frames or other types of kernel objects – this

is the fundamental principle behind memory allocation in seL4.
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Now that we have a basic understanding of capabilities and kernel objects, we will examine

how a system can use these objects for communication between threads.

4.2 IPC & System Calls

seL4 provides a set of IPC system calls that facilitate three primary operations – communication

between threads, transfer of capabilities between threads, and invocations on kernel objects

using capabilities. IPC between threads is accomplished using capabilities to endpoint objects.

If one or more threads hold capabilities to the same endpoint, then that group of threads may

communicate or transfer capabilities with rules dictated by the rights associated with the

capabilities. IPC in this manner is synchronous – that is, if a Send() or Recv() is attempted

and another thread is not immediately available to service the request, the �rst thread blocks

until the message can be transferred (See Figure 4.1).

Figure 4.1: Example of an IPC rendezvous

If a thread wishes to perform some operation on a capabilities’ underlying resource (for

example, to convert some untyped memory into a kernel object), it must invoke the capability

by performing an ‘IPC’ (Send() system call) with the target capability as an argument. If the

operation is valid, the kernel will perform the operation requested on the thread’s behalf, by
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manipulating the underlying kernel object (the important distinction here being that the kernel

itself is the logical destination of the Send(), rather than another thread as in ordinary IPC).

A subset of basic system calls associated with these IPC operations is listed below:

4.2.1 IPC System Calls

• seL4_Send() sends a message using a capability or performs a kernel invocation. If the

capability is to an endpoint and no receivers are blocked on the endpoint, the sending

thread blocks, awaiting message transfer.

• seL4_Recv() is used to receive messages. Similar to seL4_Send(), if no message is

immediately available on an endpoint then the calling thread will block until a message

arrives.

• seL4_Call() is an atomic combination of seL4_Send() and seL4_Recv(). A thread

which performs this system call will block until a reply is received on the endpoint that

the message was sent to. We may wish to have a server that can keep track of multiple

clients, but not necessarily possess permanent send capabilities to each client – for this

reason, a reply object is populated during the seL4_Call(). The server may reply using

this single-use capability.

• seL4_Wait() is similar to seL4_Recv, but is designed for endpoints & noti�cations.

Speci�cally, a reply object is not required (which means that an seL4_Wait() cannot be

the destination of an seL4_Call().

In addition to the above basic system calls, there are more variations which combine multiple

calls into a single system call – as well as non-blocking variants (such as seL4_NBSend), which

return immediately if a rendezvous between threads cannot happen. It is important to note

that the last two system calls above are variants of the �rst two calls. In fact, the thus-far

described list of system calls (if non-blocking and combination variants are included) actually

represent all (bar one) of the system call classes available in seL4. The as-yet undescribed

system call is Yield() (and friends), which we will come across in the next section.
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4.3 seL4 scheduling model

seL4’s top-level in-kernel scheduler is a preemptive �xed-priority scheduler with 256 priority

levels1. The highest-priority runnable thread will always be selected by the scheduler (schedul-

ing behaviour within a priority level is more complex, and will be discussed later). Super�cially

this may seem relatively straightforward as far as scheduler architecture goes – but the kernel

provides mechanisms to allow for the creation of more complex scheduling behaviour. At the

heart of these mechanisms are Scheduling Contexts.

4.3.1 Scheduling Contexts (SCs)

Scheduling Contexts (SCs) are kernel objects which represent CPU execution time. For an

SC to represent execution time, a CPU bandwidth upper-bound is indicated by setting the SC

budget (b) and period (p) properties. It is important to note that the b and p properties do not

represent a minimum execution time guarantee. The key property that b and p do dictate is

that the kernel will not allow execution on a particular scheduling context for more than b

microseconds, every p microseconds. Budget enforcement (when b < p) is implemented by

the kernel using sporadic servers (described in chapter 2, with a �nite amount of partial budget

replenishments dictated by the SC con�guration). This hard temporal budget enforcement

property that the kernel provides is essential for constructing user-level MCS & real-time

systems.

4.3.2 Active & Passive Threads

As ordinary kernel objects, Scheduling Contexts are decoupled from TCBs (and thread priority)

– which allows for some interesting mechanics. For ordinary, active threads, an SC can be

bound to a TCB, which allows the TCB to use the CPU resources represented by the scheduling

context. Using scheduling contexts, it is also possible to construct so-called passive threads. A

passive thread does not possess a scheduling context of its own (except when required during

initialisation, after which it is removed). Instead, passive threads represent servers which await

donation of a scheduling context from an active thread. An example of Scheduling Context

donation is illustrated in Figure 4.2, and described below.
1seL4 also supports a domain scheduler underneath the FP scheduler, but we will not use it in our work, so

omit it here
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Figure 4.2: Scheduling Context Donation

Initially SC A is bound to Thread A, which also has a capability to Endpoint X. The resource

server has a capability to Reply Object R, which is later used as a reply channel.

At t=0: Thread A is running on SC A, and the resource server is waiting for requests on

Endpoint X. The scheduling priority of Thread A is 50 – from Thread A’s TCB.

At t=1: Thread A issues a request (Call()) to the resource server, using its capability to

Endpoint X. The resource server is already blocked on Endpoint X, so rendezvous occurs and

the message transferred. Thread A simultaneously becomes blocked on Reply Object R (which

is assumed previously passed to Recv() by the resource server before t=0). Since the resource

server has no scheduling context, Thread A’s context, SC A is donated to the resource server.

The resource server continues executing on SC A, at scheduling priority 100 (from the resource

server’s TCB).

At t=2.5: The resource server replies to Thread A through Reply Object R. SC A is returned

to Thread A, and the resource server becomes blocked on Endpoint X once again.
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4.3.3 In�uencers on scheduling behaviour

In addition to the above properties of Scheduling Contexts, the FP in-kernel scheduler, and IPC,

extra system calls exist to facilitate user-level scheduling. Below we summarise key operations

which in�uence how threads are scheduled by the kernel (we have already encountered the

�rst 3):

• IPC: IPC system calls can block & wake threads in accordance with the IPC semantics

described earlier.

• Thread Priorities: Priorities directly in�uence the in-kernel FP scheduling behaviour.

They can be changed at runtime using TCB capability invocations.

• Scheduling Contexts: A scheduling context must be bound to a thread for it to be

runnable. Additionally, the bound SC must have remaining budget (See subsection 4.3.1).

A passive thread may only be scheduled if it is ‘donated’ an SC over IPC.

• Yield(): A thread can use a Yield() system call to sacri�ce it’s timeslice (or remaining

SC budget) - this can be used to force the next runnable thread at the same priority level

to be scheduled.

• YieldTo(): The YieldTo() invocation takes a scheduling context as an argument, and

moves the thread bound to that SC to the front of the ready queue (at that priority). This

can be employed by a user-level scheduling thread to manipulate the kernel scheduling

queues.

• Timeout Fault: In the event a thread depletes its SC’s budget whilst executing, the

thread will be preempted, and its handler (if speci�ed) noti�ed that the thread exceeded

its budget. If no handler is speci�ed, the thread will be silently treated non-runnable

until the SC is replenished

• Interrupts/Noti�cations: These can additionally change the run state of threads.

4.3.4 seL4 User-level Scheduling Example

By combining the mechanisms we have described thus far, it is possible to construct a simple

example of what a user-level-scheduled system on seL4 might look like.
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Figure 4.3: Example of user-level scheduling

Observing Figure 4.3, we initially assume that a system consisting of 2 threads and a

user-level scheduling thread already exist. The scheduling contexts (SC A, SC B, SC U) are

assumed to be already bound to each thread. Additionally, note that the user-level scheduling

thread possesses capabilities to the scheduling contexts SC A and SC B so that it can YieldTo()

them when required.

At t=0: ULSched is running, and computes the �rst thread that should be selected for

execution. ULSched slowly depletes its scheduling context, SC U.

At t=1: ULSched has decided to schedule Thread A. To enact on its decision, ULSched use

YieldTo() with a capability to Thread A’s Scheduling Context. Since Thread A is runnable, it

is moved to the front of the scheduling queues and the kernel switches to Thread A.

At t=2: Thread A depletes its entire budget, a timer interrupt �res – invoking the kernel.

The kernel preempts Thread A, and acknowledges that it has depleted its budget with a Timeout

Fault. ULSched was con�gured at system initialisation as the fault handler for Thread A, so

control returns to ULSched. Note also at this time that SC U happens to receive a budget

replenishment.
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At t=3: ULSched decides it is Thread B’s turn. This time, ULSched performs a YieldTo()

with the SC B, which causes a switch to Thread B.

In reality, user-level scheduled systems are more complex. For example, in the case of

EDF, the scheduler needs to be noti�ed on timeout faults and timer interrupts. A way of

implementing this is to move the user-level scheduler thread priority above other threads, and

have it wait on timeout faults or interrupts using a single system call.

4.4 Summary

This chapter has outlined some key primitives that enable construction of mixed-criticality,

user-level-scheduled systems on seL4 (candidate designs of which will be outlined in the next

chapter). The reader is encouraged to explore Lyons et al. [2018] for a deeper exploration of

these primitives.
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5 | Approach

This chapter outlines our approach for constructing and benchmarking user-level-scheduled

mixed-criticality systems on seL4. We shall revisit our research goals and propose an approach

for meeting them.

5.1 High-Level Approach

To meet our goal of exploring the feasibility of constructing user-level-scheduled mixed-

criticality systems, we must address the following high-level tasks:

1. Prototype a user-level-scheduled MCS: We require a realistic mixed-criticality archi-

tecture which is portable to (or ideally already available in) other kernels. This will be

addressed in section 5.2.

2. Create tracing & benchmarking infrastructure: To evaluate the e�ectiveness of

our approach (performance evaluation), and to develop an e�ective scheduler (valida-

tion/correctness), it is necessary to construct tracing & benchmarking tools. We shall

address this in section 5.3.

3. Benchmark against other approaches: The question of feasibility should be answered

by comparison with other approaches. Our MCS prototype and tracing infrastructure

will aid this. This will be addressed in section 5.4.

5.2 Approach: User-level MCS on seL4

Constructing a user-level-scheduled MCS on seL4 requires a scheduling architecture, a resource

sharing policy, and test task sets. Our evaluation prototype is built on a clustered-EDF (C-EDF)
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scheduler and an MC-IPC resource sharing policy – the choices of which will be justi�ed

shortly.

C-EDF is arguably the most popular real-time multicore scheduling architecture in current

literature (it is the most mature scheduler in both RASP [Mollison and Anderson, 2013] &

LITMUS [Calandrino et al., 2006]). Additionally, P-EDF (recall P-EDF is just C-EDF with cluster

size 1) has been demonstrated the most desirable approach for multicore hard real-time systems

[Brandenburg, 2011], and G-EDF (which is C-EDF with cluster size equal to the core count), is

the most desirable approach for increasing CPU utilisation. Because of the real-time optimality

and maturity of C-EDF (desirable for benchmarking against existing comparable systems),

our user-level MCS is based on a preemptive C-EDF scheduler (we will explore design issues

further in subsection 5.2.1).

MC-IPC is unique in its comprehensive analysis – and handles malfunctioning high-

criticality tasks, as well as non-reentrant servers, in a time-bounded way. As a protocol

intended for use with resource servers on a microkernel-like system, MC-IPC should map

well to the mixed-criticality primitives available in seL4. Another motivator for our desire to

implement MC-IPC is its complexity – we desire to �nd shortcomings in the kernel API for

investigation. Design issues associated with MC-IPC are explored in subsection 5.2.2.

5.2.1 Scheduler: C-EDF

There are 2 main issues to address in constructing a C-EDF scheduler on seL4 – the design

of the scheduler itself, and providing mechanisms to bootstrap the system into the correct

cluster-to-cache-heirarchy.
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Figure 5.1: Abstract C-EDF architecture on seL4

Figure 5.1 provides an overview of our C-EDF architecture on seL4. The system consists

of a simple bootstrap thread, which sets up a system of user-level schedulers assigned tasks

according to a task assignment algorithm.

In this example, a single G-EDF scheduler thread is assigned to the root of each cluster.

These G-EDF threads together form a C-EDF scheduler. Now, we shall justify why we only

place a scheduler thread on the �rst core in each cluster, rather than distribute them across

all cores. For some context, in Linux, core-local datastructures (and logic) are necessary for

e�cient migrations – the kernel will IPI to itself on another core, which then has responsibility

to complete a migration. With this in mind, we can now answer the question – why place our

scheduling threads only on the root of each cluster? Our �rst reason is that under seL4, for

migrations, its not necessary to ‘distribute’ the scheduler thread – migrations can be performed

using a single seL4 system call (seL4_SchedControl_Configure). Even though the end result

is the same (seL4 will IPI to itself on another core to complete a migration) this system call

abstracts much of the need for core-local scheduling logic under G-EDF. Our second reason is

that a distributed set of schedulers needs to maintain a consistent shared view of the current

scheduling state - which e�ectively means serializing decisions anyway. On the other hand, a

potential advantage of having a distributed G-EDF scheduler under our model is if core-local

interrupts, and core-local context switches dominate – but this is not easily predictable under

G-EDF.
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Below, we list some more design trade-o�s associated with C-EDF schedulers.

User-level C-EDF scheduler design issues

• Cache Grouping: Discounting the degenerate P-EDF case, the ‘spread’ of each cluster

should generally be over sets of cores which share fast caches. For example, if 2 cores

share an L2 cache, then the cost of operating on shared data between the cores will be

lower than if 2 cores share an L3 cache.

• Queue structures: Each EDF node requires priority queues for deadline & release

tracking of tasks. There are many candidates for such structures.

• Timer hardware: Each EDF node requires access to a timer to preempt the currently

scheduled thread if a new job is to be released or a current deadline expires. On some

hardware platforms (such as the Freescale i.MX6), there are fewer shared peripheral

timers available to userspace than potential EDF nodes. One solution is to employ a

separate timer server to multiplex the hardware timer, but there are other solutions –

which we cover in chapter 6.

• CacheA�nityHeuristics: If a job from a task was previously scheduled on a particular

core, it is desirable to assign new jobs from the same task to that core. A simple case is

to prefer to schedule such a job on a particular core in the event of an arbitrary tiebreak.

This might be rare, and more complex heuristics could be di�cult to implement without

breaking per-cluster EDF correctness.

• Integration of criticality modes: The representative WCET of tasks may change in

the event of a mode switch, so it is desirable for the C-EDF scheduler to allow for e�cient

updating of its scheduling data structures in the event of a mode switch.

• Interoperation with other schedulers: One of the key advantages of user-level

scheduling is that we may use it ‘above’ a veri�ed in-kernel scheduler. The C-EDF

scheduler should maintain correctness even if higher-priority tasks are running on the

system, under a di�erent scheduler.

• Cooperative yielding: The scheduler should gracefully handle tasks which do not

consume their whole budget.
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• seL4 capabilitymanagement: The way in which capabilities managed in the scheduler

should be carefully designed. For example, in a P-EDF system, it is undesirable for user-

level schedulers to have capabilities to scheduling contexts from other partitions. This

will likely be the responsibility of an initial bootstrap thread.

• Task Assignment: A system-level problem, the assignment of task sets to clusters is

proven to be an NP-hard bin-packing problem [Brandenburg, 2011]. In our test systems,

we use static task assignments to avoid tackling this.

Note that cache considerations and more advanced optimisations were gradually introduced

as the system was benchmarked for weak points against itself and other systems. We further

explore how our implementation addresses the above issues in chapter 6.

5.2.2 Resource Sharing: MC-IPC

There are two key di�culties in implementing MC-IPC on top of seL4 primitives – replicating

the reservation model (which is di�erent to that of seL4), and implementing its 3-level queue

structure in a way which preserves MC-IPC’s mathematically-backed invocation bound. We

explore both issues in more detail below.

MC-IPC is based on a di�erent model of reservations to seL4-MCS primitives (budget is

consumed even when a task is not scheduled and waiting for a request to be served under MC-

IPC – this is called idling reservations), so it is necessary to provide user-level logic implementing

this type of reservation under seL4. A particular issue is that a di�erent reservation model

implies that we need arbitrary timer interrupts in the resource server to prune the request

queues (in accordance with the MC-IPC speci�cation).

Next we shall consider a more complex issue – resource server invocations. To implement

some protocol complexity on top of ordinary IPC, the �rst candidate design one might consider

is a single guard server per ‘ordinary’ resource server, with capabilities only handed out

to guard server endpoints (not the actual resource). All resource requests would then be

proxied through this MC-IPC guard server. Unfortunately, this would not work as cross-core

interference from a high-criticality denial-of-service failure can still occur if clients contend

on the same priority-ordered endpoint (see MC-IPC section in chapter 3 for an example).
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Figure 5.2: Simpli�ed MC-IPC design

A more promising solution, and the approach we implement, is illustrated in Figure 5.2.

The (passive) shared resource thread contains an MC-IPC ‘gatekeeper’ – a library in the same

address space as the resource server which proxies requests. For a task in a cluster to IPC to a

resource, it �rst has to travel through its cluster local userlevel scheduler, which ‘bounces’ the

request (if it reaches the head of a cluster-local request queue) to the actual resource gatekeeper

library. The main bene�t of travelling through our cluster-local userlevel scheduler is that it

reduces the amount of mode-switches that need to be performed – since MC-IPC invocations

require bookkeeping in the userlevel scheduler and potential timer reprogramming. A more

detailed examination of our MC-IPC implementation and how it forms a correspondence with

the protocol as described by Brandenburg [2014] is provided in chapter 6.

5.3 Approach: Tracing & Instrumentation

In order to investigate the performance & correctness of a scheduler implementation, we

employ the kernel’s tracing features.

For scheduler correctness validation, the kernel log bu�er infrastructure is employed. The

kernel log bu�er is a memory area in the kernel that is written to with invocation information

whenever the kernel is entered (if logging is enabled). As there is not yet comprehensive log

bu�er multicore support, this was implemented as part of this thesis. Additionally, since a

useful way of parsing the results of a kernel trace after an experiment is not available, a visual
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scheduler validation aid has been written as part of this thesis (see schedplot in chapter 6).

Any kernel instrumentation is not without overhead. As a result, we detail how our

measurement strategies account for measurement overheads (when using the log bu�er and

trace points) in chapter 7.

5.4 Evaluation Strategy

We seek to demonstrate the following:

1. Tracing infrastructure that is easy to use and accurate.

2. Performance competitiveness with similar-class monolithic systems (i.e LITMUS, RASP).

3. Kernel improvements to multicore user-level scheduling performance.

The accuracy of our tracing infrastructure is evaluated by quantifying the overhead in-

troduced into kernel system calls, and comparing our tracing accuracy with conventional

trace points already used for other seL4 benchmarking work over di�erent timespans and

workloads. Additionally, we conduct a case study – using our tool for a real-world scheduling

trace debugging problem unrelated to this thesis (quadcopter �rmware).

To evaluate our scheduler, we measure key properties (such as average scheduler entry

time) in G-EDF & P-EDF con�gurations, in di�erent scenarios, with di�erent time sources,

and with di�erent task distributions. For generating simple random multicore real-time task

sets, we use the randfixedsum algorithm [Emberson et al., 2010], similar to previous work in

this space. To compare our scheduler with monolithic systems – we compare 5 key scheduler

overhead metrics (i.e release latency, context switch overhead – all are described in detail in

chapter 7). These overhead measurements are fed into a schedulability simulator (SchedCAT

[Brandenburg, 2011]), which allows us to establish which scheduler is advantageous in what

situations.

Benchmarking the impact of resource sharing protocols is more di�cult – in the case of MC-

IPC, an ideal strategy would be to replicate the resource sharing case study used to demonstrate

invocation bounds in the MC-IPC paper (it is open source), and compare it with an existing

LITMUS-based monolithic implementation. Unfortunately, we were not able to complete

a re-implementation of the case study due to time constraints, and the authors of the only

existing comparison (monolithic) implementation requested that we not benchmark against it,
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so evaluation possibilities with MC-IPC are somewhat limited. Recall that besides performance

investigation, one of our key thesis motivations was to demonstrate that building schedulers

at user-level requires comparatively low implementation e�ort. It is still possible for us to

evaluate whether the implementation functions, and make a comparison in implementation

complexity based on patches made to the similar-class monolithic system. As a result, these

aspects will be the focus of our evaluation in chapter 7, and we cover some proposed changes

to the seL4 model which would likely make a future evaluation more competitive in chapter 8.

5.5 Summary

This chapter illustrated our approach to implementing a �exible multicore scheduler (C-EDF)

& resource management protocol (MC-IPC) as user-level components on the seL4 microkernel.

We presented problems that our design will need to solve, a high-level overview of our design,

and how we evaluate our implementation. In the next chapter, we delve deeper into the

implementation of the high-level approach covered here.
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6 | Implementation

This chapter explores our implementation, where we shall dive deeper into the details of each

component which was described broadly in the previous chapter. Most of this work is not

platform-speci�c (except for some kernel modi�cations), however our testing and evaluation

was limited to the x86 32-bit architecture and 32-bit ARM architectures. An illustration of the

broad areas we shall describe in this chapter is provided in Figure 6.1.

Figure 6.1: Di�erent components of our implementation (circled red)

The following sections will detail each component – namely tracing & logging, our C-EDF

scheduler implementation, our (MC-IPC) resource sharing implementation, and some kernel

modi�cations.

6.1 Tracing & Benchmarking Infrastructure

As this thesis required evaluating the correctness & performance of our scheduler implementa-

tion, improving tracing and benchmarking infrastructure associated with seL4 was essential.
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This involved:

• Optimising & adding features to the seL4 kernel log bu�er infrastructure, including

multicore support.

• Writing a visualisation tool – schedplot (in Python) for displaying & analysing logbu�er

results.

• Creating test code to evaluate that the above work functions correctly, as well as measure

the overheads introduced so that it can be accounted for in later analysis.

6.1.1 Kernel Log Bu�er Changes

In order to make the kernel log bu�er useable for our application, we added some extra switches

to the kernel con�guration which alter the contents of log bu�er entries. Additionally, since

the current implementation maps a single bu�er into the kernel’s address space which is

then used by kernel entries on all cores, we investigated adding multicore support through

core-local mappings.

Changes to Bu�er Contents

With none of these new features enabled, the ‘original’ contents of a single log bu�er entry is

pictured in blue in Figure 6.2. At �rst glance, it is easy to see why changes were necessary. There

is no way to determine which CPU the entry corresponds to, or whether it describes a switch

between tasks – both critical elements required to trace a user-level scheduler. Consequently,

we implemented two additional log bu�er trace modes shown in Figure 6.2 and Figure 6.3.
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Figure 6.2: Contents of a log bu�er entry (original in blue, debug extensions in green)

In debug trace mode (Figure 6.2), we added a number of properties. Critically, the core ID

(determined by reading the core-local kernel stack address) and TCB address (which indicates

the target of a context switch by the kernel) properties allow o�ine analysis to determine

what the execution trace of userspace is. The additional properties facilitate ease of debugging

– for example, fault ID allows a user to determine whether a timeout exception was cause for

a thread to be descheduled. Of course, in this mode, each log bu�er entry is quite large (40

bytes), and creating such entries has signi�cant overhead (which we shall quantify later). To

work around this problem, we implemented another mode which we deem ‘lite’ tracing mode,

whereby each log bu�er entry contains the bare minimum amount of information required to

reconstruct a user-level scheduling trace (see Figure 6.3).

Figure 6.3: Contents of a log bu�er entry (lite/trace mode)

In this mode, each log bu�er entry is 16 bytes long. We experimented with reducing the

size of the entry timestamp �elds further, however this had negligible performance impact.
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Core-Local Mappings

The existing logging infrastructure operates as follows. A single 4-megabyte page is allocated

and mapped into userspace by a benchmarking application. The capability to this page is

then provided to the kernel using an seL4_BenchmarkSetLogBuffer invocation, after which

the kernel maps it write-through (to minimize the cache impact) and then uses this page

to log kernel entries. The existing kernel behaviour on multicore is relatively simple – a

monotonically increasing, atomically incremented up-counter prevents di�erent cores from

writing to the same part of the log bu�er1.

During an early evaluation phase, we discovered that transitioning the kernel log bu�er

from mapping log bu�ers globally to instead use a per-core mapping counter-intuitively

increased the log-bu�er overhead in our tests. Since these changes were therefore not used in

our �nal evaluation, they are described in Appendix A.

6.1.2 schedplot visualisation application

A signi�cant part of this thesis was developing schedplot, which is a visual tool to test the

correctness of user-level schedulers by analysing log bu�er results.

Figure 6.4: schedplot GUI screenshot

1The global kernel lock (also known as the Big Kernel Lock – see Peters et al. [2015]) prevents similar race

conditions, but it is not locked on every kernel entry
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A screenshot of the tool interface is in Figure 6.4, and has the following main features:

• A visual interface for navigating scheduler activity (with zoom capability from second-

timescales down to nanosecond-timescales).

• Visualisation of sporadic task parameters, which can be displayed on top of a scheduling

log to verify real-time correctness.

• Generation of log statistics – such as average kernel entry times, context switch frequen-

cies, core idle times and thread utilisations.

• Detailed tool-tips (when mouse is hovered over events) which describe kernel entry

reasons, thread system call types, event durations and fault occurrences.

• A ‘minimap’ element that allows the user to view current log position when zoomed in

to small timescales.

• Command-line options that allow a user to �lter out speci�c types of logs – for example

for speci�c cores or speci�c threads.

• A feature which allows for estimation of real-world event times, by applying measured

log bu�er overheads and modeswitch overheads to displayed statistics.

The tool is cross-platform, based on pyqtgraph and Qt for real-time graphical operations.

Note that there are other open-source tools called schedplot (for completely di�erent pur-

poses) – it may be necessary for us to rename this project at some point, but we have decided

to keep the name as-is due to current lack of inspiration.
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Figure 6.5: schedplot high-level architecture

A high-level functional overview of schedplot is provided in Figure 6.5. The application

can be broadly divided into 3 components, each of which corresponds directly to an imple-

mentation �le. Broadly, the schedplot.py component manages all aspects of the GUI, and

the trace_events.py component together with the sel4_types.py component translate &

sanitise a provided scheduler dump into in-memory objects which can be displayed. We shall

now work through how this application operates in more detail, both externally and internally.

The �rst step to working with schedplot is providing the scheduling trace to the application.

Generally (as is the case with all the scheduler measurements made in this thesis), the log

bu�er is dumped in ASCII format after an experiment is completed (over a serial port), by the

host seL4 application. The schedplot application is then executed by providing this scheduler

dump, as well as some command line arguments specifying display options, �ltering operations

or overhead measurements. Some command-line options provided are illustrated in Listing 6.1.

Before the application is started (as part of our build process), the seL4 kernel head-

ers are used to generate constants which are included by sel4_types.py. These constants

describe architecture-speci�c (and kernel build �ag-speci�c) values which are used by the

kernel internally to represent capability types, fault identi�ers, and system call identi�ers.

Once the application is started, schedplot.py will load the scheduler dump �le and call into

trace_events.py which will attempt to translate the dump into 2 lists of in-memory objects –
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1 --isolate_core N Only display readings from provided core
2 --ignore_threads [S] Don't create thread events with provided TCB names
3 --keep_threads [S] Only create thread events with these TCB names
4 --label_putchar Display DebugPutChar calls inline with scheduling trace
5 --show_deadlines Display sporadic task model deadlines on top of traces
6 --modeswitch_overhead N Measured modeswitch overhead (in + out) in cycles
7 --logbuf_overhead N Measured logbuf overhead in cycles

Listing 6.1: Some schedplot CLI options.

representing sporadic task parameters (Task) and ‘TraceEvents’. TraceEvents are essentially

cleaned-up, more informative versions of the scheduling trace. These are created by querying

sel4_types.py with raw values to obtain objects describing what a particular entry in the log

bu�er actually means. The results of this operation are used, for example, to determine whether

execution of a task (or the idle thread) happens between 2 logbu�er entries on the same core.

There are many more TraceEvent objects created than entries in the scheduling dump, since

a single TraceEvent can represent a duration of task execution or a kernel invocation, but not

both (recall that the scheduling dump only records kernel invocations).

After their creation, TraceEvents form the core datastructure in the application. They are

used by schedplot.py to plot the visual display, query mouse events, check sporadic task

parameters, and perform overhead accounting (see subsection 7.2.1). This datastructure is

also used by trace_events.py to compute some basic statistics (such as cumulative entry

times or utilisation), in addition to some sanity checks (for example, if the scheduling trace

represents a CPU usage less than 100%×NCPUs and idle thread entries are recorded; then

there is obviously a problem with the scheduling dump).

As for how schedplot supports overhead accounting, we will cover this in subsection 7.2.1.

6.2 C-EDF Scheduler Implementation

6.2.1 Overview

In this section we will discuss how our C-EDF scheduler is implemented. Each cluster in a

C-EDF arrangement has its tasks scheduled by a cluster-local user-level scheduler, which is

an active thread placed on the �rst core in the cluster. In our implementation, the cluster

arrangement can be modi�ed at compile-time to match the target cache hierarchy, or speci�ed

as blanket P-EDF or G-EDF.
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Figure 6.6: Every G-EDF cluster has its own set of queues and CPU links

Each cluster can be thought of as an independently scheduled G-EDF node (ignoring

cross-cluster resource sharing, which we cover in more detail in section 6.3). As a result, every

cluster contains its own set of scheduling queues and job-to-CPU associations – as illustrated

in Figure 6.6. Throughout the lifetime of a system, tasks will move between a number of states

within their cluster.

Figure 6.7: States which tasks may move between

These states are illustrated in Figure 6.7. A task enters the system by being inserted into

the user-level scheduler’s release queue. Each task has a priority attribute, which corresponds

to one of 2 properties. When a task is in the release queue, its priority corresponds to the

time at which it should be released (lowest priority is assigned to the next task to release).

Once this time elapses, a job is created and this task moves into the ready queue. When a task
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enters the ready queue, its priority is updated to correspond to its relative deadline (such that

earliest deadline job has the lowest priority). The release, ready, and blocked queues are all

implemented as minimum-priority queues (see subsection 6.2.2). As a result, the lowest priority

NCPUs elements of the ready queue are the tasks which are schedulable under G-EDF. To map

schedulable jobs to CPUs e�ciently, we employ ‘link-based scheduling’ which is described

in detail in subsection 6.2.6. Once the budget of a scheduled job expires, it is moved to the

release queue with a release time set based on the task period. Essentially, periodic tasks with

no resource sharing will simply move between these 3 states (release, ready, linked) until the

system is shut down. The semantics of tasks with respect to the blocked queue will be explored

in more detail in section 6.3.

6.2.2 Priority Queues

In our scheduler, there are two selectable priority queue implementations – binomial heaps,

and red-black trees. Both are based on open-source implementations of the datastructures –

we use the implementation of red-black trees from Vittek et al. [2006], and binomial heaps

from Brandenburg [2012]. Heaps are the ‘classical’ answer to priority queues – the binomial

heap implementation we employ has constant-time insertion and extract-min operations (the

minimum is cached, and �nd-min occurs more often than any other operation). Additionally,

binomial heaps are the datastructure used by LITMUSRT for its ready/release queues. We

also chose to include red-black trees because our implementation sometimes queries queues

for presence of a job (O(N) for heaps, O(logN) for a red-black tree), in order to verify some

runtime invariants. In testing, we found binomial heaps to be faster in general – but this will

be explored further in chapter 7.
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6.2.3 Bootstrap & Capability Distribution

Figure 6.8: How capabilities are distributed under C-EDF

When a test system is run, a bootstrap thread creates a set of tasks according to pre-

generated test task set, creates a user-level scheduler for each cluster, and then adds each

task to the pre-assigned cluster-local schedulers. The distribution of capabilities under this

arrangement is illustrated in Figure 6.8. Each scheduler is provided with SchedControl

capabilities so that it may migrate scheduling contexts for tasks under its control between

cores in the cluster. Additionally, each scheduler is provided with a timer noti�cation which is

bound to the scheduler’s TCB, so that a scheduler may await events from registered timeouts

or requests from scheduled tasks. Each task requires access to an endpoint to the cluster’s

user-level scheduler (so that it can sacri�ce its timeslice or request resources). When a task

is added to a user-level scheduler, the scheduler takes ownership over the task’s TCB and

scheduling context, creates a reply object for each task (reply object management is covered

further in subsection 6.2.7), and supplies a badged capability to its communication endpoint. In

this fashion, due to the way capabilities are distributed it is impossible for user-level schedulers

to interact with tasks or cores which they do not have jurisdiction over (ignoring e.g. resource

sharing, or timer device sharing).

6.2.4 Tour of the Scheduling Loop
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1 while(true) {
2 /* Release jobs, get next release time */
3 uint64_t next_release_delta = release_jobs(data, time);
4

5 /* Compute next budget timeout by walking all scheduled jobs */
6 uint64_t next_budget_delta = next_budget_timeout_relative(data);
7

8 /* Figure out next desired interrupt */
9 uint64_t next_timeout_delta =

10 MIN(next_release_delta, next_budget_delta);
11

12 /* We need to be woken up at this relative timeout or sooner */
13 set_timeout_for(data, next_timeout_delta);
14

15 /* Wait for an interrupt (or timeslice sacrifice) from tasks */
16 info = seL4_Recv(endpoint.cptr, &badge, reply);
17

18 /* Update time & deltas */
19 uint64_t time_delta = get_time() - time;
20 uint64_t time += time_delta;
21

22 /* Why did we wake up? IRQ or coop yield? */
23 if(was_irq(badge)) {
24 sel4platsupport_handle_timer_irq(data->env_timer, badge);
25 } else if(was_timeslice_sacrifice(badge)) {
26 deschedule_job_with_badge(badge);
27 }
28

29 for(cpu = 0; cpu != N_CPUS; ++cpu) {
30 job_t *job = job_scheduled_on_cpu(cpu);
31 job->budget_consumed += time_delta;
32 conditional_complete_job(job, time);
33 }
34 }

Listing 6.2: (simpli�ed) main G-EDF scheduling loop.

A simpli�ed overview of the main scheduling loop of a single G-EDF cluster (resource

sharing & idling logic omitted) is shown in Listing 6.2. On line 3, release_jobs() checks the

release queue for any jobs to be released, moves them to the ready queue and returns the next

job release time. release_jobs() additionally noti�es the link scheduler (subsection 6.2.6) for

each released job, which ensures that any newly schedulable jobs will displace those currently

being scheduled, if their deadline is near. Note that the reason we have to set timeouts for

budget expiry (line 6) is because we implement our own reservation model for MC-IPC – this

additional step is not necessary if scheduling contexts are used for handling budget expiry.

A scheduler on a particular cluster will need to make a new scheduling decision at the

sooner event of:
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1. The next job needs to be released

2. A currently scheduled job’s budget expires

3. A currently scheduled job sacri�ces its timeslice

These �rst two items require use of a timer device – so we will now explore how set_timeout_for()

(line 13 of Listing 6.2) operates.

6.2.5 Sources of Time

Our C-EDF implementation supports di�erent time sources as a compile-time switch. Namely,

the supported ways in which set_timout_for() can be implemented are:

1. Through an (unshared) userspace timer driver. This is the simplest option. Note that

some platforms do not have more than one timer device available to userspace, so this

method is only allowed in the single-cluster G-EDF case.

2. Through a (shared) userspace timer driver. In this mode, an active thread on the �rst

cluster serves as a time-server, and schedulers in each cluster are given endpoints and

noti�cations to communicate with the time-server. This requires many mode switches

on timer reprogramming, and impacts schedulability on the core which runs the timer

server (although it is possible to put the timer server on its own isolated core).

3. Through timeout exceptions. In this mode, the scheduling context of the job with the ear-

liest deadline is programmed such that the context’s budget expires when the scheduler

requires an interrupt. An advantage is that this approach exploits the core-local timers

used by the kernel, and needs less mode switches. The main limitation is that there is no

way to have such a scheduler exist alongside other schedulers, as it assumes that the

scheduler has complete control over the cluster (special idle threads are required to use

up all time not spent in tasks).

4. Through a new system call, YieldToTimeout. This mode is similar to timeout exceptions,

but without the disadvantages outlined above. The time provided to YieldToTimeout is

actually an absolute time (rather than a budget), so this approach can be used alongside

other schedulers. YieldToTimeout is described in more detail below.
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Each of these have advantages and limitations as described above. We will explore the

performance implications of each in chapter 7.

The YieldToTimeout System Call

We implemented this system call as a basic extension of seL4’s existing YieldTo system call,

which moves the provided scheduling context to the front of the kernel scheduling queues.

YieldToTimeout additionally allows user-level to specify an absolute timeout, and alters the

existing timeout exception semantics. If this absolute timeout elapses, a timeout exception is

generated, originating from the yielded-to context. When a user-level scheduler Recvs this

timeout exception, the exception data indicates whether it came from a budget expiry or an

absolute timeout, as well as the current kernel time.

This essentially allows a user-level scheduler to schedule a thread, set a timeout, wake up,

and get the new time in a single YieldToTimeout & Recv combination. These semantics are

similar to those used by COMPOSITE [Gadepalli et al., 2017] for user-level scheduling.

6.2.6 Link-Based Scheduler

One of the key design issues with constructing G-EDF schedulers is determining how to map

jobs to CPUs. Essentially, we want a policy which places the same job on the same CPU as long

as it remains schedulable (to avoid unnecessary preemptions). A solution which is employed in

modern G-EDF implementations is known as a link-based scheduler [Brandenburg, 2011]. The

key property of a link scheduler is that jobs are linked to CPUs, but a link does not necessarily

correspond to that job actually being scheduled. That is, a job which is ready (& schedulable)

can be in a linked or unlinked state.
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Figure 6.9: Link scheduler CPU associations

An illustration of this is provided in Figure 6.9. In our implementation, only jobs which

are currently in the ready queue may be linked to a CPU. Once a job is linked, it is removed

from the ready queue, and will preempt the currently scheduled job on that CPU at the next

possible opportunity. In Figure 6.9, jobs A, X, C & D have been removed from the ready queue

and are linked to CPUs, but jobs E & F remain in the ready queue. Additionally, job B is in a

non-preemptable state – so even though job X is linked to CPU 1, it cannot be scheduled until

job B becomes preemptable. This approach has a few key advantages – outlined below:

• Since the link map is stored using a priority queue, if a job arrives, it is a cheap to check

whether this job is higher priority than the lowest priority currently scheduled job, and

replace the link associated with the lowest priority job. Thus, the ordering is reversed

compared to our other queue structures.

• It is simple to reshu�e priorities (in the event of an MCS mode-switch, for example) by

unlinking all jobs of altered priority and then attempt a re-link.

• The link scheduler provides a clear abstraction separating the high-level scheduling

decisions from how these decisions are actually executed (allowing for optimizations

such as reduced IPIs).

• The approach is easily extended to facilitate non-preemptable-critical-sections (not a

feature that we use in our MC-IPC implementation, however it may prove useful in

further work extending this scheduler).
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We will now detail how our implementation achieves the above. Note that in this section

the ‘link scheduler’ or linksched represents a library we have written which is used by a

per-cluster user-level scheduler (referred to simply as the ‘scheduler’). Also note that our

work in the following sections draws heavily from link-scheduler algorithms as outlined by

Brandenburg [2011] – the reader is encouraged to explore that work for a more rigorous

analysis.

CPU Map & Job Arrival

In our implementation, the CPU map is implemented as a priority queue as described in

subsection 6.2.2. Observing Listing 6.3, there are 2 cases which may occur when a job arrives.

In the �rst case there is a free CPU, so we simply link the job to a CPU. If there are no unlinked

CPUs, we must check whether the job is of higher priority than the lowest priority linked job.

Our code implements a simple optimization to keep track of the number of CPUs currently

linked, such that the common case of all CPUs being occupied can be determined in constant

time (this is checked by get_any_unlinked_cpu()).

Mode Switches & Priority Changes

In a mixed-criticality system, if one wants to enforce criticality modes under, for example,

EDF-VD (which we covered in section 2.4.1), we need to be able to change priorities at runtime.

Under link-based scheduling, this is simply a matter of unlinking the job undergoing the

priority change, and attempting a re-link, as illustrated in Listing 6.4.

Providing an Interface

As pointed out earlier, it is important that the link scheduler provide a clear abstraction

separating the high-level scheduling decisions from how they are actually executed. Essentially,

linksched needs to be able to query & modify the scheduler ready queue, and act on scheduling

decisions (i.e manipulate what is actually running on CPUs) – function pointers provided by

the user-level scheduler.

On the other hand, the interface that the link scheduler provides to a user-level scheduler

is shown in Listing 6.5. We cover how the C-EDF scheduler interacts with the link scheduler

in subsection 6.2.4.
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1 /* To be called when a job arrives (i.e enters the ready queue) */
2 void on_job_arrival(linksched_cluster_t *cluster, job_t *job)
3 {
4 cpu_t *unlinked_cpu = get_any_unlinked_cpu(cluster);
5 if(unlinked_cpu) {
6 perform_link(cluster, unlinked_cpu, job);
7 try_to_schedule(cluster, unlinked_cpu);
8 } else {
9 job_t *lowest_prio_linked_job = cpu_map_last(cluster->cpu_map);

10 /* If the 'attempt to link' job is of higher priority than the lowest linked job */
11 if(job_compare(job, lowest_prio_linked_job)) {
12 /* Unlink the old job, link the new job and try to schedule it */
13 cpu_t *cpu_to_update = lowest_prio_linked_job->cpu_linked;
14 perform_unlink(cluster, lowest_prio_linked_job, true);
15 perform_link(cluster, cpu_to_update, job);
16 try_to_schedule(cluster, cpu_to_update);
17 }
18 }
19 }

Listing 6.3: Algorithm for handling job arrival in linksched.

1 void
2 linksched_on_priority_change(linksched_cluster_t *cluster, job_t *job)
3 {
4 if(job->cpu_linked) {
5 /* Return to ready queue */
6 perform_unlink(cluster, job, true);
7 }
8 /* Job may be re-linked straight away (or not) */
9 link_next(cluster);

10 }

Listing 6.4: Function to handle job priority changes in linksched

An example of a simple optimization to reduce IPIs can be found in on_job_departure(),

as seen in Listing 6.6. If the core which the old job was departed from still has a (stale) job on

it after link_next(), then a new job wasn’t scheduled. Only in that case we want to go idle

on this core. This avoids immediately forcing a CPU to go idle when a scheduled job departs,

in case a new job becomes schedulable and it is possible to perform a single IPI (i.e call to

schedule_job(), which can be expensive for remote CPUs).

Link Scheduler Limitations

If a job from a task was previously scheduled on a particular core, it is desirable to assign new

jobs from the same task to that core for cache a�nity reasons. Under G-EDF, the only way this
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1 /* Called by scheduler when job becomes ready */
2 void on_job_arrival(linksched_cluster_t *cluster, job_t *job);
3 /* Called by scheduler when job budget expires or is suspended */
4 void on_job_departure(linksched_cluster_t *cluster, job_t *job);
5 /* Called by scheduler on e.g a criticality mode switch */
6 void on_effective_priority_change(linksched_cluster_t *cluster, job_t *job);

Listing 6.5: Functions supplied by linksched to a scheduler.

1 linksched_on_job_departure(linksched_cluster_t *cluster, job_t *job)
2 {
3 cpu_t *cpu_before_departure = job->cpu_scheduled;
4

5 if(job->cpu_linked) {
6 /* Don't return to ready queue! */
7 perform_unlink(cluster, job, false);
8 }
9 link_next(cluster);

10

11 /* Check for idle last to avoid unnecessary IPIs */
12 if(cpu_before_departure->job_scheduled == job &&
13 cpu_before_departure->job_linked == NULL) {
14 /* Go idle on that core */
15 schedule_job(cluster, cpu_before_departure, NULL);
16 }
17 }

Listing 6.6: Algorithm for handling job departure in linksched.

heuristic does not compromise scheduler correctness is in the event of an arbitrary tiebreak

– something that would only occur frequently if task periods are harmonic (i.e their periods

are multiples). In general, our test task sets are not harmonic (they are randomly generated).

Additionally, under C-EDF we choose clusters to share L2/L3 caches where possible – which

reduces the adverse e�ects of having no cache a�nity heuristic within a cluster. As a result,

although we do place jobs on the same core as the user-level scheduler if all cores are idle, we

do not implement a cache a�nity heuristic in the event of tiebreaks for clusters.

Another limitation of our link scheduler is that there are some situations where it does not

prevent unnecessary IPIs. For example – if a job is linked with almost zero budget remaining

on a remote core this may cause an on_job_arrival() call to be quickly followed by an

on_job_departure (so quickly that the job makes no progress). Thus, linksched relies on

the user-level scheduler to avoid such cases.
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6.2.7 Scheduling a Job

Now we will describe how scheduling decisions are acted upon, and how reply objects are

managed. Although the link scheduler module (subsection 6.2.6) assigns jobs to CPUs, it

utilizes a callback from the user-level scheduler to act on its decisions.

Initially, every task has a TCB and associated scheduling context – managed by the user-

level scheduler. When a job is scheduled by the link scheduler, the user-level scheduler will

seL4_SchedControl_Configure the associated scheduling context such that the job is on

the correct CPU, before executing a YieldTo() (or YieldToTimeout). In our implementa-

tion, we desired (in the YieldToTimeout case) that rescheduling callbacks were all executed

in the same place – so that multiple (comparatively expensive) YieldToTimeout calls did

not have to be made. This is an option which we implemented also, by having the schedul-

ing callback populate a CPU map of ‘scheduling contexts to change’, and inserting a new

actually_schedule_jobs() call (logically between lines 13 and 16 of Listing 6.2).

With respect to line 16 of Listing 6.2, one might ask how reply objects are managed. There

are 2 situations where a reply object will be populated – when a task makes a resource request,

and when a timeout exception arrives. Unfortunately, it is not possible to make a simple 1:1

association between reply objects and tasks on system initialization, because it is impossible for

a user-level scheduler to know ahead of time which task will populate the reply object (when a

cluster consists of >1 CPU). To solve this, the user-level scheduler is allocated Ntasks +1 reply

objects. Every task is associated with one of these objects, and the �nal reply object kept for the

user-level scheduler. When the user-level scheduler makes its scheduling decision and blocks

on an event, it will seL4_Recv on the reply object associated with the user-level scheduler.

Once an event arrives, the badge of the response indicates which (if any) task the event came

from. If the event did come from a task, then the reply capability pointer associated with

the user-level scheduler is swapped with that of the task from which the event came (which

will be empty). As a result, the rest of the scheduling logic is able to make the assumption

that the reply capability pointers associated with tasks correspond to the correct reply object

capabilities.
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6.3 MC-IPC Implementation

This section explores how we augmented our C-EDF user-level scheduler to support MC-

IPC. We previously covered MC-IPC basics in chapter 3 and subsection 5.2.2. Our MC-IPC

implementation modi�es the C-EDF scheduler (and other components) to include the following

features:

• Blocking semantics – tasks must be able to IPC to user-level schedulers in order to

make resource requests, and have the scheduler respond appropriately (by, for example,

scheduling an alternative task until a request is complete). This was achieved by adding

an additional task state (as seen in Figure 6.7).

• Idling reservations – MC-IPC (as part of its proof) requires that reservations associated

with tasks consume budget even when that task is blocked. Since scheduling contexts do

not currently support such a model, we have implemented our own reservation model at

user-level which augments scheduling contexts. Essentially, this involves incrementing

task budgets even when they are in the blocked state, and recycling them from the

blocked to release queue with correct abort semantics on an expiry.

• Bandwidth Inheritance – servers must be able to inherit reservations from tasks which

make MC-IPC requests. Since we are using a custom reservation model, we also had to

implement our own form of bandwidth inheritance.

• MC-IPC queueing semantics – to maintain correspondence with the MC-IPC speci�-

cation, we implemented the same queueing structures, invocation semantics and pruning

rules (which rely on the correctness of the above 3 features).
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6.3.1 Overview

Figure 6.10: Basic 2-cluster MC-IPC structure

Our implementation maps directly to the general approach outlined in subsection 5.2.2 –

which is also pictured in Figure 6.10. To make an MC-IPC request, a task will IPC (ordinarily)

to its cluster-local user-level scheduler. The user-level scheduler interacts with an MC-IPC

library (in its address space), which modi�es some cluster-local queues in accordance with

the MC-IPC semantics. Then, the user-level scheduler is responsible for modifying the global

MC-IPC queue (if there is space), and setting up bandwidth inheritance for the server (if

appropriate). Communication of an MC-IPC request from user-level schedulers to an MC-IPC

server is implemented using shared memory and semaphores (see subsection 6.3.2); since it

is not possible to arbitrarily prune ordinary IPC requests as required by MC-IPC (we also

considered high-priority ‘cancellation’ messages or using seL4_CancelBadgedSends, but

ordinary synchronisation primitives were simpler). Once the server completes an MC-IPC

request, it communicates the result back to the relevant user-level scheduler, which in turn

reverts bandwidth inheritance (if appropriate), and then proxies the MC-IPC response back to

the waiting task. This process will be explored more rigorously in subsection 6.3.3, however

we will �rst look at the high-level datastructures in more detail.
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6.3.2 Per-Cluster & Per-Server Properties

Figure 6.11: Per-cluster and per-server MC-IPC properties

An illustration of attributes which are associated with user-level schedulers and resource

servers in our implementation is provided in Figure 6.11. The blue ovals associated with

Resource A represent variables in shared memory which can be manipulated by Resource

A or user-level schedulers. The blue ovals associated with user-level schedulers represent

scheduler-local state. The mc_... operations displayed above the �gure represent which

MC-IPC operations are performed by which components. These correspond directly to those

described by Brandenburg [2014], but we provide an extremely condensed summary here for

convenience:

• mc_invoke() – add a request to either the local queues (head_queue, tail_queue,

local_head) or the global queue (global_queue), and (if appropriate) set up bandwidth

inheritance.

• mc_reply() – remove a completed request from the global queue, and (if enough space)

move a request from the local queues to the global queue. Additionally, revoke bandwidth

inheritance (if appropriate).

• mc_abort() – attempt to prune a request from the local or global queues, and revoke

bandwidth inheritance (if appropriate). If a request could not be pruned (it is currently

being processed), create ‘back-pressure’ by setting the local_wait �ag (which is checked

by mc_invoke() and mc_reply()).
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• mc_wait() – wait on the global queue (through a semaphore – queue_sem), to get a

request for the resource server.

Examining Figure 6.11 further, we use a spinlock (state_lock) to prevent race conditions

between user-level schedulers accessing global state (we chose a spinlock since every mutation

on global state is extremely short in our implementation). Thus far, in addressing Figure 6.11,

we have not described the purpose of preemptible_id or bwi_lock. The purpose of these

will become clear shortly.

6.3.3 Walkthrough of an MC-IPC Request

Figure 6.12: A single uninterrupted MC-IPC request

An illustration of what happens during an MC-IPC request in our implementation is

provided in Figure 6.12. This example illustrates a simple single-core scenario for the sake

of clarity. Initially, Task A has been selected by Scheduler 0 (and is running on its SC), the

resource server has no clients, and all the MC-IPC queues are empty. Thereafter, the following

events occur:

1. Task A makes a resource request, by invoking an seL4_Call on its badged copy of the

user-level scheduler’s endpoint.

2. Scheduler 0 receives the request, determines that it is an MC-IPC request, and saves the

reply object for Task A.
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3. Scheduler 0 performs an mc_invoke, which (since there is no competition) adds the

request straight to the global queues.

4. Scheduler 0 performs a non-blocking lock on a global bwi_lock associated with the server.

It succeeds, which indicates that this cluster is permitted to schedule the resource server

(i.e no other clusters are currently scheduling the resource server through bandwidth

inheritance).

5. Scheduler 0 unbinds the scheduling context from Task A, gives it to the resource server,

and yields to Task A’s SC (which causes the resource server to run).

6. The resource server invokes mc_wait and pops Task A’s request o� the global queue.

7. The resource server processes Task A’s request, and IPCs the result of the request back

to Scheduler 0 (note that responding over IPC does not break the MC-IPC assumptions,

since the requests have all already been correctly serialized and pruned). Additionally,

the resource server blocks for an acknowledgement from the scheduler, since it requires

that the server perform an mc_reply before the next time it wakes up (such that the

queues maintain their invariants).

8. Scheduler 0 performs an mc_reply (to update the MC-IPC queues), gives Task A’s SC

back, IPCs the response to Task A, unlocks bwi_lock (so that other schedulers can now

schedule the resource server), and sends an acknowledgement back to the resource

server. Since no other schedulers are waiting to schedule the resource server, Scheduler 0

does not have to send messages to any other schedulers notifying them that the resource

server has become free.

9. Scheduler 0 yields to Task A’s SC, scheduling task A.

10. Task A receives the MC-IPC server response as an IPC and continues executing.

As we have seen, our implementation requires there be considerable protocol complexity

involved with even a simple MC-IPC request. We argue that this complexity is required to

support clusters on multiple cores – something we will cover in the next section.
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6.3.4 Multi-cluster Bandwidth Inheritance & Idling Reservations

In this section, we address how our design facilitates bandwidth inheritance and idling reser-

vations across multiple clusters. The simplest way to understand how our design operates is,

again, through example – however we will �rst provide a summary of one of the main issues

concerning bandwidth inheritance.

A key problem we had to solve is �guring out how to notify other clusters who would have

scheduled a resource server if it were available, once the server’s reservation on a local cluster

expires. In our implementation, this is the purpose of an atomically-incremented per-cluster

variable – decision_id. Whenever a new scheduling decision is made on a cluster, that clus-

ter’s decision_id is incremented. Importantly, if any task of higher priority than the currently

scheduled set is blocked on a resource server, a globally-visible preemptible_id variable is

also set to the current cluster’s decision_id. Every resource server has a preemptable_id

associated with every cluster. This allows clusters (who are reverting bandwidth inheritance)

to:

1. First, check if a local task is able to donate bandwidth (as this is cheaper than notifying

remote cluster)

2. If this fails, walk all the remote cluster’s preemptible_id and decision_id pairs. If the

two are equal, we have found a cluster which would have scheduled a resource server if

it were available. Wake it up by sending it a ‘server idle’ message.

3. If no clusters wish to donate bandwidth to the server, do nothing.

Note that this approach is similar to that used in LITMUSRT for the same purpose, however

our system of course consists of communicating servers rather than a single monolithic kernel

using synchronisation primitives for communication. There are some obvious race conditions

involved here – for example, what happens if a preemptable cluster is found, but by the time

our message arrives it is no longer preemptable? In that speci�c case, our implementation will

simply propagate the idle message to the next preemptable cluster.

To further solidify some of these concepts, let us consider an example of multi-cluster

bandwidth inheritance.
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Figure 6.13: Bandwidth inheritance example

A simple example of bandwidth inheritance with multiple clusters in our implementation

is shown in Figure 6.13. Initially, it is assumed that Task A previously made an (unpruned)

MC-IPC request, Scheduler 0 has scheduled Task A’s SC (such that the resource server is

running), and Scheduler 1 is currently executing Task B. Thereafter, the following events occur:

1. Task B makes an MC-IPC request

2. Scheduler 1 performs an mc_invoke, adding Task B’s request to the global request queues

(there is no competition in cluster 1).

3. Scheduler 1 performs a non-blocking lock on bwi_lock, and fails. Thus, Task B is

moved to the ‘blocked’ queue, and budget will continue to be charged from Task B even

though it is not scheduled. Additionally, the local decision_id is incremented, and

preemptable_id set to the same (for the correct resource server). Since no other tasks

are schedulable on CPU 1, the CPU goes idle. (note that if another task was schedulable,

Scheduler 1 would have now scheduled that in place of Task B)

4. Budget expires on the reservation associated with the resource server, which belongs to

Task A on CPU 0.

5. Scheduler 0 returns the SC, unlocks bwi_lock, and checks for other bandwidth inheri-

tance candidates in its own cluster. It �nds none, so sends an idle message to the next
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preemptable cluster for the resource server it just abandoned – which is Scheduler 1.

CPU 0 goes idle as there is nothing left for Scheduler 0 to schedule.

6. Scheduler 1 receives the idle message, attempts to lock bwi_lock and succeeds. It then

re-binds Task B’s SC to the resource server, and yields to it.

7. The resource server continues processing Task A’s request. At some point in the future,

Task A’s request will complete, and the server will then begin processing Task B’s request.

(recall that MC-IPC servers are assumed to be non-reentrant).

6.3.5 MC-IPC Limitations

Our implementation inherits some limitations of MC-IPC, namely that server requests cannot

be nested, and that servers are assumed to be non-reentrant. Additionally, since a large

amount of MC-IPC state is contained in the user-level scheduler, high-criticality tasks have

a dependency on the correctness of user-level schedulers (both local and remote) for their

invocation bound to be adhered to. Perhaps the most crucial limitation of our implementation,

however, is that this implementation (due to time constraints) is constructed purely on existing

kernel primitives (excluding the C-EDF scheduler and logging infrastructure). In an ideal world,

the MC-IPC implementation we present would have made heavier use of seL4-MCS constructs

such as scheduling context donation and ordinary priority-ordered IPC – however the slight

di�erence between MC-IPCs assumptions and the primitives supplied by seL4-MCS made

this impossible in our case. Fortunately, our work on implementing MC-IPC in the manner

described here provided us insight into some changes to the seL4 model which would make

a future implementation much simpler. These modi�cations and a new, candidate MC-IPC

architecture that would prove interesting future work is described in chapter 8.

6.4 Summary

This chapter detailed each component of our implementation – namely tracing & logging, our

C-EDF scheduler implementation, and our resource sharing implementation. We explored how

each of these components interact, examples of how they achieve their aims, and limitations

of our approach. In the next chapter, we will evaluate & discuss how well our implementation

performs in practice.
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7 | Evaluation & Analysis

This chapter details our experiments and how we interpret them. Our overall goal is to deter-

mine whether the scheduling architecture we have constructed is performance-competitive

with a similar-class monolithic system. To that end, we start by describing how our tracing

infrastructure accounts for overheads, whether it is accurate, and the applicability of our

tracing tool to other domains. Then, we shall explore the properties of our C-EDF scheduler

– the impact of di�erent time sources, scalability concerns, criticality modes and overhead

sources. We perform a schedulability analysis on our implementation to compare it with other

(monolithic) systems. Finally, we conclude this chapter by performing functional tests on our

MC-IPC implementation.

7.1 Evaluation Hardware

Platform CPU N CPUs L1 (KiB) L2 (KiB) L3 (KiB)

Family Clock Assoc. Assoc. Assoc.

x86 (Optiplex 990) i7-2600 4 32I+32D 256 8192

32-bit Sandy Bridge 3.4GHz 8-way 8-way 16-way

ARMv7 (Sabre) Cortex-A9 4 32I+32D 1024 7

32-bit NXP i.MX6 1.0GHz 4-way 16-way 7

Table 7.1: Hardware platform basic details.

Throughout this chapter, we perform experiments on the hardware platforms shown in Table 7.1.

On both platforms, last-level caches are shared, other levels core-local. On x86, hyperthreading

& dynamic voltage frequency scaling were disabled.
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7.2 Tracing Infrastructure

7.2.1 Log Overhead Accounting

Our evaluation generally makes use of conventional trace points & timestamps, and log bu�er

traces for longer timespans or for events which are di�cult to trace directly. As using the

log bu�er has a performance impact, it is important to be able to quantify and account for

overheads in any schedplot measurements. A visual overview of what a recorded timestamp

by the kernel logging infrastructure actually measures is provided in Figure 7.1.

Figure 7.1: Measured event duration by kernel logging infrastructure (not to scale)

This �gure illustrates a simple context switch between 2 user-level threads, where ∆tab and

∆tgh represent mode switches into and out of seL4. ∆tbc represents time between when the

mode switch completes, and the kernel entry timestamp is read. ∆tcd represents time from this

�rst timer read until the log bu�er code begins executing. ∆tde is the time between when the

log bu�er code starts, and the‘exit’ timestamp is read. ∆te f represents the overhead of creating

and writing a log entry. ∆t f g is the time that passes between when the log bu�er code �nishes

executing, and the mode switch is actually initiated.

In particular, note that ∆tce is the in-kernel time recorded by the log bu�er, and ∆tbg is the

real kernel entry time. schedplot uses an approximation to allow the user to make timespan

measurements by counting kernel invocations between 2 points and subtracting the log bu�er

overheads for each invocation. This allows a user to establish an estimate as to what the length

of such a timespan would have been if logging infrastructure were not present.
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Figure 7.2: multi-task system, kernel invocations in yellow (schedplot)

Consider a simple scenario (pictured in Figure 7.2) - with a timespan tmeas where both

endpoints are in userspace tasks, and assuming a single core situation and no interrupts occur

within the timespan. If there are N kernel entries (i.e 2N mode switches) between the endpoints,

then the same execution trace without kernel logging would have taken tmeas −N∆td f units of

time. It becomes more di�cult to provide an estimate once endpoints approach the edges of

kernel entries, since we have to account for mode switch times and the values of ∆tbc, ∆tde

and ∆t f g (but only in the kernel entries closest to the endpoints). schedplot accounts for

mode switch times, but assume these other factors are negligible. We argue this is a valid

approximation, as the feature is intended for a user to make timespan measurements over

periods of time spanning tens to hundreds of kernel entries, rather than for microbenchmarks.

The worst-case accuracy of this approximation will be explored further in subsection 7.2.3.

We reiterate that schedplot corrected-timespan measurements are only valid in certain

situations – for example, they are only permissible when the �rst entry (or no entries at all)

come from an interrupt, because subtracting overheads does not make sense if any invocation

was held up by a temporal event. Additionally, if invocations on multiple cores are involved,

one cannot simply subtract log bu�er overheads since kernel instances may IPI to each other.

Generally, in our experiments, we use conventional tracepoints & the cycle counter where

possible, and an overhead-accounted scheduling dump as a last resort. The precise method

depends on the experiment and will hence be described alongside each one.

7.2.2 Logging Overheads

To quantify the impact of our log bu�er changes, and establish baseline values ∆td f (the

overhead of the log bu�er), we compared the cost of performing a null system call, with &

without logging enabled, in various modes.
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Figure 7.3: ARM log bu�er overheads Figure 7.4: x86 log bu�er overheads

Our results are shown in Figure 7.3 and Figure 7.4. Each result indicates the number of

cycles (measured from userspace) it takes to perform a null system call, by taking a timestamp

before and after the call, and subtracting the measurement overhead. The results are formed

from an average of 1000 tests (after warmup), and errors bars represent 1 standard deviation.

On ARM, the overhead added by the fastest logging mode is only 34 cycles, however on

x86 it is much higher at 902 cycles (we will explain why shortly). On both x86 and ARM, the

debug trace mode has a much higher overhead than the minimal tracing mode – which isnt a

surprise given how much more information is copied in debug mode.

On ARM, we trialled 2 methods of getting timestamps in the kernel for the log bu�er. In

Figure 7.3, ‘CCNT’ indicates the 32-bit ARM cycle counter, and ‘Global’ indicates the 64-bit

ARM global timer. Importantly, even though the global timer has a higher overhead, it is just

as deterministic as the cycle counter (σ < 0.5). As a result, we use the global timer in our

experiments on ARM which use the log bu�er - since it is not prone to over�ow half-way

through an experiment.

One may wonder why the logging overhead even in minimal mode is so high on x86.

To investigate this, we re-ran the same benchmark as above, disabling di�erent parts of the

logging infrastructure.
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Figure 7.5: Cycle breakdown of logging overhead on x86

As shown in Figure 7.5, essentially all our overhead is attributable simply to reading the

timer and the store instructions which write to the kernel log bu�er (write-through mapping is

responsible for this). Extra branches, CPU ID calculation, and fetching SMP state were all found

to have next to zero overhead compared to these operations (and are thus encompassed under

‘Other’ in Figure 7.5). Although the overhead is high, what really matters is overhead-aware

prediction accuracy – which we will covered next.

7.2.3 schedplot accounting accuracy

To evaluate how well our schedplot-corrected timespan approximations represent reality in

the worst-case, we constructed another microbenchmark.

Platform System Call Baseline Measured Adjusted ∆µ ∆µ

(cycles) (cycles) (cycles) (cycles) (%)

ARM Null 199 (σ = 0) 243 (σ = 0) 206 (σ = 0) 7 3.5

Yield 1076 (σ = 0) 1111 (σ = 0) 1076 (σ = 0) 0 0.0

x86 Null 204 (σ = 50) 1099 (σ = 40) 198 (σ = 64) 6 ±64 2.9

Yield 714 (σ = 45) 1621 (σ = 39) 776 (σ = 60) 62 ±60 8.7

Table 7.2: Worst-case accuracy of schedplot log-bu�er overhead adjustments, per call.

In this test, we execute a thread which makes 100 system calls one after the other, and

time how long the total operation takes (before and after all the calls) using 2 di�erent

methods. Each cycle result in the table is normalized by the number of calls made by the

thread, so represents a ‘per call’ value (not excluding the loop overhead). In Table 7.2, ‘Baseline’
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represents the measured length of time with all logging disabled, ‘Measured’ represents the

same measurement with logging enabled, and ‘Adjusted’ shows the baseline approximation

which schedplot made based on the log bu�er contents. ∆µ represents the di�erence between

the means of the actual baseline and schedplot-approximated baseline.

Since we measure the log bu�er overheads used for schedplot accounting using null

system calls, we also tested a more complex system call, Yield. The behaviour of ARM was

much more deterministic than x86 (we display σ < 0.5 cycles as 0), and schedplot was able

to predict a baseline within a margin of several cycles. On x86, the Yield o�set error is

attributable to the larger values of ∆tbc, ∆tde and ∆t f g than on ARM – which is also why the

cycle o�sets are all positive.

It is important to note that in the context of the intention of this feature, the error per-

centages actually represent worst-case errors – since this benchmark timespan is completely

dominated by in-kernel time. When measuring user-level schedulers, a much greater pro-

portion of timespans is dominated by userspace threads, and so the timespan error reduces

accordingly. Of course, if kernel entries are less frequent and userspace is cache-heavy, then

kernel state is less likely to remain in the caches. This means that schedplot measurements

are more accurate when the working set of userspace threads is relatively small.

To emulate what a user of the tool would do, we measured the total invocation time of a

simple user-level EDF scheduler by using conventional tracepoints and through UI-selected

schedplot measurements (30x random samples) on our x86 platform.

Baseline Measured Adjusted ∆µ ∆µ

(cycles) (cycles) (cycles) (cycles) (%)

12231 (σ = 1419) 18879 (σ = 3601) 11829 (σ = 2844) 402 -3.3

Table 7.3: Error of x86 schedplot log-bu�er overhead adjustments, simple EDF scheduler.

The results are shown in Table 7.3. The scheduler we measured makes between 7 and 10

kernel invocations depending on the event causing it to be invoked, and spends approximately

40% of its time in userspace. Note that our measured standard deviations are quite high because

our measured error also includes the ‘human error’ of making an accurate time selection in

the tool, in addition to the uncertainties introduced by subtracting log bu�er overheads (which

have their own standard deviations).

77



To summarise - the worst-case accuracy of a schedplot approximation is tolerable, but

the real-world discrepancy will be smaller. In a situation where timespan measurements are

made over periods of time spanning tens to hundreds of kernel entries, with most of that time

spent in userspace – schedplot will provide a more-than-su�cient approximation.

7.2.4 schedplot debugging case study

We used schedplot throughout this thesis to debug & measure scheduler performance, how-

ever were curious whether the tool might be applicable to other domains.

Figure 7.6: Quadcopter case study schedplot trace

As part of another project within the research group, a quadcopter �ight-control loop was

in development. We were attempting to diagnose a timing issue which spuriously caused the

�ight control loop to run at a lower loop rate than normal (150Hz instead of the designed 200Hz).

The �ight control code was based on CAmkES, which is a statically-con�gured, component-

based architecture for connecting di�erent software components in an embedded system on

top of a microkernel. To help diagnose the issue, we applied our log-bu�er changes to the

kernel used by the �ight control code, and additionally wrote a ‘benchmarking’ CAmkES

component, which allowed the results of a scheduling trace to be emitted and analyzed by our

schedplot tool. An example of such a trace is shown in Figure 7.6. By analyzing the results

of our scheduling trace, we were able to quickly diagnose that the problem was caused by a

locking race condition in the I2C driver component, thus causing that part of the software to

block the rest of the system longer than it should.
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7.3 C-EDF Scheduler

In this section we will explore how our C-EDF scheduler performs. We will �rst look at what

the main overheads of the scheduler are, discuss scalability issues, measure the key properties

of our scheduler, and �nally compare it with existing schedulers (The C-EDF schedulers in

LITMUSRT and RASP). Our work in this section focuses predominantly on the x86 platform,

since our comparison scheduler only runs on this platform – however we supply some similar

ARM measurements in Appendix C. It is important to note that on both x86 and ARM, last-level

caches are shared, other levels core-local. This means that the 4x1 C-EDF (i.e P-EDF) and 1x4

(i.e G-EDF) cluster arrangements are most appropriate from a memory hierarchy standpoint,

although the correctness of our 2x2 C-EDF implementation can still be tested on these platforms.

7.3.1 Dissecting the Total Invocation Time

Figure 7.7: x86 4-GEDF scheduler invocation time

Many of the measurements we make in the following sections take the form of probability

histograms, as shown in Figure 7.7. This histogram shows the total invocation time of a

user-level G-EDF scheduler, as measured using tracepoints. The scale on the left, which is

associated with the histogram plot, represent how probable it is that the scheduler takes a

particular amount of time to be invoked. The scale on the right, in addition to the line plot,

represents the cumulative probability of invocations which took longer than the number of

cycles on the x-axis. In all invocation traces, we trace the time elapsed between when seL4

returns control to the user-level scheduler (i.e just after the seL4_Recv in Listing 6.2), and

just before the scheduler returns control to userspace (i.e just before the seL4_Recv), and
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subtract the measurement overhead. Hence, this histogram excludes the 2 mode switches and

kernel invocations which occur on entry and exit of the user-level scheduler. For the sake

of brevity, all of our histograms are taken on a randfixedsum-generated 10-task system (10

total for G-EDF, 10 per core in P-EDF case), with 1-1000ms random periods, over a period of

30 seconds unless otherwise speci�ed. The tasks themselves are CPU-bound busy loops and

require preemption once they consume their timeslice – this models the behaviour of rtspin

as provided by LITMUSRT .

From the trimodality of Figure 7.7, it is possible to directly see the impact of di�erent

code-paths on the scheduler invocation time. In this example, the left-most peak represents

the codepath which is executed when a job is released, but is still of lower priority than any

scheduled job – which results in no changes to the currently scheduled task set. In that case,

the user-level scheduler only has to update its scheduling queues, read the current time, and

reprogram the timer for the next budget expiry or job release. The two right-most peaks

indicate the extra time required when the scheduler must change the currently-scheduled

task set (i.e on release of a short-deadline job). There is an observable di�erence between

changing the scheduled task set on local cores, versus changing it on remote cores, as seen by

the separation of the 2 peaks.

7.3.2 Overheads of Time Sources

We found that one of the most signi�cant overheads encountered by our user-level scheduler

in both the P-EDF and G-EDF cases was reading & reprogramming the timer. As a result, we

implemented a number of time sources (these were previously covered in subsection 6.2.5).

Figure 7.8: x86 4-GEDF invocation times with di�erent time sources
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A comparison of 4-GEDF time sources is shown in Figure 7.8. We observe that the cost of

a user-space timer driver, labelled ‘normalirq’ (speci�cally, the High Precision Event Timer

(HPET) on x86) is quite high compared with other time sources. One key reason is that an

explicit kernel invocation is required to acknowledge the IRQ, which is not required by the

other time sources shown. The other reason is that timer operations on the HPET are generally

slower than the same operations within the kernel, as the kernel employs the Time Stamp

Counter (TSC) for generating interrupts – which has a lower overhead. Virtualizing the timer

driver such that userspace may indirectly exploit the TSC would have somewhat mitigated the

slowdown, but we did not implement this it would still require more kernel invocations than

the other time sources we describe here, and would have been much more work to implement.

Again, observing Figure 7.8, recall (from subsection 6.2.5) that YieldToTimeout allows a

user-level scheduler to schedule a thread, set a timeout, wake up, and get the new time in a

single YieldToTimeout & Recv combination. The speedup resulting from this change is quite

dramatic, as minimal kernel invocations are required, and the user-level scheduler indirectly

makes use of the TSC. Interestingly the YieldToTimeout approach has lower overhead than

the timeout fault approach. The extra cost associated with the timeout fault approach is likely

attributable to the extra reprogramming of a scheduling context deadline that this required by

that approach.

Figure 7.9: x86 4-PEDF invocation times with di�erent time sources

A comparison of the 2 available 4-PEDF time sources is shown in Figure 7.9, measurements

made on all clusters in the system. One can observe that in this P-EDF case, the average
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invocation latency in the YieldToTimeout case is lower than that in the G-EDF case – because

the scheduler no longer has to migrate tasks between cores. In the time-server case, note

that the time-server thread itself is on the �rst cluster, so the �rst cluster will su�er capacity

loss whenever other schedulers use the time-server. In a real system, it would be possible to

mitigate the unpredictable capacity loss in the �rst cluster by simply placing the time-server

on its own core, but this of course comes at the cost of sacri�cing an entire core. Additionally,

whenever a cluster uses the time-server but makes a request at the same time as another

cluster, time-server invocation time may increase signi�cantly. To investigate this time-server

behaviour further, we ran another test.

Figure 7.10: x86 4-PEDF time sources with 1ms average task periods

We can clearly see the e�ect of timeserver con�icts when comparing the e�ect of using a

timeserver as shown in Figure 7.10, when we reduce average task period from 100ms to 1ms.

There is a large probability tail when using the timeserver approach – which is caused by

these con�icts. In the YieldToTimeout case, we see no such change.

To summarise, the YieldToTimeout approach has been measured to be faster than the

other time sources which we prototyped. As a result, we use this approach in the following

sections.
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7.3.3 Scheduler Scalability

Figure 7.11: x86 G-EDF core scalability Figure 7.12: x86 P-EDF core scalability

First, we evaluate how our scheduler scales in both P-EDF and G-EDF modes with di�erent

core counts. In both Figure 7.11 and Figure 7.12, we evaluate on 16-task systems of average

task period 100ms, and measure how the scheduler invocation time changes with an increase

in core count.

The G-EDF case trends toward a limit. The main reason for this limit is that as we increase

the core count under G-EDF, the proportion of task migrations to or from remote cores increases

– i.e approximately 0% for 1-EDF, 50% for 2-GEDF, 66% for 3-GEDF, 75% for 4-GEDF. Under

4-GEDF, the majority of scheduling operations involve remote cores – which explains why

the error bars become smaller (one code path is executed more often than others). Under the

hood, these remote rescheduling operations involve a scheduling context invocation, after

which the kernel will IPI to the relevant core and complete the migration – so there is not

much opportunity for optimisation beyond what already exists (unless, of course, the remote

migrations were removed altogether – but that violates G-EDF correctness).

In the P-EDF case, there is statistically insigni�cant change in scheduler invocation time

over core count, except for an initial small jump in invocation time between the 1-EDF and

2-PEDF cases. We observed no change in the probability histogram shape between 1-EDF and

2-PEDF, only the average o�set. To investigate this further, we also tested whether this change
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was caused by cache con�icts by enabling & disabling cache alignment for our datastructures

– which made no statistically signi�cant di�erence. Since this small jump has no e�ect on

our main schedulability analysis, we refrained from investigating it further. That being said,

we believe that the most likely culprit is that the kernel codepaths increase in execution time

when compiled in SMP mode – the 1-EDF case is compiled against a non-SMP kernel, and this

would explain the constant o�set.

Figure 7.13: x86 4-GEDF task scalability Figure 7.14: x86 4-PEDF task scalability

To test the cost on scheduler invocation time when large amounts of tasks1 are present in

the system, we evaluate the scheduler invocation time under 4-GEDF and 4-PEDF with di�erent

total numbers of tasks, and di�erent ready/release datastructures – as seen in Figure 7.13 and

Figure 7.14. Both graphs indicate the total number of tasks in the system on the x-axis (i.e under

4-PEDF, 128 tasks is 32 tasks per core). We test using ready/release queues backed by both

binomial heaps and red-black trees, to see if there is any measurable di�erence between the two.

On average, binomial heaps are faster than red-black trees - likely due to their constant-time

minimum lookup. The G-EDF case is the most interesting, as there is an obvious performance

penalty when the system contains more than 32 tasks. Once the number of tasks exceeds this

threshold, the granularity of timer interrupts starts to have an e�ect on our results – we will

now explain why. Maintaining a certain utilization bound (in our case 0.7) implies reducing the
1We refrain from testing more than 128 tasks simply because higher task counts caused the seL4 benchmarking

infrastructure to crash, and we did not have time to debug the memory allocator.
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costs of each task accordingly. Once the task costs are short enough (i.e > 32 tasks), a G-EDF

scheduler may have to perform more than one context switch in a single scheduler invocation

– this is why our variances increase so much. We cap our later schedulability analysis at <

32 tasks such that we measure the di�erence across scheduling architectures rather than the

queue properties or timer granularity properties directly – the scheduling architecture itself is

what we are more interested in.

7.3.4 Criticality Mode Switch

To establish the overheads involved with a criticality mode-switch, we measured the worst-case

penalty on our 4-GEDF scheduler in 2 cases, under a 16-task system, as shown in Figure 7.15.

Figure 7.15: x86 4-GEDF invocation times with criticality mode switch

In both cases, our emulated mode-switch involves un-linking and re-linking all scheduled

jobs using the link scheduler interface, as would happen under EDF-VD. The ‘nochange’ case

represents when a mode switch occurs and all currently scheduled jobs remain scheduled. The

‘4xresched’ case represents when all 4 scheduled jobs are displaced by high-criticality jobs.

As expected, there is quite a large penalty on the scheduler invocation time when all jobs are

displaced, as local & remote reschedules are expensive in our scheduler.

7.3.5 Overheads & Schedulability Analysis

In this section, we compare the scheduling overheads of our C-EDF scheduler with those of

LITMUSRT (linux-based, has an in-kernel C-EDF scheduler), and RASP (also linux-based, but
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has a user-level G-EDF scheduler) – the architectures of which we brie�y covered in chapter 3.

Essentially, our goal is to discover whether there is any practical di�erence in the amount of

CPU time available to real-time tasks under comparison C-EDF schedulers. To this end, we

perform overhead-aware schedulability simulations, based on the overhead analyses described

by Brandenburg [2011] and by utilizing their SchedCAT tool (which performs schedulability

simulations). The overhead model of SchedCAT is coupled to the architecture of LITMUS,

so it is �rst necessary for us to form a correspondence between our measurements and the

SchedCAT model – we shall explore this now.

Scheduler Overheads

Before moving onto simulations, we will discuss which overheads we actually consider, how

we measure them, and why it is valid to compare these overheads across schedulers. The

overheads considered in our simulations, as required by SchedCAT are described below, with

their LITMUS names in brackets (we will later use the short names to refer to them):

• Context Switch Overhead (CXS): The overhead incurred when a scheduler makes a

switch between tasks, on a local or remote core excluding communication latency (i.e

IPIs) between cores. In LITMUS, this is the length of execution of context_switch

within the Linux kernel. In RASP, this is cost of a user-level context switch to another

thread in the same address space. In our implementation, it is the length of execution of

our function which switches between tasks (i.e scheduling context invocations). Note

that our approach performs multicore rescheduling di�erently to LITMUS – we explain

how this is compensated for shortly.

• Scheduling Overhead (SCHEDULE): The time taken to make a scheduling decision

(i.e the top-level scheduling function), excluding the cost incurred when making a context

switch.

• Release Overhead (RELEASE): When a job is released, this incurs some overhead. In

all cases, this is the length of execution of the release handler, which moves the job

between queues, checks whether cores need rescheduling, and performs a reschedule if

required. Hence, this also includes scheduling and context switch overhead.

• Release Latency (RELEASE-LATENCY): The di�erence in time between when a job

should have been released (i.e what time a release interrupt was programmed for), and
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the timestamp when it is actually released. In all cases, this is measured as the di�erence

between the last release timer setting, and the current time just before the relevant task

is removed from the release queue.

• Remote Rescheduling Overhead (SEND-RESCHED): (Does not apply to P-EDF as

there is no inter-core communication) This is the latency between when one core requests

a remote reschedule, and the remote core actually receives the request. In LITMUS,

this is the latency of an IPI between cores including the IRQ handler. In RASP, this

corresponds to ‘request overhead’ in their paper – the time taken to request preemptions

on remote processors through their userspace mechanism. In our implementation, we

measure the latency between when a scheduling context invocation returns (as that is

accounted for in context switch overheads), and when the operation takes e�ect on the

remote processor.

A key di�culty with making comparisons between schedulers, particularly in our case; is

that we have a slightly di�erent model of multicore rescheduling than LITMUS or RASP. In

LITMUS, if a release IRQ arrives on core 0, and this requires a reschedule on core 1, the kernel

will send an IPI to core 1, causing a context switch to happen on core 1. In our implementation,

if a release IRQ arrives on core 0 and this requires a reschedule on core 1, the user-level

scheduler will perform a scheduling context invocation – which causes seL4 to IPI to itself on

another core and perform the requested action (which is has a di�erent cost to an ordinary

context switch). To compensate for this, we absorb the cost of seL4 performing the remote

context switch in SEND-RESCHED. Since SEND-RESCHED is directly added to the task cost

in the relevant part of the overhead accounting code in SchedCAT, we deem this as valid. Note

that the context switch cost is not ‘double-charged’ – the only di�erence is that a remote

reschedule in LITMUS is an IPI (SEND-RESCHED) followed by a context switch, whereas for

us, it is a context switch followed by SEND-RESCHED (where the SEND-RESCHED absorbs

the IPI and cost of seL4 performing the context switch).

Another interesting question one might ask, is where are the mode-switch overheads

accounted for (i.e into & out of the kernel)? As far as we were able to tell, this overhead is

actually not measured by LITMUS’ tracing tools, and is likely assumed to be negligible – not

an unreasonable assumption for the 200-cycle overhead of a 2-way mode-switch compared to

the total execution time of the monolithic kernel with scheduler (which we later measure to

be in the tens of thousands of cycles). In our microkernel case, this overhead is however not
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negligible – there are 4 mode switches and 2 kernel invocations which must be added to the

user-level scheduler invocation time. We account for this by adding the cost of the entry &

exit mode switches and kernel invocations to the SCHEDULE overhead.

Overhead Measurements

We perform our overhead measurements on LITMUS (using Feather-Trace), RASP (using their

provided tracing scripts) and on our implementation (using sel4bench tracepoints). More

details on the precise nature of our tracepoints under seL4 are provided in Appendix B. We run

RASP on PREEMPT_RT Linux v4.9.115, use the v4.9.30 Linux rebase of LITMUSRT , and apply our

modi�cations to seL4-MCS v10.0.0. Overheads were traced on 4-GEDF and 4-PEDF systems on

LITMUS & our approach, but only 4-GEDF under RASP (there is no PEDF con�guration in their

source distribution). In all cases, tasks are CPU-bound spin loops with as little cache footprint

as possible. We use the same sequence of 1ms-1000ms period randomly-generated 16-task

sets in all con�gurations, with 1 minute of testing per task set, and combine the results over

multiple runs. Recalling the results of our task-scalability tests from Figure 7.13, we chose sets

of size 16 so that our overheads are dominated by the scheduling architecture costs (rather than

the overhead associated with ready/release queues), and so that a single interrupt corresponds

to a single reschedule in the G-EDF common case (we aren’t �ghting with timer granularity).

Additionally, this task count o�ered a good tradeo� between being able to visualize capacity

loss, and reasonable simulation times (when we perform simulations later on).

All overhead �gures show the mean & standard deviation of each overhead, as well as the

worst measured overhead. Note that standard deviations are omitted from RASP overheads,

simply because their tracing infrastructure does not provide it.

There are a few interesting things to observe from our results, as shown in Figure 7.16,

Figure 7.17 and Figure 7.18 (4-GEDF) – and Figure 7.19, Figure 7.20 (4-PEDF). Firstly, the results

from seL4-MCS are much more deterministic than the other approaches - illustrated by the

distance between worst-case and mean. Although LITMUS & PREEMPT_RT are both real-time

kernels, our smaller code paths, kernel cache footprint (and seL4’s small worst-case execution

time) are likely signi�cant drivers of this.

In the average case, the context-switch cost under RASP is much lower than that under

LITMUS or our approach – since their context switch is a relatively cheap user-space operation,

and does not involve an address space switch. Our context switch cost is slightly worse than
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Figure 7.16: Our approach, 4-GEDF Figure 7.17: LITMUSRT , 4-GEDF

Figure 7.18: RASP, 4-GEDF
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Figure 7.19: Our approach, 4-PEDF Figure 7.20: LITMUSRT , 4-PEDF

that of LITMUS, because it incorporates some remote rescheduling overhead (as described

earlier), and requires mode switches to make seL4 invocations.

The scheduling overhead under LITMUS is quite comparable to our approach. Under RASP,

the average-case scheduling overhead is a fair amount smaller – this is likely because they

perform their POSIX timer reprogramming in the release handler where possible (which may

explain why the release overhead is so high under RASP). Under our approach and in LITMUS,

the release overhead is dominated by the scheduling and context switch costs.

Under RASP, the release latency and remote rescheduling overhead is much higher than

that experienced by LITMUS or our approach. This is because both of these operations require

multiple Linux system calls under RASP. For example, sending a preemption signal under

RASP involves repeatedly invoking pthread_kill for remote processors.

Schedulability Analysis

Using these measured overheads, we can perform schedulability simulations. In each of these

tests, randomly-generated 16-task systems are used, with uniformly distributed costs & periods.

Each data-point in the schedulability test represents the percentage of all task sets with CPU

utilisation sum (x-axis), out of 500 random task sets, which were schedulable (y-axis). In each

of these plots, a ‘good’ result is represented by a skew to the right, as this means more task sets

were schedulable. Strictly, in terms of real-time schedulability, worst-case overheads should be
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the inputs to our schedulability analysis. We, however, decided to also run simulations based

on mean overheads – this gives an unfair advantage to the monolithic systems, but may be

relevant in a soft real-time scenario.

Figure 7.21: (mean) 4-GEDF schedulability, 1mS to 10mS task period distribution

Figure 7.22: (worst) 4-GEDF schedulability, 1mS to 10mS task period distribution

First, we consider 4-GEDF schedulability with long task periods in Figure 7.21 and Fig-

ure 7.22. In both cases, LITMUS & our approach are very near the ideal utilisation limit – our

approach posessing a slightly higher utilisation cap when worst-case overheads are considered.

The schedulability of RASP su�ers in the worst-case, due to its repeated system calls into

Linux. We omit RASP from the next series of short-period tests, as its schedulability cap is

obviously lower than for LITMUS or our approach.
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Figure 7.23: (mean) 4-GEDF schedulability, 100µS to 1mS task period distribution

Figure 7.24: (worst) 4-GEDF schedulability, 100µS to 1mS task period distribution

By shortening the task periods under 4-GEDF as shown in Figure 7.23 and Figure 7.24, the

di�erence in utilisation cap between LITMUS and our approach becomes more dramatic. In

the mean overhead case, we obtain a slightly higher utilisation cap than LITMUS, but as soon

as we use the worst-case overheads, the higher variation in LITMUS code-path overheads

means that its schedulability su�ers. Remote rescheduling overhead is a signi�cant factor in

this test – which is much smaller under our approach. Note that 100µS is quite a short task

period – perhaps unusually short for an actual real-time system, we include it as it makes

capacity limits more obvious.
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Figure 7.25: (mean) 4-PEDF schedulability, 100µS to 1mS task period distribution

Figure 7.26: (worst) 4-PEDF schedulability, 100µS to 1mS task period distribution

For 4-PEDF, we omit the 1mS-10mS tests as there was no signi�cant schedulability di�er-

ence between our approach & LITMUS (they are located in Appendix D). The short-period

cases are shown in Figure 7.25 and Figure 7.26. In the mean-overhead case, LITMUS has a

higher schedulability than our approach, likely because it has slightly lower average context

switching and release overheads. In the worst-overhead case however, our approach has higher

schedulability due to the lower variance in overheads.

To summarise, the C-EDF scheduler we have constructed on seL4 is competitive with that

provided by LITMUS, particularly when worst-case overheads are taken into account. In the

1mS-10mS case, both schedulers achieve almost the same schedulability cap, with RASP falling

slightly behind.
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7.4 MC-IPC Evaluation

In this section, we describe how our MC-IPC implementation was evaluated. Whilst we did

construct a functioning MC-IPC prototype as described in section 6.3, our evaluation of the

prototype is unfortunately rather limited – both due to time constraints, and for the reasons

we described previously in section 5.4:

As a result, we limit our MC-IPC evaluation to a schedplot trace demonstrating properties

we outlined in section 6.3, a simple invocation latency test, an observation of the implemen-

tation complexity, and an outline of why we believe model changes should be made before

making any judgement as to how competitive an MC-IPC implementation might be on a

microkernel.

7.4.1 schedplot trace

Figure 7.27: 2x2-CEDF MC-IPC trace

Whilst developing our prototype, we used our plotting tool to verify that our MC-IPC

implementation operated as expected. An example of such a trace is shown in Figure 7.27. In

this trace, the x-axis is in milliseconds, and we are running a system with two 2-CPU G-EDF

clusters across 4 cores (i.e C-EDF with cluster size 2). We choose 2x2 C-EDF here as it is the

most complex combination of MC-IPC and our scheduler which runs on 4 cores, exercising

most of the components of our implementation. Cluster 0 (which contains all tasks C0TX),
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has comparatively long EDF deadlines, whereas cluster 1 (which contains tasks C1TX) has

comparatively short EDF deadlines. Each task contains a loop whereby it spins for a certain

period and then makes an MC-IPC request. The MC-IPC server, on a request, performs 2ms of

arithmetic operations before replying. We have overlayed the CPU that the MC-IPC resource

server (‘MC-Sq-0’) is situated on at every point in time. In this example, the MC-IPC server

migrates between cores & clusters as required. Because in this example we have purposefully

created two clusters with vastly di�erent average deadlines, this demonstrates that even though

the �rst cluster has tasks of comparatively low EDF priority, that cluster is still able to have

its requests served. Note that this trace was taken in debug mode (so we can see task names),

meaning the execution time of the user-level schedulers and kernel invocations as shown are

not representative of their true behaviour – they are barely visible in release mode.

7.4.2 Invocation Latency

To test the invocation latency experienced by a high-criticality task, we constructed another

2x2 C-EDF system which models EDF-VD criticality in LO mode. On the �rst cluster, we placed

a single high criticality task (with arti�cially shortened deadline in accordance with EDF-VD)

as well as 4 denial-of-service tasks. The denial-of-service tasks on the same cluster as the

high-criticality task had much longer deadlines than the high-criticality task (thus representing

lower criticality tasks under EDF-VD). On the second cluster, we placed 5 ‘malfunctioning’

high-criticality tasks, which have the same or smaller arti�cially shortened deadline as the

high-criticality task on the �rst cluster, but denial-of-service the resource server. All the

denial-of-service tasks constantly make MC-IPC requests in an in�nite loop. The server itself

performs arithmetic operations for 1ms before returning.
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Figure 7.28: x86 MC-IPC invocation latency

A probability histogram of the invocation latency experienced by the high-criticality task

on the �rst cluster is shown in Figure 7.28 – over a period of 10 seconds. Latency is measured

using overhead-accounted scheduling dumps, between when the task makes a request, and

when a response is received from the MC-IPC server. As is visible, all requests take less than

2.5 milliseconds to complete, which is less than the MC-IPC upper bound (of 9ms, given our

server execution time and cluster arrangement). In future work, it would be interesting to

implement priority & FIFO-ordered IPC to perform a comparison – unfortunately we were not

able to do this due to time constraints.

7.4.3 Implementation Complexity

Operation Lines Comments/Blank SLoC

Inserted 1421 263 1158

Deleted 380 25 355

Table 7.4: Code required to implement MC-IPC (excluding C-EDF scheduler & testbench)

A numerical summary of the ‘Source Lines of Code’ (SLoC) required to add MC-IPC support

and idling reservations to our C-EDF system is provided in Table 7.4. Recall that one of the key

reasons we wanted to investigate building resource protocols at user-level is because they have

the potential of being easier to prototype. Our 1158-line implementation (which implements
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MC-IPC and idling reservations), is much smaller than the 3700-lines Brandenburg [2014]

required to add MC-IPC to LITMUS (who also augment their scheduler with MC-IPC and

reservations). One could argue that this is an unfair comparison given the amount of boilerplate

required to add any functionality to the linux scheduler, and that LITMUS’ implementation

has more features. However, an almost factor-of-3 di�erence demonstrates that it is possible

to build protocols like MC-IPC with less engineering e�ort on top of a microkernel than is

required in a monolithic kernel.

Still, we believe that modi�cations to the seL4 API are required to fairly demonstrate the

performance of a microkernel in this scenario. Toward the end of our implementation, we

discovered some small changes which could be made to the seL4 API which would simplify

our implementation and improve MC-IPC performance. This, and more avenues for future

work, will be covered in chapter 8.

7.5 Summary

In this section, we investigated the properties of our tracing infrastructure, evaluated the

performance of our C-EDF scheduler, and performed functional tests on a preliminary MC-IPC

implementation. Crucially, we demonstrated that it is possible to build a C-EDF scheduler, and

mixed-criticality resource sharing protocol, as user-level policy on a microkernel. We found

that our new system call for time management made a large performance di�erence to user-

level scheduling performance, and investigated the scalability properties of our scheduler. We

discovered that our C-EDF scheduler is performance-competitive with a linux-based monolithic

approach, and that the implementation e�ort required to implement our mixed-criticality

resource sharing protocol is low, when compared to an existing monolithic implementation.

In the next chapter, we will examine some possibilities for future work – particularly with

respect to our MC-IPC implementation.

97



8 | Future Work

8.1 Changes to seL4 API for MC-IPC

Toward the end of of implementing our MC-IPC prototype, we discovered that some minimal

modi�cations to the model of the seL4 microkernel would have allowed for a cleaner MC-IPC

implementation. These changes we propose are:

• Idling Scheduling Contexts: To prevent one having to implement idling reservations

purely as user-level policy, we propose adding an option to scheduling contexts such

that threads may consume budget whilst queued on an endpoint. This would involve an

extra parameter to seL4_SchedControl_Configure, and changes to how the sporadic

server implementation in the kernel interacts with endpoints.

• Augmented Timeout Exceptions: A user-level scheduler needs to know whether a

timeout fault emerged from a thread blocked on an endpoint (or not), to decide whether

to respond with a failure message to the task (or not). Additionally, if a timeout exception

emerges from a task blocked on an endpoint, the request must be synchronously pruned

under MC-IPC. We propose an additional message word be returned from timeout

exceptions indicating a boolean as to whether the fault came from a task blocked on an

endpoint.

• Augmented seL4_YieldTo(): A user-level scheduler needs to know if a thread is

blocked on an endpoint which has a di�erent thread (on another core) donating its

scheduling context to a server. This is so that the scheduler can schedule another

task in place of the blocked thread. For a high-priority user-level scheduler using

seL4_YieldTo(), there is no feedback to the scheduler as to whether the thread as-

sociated with the scheduling context yielded to is actually runnable. We propose
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seL4_YieldTo() return a boolean indicating whether the yield is to a blocked thread or

not.

An implementation of MC-IPC on top of a kernel with these modi�cations might take the

following form:

Figure 8.1: MC-IPC design

Assume (for simplicity) that we have only 1 resource server. On each cluster, we place a user-

level scheduler, a set of tasks, and passive MC-IPC guard server (whose sole purpose is to proxy

requests between tasks and the actual resource server). Additionally, we have the resource

server itself, also a passive thread. When a task makes a request, it performs an seL4_Call on

its badged endpoint capability to its cluster-local MC-IPC guard server, donating its scheduling

context in the process. The guard server would have to cache & prioritize cluster-local requests

according to the MC-IPC protocol - perhaps through a shared-memory datastructure with the

user-level scheduler that indicates instantaneous task priorities, and shared datastructures

with other MC-IPC guards to keep track of global queue length. The guard server would then

set itself as the timeout fault handler for the resource server, and forward the correct request

onto the resource server. Note that this is a similar arrangement to the bandwidth inheritance

model proposed by Lyons et al. [2018] - the key di�erence is our API changes as described

above.

One might think that it would make sense to construct the system such that all guard servers

are the same priority and simply use synchronous IPC between the guard servers and the
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resource server to directly model MC-IPC’s global FIFO queue. Unfortunately, if a scheduling

context is currently donating time to the resource server and expires, it is not possible to easily

con�gure the resource server’s timeout fault handler to be the correct (cluster-local) MC-IPC

guard - we believe it would be simpler to keep this queueing structure as responsibility of

the guard servers. A solution which would maintain the ‘best of both worlds’ in this speci�c

scenario would be to add an option such that ignored timeout faults automatically return to

their original task and permit donation from the next blocked thread on an endpoint. This,

however, would add unnecessary policy to the microkernel - it essentially implements the

well-studied ‘helping’ protocol, which is already possible to model in seL4.

Another interesting consideration is how user-level schedulers should handle seL4_YieldTo()

calls to blocked tasks. Assume at �rst that a user-level scheduler yields to a lower-priority,

but runnable task (since the highest priority task is blocked on a request, as determined by a

yield call). When a high-priority task becomes unblocked (i.e able to donate time to a resource

server), we want that highest priority task to be scheduled. A simple solution to this would

be for the MC-IPC gate to check for pending requests on a reply or timeout fault for the

current-served client, and send an IPC to the correct user-level scheduler (similar to the IDLE

message we implement in our prototype).

8.2 Extended Evaluation

The main goal of this thesis was to investigate the properties of a user-level MCS scheduler. It

would be interesting to extend our work beyond the platforms we evaluate here, i.e to di�erent

CPU architectures, or to investigate scalability to core counts above 4. Another obvious next

step is to apply what we have learned here and construct an actual real-time system (e.g

quadcopter or autonomous vehicle) which utilises our work - and evaluate its properties.

8.3 Scheduler WCET Accounting & Admission Control

Since seL4-MCS will eventually have a sound worst-case execution time analysis (WCET),

it might be interesting to see how a similar analysis could be performed on the user-level

scheduler itself. An analysis tool might be able to use the existing seL4 WCET properties in

tandem with an analysis of the user-level scheduler implementation, to estimate the scheduler
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WCET. This WCET could then be used to augment an admission control policy enforced by

the user-level scheduler when admitting hard-real-time tasks.

8.4 Prototyping framework in a high-level language

1 rootThread :: String -> ThreadContext
2 rootThread id = do
3 atomic $ puts ("Init thread: " ++ id)
4 -- Spawn some threads (bypass TCB cap manipulation)
5 syscall $ SysSpawnThread 255 (loopyThread "[child1]") Nothing
6 syscall $ SysSpawnThread 255 (loopyThread "[child2]") Nothing
7 whileM (return True) (do
8 -- Spin, child threads should get CPU time
9 atomic $ puts ("In thread: " ++ id)

10 )
11 atomic $ puts ("End of thread: " ++ id)
12 return ("Return: " ++ id)

Listing 8.1: This ‘virtual thread’ was run against the actual seL4 scheduler from the Haskell

spec with some minor modi�cations (to remove dependencies to the rest of the kernel).

In an investigative e�ort, during the early stages of this thesis we attempted to prototype

user-level schedulers against the in-progress real-time seL4 Haskell speci�cation (essentially

an implementation of seL4 but in a higher-level language); to test whether this might be a

viable prototyping (and correctness veri�cation) approach. Completing this work on verifying

user-level scheduling behaviour in a high-level language was deemed too much work for

this thesis, however it would make interesting future work. Before moving onto di�erent

approaches, we created a rudimentary functioning self-contained Haskell model of the (non-

RT) seL4 kernel scheduler and ran it against virtual threads. An example of the implementation

of such a thread can be seen in Listing 8.1. We believe that a user-level scheduling prototyping

framework would be very useful in future work, allowing the implementor to create high-level

‘litmus tests’ of their design and test it against the true seL4-MCS semantics without having to

create an entire functioning prototype. In our case, we would have discovered the previously

described seL4 model changes for MC-IPC much sooner if such a framework existed.
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9 | Conclusion

As described in earlier sections, a user-level scheduling architecture provides many potential

advantages when compared to in-kernel, monolithic approaches. We began by exploring

existing monolithic architectures with mixed-criticality support, existing user-level approaches

with real-time support, a mixed-criticality resource sharing protocol, and other kernels of

interest. Unfortunately, modern mixed-criticality schedulers (in particular multicore-applicable

�exibly partitioned architectures) remain untested in a user-level context.

In this thesis, we sought to rectify this – by implementing a �exible multicore scheduler &

resource management protocol as user-level components on the seL4 microkernel. To achieve

this, we �rst constructed specialized tracing infrastructure and evaluated its e�ectiveness. We

then demonstrated that not only is it possible to build a C-EDF scheduler as user-level policy

on a microkernel, but that such a scheduler can be performance-competitive with existing

monolithic approaches. We found that a small modi�cation to the kernel API vastly improves

user-level scheduling performance, and that the implementation e�ort required to implement

our mixed-criticality resource sharing protocol is low, when compared to an existing monolithic

implementation. Finally, we proposed a new model for implementing MC-IPC for future work,

which would facilitate the construction of a more e�cient implementation, and fair comparison

with an optimized monolithic implementation in the future.

There is enormous scope for future work in this space – evaluation across more schedulers

& architectures, constructing a high-level modelling framework, further experimentation with

kernel model changes – each of these enough for another thesis taken alone. Our hope is that

research continues in this space, and that we may one day live in a future of truly trustworthy

systems.
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Appendix A: Log-Bu�er Mappings

Figure 1: Types of log-bu�er mappings tested (existing above, prototype below).

As part of this thesis, we investigated whether it would provide a performance improvement

to modify the logging infrastructure to instead have a separate logging page mapped in for

each CPU core, as well as move the shared position variable to be core-local (to reduce cache

contention). An illustration of the di�erence between the existing & prototyped approaches

is provided in Figure 1. Note that in these �gures, the address spaces are not to scale, and

both ksLogIndexX variables are assumed to sit in di�erent cache lines. In early stages of

development, it was discovered that this core-local approach was actually slower than the

original for our purposes (which are not especially cache-heavy). To evaluate the approach, we

constructed a benchmark on ARM whereby userspace would make system calls on all cores

simultaneously at random intervals. In investigating the slowdown, we disassembled our log
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writing function and found that its increase in e�ective length by 13 cycles was the same as

the performance penalty. Hence, the slowdown under our prototype was found to be entirely

accounted for by the increase in instruction count in the trace function. The majority of this

overhead was simply the logic required to determine which core we are currently executing

on (by interpreting the current stack pointer), such that we write to the correct log bu�er. This

dominated over cache con�ict e�ects in our tests, which should be relatively small anyway as

we use a write-through mapping for the bu�er (but not the index variable). In future work it

would be interesting to explore this further in tests under a cache-heavy userspace – but for

our purposes, it was lower-overhead to stick with the current implementation.
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AppendixB:C-EDFMeasurementDetails

Figure 2: Example of 4-GEDF overhead measurement components (Sabre)

Although we have described what the overheads which we measured are, we did not

describe in detail how they were actually measured. Using G-EDF as an example, we actually

make 7 separate measurements, all using tracepoints placed carefully throughout the scheduler

and userspace. These 7 measurements are then processed by a script to form our �nal 5 overhead

measurements. To make each measurement, we re-compile the scheduler such that only the

required measurement tracepoints are included, and then subtract the tracepoint overhead

after an experiment – so that we do not include the cost of ‘tracepoints-within-tracepoints’.

These 7 measurements are shown in Figure 2, and are described below:

• entryswitch: the time between when a task is preempted, and just after the corre-

sponding user-level scheduler Recv. We measure this by constantly measuring cycles

109



elapsed in an in�nite loop in one of the userspace tasks. If the time elapsed is suddenly

higher than usual, the task detects it was preempted and logs the time just before the

preemption. The user-level scheduler has a corresponding tracepoint after the Recv –

subtracting the two (via post-processing in our case), provides the entry-switch cost.

• exitswitch: the time between just before a user-level scheduler Recv, and a user-level

task starts to execute. This is measured using the same method as entryswitch.

• remote: the time between when a migration invocation completes, and when that task

is actually scheduled on a remote CPU. Again, we measure this in a similar way to

entryswitch, but use a tracepoint in the migration code of the scheduler rather than in

the main loop.

• invoc: the total scheduler invocation time, without the entry and exit switch. This is

simply 2 ordinary tracepoints within the scheduler.

• enactjobs: the length of execution of our context-switch function.

• release-lat: time delta between when a release interrupt is set (before control returns

to userspace), and the current time when control returns to the user-level scheduler..

• release-oh: overhead incurred when moving a thread from the release queues to the

ready queues.

Once these measurements are made, our postprocessing scripts collate them into overall

overhead statistics. For example, the ‘SCHED’ overhead is formed by adding entryswitch,

exitswitch and invoc, and then subtracting enactjobs.
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Appendix C: ARMC-EDFMeasurements

Figure 3: ARM 4-GEDF invocation times with di�erent time sources

Figure 4: ARM 4-PEDF invocation times with di�erent time sources
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Figure 5: ARM 4-GEDF invocation times with criticality mode switch

Figure 6: ARM 4-PEDF overheads Figure 7: ARM 4-GEDF overheads
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AppendixD: x86 4-PEDFnull-result tests

Figure 8: (mean) 4-PEDF schedulability, 1ms to 10mS task period distribution

Figure 9: (worst) 4-PEDF schedulability, 1mS to 10mS task period distribution
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Appendix E: Implementation Metrics

This appendix lists some metrics on our implementation changes, as reported by git diff

--stat.

C-EDF Scheduler

1 libsel4bench/include/sel4bench/kernel_logging.h | 4
2 libsel4utils/include/sel4utils/aligned_alloc.h | 18
3 libsel4utils/include/sel4utils/benchmark_track.h | 40
4 libsel4utils/include/sel4utils/linksched.h | 74
5 libsel4utils/include/sel4utils/rt_job.h | 44
6 libsel4utils/include/sel4utils/trace_helpers.h | 11
7 libsel4utils/src/edf.c | 770
8 libsel4utils/src/linksched.c | 312
9 libsel4utils/src/rt_job.c | 45

10 9 files changed, 1314 insertions(+), 4 deletions(-)

Listing 1: C-EDF Scheduler (core).

1 CMakeLists.txt | 3
2 apps/hardware/src/main.c | 84
3 apps/sel4bench/src/benchmark.h | 1
4 apps/sel4bench/src/main.c | 19
5 apps/ulscheduler/CMakeLists.txt | 70
6 apps/ulscheduler/src/main.c | 347
7 libsel4benchsupport/include/hardware.h | 6
8 7 files changed, 523 insertions(+), 7 deletions(-)

Listing 2: C-EDF Scheduler (test bench).
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MC-IPC

1 libsel4utils/include/sel4utils/linksched.h | 6
2 libsel4utils/include/sel4utils/mc_ipc.h | 61
3 libsel4utils/include/sel4utils/mc_ipc_msg.h | 125
4 libsel4utils/include/sel4utils/rt_job.h | 16
5 libsel4utils/include/sel4utils/rt_request.h | 62
6 libsel4utils/include/sel4utils/sched.h | 7
7 libsel4utils/src/edf.c | 1057
8 libsel4utils/src/linksched.c | 22
9 libsel4utils/src/mc_ipc.c | 385

10 libsel4utils/src/rt_request.c | 60
11 10 files changed, 1421 insertions(+), 380 deletions(-)

Listing 3: MC-IPC (core, di� against C-EDF implementation).

1 apps/ulscheduler/src/main.c | 272
2 1 file changed, 257 insertions(+), 15 deletions(-)

Listing 4: MC-IPC (test bench, di� against C-EDF test bench).

schedplot

1 rt_tasks.py | 13
2 schedplot.py | 296
3 sel4_types.py | 154
4 trace_events.py | 207
5 4 files changed, 670 insertions(+)

Listing 5: schedplot implementation.
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Kernel Changes

1 config.cmake | 6
2 include/api/debug.h | 6
3 include/arch/arm/arch/32/mode/types.h | 2
4 include/arch/arm/arch/benchmark.h | 13
5 include/arch/arm/arch/benchmark_overflowHandler.h | 15
6 include/arch/arm/armv/armv7-a/armv/benchmark.h | 4
7 include/benchmark/benchmark_track.h | 6
8 include/kernel/sporadic.h | 4
9 include/plat/imx6/plat/machine/timer.h | 2

10 libsel4/include/sel4/benchmark_track_types.h | 17
11 src/arch/arm/c_traps.c | 1
12 src/arch/arm/config.cmake | 2
13 src/benchmark/benchmark_track.c | 29
14 src/fastpath/fastpath.c | 7
15 src/model/statedata.c | 3
16 src/object/schedcontrol.c | 2
17 16 files changed, 96 insertions(+), 23 deletions(-)

Listing 6: Log bu�er implementation.

1 include/kernel/thread.h | 25
2 include/object/structures.h | 2
3 libsel4/include/interfaces/sel4.xml | 13
4 libsel4/include/sel4/constants.h | 2
5 libsel4/sel4_arch_include/aarch32/sel4/sel4_arch/constants.h | 2
6 libsel4/sel4_arch_include/aarch32/sel4/sel4_arch/faults.h | 4
7 libsel4/sel4_arch_include/aarch32/sel4/sel4_arch/types.bf | 4
8 libsel4/sel4_arch_include/ia32/sel4/sel4_arch/constants.h | 2
9 libsel4/sel4_arch_include/ia32/sel4/sel4_arch/faults.h | 5

10 libsel4/sel4_arch_include/ia32/sel4/sel4_arch/types.bf | 4
11 src/api/faults.c | 5
12 src/kernel/thread.c | 4
13 src/object/schedcontext.c | 76
14 13 files changed, 142 insertions(+), 6 deletions(-)

Listing 7: YieldToTimeout implementation.
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1 CMakeLists.txt | 2
2 include/arch/arm/arch/32/mode/hardware.h | 2
3 include/arch/arm/arch/32/mode/model/statedata.h | 2
4 include/benchmark/benchmark_track.h | 9
5 include/kernel/traps.h | 2
6 include/kernel/vspace.h | 2
7 include/model/statedata.h | 13
8 libsel4/arch_include/arm/sel4/arch/syscalls.h | 13
9 libsel4/include/sel4/syscalls.h | 12

10 src/api/syscall.c | 33
11 src/arch/arm/32/kernel/vspace.c | 38
12 src/arch/arm/32/model/statedata.c | 2
13 src/arch/arm/32/object/objecttype.c | 3
14 src/arch/arm/64/kernel/thread.c | 2
15 src/benchmark/benchmark_track.c | 24
16 src/model/statedata.c | 8
17 16 files changed, 102 insertions(+), 65 deletions(-)

Listing 8: Multicore core-local log-bu�er mappings (ARM).

Benchmarking/Processing scripts

1 135 ./data/get.py
2 60 ./cedf_good/context_outer/parse.py
3 95 ./cedf_good/hist_mcipc.py
4 104 ./cedf_good/components.py
5 100 ./cedf_good/hist.py
6 125 ./cedf_good/process_final.py
7 77 ./cedf_good/compare.py
8 8 ./cedf_good/make_trace_extrapolate.py
9 42 ./data_sched/hist.py

10 57 ./data_logbuf/get_nullsyscall_sabre.py
11 57 ./data_logbuf/get_ia32_breakdown.py
12 55 ./data_logbuf/get_nullsyscall_ia32.py
13 915 total

Listing 9: Benchmarking/Processing scripts. (reported by wc -l)

117


	Abbreviations
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Outline
	Contributions
	Structure


	Background
	Operating Systems & Microkernels
	seL4

	Real-time systems
	Mixed-criticality systems
	Criticality modes

	Schedulers
	Uniprocessor real-time schedulers
	Sporadic Servers
	Multiprocessor real-time schedulers


	Related Work
	User-level real-time scheduling
	RASP – Real-time Application Scheduling Platform

	Mixed-criticality resource sharing
	MC-IPC

	Kernels for multicore mixed-criticality scheduling
	Summary

	seL4-MCS
	Capabilities
	Object types

	IPC & System Calls
	IPC System Calls

	seL4 scheduling model
	Scheduling Contexts (SCs)
	Active & Passive Threads
	Influencers on scheduling behaviour
	seL4 User-level Scheduling Example

	Summary

	Approach
	High-Level Approach
	Approach: User-level MCS on seL4
	Scheduler: C-EDF
	Resource Sharing: MC-IPC

	Approach: Tracing & Instrumentation
	Evaluation Strategy
	Summary

	Implementation
	Tracing & Benchmarking Infrastructure
	Kernel Log Buffer Changes
	schedplot visualisation application

	C-EDF Scheduler Implementation
	Overview
	Priority Queues
	Bootstrap & Capability Distribution
	Tour of the Scheduling Loop
	Sources of Time
	Link-Based Scheduler
	Scheduling a Job

	MC-IPC Implementation
	Overview
	Per-Cluster & Per-Server Properties
	Walkthrough of an MC-IPC Request
	Multi-cluster Bandwidth Inheritance & Idling Reservations
	MC-IPC Limitations

	Summary

	Evaluation & Analysis
	Evaluation Hardware
	Tracing Infrastructure
	Log Overhead Accounting
	Logging Overheads
	schedplot accounting accuracy
	schedplot debugging case study

	C-EDF Scheduler
	Dissecting the Total Invocation Time
	Overheads of Time Sources
	Scheduler Scalability
	Criticality Mode Switch
	Overheads & Schedulability Analysis

	MC-IPC Evaluation
	schedplot trace
	Invocation Latency
	Implementation Complexity

	Summary

	Future Work
	Changes to seL4 API for MC-IPC
	Extended Evaluation
	Scheduler WCET Accounting & Admission Control
	Prototyping framework in a high-level language

	Conclusion
	Bibliography
	Appendix A: Log-Buffer Mappings
	Appendix B: C-EDF Measurement Details
	Appendix C: ARM C-EDF Measurements
	Appendix D: x86 4-PEDF null-result tests
	Appendix E: Implementation Metrics

