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Abstract

seL4 is a high-performance microkernel with a proof of functional correctness, pro-

viding isolation guarantees to properly designed applications. This makes it suitable for

systems where strong security guarantees are required. Despite these benefits, seL4 lacks

the support of other major operating systems, and manually porting the drivers and appli-

cations from such systems is often too expensive of a solution. A more feasible approach is

to re-use components of these systems and port them on seL4, providing an environment

for applications that matches the specifications of the original system.

This thesis presents Zircon on seL4, a port of Google’s new Zircon microkernel

to seL4. This is achieved using an API emulation approach, with a seL4 application

managing Zircon kernel objects, and handling syscalls from Zircon applications that are

delivered using seL4’s IPC mechanisms.

This thesis details the kernel objects and syscalls that have been implemented in this

port, and how they interact with the primitives provided by seL4. This implementation

is evaluated in terms of performance and porting effort. Finally, an analysis of the the

future work that remains to be done to fully support dynamic user-level Zircon-based

systems on seL4 is given.
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1 Introduction

The ability to run one system on another is a widely used concept, whether it be running

another system in a virtual machine, or emulating its API so its applications can run

seamlessly on another system. One major reason for doing this is to provide access to

software and drivers not supported by the base system.

The seL4 microkernel presents major benefits compared to other platforms. It is

the only microkernel with a proof of functional correctness [KEH+09], and provides fine-

grained access control of kernel resources, making it suitable for any system where strong

security guarantees are desired. Even with these security benefits, seL4 is also a high-

performance microkernel, providing communication between processes at a low cost. De-

spite these advantages, seL4 still lacks support for software and drivers compared to major

platforms such as Linux. Part of this is due to the differences in seL4 and these traditional

platforms, which makes it non-trivial to port device drivers and other application, many

millions of lines of code in size, from these traditional platforms to seL4.

Zircon is a new microkernel being developed by Google [Goo17b], and provides the

base platform for the Fuchsia operating system [Goo17a]. The project is under very active

development, and with continued support there is a high possibility that Fuchsia will be

adopted by mobile and other personal devices in the near future. Many devices running

the Zircon microkernel would lead to increased software development and driver support

on the platform, and having the ability to run such a system on seL4 would be very

advantageous. Additionally, the security guarantees provided by seL4 can be leveraged

to ensure misbehaving Zircon applications remain isolated from native seL4 applications.

This thesis presents Zircon on seL4, a project aimed at porting the syscall API of

Zircon and its underlying kernel objects to seL4. This thesis contributes a port of the

major kernel objects of Zircon, and a large proportion of the system calls it provides.

We also perform an evaluation of the port, in terms of its performance relative to native

Zircon and the effort required for its implementation. Additionally, this thesis details

the future work that remains for a complete port. This includes the remaining kernel

objects that need to be implemented, as well as the work required for other aspects such

as multicore support, as well as potential approaches for forming communication channels

with native seL4 applications.
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2 Background

This section provides background information to help build an understanding of the con-

cepts behind seL4 and Zircon. We start with a discussion of kernel design, as well as

security models used in kernels. We then delve into each microkernel, detailing the fea-

tures and primitives offered by seL4 and Zircon.

2.1 Kernel Design

A kernel contains the core functionality of an operating system, providing the interface

for user applications to interact with hardware and other applications. They are thus

a privileged component of the system, with full control over all resources. Traditional

kernels such as Linux kernel are described as monolithic, in which all operating systems

services, such as file systems and device drivers, are included in the kernel and are thus

privileged components. As such, bugs in these components can compromise the entire

system, and the large code base inherent to monolithic kernels makes eliminating all such

bugs virtually impossible.

Microkernels take the opposite approach to monolithic kernels; they are designed to

have a minimal trusted computing base, and avoid including operating system services in

the kernel where possible. Microkernels provide a minimal set of kernel primitives to user

applications, providing the necessary abstractions so that applications can still interact

with hardware and other processes. Common abstractions include message passing for

inter-process communication (IPC), execution primitives such as threads, and objects for

managing virtual memory and interrupts.

2.2 Capability-based Security

As the kernel is a privileged component, it must only allow access to kernel objects

to user applications that require them. A security model must be implemented in the

kernel to protect these objects from malicious use by untrusted applications. In systems

where security is paramount, it is desirable that fine-grained security is enforced, in which

applications are supplied with the minimal set of permissions required for full functionality.

This is based on the principle of least privilege: that users should only be granted privileges

essential to their operation. This can prevent malicious or faulting applications from

compromising other users by performing privileged operations that they do not require in

the first place.

The traditional security model established by Unix and Unix-like systems are access

control lists (ACLs). In this model, each object maintains a list of permissions that

dictate which users can access the object and what operations these users can perform

(such as read or write operations). The primary limitation of ACLs is that they can
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become unwieldy if they contain entries for each individual user. This can be addressed

by limiting the scope of permissions maintained; this is done in the Unix permission model,

in which the ACL only has entries for a user, a group and others. Such an approach can

only enforce coarse-grained security, and lacks the flexibility required for high-assurance

systems.

Capability-based security is an alternative approach, in which users hold keys, or

capabilities, to kernel objects. The capabilities themselves dictate the access rights the

user has; fine-grained security can be enforced by only supplying users with the capabilities

they require. To share access to objects, these capabilities need to be copyable, and

the permissions granted to these copies must be equal to less than those of the parent

capability to prevent any escalation of privilege.
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3 seL4

seL4 is the only microkernel that is formally verified; it has a proof of functional correctness

demonstrating that the kernel follows its specifications. This is made possible due to seL4

being a microkernel; verification is made feasible through the small code base of the

kernel. Systems that utilise seL4 correctly can enforce strong isolation properties between

applications, ensuring that trusted programs can not be compromised by malicious code

from untrusted applications. In addition to these security properties, seL4 is a high-

performance microkernel, providing fast inter-process communication.

seL4 provides a small set of kernel objects for implementing larger user-level systems.

One of the design aspects of seL4 is a lack of policy enforcement; it avoids restricting the

user in their design decisions, providing objects that are flexible and can be applied to

a variety of systems [HE16]. The following subsections will detail these kernel objects,

particularly aspects of them relevant for porting Zircon to seL4.

3.1 Capabilities and Objects

seL4 uses capabilities (caps) for managing access to kernel objects. Every thread on seL4

has an associated capability space (CSpace) which stores the caps that a thread owns.

A CSpace is composed of kernel objects known as CNodes ; each CNode has a number

of slots in which caps can be stored. These caps can include additional CNodes, which

allows a graph of CNodes to be formed, starting from the root CNode of a CSpace. It is

this graph of CNodes which forms the complete CSpace; this graph is constructed as a

guarded page table to allow for the efficient lookup of caps in a CSpace. This allows for

the exact design design of a CSpace to be flexible; a CSpace can be simple and consist of

a single root CNode, or can have multiple CNode levels, with CNodes being allocated to

the CSpace as required, allowing for more dynamic CSpace management.

Operations on seL4 kernel objects are referred to as kernel invocations. Almost

all kernel invocations require a capability to be provided. Invocations common to seL4

objects are cap operations, including invocations to copy, move or delete capabilities from

a CSpace. Kernel invocations send arguments to the kernel through message registers,

and in many cases an IPC buffer. These are explained in more detail in the following

section.

3.2 Endpoints

Endpoints provide the primary method of inter-process communication (IPC) between

threads on seL4. They allow for the transfer of a small amount of data and caps through

the use of message registers and an IPC buffer. The IPC buffer is a fixed region of

memory assigned to a thread which is used to store the data of a message. A set of
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message registers is used to transfer the most important components of a message, such

that if a message is small enough, it will only use the message registers. By avoiding the

use of memory in such cases, IPC with small messages can be very efficient.

Operations on endpoints are synchronous and blocking; a thread will wait on an

endpoint until they have sent or received a message. There are two primary invocations

sending a message with an endpoint: send and call. Both of these will block until another

thread is ready to receive before sending a message. A call invocation additionally sends

a reply cap to the receiver. This reply cap is stored in the Thread Control Block of the

receiving thread. This reply cap can later be used in a reply invocation, which sends

back a message to the relevant caller. As such, a receiving thread can easily respond to a

calling thread without any additional bookkeeping.

Another important aspect of endpoints is the ability to badge an endpoint capability.

An endpoint cap can be minted, which creates a copy of the cap with a chosen badge value.

This value is dictated by the invoking thread and can be up to 28-bits in size. Badges are

used for the identification of a sending or calling thread; the badge of the endpoint cap

used to send a message will be transferred to a receiving thread’s badge register, where

it can easily be read. Another important aspect of these caps is the inability to further

copy or modify a capability with a non-zero badge. This ensures that badged caps can

be reliably used to identify a sender, as there is no way for the sending thread to modify

a badged cap that is assigned to it.

3.3 Virtual Memory Management

A virtual address space in seL4 is referred to as a VSpace. A VSpace is composed of

various kernel objects that are used to manage virtual memory. These objects generally

correspond to the underlying hardware page table structure. On 64-bit x86, this is a 5

level page table structure, with a single top level page directory, all the way down to 4096

byte pages. seL4 has equivalent kernel objects to match each level. Each level of the page

table must be mapped in a VSpace before page frames can be mapped in.

As with all other kernel objects, page frame and page table have capabilities to

them, which are used in their mapping invocations. Page table objects cannot be shared

between VSpaces, but pages can. To share a page, a copy of its capability must first be

made, then this new cap is mapped into the other VSpace. This allows for shared memory

regions to be mapped into many VSpaces.

3.4 Threads

As mentioned earlier, a seL4 thread is associated with a Thread Control Block (TCB).

A TCB is always associated with a CSpace and a VSpace; each of these can either be

exclusive to the thread, or shared with other threads. The combination of these three
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components is largely equivalent to processes in other systems, and are often referred to

as such. Threads can also be associated with an IPC buffer. Although not compulsory to

have one, an IPC buffer is required for the transfer of larger messages over IPC and for

most kernel invocations.

The regular variant of seL4 uses static priorities for threads, with round-robin

scheduling. The priority of a thread can be changed manually through a kernel invo-

cation. A mixed-criticality systems (MCS) branch of seL4 also exists [LMAH18], which

adds scheduling context (SC) objects; these are object that represent CPU time. Threads

must be bound to a scheduling context object in order to run. Scheduling contexts can

be configured to change the upper bound on the period of a thread’s execution, allowing

for more flexible scheduling.

A thread can also be assigned a fault endpoint, which allows for the handling of a

faulting thread by another. This fault endpoint exists in the CSpace of the thread; when

a thread faults, the kernel delivers an IPC message to the endpoint which describes the

fault. Another thread can then receive this message and handle the fault appropriately.

If a fault can be resolved, the receiving thread can then resume the faulting thread.

3.5 Notifications

Notifications provide a simple primitive for signalling and waiting. They consist of single

data word, which represents a set of binary semaphores, and can be signalled and waited

upon. Caps to a notification object can be badged in the same way as endpoint caps can.

Signalling a notification object with one of its capabilities causes the notification object’s

data word to be bitwise OR-ed with the capability’s badge. Waiting on a notification

object causes the thread to block on it if its data word is zero, adding the thread to the

notification’s wait queue. If the word is non-zero, or if the notification is signalled when

threads is are waiting on it, the first thread is woken up and the value of the notification

word is returned to it, after which the notification word is cleared.

One very useful aspect of notifications is their ability to be bound 1-to-1 with a

TCB object. Any signals set on a bound notification are immediately delivered to a

thread, even if it is waiting on an endpoint to receive a message. Notification signals can

be distinguished from an IPC message by checking the badge value returned; it is the

responsibility of the user to use different badges for every notification caps to ensure the

source can be determined. The only limitation of binding a notification is that it can only

be waited upon by the thread it is bound to.

Another aspect of notifications is their relationship with interrupts. seL4 provides

IRQHandler capabilities for gaining access to specific interrupt vectors; these can be cre-

ated using IRQControl capabilities. IRQHandlers can then be set to deliver interrupts by

signalling a specific notification. Threads can then wait on or be bound to this notifica-
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tion in order to receive any interrupts that arrive. Once an interrupt has been handled,

a thread can then use the IRQHandler to acknowledge the interrupt.

3.6 Libraries

Due to the minimality of many seL4 objects, various support libraries exist to assist in

using them. One commonly used library provides a Virtual Kernel Allocator (VKA),

which assists in allocating each kind of object from untyped memory, as well as providing

generic interface functions for many seL4 invocations, abstracting away the underlying

CSpace layout. These features allow for easier manipulation and management of seL4

objects. Other libraries include those assisting with VSpace management library, which

help in the mapping of many pages and their backing page table objects, as well as

platform support libraries to assist in starting timers and serial drivers.
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4 Zircon

Zircon is a new microkernel currently under active development by Google. Zircon pro-

vides the base platform for the Fuchsia operating system; the many user-level libraries

and applications of Fuchsia build upon Zircon to provide a fully-featured OS targeting

modern phones and personal computers. Zircon specifically targets 64-bit x86 and ARM

platforms.

Internally, the Zircon kernel builds upon constructs from littlekernel (LK), a real-

time operating system targeting embedded devices with limited resources, and forms the

basis for Android’s bootloader, amongst other applications. LK provides resources such

as timers and threads; these form the basis for the larger Zircon objects exposed by the

syscall API. Additionally, the original LK constructs have morphed over time to meet the

needs of Zircon objects; since Zircon targets platforms where resources such as RAM are

far more plentiful compared to embedded devices, some constraints in LK may not apply

to Zircon.

Zircon also adds features not found in LK, most notably memory protection features;

while all code in LK is trusted and runs in privileged mode, Zircon implements the virtual

memory protection mechanisms required for proper user-mode support, a feature essential

for an operating system running potentially untrusted user applications.

Supplied with the Zircon codebase is a small set of user-level drivers, libraries and

applications, which allows for a system to boot into user-level, initialise devices, and run

user programs on the Zircon kernel. This allows for Zircon to be used and tested without

having to run a large Fuchsia instance with many applications running.

4.1 Handles

Zircon’s version of capabilities are known as handles. Like their seL4 counterparts, a

handle denotes the ownership of a kernel object, and has certain rights associated with

it. The first handle to an object is crafted at object creation time, with the maximum

allowable rights for the given object. From here, the handle can be replaced with another

handle with equal or lesser rights. Handles can also be duplicated in a similar fashion,

providing that the handle has the right to do so.

Once a process no longer requires a handle, it can close the handle, which results

in the handle’s destruction. Once all handles to an object have been closed, the object

is destroyed, although there are several exceptions to this rule. For example, a running

thread will continue to execute even if all handles to it are closed; the underlying thread

object will be destroyed once it has finished executing.

Handles are usually associated with an owning process. Process can only manipulate

objects which they own handles to, and these handles must confer certain rights in order

for the operation to succeed. The value of a handle can change depending on ownership,
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and the handle values do not translate in any meaningful way between processes; the

handle value observed by one process would likely be invalid or map to a completely

different object in another.

Handles can also be transferred between processes, primarily through channel ob-

jects (detailed in the following section). During transfer, the handle is stored in the kernel,

and cannot be used by the process that previously owned it, nor any other process. Once

the transfer is complete, the handle will once again have a single owning process.

4.2 IPC

Zircon provides three kinds of IPC abstractions: Channels, Sockets, and FIFOs. All three

of these objects are bidirectional and two-ended; in the kernel, they are created as a pair

that represents each end of the object. Each end of the object is referred to by different

handles, and is associated with its peer for the lifetime of the object. A write to one end

of the pair results in the delivery of the message to the other’s queue or buffer. Thus

if one end of the pair is destroyed, the other cannot perform any more write operation,

although its remaining messages can still be read.

Like most other syscalls, operations on these IPC objects are generally non-blocking;

read and write operations return instantly, and do not wait for the objects to be in any

particular state. If a read or write operation cannot be performed at a certain time, the

syscall will simply respond with a relevant error code.

Channels are the primary IPC construct used to share handles to objects between

processes, providing the sole method of transferring an arbitrary number of handles to

another process. Channels consist of a queue of message packets at each end of the

channel, each containing a number of handles as well as a number of bytes of data. A

write to the channel appends a new message packet to the queue, containing the data and

handles supplied by the caller. Handles in a message do not have an owning process; if

the channel is destroyed or the message discarded, the handles are closed by the kernel. A

read to the channel takes the first message from the queue, writing its contents to buffers

supplied by the caller and transferring ownership of the handles to the calling process.

Channel operations are atomic in that there is no partial transfer of data or handles;

in particular, if there is a handle which is not transferable, or if channel is supplied a

handle to itself, the entire operation will fail, and no new message will be written. In

addition to the regular read/write operations, channels also have a call operation. Unlike

other IPC operations, this is a blocking syscall; the caller writes to the channel, waits

for a response message, then reads the response before returning. Written messages are

matched with replies through a transaction ID, which takes the place of the first four

bytes of the message. This transaction ID is written by the kernel; the reader of these

messages is responsible for adding the transaction ID to the response before sending it.
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Sockets in Zircon are somewhat similar to their POSIX namesake in that they sup-

port transferring streams of data between processes. Sockets consist of a pair of variable

sized buffers of data. Unlike channels, a socket’s buffer does not support the transfer of

handles, only data. However, they grant more flexibility than channels with reading and

writing, allowing for short writes when the maximum buffer size is reached, and short

reads if more data is requested than what remains in the buffer. Sockets can also be

created to have various additional properties. They can be created as datagram sockets,

in which data in written and read in packets as with channels. Sockets can also be created

to have a control buffer, which is separate from the regular buffer and can hold a sin-

gle message; processes can then exchange special messages without affecting the regular

data in the socket. Another option for sockets is an accept queue, which can hold one

socket handle at time. This allows for the sharing of new sockets over pre-existing socket

connections. A socket cannot share itself or its peer in this way however.

FIFOs are far simpler than Channels and Sockets, and just consist of a pair of fixed-

sized circular buffers. Unlike the other two, FIFOs are quite limited in size1, and this

size cannot be changed after the FIFOs creation. As with sockets, FIFOs do not support

the transfer of handle, only data. However, these limitations allow FIFOs to be quite

simplistic; they require no additional allocation of memory for reads and writes, making

them suitable for quickly transferring small portions of data.

4.3 Memory Management

Zircon provides two abstractions for managing a virtual address space: Virtual Memory

Objects and Virtual Memory Address Regions.

Virtual Memory Objects (VMOs) represent a contiguous region of virtual memory.

VMOs can be read or written to directly with syscalls, but are more commonly mapped

into an address space of a process. Pages of physical memory are allocated to a VMO as

required, whether it be via a system call or an access to the VMO through an address

space mapping (i.e. after a virtual memory fault within the bounds of the mapping).

Pages can also be decommitted from a VMO by request, allowing for paging mechanisms

to be implemented.

Virtual Memory Address Regions (VMARs) represent a contiguous region of an

address space. Each process starts with a root VMAR which spans the entire user address

space. A subregion of the VMAR can be then allocated to a child VMAR, potentially

with different mapping rights. These child VMARs can further be divided into subregions

as required. VMARs also accept the mapping of VMOs, allowing for sections of an

address space to be backed by virtual memory. Child VMARs and mapped VMOs remain

mapped within a VMAR until they are manually unmapped, or the parent VMAR itself

1The maximum size of a FIFO is 4096 bytes, while Channels and Sockets support messages several
pages in size.
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is destroyed. When a VMAR is destroyed, handles to it still remain valid; the VMAR

will no longer accept mapping or other operations on it, and will be fully cleaned up once

all handles to it are closed.

Figure 1: An example VMAR layout. The root VMAR can have child VMARs that hold
their own VMO mappings.

The mapping of VMOs within a VMAR facilitates the use of shared memory in

Zircon. Handles to a VMO can be shared between processes, which in turn can map the

VMO in their address space. Thus the virtual memory represented by the VMO can be

readily accessed by all processes.

4.4 Task Objects

Objects associated with the execution of a program in Zircon are referred to as Tasks.

There are three kinds of task objects: threads, processes and jobs.

As with seL4 threads, a thread in Zircon represents execution context. At its core,

a Zircon thread wraps an LK thread construct. However, Zircon threads differ in several

ways. Native LK threads normally have static priorities and are scheduled round robin,

but the Zircon kernel instead uses dynamic scheduling for threads, adjusting a thread’s

priority depending on its needs.

A Zircon process represents the instance of a program, and contains one or more

threads, a root VMAR spanning the available virtual address space, and a set of handles

owned by the process that dictate the kernel objects available to it. This provides the

minimum set of resources required for running an application: binary code can be loaded

into VMOs mapped in the VMARs of a process, and with at least one thread the process

can begin executing code.

Jobs are an abstraction above processes, and represents a group of processes and

possibly other child jobs. Just as a thread is owned by process, every process must have

a parent job, which is dictated at process creation time. Jobs allow for many processes

to be grouped as a single entity, such as instances of a multi-process application. Zircon

allows for policies to be applied to jobs. For example, jobs can be denied the ability to
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Figure 2: A Zircon Process contains a set of handles, a set of threads, and a root VMAR
to represent the address space.

create certain kernel objects.

Since every process is required to have a parent job, the kernel creates a root job

at boot time; the root job owns the first process to run in userspace. The boot process

is supplied a handle to the root job by the kernel, allowing for new processes and jobs to

be created.

4.5 Signalling and Waiting

In Zircon, the majority of kernel objects have a set of signals. Some of these signals

are asserted by the kernel, while others can be set by the user. The kernel asserts and

deasserts these signals when the state of an objects changes. For example, when an IPC

object is written to, and it is no longer empty, the kernel will assert the signal representing

that the channel is now readable. The user signals of an object can be set manually by

processes, providing another form of communication between them. Paired objects, such

as Channel and Sockets, can have each end of the pair signalled by the other.

Signals allow the many asynchronous operations in Zircon to be synchronous through

the use of wait syscalls. A thread can wait on one or many objects for certain signals

to become asserted. When a signal is asserted on an object, whether by the kernel or

user, the list of waiters will be checked for a signal match. If an asserted signal matches a

desired signal of a waiter, the waiting thread will be woken up. A deadline must also be

specified for these syscalls; a waiting thread will wake up once the deadline has passed if

no desired signal assertions occurred. Threads can also specify to wait forever if required.

There are many objects whose functionality is primarily associated with signalling.

Events are objects purely intended for signalling by the user. Event Pairs are paired

versions of regular event objects, and like other paired objects they allows for each end of
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the pair to be signalled by the other. Zircon also provides Timer objects, which allow for

a deadline to be set; once this deadline has been reached a timeout signal will be asserted.

Ports are objects which have their own individual waiting mechanism, and have

several uses. These objects contain a queue of port packets; these are small, fixed-size

packets of data. When a packet is enqueued on a port, the first thread in the wait queue

on the port is woken up, and the packet is delivered to the thread. Alternatively, if a

port already has packets in its queue, and a thread attempts to wait on the port, it will

instead be delivered the packet at the front of the queue.

There are several methods for enqueuing packets on a port. Packets can be manually

enqueued by a process, but packets can also be delivered through certain kernel operations.

One such operation is the asynchronous object wait. When a desired signal is asserted on

an object, rather than having a thread block on the object, a packet is instead delivered to

the specified port. This allows threads to do other work instead of waiting, while ensuring

no signal assertions are missed.

4.6 Device Support

The syscall API for I/O and device-specific operations is still unstable, and some features

currently included in the kernel are likely to change, or possibly be removed altogether

(with functionality being moved to user level). This section will focus on the more static

aspects of Zircon’s device support at the kernel level.

For dealing with interrupts, Zircon provides interrupt objects. These objects can

represent either a physical interrupt from the interrupt controller, or a virtual interrupt

triggered by a user-level application. An interrupt object has a separate syscall for waiting,

as well as methods for acknowledging received interrupts, and triggering virtual interrupts.

Additionally, they can be bound to a port, which results in a packet being delivered to a

port when an interrupt is received.

Other device-specific objects that have stayed relatively constant include variants

of VMOs for managing contiguous sections of memory, or memory at a specific physical

address. The cache attributes of this memory can also be changed so a device driver can

ensure it has the correct variant of device memory.

Since obtaining access to hardware is a privileged operation, the Zircon kernel pro-

vides an additional object for managing the creation of device-specific objects. Resource

objects are used to confer the ability to perform privileged syscalls and grant the ability to

create such objects. A handle to a resource is supplied for validation of these privileged

syscalls, which check that the resource is of the correct type and scope. For example,

the creation of an interrupt object requires an interrupt resource which covers the desired

interrupt vector. The user boot process is supplied a root resource by the kernel; this root

resource can be used to validate any privileged operation. Finer-grained resources can
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be created from this root resource, ensuring processes only have access to the privileged

resources they require.

4.7 System Calls

Zircon exposes its syscall API to processes through a virtual dynamic shared object

(vDSO). This vDSO is a special ELF shared library which is loaded into the address

of a processes. This is the only way in which processes have access to system calls; the

Zircon kernel performs checks on syscall entry to ensure that the vDSO was used to per-

form the syscall. It does this by checking that the calling thread’s program counter was

within the bounds of the vDSO mapping when it performed the syscall.

A handle to the vDSO is supplied to the first user process by the kernel, where

it is embedded at compile time. It is supplied to userspace in the form of a read-only

VMO; this allows for it to be handled the same as other memory regions. When loading

subsequent processes, the vDSO must be mapped into the address space of the process

by its parent for it to have the ability to perform syscalls.
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5 Related Work

5.1 Unix on Mach

Golub et al. provided an early example of an operating system being ported to run on

a microkernel, as a demonstration that implementing Unix as an application was both

possible and rational [GDFR90]. This was not the first time Unix had been implemented

as an application program; previous examples include the virtualisation of Unix on IBM’s

CP/67 [PPTH72]. However, it was the first port to leverage constructs provided by a

microkernel in its implementation; in this case, the Mach microkernel [ABB+86] was

used.

The port was comprised of two main components: a Unix server and a Transparent

Emulator Library. The Unix server was implemented as a Mach task, and provided the

majority of Unix services. The server contained many user-level threads which handled

user requests and performed internal routines that dealt with I/O. Mach IPC was used

for communication with user applications as well as hardware. The Emulator Library

contained implemented a Unix system call handler that would transform system calls into

remote procedure calls to the Unix server. This library was loaded into each address space

of each process, and was maintained during fork and execve operations.

This implementation of the operating system as a user-level server is a potential

approach that can be taken for porting Zircon to seL4. Additionally, the Emulator Library

is also relevant, as the native Zircon kernel provides access to system calls through a library

loaded into the address space of a process. The approach of having the library use the

host microkernel’s IPC for communicating with the server would be beneficial for system

calls with a Zircon server.

5.2 L4Linux

L4Linux is a port of the Linux operating system to the L4 microkernel that demonstrates

performance close to that of native Linux [HHL+97]. Prior to L4Linux, Unix-like operating

systems had only been ported to first-generation microkernels such as Mach, where they

had suffered from poor performance [CBM+94]. This port was focused on minimising

changes to the Linux kernel for running on L4, yet greatly outperformed other ports in

which Linux had been tuned to the microkernel they had been ported to.

L4Linux uses a similar approach to Unix on Mach, employing a Linux server to pro-

vide the majority of the functionality of the operating system, while Linux user processes

were contained in individual L4 tasks; they have a main thread for regular program exe-

cution, an additional thread for signal handling, and an emulation library for capturing

page faults and sending them to the server for handling. Modified versions of the stan-

dard C library (static and dynamic) are supplied, which make use of L4 IPC for system
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calls; a user-level exception handler also exists to capture system calls from pre-compiled

programs using a regular C library. The top and bottom-half interrupt handlers of Linux

are implemented as threads that run at a higher priority to the main server thread, which

matches the behaviour of the Linux kernel.

Compared to native Linux, L4Linux suffered an average performance penalty of 5–

10%, while ports of Linux to Mach perform far worse. This demonstrates that a high

performance port is possible, provided that the underlying microkernel is fast and utilised

correctly.

5.3 Mungi

Mungi [HEV+98] is an implementation of a single-address-space operating system (SASOS)

on the L4 microkernel. These operating systems forgo the traditional approach of pro-

cesses having separate address spaces, instead using a single large address space for all

processes, made possible with the advent of 64-bit architectures. The SASOS model pro-

vides the benefit of easy data sharing between processes, a task that is often difficult

and expensive for traditional multi-address-space systems. Mungi is a pure SASOS; it

relies on shared memory of inter-process communication, and devices are mapped into

virtual memory and dealt with by user-level processes. Security between processes is en-

forced though protection domains, which refers to a set of objects a process has access to.

Objects refer to a contiguous range of pages, somewhat similar to Zircon’s concept of a

virtual memory object. A protection domain is defined by a set of capabilities owned by

each process. Processes can access objects in other protection domains through the use

of protected procedure calls, where the callee extends a subset of its protection domain

to the caller for the duration of the call.

Mungi demonstrates the versatility of microkernel such as L4; the flexible address

space model provided by the microkernel allows for SASOS and other non-traditional

operating system models to be implemented. Aside from the similarity to many Zircon

objects, the single-address-space approach of Mungi has useful implications for imple-

menting Zircon’s IPC; VMOs of user processes can all be mapped into a single address

space and thus be easily copied to the “in-kernel” buffers in the same address space.

5.4 Xen

Xen [BDF+03] is a virtual machine monitor (VMM) for the x86 architecture. Traditional

VMMs aim for full virtualisation, in which unmodified operating systems can be run.

However, the x86 architecture was not originally designed with virtualisation in mind,

and thus certain aspects are difficult to virtualise, and can incur large performance costs.

Xen instead takes a paravirtualisation approach, in which a virtual machine abstraction

is presented to guest systems, to which existing operating systems can be ported to
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with minimal effort. Operations that normally require certain privileged instructions are

replaced with hypercalls to the underlying hypervisor. Xen’s approach is distinct from

other ports, in that it focused on providing the platform for running a variety of systems,

such that the porting effort required is minimal.

Paravirtualisation provides another approach for porting Zircon to seL4, in which

the existing Zircon kernel is modified to interface with seL4 rather than directly with

hardware.

5.5 Wombat

Wombat [LVSH05] is another port of Linux to L4 that specifically targets embedded

systems. Wombat is designed to be readily portable between architecture, with the ability

to run on x86, ARM and MIPS architectures, and is intended to be run in tandem with

trusted L4 applications and drivers with real-time requirements. Wombat runs as a user-

level Linux server above the Iguana resource manager, which builds upon the underlying

L4 construct to enforce isolation between trusted application and the Wombat server

(and other Linux applications). Linux processes that use the Wombat server can also be

modified to run in “native mode”, which allows them to also use Iguana services.

Wombat demonstrates the possibilities available to a port of Zircon to seL4. Zircon

processes that leverage the security guarantees of seL4 can be isolated from other appli-

cations, and there is the potential for some Zircon applications to be modified so they

can interact with non-Zircon applications running alongside them. This approach could

also be used to re-implement Zircon device drivers (and avoid having to implement an

unstable system call API).

5.6 Exokernels

Traditional kernels provide various abstractions over hardware that are designed to hide

the underlying details of the hardware and provide a simpler interface for developers.

However, these abstractions can be viewed as enforcing restrictions on hardware for user

applications, and many applications suffer in performance as they are forced to use hard-

ware in a sub-optimal manner. Exokernels [EK+95] provide an alternative approach to

the management of hardware resources, in the which kernel only enforces protection on

hardware resources, and applications are in charge of how they manage the resources

they are given. Applications running on exokernels are referred to as library operating

systems because of this; the various operating systems abstractions required for managing

hardware are included as part of the user applications. As these library OSes have full

control over the management of hardware resources, they can choose abstractions tailored

to their application and thus greatly improve their performance.

While seL4 is not an exokernel, its abstractions over hardware resources are minimal
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enough for a library operating system approach to be effective. Useful Zircon applications

could thus be potentially modified to include kernel functionality within the application,

and run directly on seL4.

5.7 Unikernels

Unikernels [MMR+13] build upon the library operating system concept used by exokernels

by instead developing them for standard hypervisor platforms such as Xen. They are

highly specialised library OSes designed for specific purpose applications, and are compiled

into a standalone kernel that can be deployed on a hypervisor. They make use of a single

address space, and code that would traditionally be part of the kernel now runs at user-

level, largely eliminating the overhead that would be contributed by context-switching

and kernel entry. Additionally, unikernels only need to be built with the libraries that

they require; this allows for far smaller binaries in comparison to a full-featured kernel

image. Unikernels provide further evidence of the viability of deploying Zircon as a library

operating system, and demonstrate the flexibility that could be provided by porting Zircon

with this approach.

5.8 API Emulation

API emulation provides another method of running non-native applications on a host

operating system. Popular examples include Wine [Aut17], which allows Windows bina-

ries to be run on Unix-like systems, as well as Cygwin [S+17], which provides a POSIX

API for Windows applications. Both these examples use shared libraries to provide a

compatibility layer to applications; these libraries translate foreign systems calls from

the applications into calls understood by the host system. Additionally, functionally that

may not be easily translated to host system calls and constructs can be provided by server

applications that foreign applications can communicate with.

The use of a shared library to provide Zircon’s API would integrate well with existing

Zircon applications, due to the pre-existing use of a shared library to provide access to

system calls. This library could simply be modified to translate Zircon system calls to

those provided by seL4.

5.9 QNX

QNX [Hil92] is an operating system that provides the functionality of the POSIX API

atop of a real-time microkernel. The microkernel itself only provides four main services:

inter-process communication, process-scheduling, interrupt handling and low-level net-

work communications (allowing for a distributed system of microkernels). The POSIX

functionality is provided through resource manager processes running on the system. The
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process manager is the primary resource manager, and provides necessary services such

as process creation and memory management. From here, additional resource managers

can be run; these include the filesystem manager and the device manager, which provide

support important POSIX routines on files (i.e. opening a file). POSIX library calls

from applications are implemented as messages delivered to resource managers using the

microkernel’s IPC.

The use of user-level processes to provide the functionality of an API is an appealing

option for porting Zircon. Abstractions that map poorly to existing seL4 constructs could

instead call a user-level server, which would handle functionality such as IPC with channels

or sockets, enforcing the properties of these objects that Zircon applications expect.
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6 Approach

The aim of this thesis is to provide the functionality of the Zircon kernel while running

atop of seL4. This requires the Zircon kernel to be virtualised or re-implemented to run

at user-level, while making use of seL4 primitives where necessary. From here, we wish to

be able to run various Zircon user-level systems, and potentially have them interact with

native applications.

6.1 Design Requirements

Our design requirements for the implementation are as follows:

• Low overhead: We want to be able to run a user-level system with minimal impact

on performance. If low overhead cannot be achieved, then there is little reason to

use Zircon on seL4 over existing approaches.

• Low porting effort: porting the Zircon kernel should not require an extreme

amount of effort, and we want to avoid having to extensively change a user-level

system so it can run on seL4.

• A dynamic system: A Zircon user-level system has the potential to vary in its

workloads and demands from the kernel, and our design should be able to handle

such systems, and be able to run arbitrary Zircon applications.

6.2 Issues

There are several issues that may hinder development of a Zircon port:

• Instability of API: Zircon is still in development, and is a very immature project

in itself. As such, we need to deal with the possibility that the API may change,

and the implementation must be flexible enough to deal with this.

• Differences in primitives: while some Zircon primitives align nicely with their

seL4 counterparts, others do not; we must find appropriate methods of handling

these objects. For example, seL4 IPC is synchronous and based around small mes-

sages, while Zircon IPC is asynchronous and supports large messages.

• Lack of documentation: the documentation for Zircon is very limited, and figur-

ing out its inner working primarily involves looking at the code itself.
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6.3 Potential Approaches

From the related work provided in Section 5, we can narrow down the potential approaches

to porting the Zircon kernel to seL4. These include paravirtualisation, API emulation,

and a library OS or unikernel approach.

Paravirtualisation of the Zircon kernel is an attractive option. Porting the kernel to

run on seL4 this way allows for the most code re-use of all the approaches, as much of the

work is focused at the architectural level. For Zircon this could be particularly useful, as

while its API is still somewhat unstable, much of the code that interacts with hardware has

stayed reasonably similar to that of littlekernel. However, a paravirtualisation approach

lacks integration with seL4; higher level operations in the Zircon kernel could instead be

handled by seL4 itself, and without incurring the overhead of virtualisation.

API emulation requires more work than paravirtualisation, since all objects and

syscalls of Zircon would need to be re-implemented to handle seL4 primitives. A user-

level server would be required for handling many Zircon syscalls, due to Zircon’s IPC and

other operations requiring the storage of messages or other data in the kernel. However,

this approach allows for greater integration with seL4; the internals of Zircon objects can

be redesigned to better fit the primitives of seL4. This allows for greater leveraging of the

security properties of seL4 objects, and allows for syscall operations to be fine-tuned to

better match these objects, which can improve performance.

A library OS approach would result in an extensive redesign of Zircon objects, with

all processes sharing a single address space. Various other objects could be modified for

better performance, such as the use of user-level threads for implementing Zircon threads.

As such, a library OS can provide the best overall performance of all three approaches.

However, the changes required for a library OS would break the specifications of the API,

and thus many user applications would need to be modified to handle this. As such,

a library OS approach has the highest porting effort, but also cannot support dynamic

systems as effectively as the other approaches.

6.4 Selected Design

For this thesis, an API emulation approached was selected to be used. This involves the

implementation of a seL4 application to act as a Zircon API server. This server is respon-

sible for handling syscalls from Zircon applications, and contains its own representations

of Zircon kernel objects, which make use of seL4 objects where necessary.

This approach was selected as it provides a good balance for the many design require-

ments for the projects. With an API server, we have flexibility with our implementation;

the server can implement Zircon objects in whatever way is desired, as long as the same

API as native Zircon is provided. We can thus find an optimal tradeoff between porting

effort and performance. Objects and syscall handlers implemented on the API server can
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be based upon their counterparts on native Zircon, but can be fine-tuned where appro-

priate to best match the underlying seL4 objects. We can potentially reduce the overall

overhead of the API server as a result. The API emulation approaches also allows for

tighter coupling of Zircon and seL4 objects. While an approach like paravirtualisation

requires an adaption to code in the Zircon kernel, we can build the API server around the

security properties and fast IPC provided by seL4.

Figure 3: The Zircon server runs as an application at user-level, and receives syscalls with
seL4 IPC.
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7 Implementation

This section introduces the implementation of Zircon on seL4. This implementation is in

the form of an API server, which is implemented as a standard seL4 application capable of

managing its own Zircon kernel objects and handling Zircon syscalls. We also implement a

modified syscall library which uses seL4 IPC to perform calls to the API server. We break

down this implementation, detailing the setup of the API server, the method in which it

handles syscalls, as well as how the many Zircon objects build upon seL4 primitives.

The Zircon API server is currently implemented for 64-bit x86, and is based on the

version of Zircon described in the background section (circa March 2018). To assist in the

development of the Zircon server, we relax some aspects of a Zircon system:

• Static syscall library: building a shared library to meet the requirements of

Zircon’s vDSO is not trivial, so the syscall library is instead built as a static library

and linked with Zircon applications at compile-time.

• No device objects: due to the unstable nature of device support in the Zircon

kernel during development, it was decided that this would need to be delayed until

the API becomes more stable.

• Single-threaded and single-core: while having many threads run on many cores

is beneficial for performance, concurrency issues are difficult to deal with, and mul-

tithreading is not explicitly required for the server to function.

Details on how these can be implemented in the future is discussed in the Future

Work section.

7.1 Zircon API Server

The Zircon API server is based upon the standard model of a process in seL4, consisting

of a thread and its associated CSpace and VSpace. The address space of the server is

split into various sections:

• The server’s code section and stack.

• Various object allocators. These are pool allocators initialised at boot time used for

objects that require fast allocation and lookup,

• A page allocator. At startup, the server allocates and maps a number of page frames

on the server. These page regions are allocated to certain objects with high and

variadic memory requirements, specifically VMOs, Channels and Sockets.

The rest of the server’s address space is used for mapping VMOs into the server.

The reason these mappings are required is discussed in Section 7.4.

23



The server uses a VKA for allocating the many seL4 objects used by itself and other

Zircon objects, including endpoints and page frames. Capabilities on the server are stored

in a two-level CSpace; this allows the CSpace to grow dynamically as more objects and

caps are created.

The server runs at a higher priority than other Zircon threads. This ensures that the

server will always be scheduled before them, allowing for the timely handling of syscalls,

faults and timer interrupts.

7.2 System Call Interface

As the Zircon kernel objects are implemented in a process at user-level, seL4’s IPC mech-

anisms must be used for performing syscalls. The Zircon API server makes use of an

endpoint, on which it waits to receive incoming syscalls from Zircon applications. Ev-

ery thread has access to a capability which provides the right to communicate with the

server. The API which the threads use for performing the syscalls remains the same,

but the underlying implementations uses a seL4 Call routine for delivering syscalls to the

server. Once the server has handled the syscall, it can then reply to a calling thread with

the appropriate return values.

The majority of these API calls are performed in the same way; a message is created

containing the relevant syscall number and syscall arguments before the call is performed.

As with native Zircon, these syscall definitions are auto-generated; Zircon on seL4 makes

use of a syscall generator script which parses a syscall definition file in the Zircon source

code and generates the functions in the syscall library. The script also generates output for

the server, most notably the syscall table, which is used to lookup syscall handlers by their

syscall number; the server checks that the provided syscall number is valid before doing

so. The syscall table is set up in such a way that all defined syscalls can be handled;

syscalls that are not implemented by the server use a generic unimplemented handler

which responds to the caller with the relevant error code. This ensures the syscall API

provided by Zircon on seL4 matches that of native Zircon, even if a syscall is not actually

implemented.

An endpoint cap provided to a thread is always badged. The value of the badge is

unique per thread, and can thus be used by the server to identify a calling thread. This

is needed as the majority of syscalls need to identify a thread and its owning process,

not just for calls specific to these objects but also confirming any supplied handle value

maps to a handle owned by the process. This design is backed by the property that a

badged endpoint cap cannot be modified or copied, which ensures a thread cannot modify

an endpoint cap and pose as another thread; this ensures badges can be used to reliably

identify a thread.

The server performs other security checks to ensure a syscall has been performed
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correctly. Aside from checking the syscall number and badge, the server also checks that

the number of arguments in a syscall message has been set correctly for the selected

syscall; the syscall will be rejected by the server if this is not the case.

7.3 Zircon Objects and Handles

Objects on native Zircon are defined as C++ classes, and Zircon on seL4 implements its

objects similarly. All objects make use of a base object class, which implements methods

common to all objects, and helps facilitate the generic handling of objects. Zircon objects

then inherit from this base class with their specific implementations, overriding certain

methods from the base object class if their specific implementation requires it.

Handles are also implemented as a C++ class, and all handles are stored in a han-

dle table on the server. The handle table is a pool allocator, and provides the allocation

and freeing of handles in constant time. This is required, as handles are manipulated fre-

quently, and their representation at user-level must quickly be translated to the underlying

handle structure stored on the server.

As with native Zircon, every handle is given a base value, which can be used to

lookup the handle’s location in the handle table. This base value differs from the handle

value seen by processes; this user-level value is calculated by XOR-ing the base value with

a handle mask unique to each process. To ensure a handle value supplied by a process

matches a handle on the server, the server performs the reverse computation on the handle

value to get a base value, and uses the base value to get a handle from the handle table.

Handles keep a reference to their owning process, which allows the server to check this

owner matches the calling process.

Objects maintain a reference count of all handles that refer to them. Every time a

handle is closed, the object is checked if the handle count has reached zero, and thus can

be destroyed, in which case a generic object destroyer function is called. This calls the

object’s destructor before freeing the memory back to the appropriate allocator, whether

this be the heap or an object-specific allocator (i.e. the thread table). Objects with

additional requirements that must be satisfied have additional checks for destruction in

the appropriate locations.

7.4 Memory Management

Zircon on seL4’s VMO implementation consists of two constructs: the base VMO object

and a representation of each VMO mapping.

VMO objects are patterned the same way as other objects, having a set of handles

which refer to it. Each VMO is allocated a portion of the server address space, where

all the page frames of the VMO can be mapped. These server mappings are required

for facilitating the direct read and write syscalls to VMOs and for translating pointer
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arguments supplied in syscalls. Internally, the VMO object consists of two main parts: a

two-level page table structure for storing seL4 frame objects allocated by the VKA, and

a list of VMO mapping objects. We use a page-table for the storage of frame objects, as

VMO can potentially be large and sparse, in which case a simple array is unacceptable.

The second level of this page table uses pages from the server’s page allocator so that

large heap allocations can be avoided.

VMOs that are mapped into a VMAR are represented by a VMO mapping struc-

ture. VMO mappings contain information about the mapping, a reference to the VMAR

in which they are mapped in as well as a page table structure for storing page frame ca-

pabilities, which are copied from pages stored in the base VMO. The page table operates

similarly to that of the base VMO, with the second level also using pages from the page

allocator. VMO mappings also keep track of the rights that are applied to its underlying

page mappings.

Page frame objects are allocated to VMOs and their mappings on-demand. When

a page is to be committed to a VMO, a page frame object is first allocated from the

VKA, and stored in the page table of the VMO; the page is then mapped into the server

mapping region at the appropriate address. When a page needs to be committed to a

mapping of the VMO, a copy of the original page frame cap is created, which is stored

in the page table of the mapping, and the page is mapped into the address space wherein

the mapping is located. This is only done for the requested VMO; further cap copies will

be made as other mappings request them.

VMARs primarily consist of an ordered vector of VM Regions, which are the base

class for all VMARs and VMO mappings. This design allows for these objects to be stored

in within a parent VMAR in a generic fashion. VM Regions are ordered by their base

virtual addresses, allowing for a region to be quickly located using binary search with a

given virtual address that lies within the parent VMAR.

VMARs are frequently used by the server for performing translations of user virtual

addresses to server addresses. This is required for many Zircon syscalls, whether it be

for reading or writing data to a buffer, or returning newly created handles to objects.

Translation starts at the root VMAR of the process whose address space we wish to

access. A binary search is performed on the vector of VM Regions that lie in the VMAR

for the subregion that contains the user address. If a subregion is a VMO mapping, we

can fetch the base VMO and calculate the server address. If the subregion is a child

VMAR, we repeat the search on this VMAR, and continue to search child VMARs until

a VMO mapping is found. If no VMO mapping is found, then we know that the supplied

user address is invalid.

No seL4 page table or page directory objects are stored in VMARs; instead, they are

stored within process objects. This is because VMARs represent the logical partitioning

of an address space, and are sized at a page granularity; there is no alignment with page
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table objects, nor any alignment of the depth of a VMAR tree with the levels of page

tables. The manner in which page table objects are stored in a process is detailed in the

following section.

7.5 Threads, Processes and Jobs

As native Zircon threads are kernel threads, we take the same approach on seL4; every

Zircon thread is mapped one-to-one with a seL4 thread, and thus a Zircon thread object

contains a seL4 TCB object for managing this thread. Each thread is also associated

with its own CSpace for storing capabilities. This CSpace is kept small2, and contains

two caps to the server endpoint: one for performing syscalls, and the other to use as the

thread’s fault endpoint cap. These caps are badged so that the thread can be identified

by the server when it calls or faults. Endpoint caps are also created without read rights;

this prevents a thread from receiving messages on an endpoint (but not replies from the

server), which prevents a thread intercepting syscalls directed at the server.

As mentioned earlier, thread objects are allocated from a thread table. The primary

reason for this is for identification by badge values; the index of the thread in the thread

table forms the base value of the badge for each endpoint cap. The badges for each cap

also have different bits set to distinguish the syscall cap from the fault cap; this allows

the server to easily recognise what is being requested by a thread, and is the reason why

threads do not just use the one cap for both syscalls and faults.

Separate CSpaces are required per thread rather than per process for several reasons.

If we had a CSpace shared between processes, and separate caps for each thread, there is

no way of preventing a thread from using the incorrect endpoint cap, and thus disguise

itself as another thread. This could be prevented by having all threads share endpoint

caps, but then it becomes difficult to distinguish calling threads from one another. Having

a CSpace per thread allows for straightforward identification of threads; we can also use

the same cap slots for each each thread, which makes CSpace manipulation far simpler.

As syscalls can have up to eight arguments, an IPC buffer is required for threads

to perform syscalls. Additionally, many threads can perform syscalls at the same time,

thus each thread requires a separate IPC buffer. When a thread is assigned to its parent

process, the process allocates an address to each thread, which is used as the location of

the thread’s IPC buffer. These addresses are located in a region of memory below that of

the first valid address in a root VMAR, preventing any risk of a VMO mapping clobbering

any IPC buffer.

Threads are also allocated a cap slot in the server’s CSpace, which is used by the

server for saving reply caps. This is needed for blocking syscalls, such as wait or sleep

calls. In this case, the calling thread will wait for a response; once the syscall is complete,

2Each thread’s CSpace consists of a single root CNode with 8 slots.
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the server finally replies to the thread by sending a response with the saved reply cap.

Similarly to native Zircon, process objects contain a list of thread objects and han-

dles, as well as a root VMAR for address space management. Zircon processes on seL4

also store seL4 page table objects. The top level page directory is required for seL4 map-

ping invocations, and is contained in the process for easy access, while the lower level

page tables are only allocated as required for page mappings, and just need to be stored

in a linked list owned by the process.

Each thread and handle in their respective lists maintain a reference back to the

owning process. For handles, this is required for confirming the ownership of the handle,

while for threads, we frequently use this for getting a process after a calling thread has

been identified, which is needed by many syscalls for querying the handles owned by a

process, and for getting access to its root VMAR for address translations.

Each process also maintains a bitfield which is used for the allocation of IPC buffer

addresses for threads. A new thread added to a process is supplied the first free bit in the

bitfield; the location of this bit in the bitfield is used to calculate the IPC buffer address.

Jobs in Zircon on seL4 simply contain a list of child processes and a list of child

jobs. As job policies are not essential to the functionality of a Zircon system, these were

not considered a priority and thus are not implemented at this point in time. As with

native Zircon, the zircon server creates a root job which contains the first user process; a

handle to the root job is passed to the process through an initial boot channel.

7.6 IPC

At user-level, the two ends of an IPC object are often referred to as a single entity, but in

both native Zircon and Zircon on seL4, these IPC objects are implemented internally as

a pair of objects. The following section will thus refer to them as separate objects, with

the object’s other end known as its peer. This is consistent with the terminology used in

the Zircon kernel. All IPC objects maintain a reference to their peer, allowing them to

perform writes to their peer’s buffer or queue.

Channel objects maintain a list of messages, with describe the number of handles

and bytes contained in each message in the queue. These messages do not actually store

the contents of the messages; these are instead stored in a handle list and a variable

size buffer for the storage of data, known as a message buffer. Since channel messages

are stored in a queue, we simply need to operate these constructs in a FIFO fashion to

ensure messages are delivered in the correct order. When a message is written to the

channel, we first check that the supplied handles are valid and permitted to be added to

the channel. Then the handles are taken from the process and pushed to the back of the

handle list, before writing the data to the message buffer and appending a new message

to the message list. Reading involves removing the required handles from the front of the
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list, and reading from the front of the message buffer, as described by the first message

taken from the front of the message list.

Like channels, sockets also make use of a message buffer for storing data; this is

the only structure required for a basic stream socket. Datagram sockets operate similarly

to channel in that they maintain a list of datagrams that describe the contents of the

message buffer. For sockets with a control plane, a small fixed size buffer is allocated

from the heap, while sockets capable of sharing can store a single socket handle.

The message buffer used by channels and sockets consists of a linked list of pages.

These pages, like with VMO page tables, are allocated from the server’s page allocator.

This allows for the fast allocation of memory for large reads and writes, a desirable trait

for these IPC objects. The pages themselves consist of a header maintaining the linked

list; the rest of the available memory in the page holds data. As a message buffer is

written to, pages are appended to the end of the linked list; for reads, once all data has

been read from the page at the head of the list, it is taken from the list and freed.

As FIFOs have a small, fixed size data buffer, they do not need to use a message

buffer. They instead simply allocate their buffer from the heap, which is done at FIFO

creation time.

7.7 Signalling and Waiting

The Zircon server implements a timer for handling syscalls with deadline. This is achieved

by using the HPET on x86. The server timer operates in a tickless manner, with the

timer only being configured to fire on the next upcoming deadline. Timer interrupts are

delivered to a notification object, which is bound to the server’s TCB. This allows the

server thread to be notified of timer interrupts while it is waiting on the server endpoint

for syscalls.

The timer implements a timer queue, with nodes sorted by deadline. Each thread

object has a timer node which can be added to this queue when the thread must block

for a period of time. Once a deadline has passed, the timer node will be taken from the

front of the queue, and the callback stored in the timer node is called. All callbacks result

in the thread being replied to with the appropriate return arguments.

For handling the object wait syscalls, a thread object maintains a reference to a

StateWaiter object (in the case of waiting on many objects, an array of StateWaiters is

used). StateWaiters maintain the set of signals that are being observed on an objects.

Objects that can be waited on maintain a list of these StateWaiters; StateWaiters are

appended to this list when a thread starts to wait on the object. If an object’s set of

signals change, whether this be from the kernel or a user process, the set of StateWaiters

is checked for a signal match. If a desired signal has become asserted on the object, the

StateWaiter is removed from the list, and the thread is woken up.
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There are other instances where a StateWaiter may need to be removed from an

object. These include an expiry of the wait deadline, and handle invalidation. An object

wait syscall requires a handle to the object to be given; if this handle is closed, the wait

must be cancelled. StateWaiters thus also track the handle used to initiate the wait. When

a handle is closed, the list of StateWaiters on the object is checked for a handle match. If

a StateWaiter has a matching handle, it is removed from the list and its associated thread

is woken up.

7.8 Fault Handling

Currently, the Zircon server implements basic fault handling. The only kind of recoverable

fault is limited to a virtual memory fault. In this case, the address responsible for the VM

fault is checked for validity; that is, the address lies within a VMO mapping contained

in the address space of the faulting thread. If this is the case, a page is committed to

the VMO mapping at the relevant location, and the thread is restarted. Any other fault

triggered by a thread results in the thread being terminated, and destroyed if necessary.

Native Zircon has additional aspects to its fault handling. This is discussed in

Section 9.

7.9 seL4 IPC on Zircon: Endpoints

As one of the aims of this thesis is to provide methods for Zircon application to interact

with native seL4 ones, Zircon on seL4 progresses towards this by providing the ability for

Zircon processes that are aware they are running on seL4 to use endpoints for communi-

cation. To achieve this, we define an additional set of syscalls that are used to manage a

Zircon object wrapper for seL4 endpoints.

Creation of an endpoint object on the Zircon server requires access to a relevant

resource, which is just the root resource for now. This is because endpoints are considered

to be a privileged resource, and only trusted processes should be able to create them. As

with other Zircon objects, the creation of an endpoint returns a handle to the endpoint,

which can be duplicated, closed or passed in a channel as with other handles.

Once an endpoint object has been created on the server, processes with a handle

to the endpoint can then request for caps to the be minted into one of the free slots of

a thread’s CSpace. Caps can also be deleted from a thread’s CSpace once they are not

required anymore. The management of the free slots in a thread’s CSpace is left to the

user; aside from checks to ensure that the server endpoint caps and other reserved slots

are not modified, a process is free to mint caps in whichever free slot they choose. Any

failure to mint or delete caps, such as attempting to mint a cap to an occupied slot, will

be returned as an error by the server. Once a cap has been minted to a thread’s CSpace,

the thread is free to use the endpoint for IPC as it pleases. When all handles to an
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endpoint object are closed, all caps to the endpoint are revoked and the endpoint object

is destroyed.

Providing endpoints to Zircon applications is one of the first steps towards providing

communication methods between Zircon and native seL4 applications. Further work that

can build upon this is discussed in Section 9.

7.10 Other Zircon Objects

There are various other Zircon objects that have been implemented on the server. Timer

objects use a timer node for setting deadline, just as threads do for blocking syscalls.

When the deadline expires, the callback given to the timer node sets the timeout signal.

Event objects are even simpler, as they are largely just a wrapper class around the base

constructs used in waitable objects, which provide all the mechanisms necessary for the

signalling and waiting performed on Event objects. Event pairs are very similar to event

objects, but as with IPC objects they consist of two linked objects. Each object in the

event pair keeps a reference to the other peer so it can be signalled.

Other objects not previously discussed in this section were not implemented due to

time constraints. The future approach for the implementation of these objects is discussed

in Section 9.
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8 Evaluation

In Section 6, we defined the design requirements of Zircon on seL4: low overhead, low

porting effort and the ability to run dynamic systems. In this Section, we evaluate the

server’s ability to uphold these requirements. This includes various benchmarks performed

on both Zircon on seL4 and native Zircon, as well as an analysis of the porting effort

required.

8.1 Experimental Setup

In this evaluation of Zircon on seL4, we compare the performance of the Zircon server to

that of the native Zircon kernel. There are several requirements that need to be adhered

to in order to ensure a fair evaluation of both systems.

The first of these is the hardware used. Both systems were tested on the same

machine; this was a x86-64 i7-6700 Skylake processor clocked at 3.4GHz, with 16 GB of

RAM. Both the seL4 and Zircon kernel were configured to run on a single core, as the

Zircon server only supports running threads on a single core.

To avoid any overhead attributed to other processes running in the background

during benchmarking, we ran the benchmarks as early as possible in the boot process. For

Zircon on seL4, we use the very first process to run as the process running the benchmarks,

while on native Zircon, the benchmarking process is the next to be run after the initial

boot process. This is acceptable and does not impact performance, as this initial boot

process wait forever on the benchmarking process until it terminates, which only occurs

once benchmarking has completed. Thus the boot process will never be scheduled to run

during benchmarking and will have no impact on performance.

For measuring the time taken required to perform each test, the x86 Time Stamp

Counter (TSC) is used on both platforms. This is facilitated by the syscall API of Zircon,

which implements a user-level function for fetching the value of the TSC. The Zircon server

implements this call in the same way as native Zircon does, ensuring fairness in checking

the TSC. The overhead of checking the TSC is also accounted for in all benchmarks.

As many of the operations being tested only require hundreds of cycles to complete,

the time measurements for each operation is taken over multiple iterations to minimise

errors and improve reliability. All operations are performed 20 times between reads of the

TSC. A number of warmup iterations are also performed prior to the actual measurements

being taken, and in total, 10000 measurements are taken for each test.

One other constraint applied to the benchmarking of each system is ensuring that

only the performance of Zircon syscalls is being compared. This means that if user-level

functions are to be used, they must rely on the same implementation, otherwise misleading

results may be produced. This places restrictions on what can be benchmarked, as even

the C libraries of each system is different. While both Zircon on seL4 and native Zircon
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Figure 4: Null syscall cost for Zircon on seL4 and Native Zircon.

use a musl-based C library, both have distinct differences in certain areas of each library.

As such, we must avoid C and other library calls while measurements are being taken,

which limits the ability to compare larger workloads on each system.

8.2 Performance Evaluation

Various tests have been conducted to gauge the performance of Zircon on seL4 relative

to that of the native Zircon kernel. We analyse the results of each test, explaining the

differences in implementation of the two platforms, and how these differences may effect

the performance of each. Potential areas in which the Zircon server can be improved are

also discussed where better performance is required. All figures used to show the results

of each test have error bars indicating standard deviation.

8.2.1 Syscall Entry and Exit

The first test conducted on Zircon on seL4 compares its syscall entry and exit times with

that of Native Zircon. This gives an idea of the overhead contributed by performing any

syscall, or in the case of the Zircon server, the overhead of performing IPC.

To perform this benchmark, two test syscalls provided in the Zircon API are used;

one which accepts no arguments and returns zero, the other accepting eight arguments and

returning the sum of all arguments. The second test syscall was selected to demonstrate

any additional overhead incurred by Zircon on seL4 when accessing the IPC buffer to set

or get syscall arguments.

Figure 4 demonstrates that syscalls handled by the Zircon server incur a far greater

overhead than with the native Zircon kernel. This is understandable, as the native kernel

does very little work aside from entering and exiting the kernel, while two syscalls are
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required for IPC with the server (call and reply), both of which require actual work to be

done in the kernel, as well as a context switch to and from the server. Considering the

amount of additional work being done, the overhead seen here is very reasonable, and is

possible due to the low cost IPC provided by seL4.

An investigation was performed to see if the cost of a null syscall could be optimised

further. In order to keep the cost of seL4 IPC low, we aim to hit the fastpath which is

an optimised section of the kernel aimed at speeding up common operations. Certain

requirements must be met in order for the fastpath to be used, and it was discovered that

the Zircon server was not using the fastpath when replying to a calling thread.

The reason for this is due to the version of seL4 used3. The kernel used by the

server only hits the fastpath if it replying to a thread with equal or higher priority. This

is not the case for the Zircon server, as Zircon threads are assigned a lower priority.

This was confirmed when the threads were given an equal priority to the server, which

resulted in a reduction in the null syscall cost by approximately 250 cycles. However,

such a change cannot be made permanent, as we want the Zircon server to preempt other

threads to ensure the timely handling of syscalls, faults and timer interrupts. Instead,

an upgrade to a newer kernel is all that is required; in these newer versions a reply to a

lower priority thread hits the fastpath as long as there is no other thread with a higher

priority (excluding the replying thread). As all Zircon threads share the same priority,

the fastpath would be used in this case.

In many of the following benchmarks, we account for the cost of a null syscall with

zero arguments in the overall cost. This is done to give a better idea of the additional

work being done on the server to handle each syscall. We do the same with native Zircon

so a fair comparison can be made.

8.2.2 Handle and Object Operations

Figure 5 shows a performance comparison of common object and handle operations. For

all these operations, the Zircon server has roughly comparable performance to native

Zircon when the overhead of performing a syscall is ignored. However, there is a clear

additional overhead for the duplicate and close operations on handles.

For both these tests, we duplicate and close the same number of handles as the

iteration count for each run, while for the replace test the old handle value is replaced

with a new one; there is no increase in the number of handles allocated. Decreasing the

iteration count reduced the overhead of the duplicate and close operations (this was not

retained, as the overall results had greater variance and were less reliable). As such, this

overhead appears to be contributed by allocation and freeing of handles.

The reason for this overhead is likely due to differences in the memory arrangements

3Version 7.0.0 of seL4 is used for the current implementation of Zircon on seL4.

34



Figure 5: Cost of commonly used handle and object syscalls.

of the allocators used. Both allocators have sections of memory reserved for the control

data structures, as well as the memory pool itself. The native Zircon kernel uses its

internal VMO and VMAR representations to map these data structures close together,

with a single guard page separating the two. However, the Zircon server allocates the

control structure from the heap, which is located much further away from the memory

region reserved for the memory pool. It is this poorer locality on the Zircon server which

may be affecting the performance of the handle table; further work should be performed

to optimise the design of the pool allocator used by the Zircon server with regards to the

cache.

8.2.3 VMO Read/Write Performance

In this test, we compare the performance of the direct read and write syscalls. The reason

for performing this benchmark is to observe what effect the use of the server mappings

has on VMO read and write speeds. The test simply involves a thread writing a buffer

of random data to the VMO, then reading the data back; each operation is benchmarked

separately. We also perform sanity checks to ensure the data read back matches the data

that was written.

Figure 6 demonstrates the cost of writing to a VMO with an increasing number

of bytes, while Figure 7 shows a similar test, but with reading from the VMO. Initially,

the Zircon server performs comparably to the native kernel, but as the number of bytes

written or read increases, the performance of the Zircon kernel improves relative to native.

This is likely due to the differences in the VMO implementations. The native Zircon maps

all physical memory as a single chunk in its kernel address space, and allocates pages of
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memory from this chunk; VMOs on native Zircon are allocated pages this way. When

performing a read or write to the VMO, the kernel goes through its list of pages, writing to

each page individually. For the Zircon server, we have a contiguous mapping of all pages

in the VMOs, thus direct reads and writes are sequential and have better performance.

Figure 6: Performance of a direct write to a VMO.

Figure 7: Performance of a direct read from a VMO.

8.2.4 Channel Performance

In this experiment, we analyse the performance of performing data writes and read on

channel objects. This involves a single thread writing or reading randomised messages
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to and from each end of a channel, with the size of messages gradually increasing. The

primary purpose of this test is to gauge the effectiveness of the implementation of channels;

it is not a reliable indicator of IPC cost, as there is only a single thread operating on a

channel, with no context switches being performed between processes.

Figure 8: Performance of writing messages to a channel.

Figure 9: Performance of reading messages from a channel.

Figures 8 and 9 demonstrate the performance for the respective channel operations.

It is clear that the Zircon server lags behind the performance of native Zircon, which

worsens as the size of the message increases. The reason for this is due to the differences

in storing each message.
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The Zircon server allocates a separate message packet from the heap to describe the

dimensions of the message, the actual data is written to the channel’s message buffer. This

is done as the server uses a static heap, and we wish to avoid large allocations in order

to avoid running out of heap space. Native Zircon instead allocates the entire message

packet from the heap, where it stores all parts of the message. These differences in design

have two implications on performance:

• There is overhead on the Zircon server contributed by page allocations to the mes-

sage buffer in addition to a heap allocation, and

• native Zircon has a contiguous region of memory for sequentially writing and reading

the data of a message, thus benefiting from cache prefetching, while on the Zircon

server, data is dispersed over many pages in message buffer, making reads and writes

less predictable.

These are two factors that are likely resulting in the performance discrepancy of

the Zircon server and native Zircon, and demonstrate areas where the implementation of

channels on the server can be improved. One option is to remove the message packet list;

instead, the message buffer would store a combination of a message header, describing the

message contents, followed by the message data. Another option is to replace the static

heap used by the Zircon server with a dynamic allocator used in other kernels, such as a

slab allocator [B+94]. This would allow for the allocation of messages in the same way as

native Zircon, allowing performance to be matched.

8.2.5 Socket Performance

Figure 10: Performance of writing messages to a socket.
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Figure 11: Performance of reading messages from a socket.

The performance of sockets is tested in the same way as channels, with the socket

being written to and read from with increasing message sizes. The results of these tests

are displayed in Figures 10 and 11. Sockets on the Zircon server fare much better than

channels, with performance coming close to or even beating that of native Zircon for larger

messages. Native Zircon uses a variable sized buffer structure very similar in design to the

message buffers, with two key differences. One is that native Zircon does not use a page

allocator to back message data. Instead, each memory segment is allocated from the heap,

which would be a more expensive operation than an allocation from the constant time

page allocator used on the Zircon server. The other difference is that these memory regions

are half the size of a page, thus for larger message sizes more memory segments need to be

allocated. These two factors would both contribute to the decline in performance relative

to the Zircon server; it also demonstrates that the use of the page allocator provides high

scalability for socket operations.

8.2.6 IPC Call and Reply

While the previous tests are focused on the performance of single operations, it is also

necessary to evaluate the performance of more general operations comprised of multiple

syscalls. This test focuses on performing synchronous IPC between processes through

a channel. Such a test also allows us to gauge the cost of performing context switches

between Zircon processes.

Before starting the experiment, the main benchmarking process (Process 0) creates a

second process (Process 1), and provides the new process a handle to one end of a channel

object. We cannot benchmark this step due to the differences in initialising new processes
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on native Zircon and Zircon on seL4. Once Process 1 is ready to receive messages, we

start the experiment. Process 0 writes a message to one end of a channel, and waits on

the channel for a response. Process 1 waits for the other end of the channel to become

readable, then reads the message and writes back the same message as a response. Process

0 then reads this response. After timing has stopped, the message is checked for validity.

A total of six syscalls is performed in the experiment, with each process performing three

syscalls.

Figure 12: Cost of performing a synchronous call and reply with Zircon kernel objects.

Figure 12 shows the results of this test. Although Zircon on seL4 is outperformed

by native Zircon, its performance is quite reasonable given the number of syscalls being

performed in this test, each incurring the overhead of IPC with the server. The slight

deterioration in performance with larger message sizes is likely attributed to the poorer

performance of channels discussed previously. With improvements in these two areas, it

is likely that the performance of the Zircon server can become close to native.

It is important to note that in this test each process waits forever on the channel.

The Zircon server has an optimisation in which a thread will not register a timer if it

is to wait forever. As such, it completely avoids any overhead from reprogramming the

timer. If a finite deadline is given, the cost of waiting blows out significantly. If each

process in this test uses a finite deadline when waiting, the timer is reprogrammed for

both processes, and the cost of this operation exceeds 60000 cycles.

An experiment was performed by modifying the timer from tickless to ticking, to

see the impact on waiting, as well as general performance. The mean cycle counts for all

tests increased by roughly 2000 cycles, including the mean cycle count for this test; the

use of a finite deadline did not significantly affect this value. If the use of finite deadlines

is common in user-level Zircon systems, it may be necessary to switch to this ticking timer
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to avoid this high overhead for waiting.

8.3 Port Evaluation

8.3.1 Implementation Effort

As discussed in Section 7, the implementation of Zircon on seL4 is comprised of two

components: the library used for performing Zircon syscalls with seL4 IPC, and the

Zircon API server, which is a seL4 application that handles these syscalls. Table 1 shows

a breakdown of the source lines of code required to implement each component.4 This

includes all code used to implement all objects defined on the Zircon server, as well as all

the syscall handlers that are defined. The values presented in the table also include code

that is generated by the syscall generator script.

Component Source lines of code
Zircon Server 6893
Syscall Library (libzircon) 1476
Total 8369

Table 1: Source lines of code in the Zircon on seL4 implementation.

While the server still requires certain syscalls and objects to be added, it is likely

that the total source lines of code will remain less than 10000. Furthermore, much of the

syscall handling code follows a similar order of operations to that of native Zircon, which

eased the implementation effort during development. In comparison, the lines of code

in the native Zircon kernel alone is over 65000, and this value does not include several

user-level libraries that are used by the kernel. As such, the effort required to implement

the Zircon server is not too high, and the smaller codebase facilitates the debugging and

auditing of the server.

8.3.2 Porting Zircon Applications

Although the porting of native Zircon applications is limited due to the use of different C

libraries, it is still possible to port native Zircon code to Zircon on seL4 with little effort.

This is demonstrated through a port of the mini-process user-level Zircon library.

This library allows for the creation of very simple, single function processes. While

these processes are very limited in use, they can still be used to verify that Zircon processes

are being created and started correctly; it was for this purpose that this library was ported

to Zircon on seL4. Table 2 shows the lines added and removed from the library in order

for the library code to compile and be used. It also includes a small ELF loading library

that the mini-process library depends on. Most of the changes to the code involved

4Generated using David A. Wheeler’s ’SLOCCount’.
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disabling vDSO related function calls that could not be used on seL4. Although lacking

these particular functions, the library is still mostly usable, and is capable of creating

mini-processes on seL4.

File Lines Added Lines Removed
mini-process.c 4 9
subprocess.c 4 6
elf-load.c 0 1
elfload.h 0 1
Total 8 17

Table 2: Lines added and removed for porting the mini-process library.

The porting of Zircon applications is also assisted by an additional ELF loading

function that has been added to the syscall library. This function is capable of loading

and starting any Zircon application that have been ported to the seL4 build system, while

exclusively using Zircon objects.

The root application on seL4 is capable of storing a CPIO archive of all applications

built for a system; it is from this archive that the Zircon server fetches the application that

will run as the first process of the system. The Zircon server also defines an additional

syscall which allows for an ELF file to be taken from the CPIO archive and dumped into

a VMO. This is used by the ELF loading function to fetch the application that is to be

loaded. From here, a new process is created, and each ELF segment is loaded into a

VMO mapped into the root VMAR. A thread is also created, and a VMO that acts as

the thread’s stack is allocated. The new process can then be started. This is the method

used to start the Process 1 of the IPC Call and Reply test, and can be used for many

other Zircon applications. This provides support for a multi-process Zircon system to

be brought up on seL4, providing the Zircon applications can be built with seL4’s build

system. Further work for dynamic system support is discussed in the next section.
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9 Future Work

While the current implementation of Zircon of seL4 provides the core foundation for

running user-level Zircon applications, there are still many aspects of the implementa-

tion which remain unfinished, or need to be updated to match those of native Zircon.

Additionally, there are many improvements that can be made to the performance and

scalability of the Zircon server. This section details the future work required in these

areas.

9.1 Missing Objects and Features

9.1.1 Ports

Port objects are one of the primary objects of the Zircon kernel that require completion.

There are many aspects to the implementation of Ports; these include the allocation and

storing of port packets, asynchronous waiting, and threads waiting on them.

For their implementation on seL4, Ports would contain a list of port packets; these

would likely be allocated and freed with a pool allocator, as this is the approach taken

by native Zircon. As with how StateWaiters are used to represent threads waiting on an

object for a state change, Ports would have a similar PortWaiter class for threads waiting

for packets to be delivered.

Asynchronous waiting can be supported with a modified StateWaiter class. When

updating the list of waiters after an object state change, each waiter just needs to be

checked if it is owned by a Thread or a Port to determine the appropriate action to take.

In the case of a Port, each StateWaiter has an associated port packet which is delivered

to the port.

One other use of ports is the ability to bind them to a Thread, Process or Job as an

exception port. When a thread faults, and it or one of its parent processes or jobs has an

exception port set, a packet describing the fault is delivered to the port. Another thread

waiting on the port can then receive the message and handle the fault appropriately.

For Zircon on seL4, we would need to modify the fault handler to check a thread for an

exception port, rather than just kill it. The fault handler can then allocate a port packet

and deliver it to the relevant port.

9.1.2 Futexes

Zircon also offers Futexes, which are a common primitive found in many kernel used to

implement mutexes and other locking mechanisms [FRK02]. All futex operations are

based upon an integer value from a user address space, which is accessed atomically by

threads. There are three operations:
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• Wait: if the value provided by a thread is equal to the atomic integer, the thread

is put to sleep, and is considered to be waiting on this integer.

• Wake: wakes up N threads waiting on the integer.

• Requeue: wakes up N threads waiting on the integer, and requeues M threads to

wait on a different atomic integer.

The implementation on seL4 would likely be similar to native Zircon, with a hash

table used to lookup a waiting thread based on the user address of the integer. No seL4

objects would be required for futexes.

9.1.3 Miscellaneous Features

While most channel operations are defined, the call operation for channel objects still

needs to be implemented. To support calling, Channels would have a list of channel

waiters, representing the waiting threads. Each call or write to a channel would perform

a check to see if a message’s transaction ID matches the ID of a thread waiting on the

channel for a response. If a waiter is found, the message is immediately delivered to the

waiting thread.

Another feature is VMO cloning, which allows for the duplication of VMOs with a

single syscall. VMOs are expected to track the VMOs cloned from them as part of their

state; this can be achieved by each VMO maintaining a list of child VMOs. Additionally,

VMOs can be copy-on-write clones. VMOs cloned this way would need to create copies

of its parent’s frame caps for mapping pages that have not been written to.

Job policies are another feature missing from the current implementation. Policies

dictate what actions are permitted to be performed by a job and its child jobs and

processes. Policies can be augmented to additionally generate an exception or kill a

process when it performs particular operations. Examples of policies include restrictions

on the creation of various kernel objects, and limitations on what can be done with

certain syscalls. Implementing policy enforcement on the Zircon server primarily requires

addtional policy checks to be added to the various syscall implementations.

One other area that Zircon on seL4 lacks support in is the 64-bit ARM architecture,

as development was restricted to the x86 platform to simplify the project. However, the

Zircon server has been implemented in a fairly generic fashion, and there a few areas in

the codebase which use architecture-specific code directly. As such, adding support for

the ARM platform would not be too difficult.

9.2 Device Support

Although support for hardware I/O is very important, the unstable API for device sup-

port in Zircon means that this support must wait. Over the course of this thesis, many
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significant changes to the API have been witnessed, and it would be wise to delay de-

velopment until stability is reached. However, potential approaches for implementing the

more consistent abstractions for Zircon on seL4 can still be discussed.

Interrupt objects, like any other Zircon object, are accessed by handles; this includes

waiting on the object for an interrupt to be delivered. As such, the Zircon server would

be responsible for receiving interrupts delivered to a notification object, which it would

then forward to a waiting thread. If this added latency is undesirable for some device

drivers, a wrapper object for seL4 notifications could be introduced. These would work

similarly to endpoint objects, with the server handling creation of notifications and the

copying of caps to the CSpaces of Zircon threads. The server could then be instructed to

deliver the interrupt to the notification object, allowing device drivers to directly use the

seL4 API to handle interrupts.

To support VMOs with contiguous or physical memory we can use the existing VKA

library, which supports the allocation of contiguous chunks of memory, or memory at a

certain physical address. The existing VMO implementation would need to be extended

so it can be made aware it is handling these varieties of memory. Mapping functions

would also requires several changes for these cases, as well as performing the mappings

with the correct cache attributes.

9.3 Syscall Library as a vDSO

As mentioned in the Background section, Zircon system calls on seL4 are currently com-

piled as a static library, which is linked to applications at compile time. As such, the

system call interface is included as part of the code section in each application. How-

ever, for proper compatibility with native Zircon, transitioning to a shared library that

matches the specifications of Zircon’s syscall vDSO is a necessity. Zircon’s libc, although

musl-based like seL4’s, is built around the existence of the vDSO, and thus cannot be

used for building any Zircon applications that are to run on seL4. This is also the case

for many other Zircon libraries, which makes porting to a static library difficult. As such,

it is imperative that Zircon on seL4 transitions to a vDSO for full support of Zircon

applications.

Building a vDSO also allows for the leveraging of the Zircon build system. Zircon’s

build system creates a root filesystem (rootfs) that contains all compiled user applications.

There is no reason why applications from this rootfs cannot be linked to a vDSO made

for seL4; if a vDSO can be built to the correct specifications, it should be possible to

dynamically link it with other code at runtime, regardless of its internals. As the vDSO is

the only piece of ”glue code” that performs seL4 invocations, and is the only gateway for

Zircon applications to perform syscalls, there should be no other user-level code requiring

modification to run on seL4.
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Due to this property, it should then be possible to create a boot image composed

of the Zircon server, the syscall vDSO and the rootfs. Then, when the Zircon server

is starting up, it can get the first boot process from the rootfs, load the vDSO into its

address space, and start it. With access to the vDSO, the boot process would have the

same environment as native Zircon, and can start the rest of the system without needing

any modifications. This allows for the Zircon build system to be re-used for building all

Zircon applications, rather than having to manually port them to seL4.

9.4 Multicore Support and Scalability

The Zircon server is currently single threaded, and only supports running threads on

a single core. This allowed for concurrency issues to be avoided during development.

However, Zircon is targeted at modern systems, which virtually always have multiple

cores. As such, having a multithreaded server would be necessary for providing multicore

support with reasonable performance; a system with heavy contention of the server, where

many threads are performing syscalls frequently, would become bottle-necked by a single-

threaded server.

The approach for concurrency control on the Zircon server would need to be carefully

considered. Native Zircon implements fine-grained locking of kernel resources to allow for

many threads to enter the kernel at once and perform operations simultaneously. A

multithreaded server is a very different model, with syscalls from N many Zircon threads

being serviced by M seL4 threads running on the server. As such, simply taking the

concurrency protocols directly from Zircon may not be appropriate. An analysis of the

most contended resources on the server may be required before locking structures are

finalised.

To assist the development of Zircon on seL4, the current Zircon server was designed

with relatively small systems in mind. This can been seen through the static data struc-

tures, such as the allocators, which have a fixed limit before they run out of memory;

this limit is set at compile time. This would not be suitable for large and very dynamic

systems, where resource requirements may fluctuate in different areas over time. As such,

many improvements could be made to the server that would allow the server to scale itself

appropriately.

The static allocators used by the server, such as the thread and handle tables, pose

limitations on the maximum amount of objects that can be created on the server. Simply

increasing the size of the allocators would be an inefficient solution, as memory is wasted

on objects not allocated. Thus it is more suitable to make these allocators dynamic

in nature, growing and shrinking them as required by the user-level system. However,

fragmentation becomes an issue in such allocators; objects can become spread around the

allocator, which can impede the ability to reduce the memory used by an allocator. The
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ability to relocate objects within the allocator may need to be introduced to deal with

this issue.

Another limitation is the server mappings. With many VMOs mapped on the server,

the amount of address space used increases, which leads to excess memory usage with all

the page tables that need to be allocated, as well as poor locality, with the sheer num-

ber of pages mapped potentially leading to frequent TLB misses, and thus performance

degradation. As such, it will likely be necessary to avoid always mapping a VMO on the

server in the future.

Instead, server mappings could be performed on-demand, only being allocated when

required for direct VMO reads or writes, or for the translation of user addresses to server

addresses for syscalls. Reallocating server mappings too frequently would harm perfor-

mance, so a mapping would need to remain mapped on the server for a period of time

before removal. This could be achieved through the use of a page-replacement algorithm

for the eviction of old server mappings, and would allow for VMO mappings that are

referred to frequently to remain mapped on the server, while overall reducing the total

number of mappings. To avoid performing mapping replacement when syscalls are being

handled, the server could use an additional low priority thread that runs in idle time to

perform unmappings when the number of server mappings reaches a certain threshold.

One further optimisation for server mappings would be to paginate them; that is,

the VMO is partitioned into equally sized chunks, and each chunk is allocated mapping

space, just as how virtual memory is paginated. This has several advantages over the

current design of allocating a large, fixed-size address space region for the entire VMO.

While this design is very simple and has low overhead for the management of mappings,

it has poor locality; mappings are very spread out, requiring more page tables to be

allocated, and likely increasing cache and TLB misses. It also limits the maximum size

of a VMO. Paginating server mappings into chunks allows for mappings to be kept in a

more compact region of the address space, improving locality. Combined with on-demand

mapping, it also removes any size restriction on VMOs, as we can allocate and free VMO

chunk mappings as required. To implement this, each VMO would require a mapping

table to track the address regions it has been allocated by the server for mappings. The

exact size for the chunks would need to be investigated; they should still be large enough to

both fit most user-level buffers, and minimise the additional memory required for tracking

server mappings.

One major issue with this pagination approach is the handling of non-contiguous

buffers. This issue arises from a Zircon process with region of memory that is contiguous

in its address space, but is spread over two or more mapping chunks for the server. This

complicates address translations, and the copying to and from these regions of memory,

as the server currently expects the region to also be contiguous in its server mapping. The

handling of user memory regions would need to be modified so that these non-contiguous
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regions can be handled. One option would be to have a wrapper class for user memory

regions that can transparently read and write across many server mappings.

Another potential feature to improve performance and increase scalability would be

the deferral of work that can instead be performed when Zircon threads are idle. Such

work includes the destruction of objects, which does not fail, and syscalls do not require

this to happen before they return. Thus it would be more appropriate to perform this

work at a time where both the server and Zircon threads are doing little or no work, such

as sleeping or waiting for I/O. One or more low-priority threads could be added to the

server to run during this time, and perform work that has been deferred. Overall, this

would allow for faster response times for many syscalls, as their handlers have less work

to do immediate and can reply to threads sooner.

9.5 Dynamic Scheduling

Currently, Zircon on seL4 uses static scheduling for threads, which all share the same

priority. Thus execution time is shared equally between threads in a round-robin fashion,

and the server provides no way for the priority of threads to be changed in a system.

Native Zircon uses dynamic scheduling, with the priorities of threads being adjusted on-

the-fly as their CPU time requirements change, and Zircon on seL4 should be upgraded

to use a similar form of scheduling at some point in the future.

For the implementation of an efficient dynamic scheduler on the Zircon server, a mi-

gration to the mixed-criticality systems (MCS) branch of the seL4 kernel may be desired,

as it can be used to implement efficient user-level schedulers. Each thread would need to

be allocated a scheduling context; the server can have a thread responsible for adjusting

the allocated period and budget of each thread’s scheduling context according to their

needs.

An extension to this is to make the Zircon handle syscalls as a passive server. This

provides a type of migrating thread model, where syscall-servicing threads have no SC of

their own, and instead make use of a SC borrowed from the calling thread. The advantage

of this model is that it provides stricter control of the execution time of threads. If the

server threads use their own SCs, a thread can potentially run ”for-free” as they are using

the server’s allocated time rather than their own. By having threads donate their SCs,

usage of the Zircon server is accounted for in a thread’s allocated timeslice.

9.6 The seL4 Root Task

To make development of the Zircon server more straightforward, the server currently runs

as the root user task on seL4. However, a common paradigm for systems running on seL4

is to use the root task as an application driver. It is normally responsible for starting all
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other applications, granting them the resources they require, and acting as a watchdog if

applications crash. This design offers several advantages.

With a separate root task, other seL4 applications can be started completely in-

dependent from the Zircon server. Currently, additional seL4 applications can only be

launched through modifications to the server, which can create other seL4 processes at

startup.

The root task also allows for greater restrictions to be applied on a Zircon server

instance. We can easily limited the kernel resources that are supplied to it, since we use a

VKA for managing these resources; the VKA allows for this to be handled transparently.

Having the root task act as a watchdog allows for any faults on the server to be

recoverable. The root task can wait on the Zircon server’s fault endpoint; if the server

crashes it can then be restarted by the root task.

The root task can also be capable of creating multiple Zircon server instances. These

instances would be independent and isolated from each other; if one crashes, the other

remains unaffected. This would be useful for situations where redundancy is required,

or where individual Zircon subsystems are required, with some subsystems being more

critical than others and thus needing to be isolated from them.

9.7 Communication with seL4 Applications

Support for communication with native seL4 applications through endpoints is partially

implemented. Currently, the creation of an endpoint requires an ID to be set. This ID is

intended to provide a method of discovery for endpoints for applications that do not deal

with handles. The server implements a lookup table so that endpoint can be located by

their ID. This lookup table is kept quite small, as we do not expect many endpoints to

be created; this is enforced in Zircon applications by requiring a resource be supplied for

creation of endpoints.

The next step is to expose an API to native seL4 applications. These would be

supplied caps to the server’s endpoint at boot time, with badge values distinct from those

used by Zircon threads. Thus the server can recognise that it is communicating with

a native application. We allow for these applications to create an endpoint object on

the server; these endpoints are marked as being ”externally created”. The syscall used

to create endpoints for Zircon processes already has an option to check for an externally

created endpoint; if one is found, the process is returned a handle to the existing endpoint.

Closing these handles to the endpoint does not destroy the endpoint.

Once an endpoint is created in this way, native apps can then request for a cap to

the endpoint. This would be performed using seL4 IPC, which allows for a cap to be

shared over an endpoint; the cap is placed in the receiver’s CSpace in the requested slot.

Zircon processes would get their caps with the existing API. Thus both seL4 and Zircon
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applications have access to the same endpoint, and can then perform IPC as they wish.

The above outlines one method of providing a communication channel between Zir-

con applications and their native seL4 counterparts. However, it requires these Zircon

applications to be seL4-aware; that is, these apps must be built with an extended syscall

library containing these additional endpoint functions to allow for this communication

channel to exist. As the IPC model provided by endpoints is quite different to Zircon’s

IPC, existing apps may need to be extensively modified in order to support endpoint

objects. It may be more beneficial to instead implement the reverse: provide seL4 appli-

cations a way of obtaining Zircon objects to form a communication channel.

This could be done by allowing seL4 apps to create ”dummy” Zircon process and

thread objects. A dummy process would be required to allow seL4 apps to store and

manipulate handles, while a dummy thread is needed so the app can be given an endpoint

cap for performing syscalls as if it were a Zircon thread. With access to the Zircon syscall

library, the app would then be free to create and manipulate Zircon objects using the

standard syscall API. An application driver could then be added to a Zircon user-level

system to expose seL4 application nodes in a Zircon user-level system. Zircon applications

can then begin to interface with seL4 applications, and create communication channels

with existing Zircon IPC objects.
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10 Conclusion

This thesis provides the core implementation of a port of the Zircon microkernel to seL4.

This was achieved through an API emulation approach, with a seL4 application running

as an API server for managing the kernel objects and syscalls of Zircon.

An evaluation of the performance of the Zircon API server against that of the na-

tive Zircon kernel has also been provided. Despite the additional overhead of performing

syscalls, the server has performance that is reasonable, and many avenues for improve-

ment of performance have been identified. An analysis of the porting effort was also

performed, which demonstrated that the API emulation approach that this thesis has

taken is reasonable to maintain.

Additionally, the many areas of this project which require further work have been

discussed. This not only includes the implementation of the remaining kernel objects

of Zircon, but also areas for improving that performance and scalability of the Zircon

server. By providing seL4 endpoints as Zircon objects, we have a platform for forming

communication channels between Zircon processes and native seL4 applications, and can

further this concept to provide Zircon objects to seL4 programs.

With continued development of Zircon on seL4, true support for a dynamic user-

level Zircon system can be established. This thesis lays the groundwork for achieving this,

and further work will allow for seL4 applications to fully leverage the software and drivers

offered by the Zircon platform.
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