AUSTRALIA

School of Computer Science and Engineering
Faculty of Engineering

The University of New South Wales

Strengthening scheduling guarantees of
selL4 MCS with IPC budget limits

by

Mitchell Johnston

Thesis submitted as a requirement for the degree of

Bachelor of Engineering in Software Engineering

Submitted: November 2022 Student ID: z5161146
Supervisor: Prof Gernot Heiser Topic ID: 423

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

Abstract

This thesis evaluates some areas for improvement regarding the scheduling behaviour of the selL.4
MCS kernel, improving its applicability to mixed-criticality read-time systems. It proposes a
set of changes that, when configured correctly, improve system scheduling behaviour regarding
budget expiry and budget overrun.

ii

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

Acknowledgements

I would like to thank Gernot Heiser and Kevin Elphinstone for their input as supervisors for
this project. I would also like to thank the other members of the trustworthy systems group for
their general assistance and suggestions. Finally, I would also like to thank my family for their
support during this time.

iii

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

Contents

1__Introductionl 1
|2 Background| 3
2.1 Mixed Criticality Systems| 3
2.2 Real-time Systems| 3
2.3 Formal Verification| L Lo 5
2.4 Operating Systems| L 5
R TTust. « . .o 6
2.6 Scheduling|. L 7
[2.6.1 Periodic scheduling|.o oo 8

[2.6.2 Sporadic scheduling] L o 9

[2.6.3 Criticality scheduling. 11

2.7 Shared resources 11
2.7.1 Resource serverslo e 12

[2.7.2 Priority inversion| 12
B__Related Workl 16
3.1 COMPOSITE and Temporal Capabilities] 16
3.2 NOVA microhypervisor| v ittt e 16
.3 L4Re microkernell L oo 17

v

Mitchell Johnston Strengthening scheduling guarantees of seL4 MCS with IPC budget

limits

3.4 selL4 mixed-criticality systems kernel] o000 18
[3.5 Slite scheduling| 19
3.6 Mpginkgo microkernell Lo 20
[3.7 sell4 Response time analysis|. 20
4_selL4] 22
4.1 General background| o 22
4.2 Capabilities| 23
4.3 Memory management| 23
4.4 System calls and invocation| L L 24
4.5 Schedulingl. 24
[4.5.1 Scheduling Contexts| 24
4.5.2 Kernel scheduler] oo oo oo 25

4.6 Communicationl 26
0 D O 26

App 29
BI _Goaldo 29
...................................... 30

0.2 Assessment of Issues|o oL 30
[>.2.1 Budget Expiry in Passive Servers| 30
[5.2.2 Bounding Priority Inversion| 0oL 31

6 Design and Implementation| 34
6.1 Budget Expiry in Passive servers| oL 34
6.1.1 Thresholdsl 34
[6.1.2 Behaviour with insufficient budget| 37

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits

6.1.3 Thresholds - revisitedl
[6.1.4 Summary|o
6.2 Passive server budget limits| o L0
[6.2.1 Desired semanticsl 0L
[6.2.2 Configuring budget limit behaviour|.
[6.2.3 General design| 0oL
6.2.4 Revocation and deletion|
[7__Evaluationl
[r.1 Hardwarel
7.2 Endpoint thresholds|
[7.2.1 Preventing Timeout Exceptions|.
[7.2.2 System call overheads|
(23 TPCoverheadl
[7.3 Budget limits|
[7.3.1 Preventing budget overrun|
((.3.2 TPCoverheads
[7.4 Summary|]
8 Conclusionl
8.1 Future Workl
|Bibliography|

vi

Mitchell Johnston

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

Chapter 1

Introduction

The criticality of a component refers to the severity of failure of a that component. Broadly,
low-criticality components can fail with little consequence on the objectives of the system. On
the contrary, the failure of high-criticality components have a major impact on the overall system
goal. This generally necessitates that high-criticality software be written to a higher standard,
such that it is more reliable. Unfortunately, this also leads to a correspondingly higher cost
to develop higher-criticality software. However, software of varying criticality must be isolated
from one-another to prevent potentially malfunctioning low-criticality software from interfering
with high-criticality software.

In the past, software of varying criticality were seperated physically with dedicated hardware,
which provided extremely strong isolation. However, this is no longer practical. Firstly, the
development of more complex systems requires communication between components, preventing
them from being fully isolated. Secondly, in some applications, such as aeronautical or space-
flight, weight is crucial and consolidating software functions onto fewer processors is greatly
beneficial. Even in applications where weight is not as essential, cost-savings can still be gained.

However, consolidating software of varying criticality onto a single system requires strong isola-
tion. Spatial isolation has been extensively studied and some operating systems, such as sel.4,
exist which have been formally proved to support it Klein et al.| [2009], Murray et al.| [2013].
However, temporal isolation, whereby software components cannot cause other components to
complete late, is also required for mixed-criticality systems (MCS). These are a form of real-time
system, where the correctness of a result depends both on its output and when it is computed.
Therefore, these systems must also support temporal isolation.

The seL.4 MCS kernel Lyons| [2018] was developed with the aim of meeting this requirement. It
was built upon the strong formally verified guarantees of the base sel.4 kernel, extending them
to include a formal treatment of time. In this thesis we aim to further development of the sel.4
MCS kernel, improving the guarantees that it offers to mixed-criticality systems built upon it.

This involved investigating and addressing some of the issues previously brought up with the
kernel both in previous work Millar| [2021] and other identified issues. The issues that we focus

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

on in this thesis revolves around selL4’s support for threads to donate their time allocation to
another thread. Prior to our work, there were few restrictions on this time donation, which
lead to weaker scheduling guarantees. Specifically, threads could donate insufficient time for the
receiver to complete, causing the receiver to experience a timeout exception. Additionally, the
receiver of a donated time allocation was not required to return it, which would prevent the
sender from continuing execution and causing priority inversion in the system.

As a result, threads involved in time donation required a high level of mutual trust. This
interdependence reduced support for temporal isolation, increasing the number of components
that must be considered high-criticality. As a result, there is an increase in the cost to develop
these systems. We aim to resolve these issues, moving towards a dependable system that enforces
scheduling behaviour in a predictable and reasoned manner, while retaining the existing spatial
isolation guarantees.

Specifically, we present two changes that improve the scheduling properties of inter-thread com-
munication. The first change guarantees a thread a minimum quantity of budget, preventing
timeout exceptions from occurring. The second change proposes a mechanism to limit priority
inversion from inter-thread communication, while also reducing the level of mutual trust required
by threads.

We have successfully implemented both proposed changes. When properly configured, the first
change completely eliminates timeout exceptions, while imposing at worst a 13% overhead on
the IPC path. With the second change, we successfully restricted the amount of donated time
that can be consumed before it is guaranteed to be returned to the sender. However, this change
introduced larger IPC overheads, up to 35% in the worst case.

The remainder of this report is structured as follows:

e In we will cover the background of real-time systems and scheduling, microker-
nels and mixed-criticality system.

e In we will look at other work related to mixed-criticality systems and specifically
the seL.4 MCS kernel.

o In we will provide an assessment of some limitations with the seL4 MCS kernel.
e In we will present our design and the rationale behind the decisions chosen.

e In we will review the efficacy of our design, showing it provides the desired
guarantees, while not excessively compromising performance.

e In we will conclude this thesis and present directions for future work.

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

Chapter 2

Background

2.1 Mixed Criticality Systems

Criticality refers to the severity of failure of a system component. If a high-criticality component
fails, the ability of the system to accomplish its objective will be significantly degraded. On the
other hand, if a low-criticality component fails, the impact on the success of the system objective
will be minimal.

For some highly-critical systems, all the processes and their properties may be known in ad-
vance. This means it is possible to provision the system such that all the processes always have
sufficient resources to succeed. However, the processing requirements of software vary, so a sys-
tem provisioned for the worst-case resource requirements may have spare capacity under typical
circumstances. It may be desirable to run other, lower-criticality tasks using this spare capacity.
However, during atypical circumstances, there will then be insufficient processing capacity to
successfully run all processes. Further, a system should support isolation properties such that
the high-criticality tasks can be guaranteed to succeed without requiring any assumptions of the
lower-criticality tasks.

This is the core of the mized-criticality system (MCS) problem: Allowing for a system to support
processes of varying criticality, while ensuring that high-criticality tasks can still succeed when
there are insufficient resources available for all tasks.

In the following sections we will formalise many of the concepts alluded to here.

2.2 Real-time Systems

The distinguishing feature of real-time systems is the non-fungibility of time: that distinct
intervals of time are not equal, even if they are of equal length. Consider the example of an
autonomous vehicle in danger of crashing. If some software responsible for obstacle avoidance

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

is executed beforehand, the crash can be averted. However, if the obstacle avoidance program
is run after the crash, then regardless of its output, the crash would still have occurred.

Informally, the non-fungibility of time means that it is important both how much execution
time software receives, along with when it receives that execution time. Note that execution
time has specifically been referred to here, but access to other system resources can also be
time-dependent and will be covered in more detail in

In real-time theory, the term task refers to an abstraction of a series of logically related execu-
tions. Tasks are modelled as an infinite series of jobs, which each represent a piece of computation
with a deadline, which is when the job must be completed by. Jobs have the following properties:

e Release time: The instant when a job is ready to run.
e Ezecution time: The amount of processing time that a job requires to complete successfully.

e Worst Case Ezxecution Time (WCET): An upper bound on the amount of processing time
a job requires to complete successfully.

e Response time: The duration from a jobs’ release until it is completed.

e Blocking time: The time that a job is preempted from execution for reasons other than
the execution of higher priority tasks.

e Deadline: The time by which a job must be completed.
There are three broad categories of deadlines in real-time systems: hard, soft and best-effort:

o Tasks with hard deadlines are considered incorrect if the deadlines is missed.

e Tasks with soft deadlines can still be considered partially correct if the deadline is missed.
However, the usefulness of the result typically diminishes the more the deadline is missed
by.

e Best-effort tasks do not have temporal requirements and commonly run as background
tasks in a real-time system. However, for these tasks to succeed they still require processing
time, so starvation must be avoided.

Tasks can also be categorised by the bounds between their release times into periodic, aperiodic
and sporadic tasks:

e Periodic tasks have a fixed interval between the release of consecutive jobs, known as
the period. These tasks commonly have hard deadlines. These can be implicit, where
the deadline is equal to the next job’s release time. Alternatively, the deadline can be
constrained; where the deadline is defined relative to the release time, but must be prior
to the next job’s release. Finally, the deadline can also be arbitrary, where the deadline is
defined relative to the release time, but need not be prior to the next job’s release time.

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

e Aperiodic tasks are released randomly, with no useful upper or lower bound on the time
between subsequent releases.

e Sporadic tasks are also released randomly, with no upper bound on the time between
subsequent releases. However, there is a lower bound, known as the minimum inter-arrival
time.

Before continuing, we wish to distinguish between criticality and time-sensitivity. We recall that
criticality is, broadly speaking, the importance of a task. Time-sensitivity is how urgently a task
needs to be completely, the length of time between its release and deadline. While both of these
are properties of tasks, they are not directly related. High-criticality tasks are not necessarily
urgent, and urgent tasks are not necessarily highly-critical, though they can be.

As an example, we consider a system running both a control loop and a network driver. The
control loop operates an important, but slow moving, piece of machinery. This piece of machinery
must avoid physical collisions to avoid costly damage. Therefore, this control loop is not highly
urgent, as the machine moves slowly and there is plenty of time to avoid a collision. Nevertheless,
the control loop is highly-critical, as if it fails to prevent a collision, costly damage will occur. In
contrast, a network driver is urgent, as the timings involved in high-speed networking are very
small. However, the impact of missing a single, or even multiple network packets is minor, and
therefore the network driver is considered low-criticality,

2.3 Formal Verification

Formal verification describes a process where a system undergoes a mathematical proof to es-
tablish that it behaves as specified. It involves proving a correspondence between a high-level
abstract specification of behaviour and the low-level implementation. Formal verification pro-
vides an extremely strong guarantee that the implementation will function according to the
specification.

2.4 Operating Systems

An operating system is a software system that serves two broad goals. First, it acts as an
abstraction for hardware, presenting a common interface to application. Its other role is to
manage finite resources, allocating them to user processes. On hardware which supports multiple
privilege levels, the kernel is the portion of the operating system that runs at the highest privilege
level.

The kernel can use its privilege to separate threads of execution into protection domains, where
threads have limited access to system resources, for example only having access to a subset of
physical memory. This serves to isolate threads, preventing a thread from unauthorised access
or from tampering with another thread’s data. However, there are many cases where threads
need to share information. To support this without compromising isolation, the kernel transfers

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

messages between protection domains on the behalf of user threads. This functionality is known
as inter-process communication (IPC).

Many operating systems in common use today, such as Windows, MacOS and Linux are mono-
lithic kernels. This means that the majority of operating system functionality is supported by
code running within the kernel. In contrast, microkernels aim to remove as much functionality
from the kernel as possible.

They were characterised by |Liedtke| [1995] as “A concept is tolerated inside the microkernel
only if moving it outside the kernel, i.e. permitting competing implementations, would prevent
the implementation of the system’s required functionality.” This is known as the minimality
principle.

The services that have been removed from the kernel must are instead implemented at user-level.
Other threads can invoke these services over IPC, fulfilling the role of a remote procedure call.
To facilitate this with high performance, microkernels must support very efficient IPC.

2.5 Trust

Trust refers to the level of reliance in the correct operation of a system component. Trusted
components must operate correctly for system success, while untrusted components can fail
without compromising the overall system objective. For example, the operating system kernel
has full access to the system and can cause failures in any task by overwriting memory, for
example. Therefore, the kernel must be highly trusted.

These are examples of the trusted computing base of an application, which is the set of all
software and hardware that must operate correctly for an application to function correctly. The
trusted computing base of an application is therefore as critical and as trusted as the application
itself.

The counterpart to trust is trustworthiness. A component is trustworthy if it can be relied
upon to operate as expected. The trustworthiness of a component can be established by, in
increasing strength: testing, certification and formal verification. However, these processes are
generally quite costly to perform, with higher levels of trustworthiness being correspondingly
more expensive and time-consuming.

The previously mentioned worst-case execution time is an element of trustworthiness. For ex-
ample, a completely untrustworthy program may contain an error that causes an infinite loop.
Such a program would run forever, therefore it must be assigned an infinite WCET.

We also outline the relationship between criticality and trust. High-criticality tasks, due to their
importance to mission success, must be trusted. Generally, high-criticality tasks should also be
trustworthy. However, this relies on the high-criticality components having undergone a process
that makes them trustworthy, which is not guaranteed.

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

External enforcement of various properties, such as a WCET, potentially by the system kernel,
can reduce the trust that system components need to have in one another. This has the benefit
of reducing the trust required of various system components, making it easier and cheaper to
develop highly-critical systems.

2.6 Scheduling

The goal of scheduling is to determine which tasks to run at which time. This is generally
accomplished by assigning a priority to each task and then executing the highest-priority task
that is ready to run. Priority is not directly equivalent to either criticality or time-sensitivity.
Rather, it is instead derived from both, the particulars of which is determined by the type of
scheduling algorithm used.

To introduce scheduling, we begin by considering a non-MCS example. We assume we have
a collection of periodic tasks where their worst-case execution times and period between job
releases are known. We also assume that these tasks are trustworthy and that the tasks will
honour their WCET and period, which for the ith task we assign the variables C; and T;
respectively. A collection, or set of tasks is considered feasible if it’s possible to schedule them
such that all tasks always receive sufficient execution time to complete before their deadlines.
The utilisation of a specific task i is equal to C;/T; and represents the proportion of execution
time that the task requires. This introduces an upper bound on the feasibility of task sets. The
sum of utilisation of all tasks in the system, known as total utilisation must be less than or equal
to one for each processor in the system, represented in

> T <1 (2.1)

=0

Otherwise, there is simply insufficient execution time to satisfy all tasks in the system.

When the inequality in does not hold, we consider the system to be overcommitted.
However, the WCET covers a task’s worst-case requirements and under typical circumstances,
tasks may require less execution time than their WCET. Therefore, an overcommitted system
may still be able to satisfy all of its task’s execution requirements. However, if all, or even some
of the tasks require their full WCET, then there will be insufficient execution time to satisfy all
tasks, leading to overload.

Returning to consider MCS, the assumption that all the tasks were trustworthy is too strict a
requirement. To allow for tasks with varying levels of trustworthiness to run on a single system,
we require some form of temporal isolation, where one task cannot cause a temporal failure
(a deadline miss) in another task. However, on an overcommitted system, this is unfeasible
as the system cannot guarantee that all tasks will always meet their temporal requirements.
Instead, we require asymmetric protection, where low criticality tasks cannot cause failures in
high-criticality tasks.

Due to the cost of establishing trustworthiness, lower-criticality tasks are generally not as trust-
worthy as higher-criticality tasks. As a result, high-criticality tasks cannot be required to trust

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

lower-criticality tasks. This means that cooperative scheduling protocols, where threads volun-
tarily yield to one another, are inherently unsuitable for MCS, due to the required trust between
tasks. This requires pre-emptive scheduling, where the scheduler can pre-empt executing threads,
allowing for enforcement of threads execution time.

2.6.1 Periodic scheduling

For sets of periodic tasks, there are two broad categories of scheduling algorithms:

o Fized priority scheduling, whereby all jobs in a task are assigned the same priority.

o Dynamic priority scheduling, where jobs are individually assigned priorities.

Fixed-priority scheduling algorithms assign fixed priorities to tasks. There are two main basis
for these priorities:

o Fized-priority rate monotonic scheduling allocates higher priorities to tasks with higher
rates, where the rate is defined as the inverse period %

o Fized-priority deadline monotonic scheduling allocates higher priorities to tasks with shorter
deadlines relative to release times.

Fixed priority scheduling can suffer from schedulability bound issues Liu and Layland| [1973],
which is an upper limit on the CPU time that is spent executing tasks in the system. It has
been proved that for large task sets, the maximum CPU utilisation of fixed priority scheduling
approaches 70%, which is not ideal.

An example of a dynamic priority scheduler is earliest deadline first (EDF). A key benefit of
dynamic scheduling is that their schedulability bound is 100%, when not considering algorithmic
overheads. EDF scheduling assigns higher priorities to jobs that have deadlines closer to the
current time. EDF scheduling is theoretically optimal where a single resource can be scheduled
pre-emptively.

A key difference between FP scheduling and EDF scheduling is how they behave under overload.
FP scheduling will continue to run jobs with high priorities, which can lead to complete starvation
of jobs with lower priorities. In contrast, EDF scheduling will allow all jobs to make progress,
but at a lower rate. This means that FP scheduling will deterministically drop jobs from lower-
priority tasks, while EDF will drop jobs from all tasks. Either behaviour can be desirable
depending on the situation, though generally deterministic behaviour is preferred.

As FP scheduling predictably prefers high priority tasks under overload, one possible approach
is to simply assign high priorities to high-criticality tasks. Unfortunately, this approach does
not work well in mixed-criticality systems. We consider the example of a control loop and a
network driver that we presented in This could lead to circumstances where the

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

system is not overloaded, but prioritising the high-criticality, non-urgent control loop causes the
network driver to miss some of its deadlines. While the network driver is of a lower-criticality,
we would still prefer to meet all the deadlines in the system where possible. Therefore, simply
assigning high priorities to high-criticality tasks is not suitable for mixed-criticality systems.

2.6.2 Sporadic scheduling

We now investigate algorithms designed to encapsulate sporadic tasks in a manner that is com-
patible with scheduling analysis for periodic tasks. We consider a sporadic task with a minimum
inter-arrival time and WCET. We assign all the following algorithms a period T" and budget C
equal to those, respectively.

First, periodic servers store sporadic jobs in a queue. The server activates at intervals separated
by the server’s period and then processes the queued jobs. The server can execute for up to its
budget, otherwise it is pre-empted and must resume execution at its next activation. Therefore,
this server has a schedulability impact identical to a periodic task with an equivalent budget
and period. However, it can lead to long response times for sporadic jobs, especially if a job is
released just after the server has finished its activation. The job would then need to wait the
servers full period until its next activation.

An improvement is the sporadic server, introduced by Sprunt et al.| [1989]. However, the original
sporadic server algorithms presented in the Sprunt paper contained defects. We will instead focus
on the models presented in [Stanovich et al. [2011].

We begin by considering the primitive sporadic server. Instead of activating on a consistent
periodic basis, these only activate when there are jobs ready to be processed. However, the server
must still obey the sporadic constraint, whereby the time between two subsequent executions of
the server t; and ¢;11 must be greater than or equal to the period, i.e. t;41 —t; > T. This is to
ensure that the worst-case pre-emption caused by a sporadic server is no greater than would be
caused by an equivalent periodic task.

We illustrate this with an example in Both servers experience a job release and
activation at time £y, which causes them to execute for some time and complete the job. Then,
one period (T) later at time ¢ty + 7', the periodic server activates, finds no waiting jobs and
forfeits its remaining execution time. At time ¢y, a job is released. The sporadic server can
activate immediately and process it, as the sporadic constraint is satisfied to —tg > 1. However,
the periodic server cannot activate again until ¢t + 27". This leads to longer response times with
the periodic server.

The ideal sporadic server is a generalisation of the sporadic server model. It consists of a set
of primitive sporadic servers, all with equal period and unit budget. This unit budget is the
smallest possible division of time in the system. An ideal sporadic server with a given budget
and period is modelled as a set of these unit-servers with equal period and a sum of unit budgets
equal to the overall budget. This allows for the sporadic server to divide up its budget, while
the worst case interference still occurs when all the tasks are released at once. Therefore, for

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

ps E
R R
SS i i >
t o |

Figure 2.1: Periodic servers (ps) vs sporadic servers (ss). Downward arrow represent job releases,
while upward arrows represent job completion. Dashed lines are used to indicate moments in
time. Horizontal black arrows represent 1 period T

ISS

\4

v

L »
f) »

to t T t to+T t+T ts
Figure 2.2: Ideal sporadic server. Numbers over blocks of execution represent time taken.

schedulability analysis, the ideal sporadic server can still be treated as a periodic task with
equivalent period and budget.

We illustrate this with an example in We consider an idealised sporadic server with
a budget of 3 units and some period T. For this example, there is no relation between the task’s
minimum inter-arrival time and the period. At time %y, a job is released that requires 1 unit
of time. That completes, leaving the sporadic server with 2 units of budget remaining. Then,
at time t;, a job is released requiring 2 units of processing time, which completes, depleting
the budget of the sporadic server. At time ts another job requiring 2 units of execution time
is released, but as the server’s budget is exhausted, it cannot run. One period after tg, at time
to + T, the budget is replenished and the server can run. Note however, that as only a single
unit of budget was expended at tg, only a single unit is replenished at tg + 7" and this limits the
server’s execution. It cannot complete the job until time ¢; + T', one period after t; when the
two units of budget are replenished. The server consumes one unit to complete the job. The
second unit remains as the server’s budget, allowing it to execute immediately when a job is
released at ts.

However, ideal sporadic servers can lead to many fragmented budget replenishments which

10

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

causes significant overhead to track. So, in practice, sporadic servers commonly have a limit
on the number of replenishments that are tracked at any one time. If a server runs out of
replenishments, any excess budget is generally forfeited.

Constant-bandwidth server

Constant-bandwidth servers are a variant of sporadic servers that strictly enforce the sliding-
window constraint. These also possess a budget and a period. The sliding window constraint
means that over any length of time equal to the period, the server can consume no more CPU
time than their budget. This is in contrast to sporadic servers, where, as seen above, they can
preserve their budget and exceed the sliding-window constraint in some circumstances.

2.6.3 Criticality scheduling

All of the aforementioned scheduling algorithms have only taken into account the periods and
deadlines of tasks, not their criticalities.

One modelVestal [2007] involves each task having a vector of WCET’s. Each of these WCET’s
correspond to a particular criticality level. As the criticality level and required level of assur-
ance increases, the WCET requirements also increase. Further, each task also has a maximum
criticality level, which if exceeded by the system criticality level, then that task will no longer
be scheduled. This model can be interpreted as a form of graceful degradation, where increasing
the criticality level and required level of assurance sheds tasks such that the task set is feasible
with the WCETSs at that criticality level.

This model lends itself to schedulers that implement a criticality mode-switch. There are mul-
tiple forms, but one version involves differentiating tasks into low and high criticality. When
the criticality mode-switch is activated, low-criticality tasks are either prevented from running
altogether or have their priorities dropped below all high-criticality tasks. This is a coarse
mechanism for managing an overloaded system.

However, we note that multiple WCET values do not necessarily neatly translate to real-world
systems. Alternate models instead require sufficient tepmoral isolation, such that the scheduling
properties of a particular criticality level can be determined without making any assumptions
on lower-criticality components.

2.7 Shared resources

Tasks in a system may need to share resources, such as shared memory. To maintain consistent
state, in some circumstances only a single task can access the shared resource at a time. Other-
wise, the interleaved execution of multiple tasks could lead to inconsistency and race conditions.

11

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

This access restriction is known as mutual exclusion, whereby only a single task can access a
resource at a time. Sections of code where resources must be accessed mutually exclusively
are referred to as critical sections. Generally, once started, critical sections must be run to
completion before the resource can be used by another task. This remains true even if the task
is pre-empted.

A common approach to ensuring mutual exclusion is locking, whereby tasks coordinate to ensure
that only a single task accesses the resource at a time. However, basic locking is an inherently
cooperative protocol that requires tasks to trust each other. All tasks in the system have access
to the shared resource at all times, the lock only serves to help the tasks coordinate. A faulty
or malicious task could access the shared resource without the lock, causing corruption and
leading to the failure of other tasks. Given that tasks of varying criticality may share a resource,
this would violate the asymmetric protection requirement. In the next section, we introduce an
alternate mutual-exclusion protocol that will allow for the required protection.

2.7.1 Resource servers

Resource servers are a means of encapsulating shared resources to allow tasks to safely share a
resource. The resource server is a dedicated process that has sole access to the shared resource,
with all other tasks having no access to the resource. If a task needs to access the resource,
it executes a remote procedure call via inter-process communication into the resource server.
The resource server then operates on the resource on the tasks behalf. This mean that with the
resource server model, tasks must trust the server, however they do not need to trust the other
tasks that share the resource.

2.7.2 Priority inversion

However, mutual-exclusion protocols, whether based on locks or resource servers, can introduce
priority inversion. This is where a lower-priority task prevents a higher-priority task from
running, which inverts the meaning of priority.

We will explore an example using locks for simplicity, however the principle is identical with
resource servers. We consider a system containing 3 tasks, p1, p2, ps, with priorities correspond-
ing to their subscripts, with larger numbers corresponding to higher priority. Tasks p; and p3
share a resource r, while ps does not.

Consider a situation, illustrated in where initially p; is running and acquires a lock
on 7. Task p3 then releases a job at time ¢;, which pre-empts p; and then attempts to acquire
the lock on r. This fails, as p; holds the lock, so p3 blocks at time t5. This allows p; to continue
running until £3, when py releases a job, pre-empting p; as it has a higher priority. This job
completes at t4, allowing p; to resume execution until ¢5, when it releases the lock on r. This
causes p3 to become unblocked, immediately pre-empting p;. p3 then runs to completion at time
tg, at which point p; begins executing again until completion.

12

Mitchell Johnston Strengthening scheduling guarantees of seL4 MCS with IPC budget
limits

P3

P2

oF

t1 t2 t3 t4 t5 t6

Figure 2.3: An example of priority inversion. Downward arrow represent job releases, while
upward arrows represent job completion. Dashed lines are used to indicate moments in time.

There are two types of priority inversion present in this example. Firstly, during the time
between ty and t3, due to holding the lock on resource r, p; is preventing ps from executing,
despite p3 having a higher priority. This from of priority inversion is bounded by the longest
critical section involving 7, as once the lock on r is released, ps will be able to run. The second
form of priority inversion is where py delays p; from executing, from time ¢3 to t4. This can
lead to a potentially unbounded delay in the execution of ps, especially considering that there
could be multiple tasks with a priority between p; and ps that would collectively prevent p;
from finishing its critical section.

We now formalise this concept of tasks delaying the execution of other tasks. Blocking time is
the time that a task spends pre-empted for reasons other than the execution of a higher-priority
task. It is desirable to reduce the amount of priority inversion that occurs, specifically the second
form where the priority inversion may be unbounded. In the next section we investigate several
protocols with this aim.

Real-time locking protocols

In this section, we introduce four protocols aimed at reducing priority inversion:

e Non-prempetive critical sections protocol (NCP): Under this protocol, pre-emption is com-
pletely disabled while any task is in a critical section. While simple to implement, this can
lead to a large amount of unnecessary blocking of higher-priority tasks.

13

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

e Priority inheritance protocol (PIP): With PIP, if a task requires a resource locked by a
lower-priority task, it donates its priority to the lower-priority task. This allows the lower-
priority task to finish its critical section and release the lock, reducing priority inversion.
However, this approach is complex to implement with costly system overheads, as there
can be nested priority inversion, additional pre-emptions and care must be taken to avoid
deadlock.

e Immediate priority ceiling protocol: Under IPCP, all resources are assigned a ceiling prior-
ity, which is 1 greater than the highest priority of all the tasks that access it. Whenever a
task accesses a resource, it immediately runs at the ceiling priority. However, this requires
that all task’s priorities be known in advance, though this is required for schedulability
analysis regardless. Additionally, it can lead to unnecessary blocking of intermediate pri-
ority tasks that do not require the resource. We also note that if the ceiling priority is the
highest in the system, this protocol is equivalent to NCP.

We now illustrate the IPCP protocol with the example in similar to the example
presented previous in A new row has been added above with the label r, to
represent the ceiling priority of resource r. This ceiling priority is 4, because that is one
greater than the priority of the p3, the highest priority task that accesses the resource.
Once again, p; releases a job, however, once it acquires the lock on resource r at time %,
its priority is promoted the priority of . Thus, at times ¢; and ¢, when p3 and ps release
jobs, they do not pre-empt p;. However, at time t3, p; releases the lock and returns to its
original priority. This allows ps to then pre-empt p; and begin executing. When ps then
acquires r at time t4, its priority is also promoted to the priority of ». It then runs to
completion at T5, then allowing ps to run. Finally, once py completes at time g, p1 can
resume execution and complete.

This protocol thus prevents the unbounded blocking that could occur from the intermediate
priority task po.

e Finally, the original priority ceiling protocol (OPCP) is a combination of the approaches
of PIP and IPCP. Resources retain a priority ceiling, exactly as in IPCP. However, tasks
do not have their priority boosted immediately upon acquiring a resource. Instead, they
are only boosted when another tasks attempts to acquire that resource, though they are
increased to the resource’s ceiling priority rather than inheriting the other tasks priority.
This reduces the level of unnecessary pre-emption that occurs. Additionally, it also intro-
duces a system ceiling, which is the highest priority ceiling of all currently locked resources
in the system. Tasks can only lock resources if their priority is greater than the system
ceiling, which prevents deadlock. Unfortunately, this system ceiling requires a global state
to be tracked, which increases the implementation complexity of the protocol.

14

Mitchell Johnston Strengthening scheduling guarantees of seL4 MCS with IPC budget
limits

P1I

—
o
—
iy
PO
N

ts t ts ts

Figure 2.4: An example of IPCP. Downward arrow represent job releases, while upward arrows
represent job completion. Dashed lines are used to indicate moments in time.

15

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

Chapter 3

Related Work

3.1 COMPOSITE and Temporal Capabilities

COMPOSITE |Parmer| [2009] is a component-based microkernel. It does not provide a scheduler
or blocking within the kernel. Rather, these scheduling decisions are the responsibility of user-
level, which leads to total policy freedom in regards to scheduling.

We focus our attention on temporal capabilities (TCaps) implemented into COMPOSITE, in-
troduced by (Gadepalli et al.|[2017]. These aim to “decouple scheduling decisions from the ability
to consume time”. TCaps possess a budget, which represents a slice of time. When user-level
schedulers provide a thread to run, they must also provide a TCap from which time is drained
from. Budget can be delegated between TCaps, however, budget is not automatically replen-
ished by the system. Rather, there exists an original capability called chronos, which possesses
infinite budget. All other TCaps are replenished by delegating budget from chronos.

Additionally, TCaps are assigned a quality, which represents the importance of the time held by
that TCap. This quality is not equivalent to priority and is not used to make general scheduling
decisions. Rather, if an interrupt activates a TCap, it will only preempt execution of the current
thread if the activated TCap has a higher quality than the current thread’s TCap.

However, a TCap cannot be revoked unless it has no budget. This design is intentional, such
that a subsystem that has been delegated time has a guarantee of that full available budget. As
the budgets do not self-replenish, this will be a finite amount of time.

3.2 NOVA microhypervisor

The NOVA microhypervisor Steinberg and Kauer| [2010] [Steinberg et al.| [2010] enforces temporal
separation of components running upon it. It provides scheduling contexts, which combine a
time quantum with a priority. These are associated with execution contexts, which abstract

16

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

away the difference between threads or virtual CPU’s. When invoked, the kernel scheduler
chooses the highest-priority scheduling context and then allows its associated execution context
to run. The execution context, regardless of whether it is a thread or a virtual CPU, can then
run until either the SC’s time quantum expires, or it is preempted by a higher-priority SC being
released.

If a client thread sends an IPC message to a lower-priority server, the client donates its SC to
the server, even if the server already possesses its own SC. The server then runs on the donated
SC, also inheriting the higher priority of the client. This prevents a medium priority thread
from pre-empting the server and causing priority inversion, which would occur if the server ran
on its own low-priority SC.

While the server is still processing the first client’s request, it may receive a request from a
second, higher-priority client, which we refer to as H. H will be initially unable to rendezvous
with the server, so H raises the priority of the server to H’s priority, helping it. This further
prevents priority inversion from occurring.

This design is effective at preventing priority inversion from occurring, though it does enforce
policy on user level, which we consider undesirable.

3.3 L4Re microkernel

The L4re microkernel, also known as Fiasco, encompasses multiple versions of an L4-based
microkernel.

Fiasco |[Hohmuth and Hartig [2001], developed in 2001, used non-blocking synchronisation, using
both wait-free and lock-free techniques, aimed at multicore systems. Wait-free synchronisation
eliminates blocking caused by critical sections, by effectively implementing the priority inheri-
tance protocol. We recall that the PIP protocol involves a higher priority thread donating its
priority to lower-priority thread to help it finish the critical section.

In lock-free synchronisation, critical sections are designed such that they prepare their results
separately and then commit them to shared data without needing a lock. The critical sections
use an atomic instruction to first compare for potential conflicts, then write the data. If the
compare operation fails, the entire operation is restarted, with exponential back-off used to avoid
retry contention.

Notably, Fiasco was written in a higher-level language, specifically C++.

A further iteration of Ldre was known as Fiasco Object Capabilities (Fiasco.OC) Lackorzyn-
ski et al. [2012]. This version of the kernel introduce capabilities, token that provide specific
privileges to threads. We focus predominantly on the scheduler implementation, based around
scheduling contexts (SC). SC’s in L4re have the following attributes: a global priority, a budget
and a budget replenishment rule. For example, this replenishment rule can support a fixed-
priority scheme where each SC has a period controlling when its budget is replenished. These

17

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

SC’s are distinct from threads, instead being considered as a reservation for a given amount
of CPU time, that can be associated with a virtual CPU. Notably, a virtual CPU may have
multiple SC’s attached to it, in which case the guest running the virtual CPU can choose which
SC to run on.

Further work focused on mapping mixed-criticality concepts into scheduling contexts |Volp et al.
[2013]. If a high-priority thread experiences a delayed job release, its execution will also be
deferred, causing other lower priority, but potentially higher-critically tasks to be delayed and
miss their deadlines. To address this, a deadline was introduced to SC’s to ensure that a SC’s
budget had been consumed by a particular point in time. This would ensure that the thread’s
execution would not interfere with other tasks in the system. If the deadline was overrun, the
task associated with the SC would be preempted by the kernel.

They also introduced mechanisms to effectively support using multiple SC’s for quality-assuring
scheduling. The basic principle involves jobs where there is a core mandatory component and
then multiple additional optional sections, each improving the quality of the result. The authors
proposed mapping a scheduling context to each section of work, with the SC’s mapped to
the optional sections possessing gradually reduced priorities. To support this use, additional
configuration options were added defining whether multiple SC’s bound to an SC were available
simultaneously, or sequentially.

3.4 sel4 mixed-criticality systems kernel

The sel.4 mixed-criticality systems (MCS) kernel was introduced by Lyons et al.| [2018]. These
changes to the kernel allowed for principled control of time, manageable at user-level, leveraging
seL4’s capability model.

While user-level control and policy freedom is a core design principle, it was decided to retain
the scheduler within the kernel. For any thread not within the same protection domain, a user-
level scheduler would require two context switches for each dispatch. While this overhead can
be minimised with efficient context switches, it can be avoided altogether with a kernel-based
scheduler. This scheduler is based on fixed-priorities, as it is easier to reason about, and it is
simpler to implement dynamic scheduling policies at user-level. Further, while a kernel scheduler
does slightly compromise on policy freedom, sel.4 MCS contains various mechanisms that allow
for users to add their own scheduling policy. In particular, the author demonstrated how an
EDF scheduler can be implemented at user level with low overheads.

User-level control of scheduling is supported by the introduction of scheduling contexts (SC),
which represent access to processor time. SC’s possess a budget C' and a period T', where the
budget is the maximum amount of time that can be consumed over the period. This imposes
a utilisation limit % that can be consumed by a thread associated with the SC. Budget is
automatically replenished via a sporadic server algorithm, though the number of replenishments

is limited.

Threads are only permitted to run if they are associated with an SC that has available budget.

18

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

SC’s additionally support donation, whereby a thread can pass its SC to another thread via
inter-process communication (IPC). This supports the existence of passive servers, which do not
possess their own SC, but use a clients SC when working on its behalf.

The SC’s introduced in sel.4 are similar, but distinct from those present in Fiasco.OC. Notably,
similar to all other kernel objects, SC’s in sel.4 are controlled by capabilities, however this
is not the case in Fiasco.OC. Additionally, priority is an attribute of SC’s in Fiasco, while
in selL4, priorities are kept distinct in thread control blocks (TCB), which control most other
non-scheduling attributes of threads.

If a thread’s SC runs out of budget while executing, the thread is pre-empted by the kernel
to provide enforcement. This raises a timeout exception, which can optionally be handled by a
user-level monitor.

In line with the selL4 design principle of policy freedom, the seL4 MCS kernel does not restrict
permissible task sets and allows for an overcommitted system.

3.5 Slite scheduling

Gadepalli et al.|[2020] describe the new Slite scheduling protocol for “near zero cost scheduling of
system-level threads at user-level”. Slite was initially implemented on the Composite microkernel.

In their system, both the kernel and a user-level scheduler track the same set of threads. However,
they allow for direct user-level dispatch with no kernel involvement. This leads to an incoherency
between the kernel and user space of which thread is current active. To resolve this incoherency,
they describe a protocol involving a buffer shared between user-level and the kernel. Changes
to the active thread are recorded to this buffer so that when required, the view of the active
thread can be re-aligned.

Slite strongly aligns with two key principles of selL.4, namely performance, by supporting user-
level dispatch, and policy freedom, by moving scheduling policy entirely into user-space. How-
ever, direct user-level dispatch is only possible within the same protection domain. Threads
switched to in this manner would then potentially be able to interfere with the scheduler. The
scheduler is inherently one of the most trusted component of the system, as it can cause any task
to fail by preventing it from accessing processor time. Therefore, it would only be permissible
for the most trusted tasks in a system to share a protection domain with the scheduler. This
greatly limits the use of the fast user-level dispatch as dispatching to other protection domains
still requires a kernel entry and two context switches.

Overall, while Slite is closely aligned with the principles of minimality and policy freedom,
its user-level dispatch is only possible for the most trusted tasks. Even then, it is generally
considered best practice to isolate components whenever possible. We conclude that while the
Slite scheduling model has some merit, a more detailed analysis of the security and isolation
consequences is required before it would be suitable for consideration in sel.4.

19

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

3.6 Mginkgo microkernel

Hu et al. [2021] introduce a set of modifications made to the Mginkgo microkernel to support
mixed-criticality systems. The Mginkgo microkernel is described in the paper as being “designed
and implemented by our lab with reference to selj [sic]”. Mginkgo is capability based and
supports IPC and interrupts. Memory control and allocation is handled by userspace. Finally,
threads are scheduled from within the kernel based on properties configured from userspace.

The authors define a criticality level for each thread along with a system wide criticality level.
Threads whose criticality level is greater than or equal to the system criticality level are consid-
ered critical threads. In the kernel, a dedicated queue contains these critical threads sorted in
reverse order of deadline. Upon each scheduler entry, the critical point of each task is calculated.
This appears to be the latest time that a task can be scheduled and still complete successfully.
If the current time is a critical task’s critical point, then that task’s priority is raised such that
it is scheduled. Otherwise, the task with highest priority is chosen for execution. The authors
also describe a bitmap algorithm that can determine the highest priority thread in O(1) time.
The algorithm “records the existence of ready tasks in each priority level”, using a “bidirectional
cyclic list to organise the tasks”.

Unfortunately, the design presented in this paper is of limited use in seL.4. The scheduler system,
while potentially effective, adds significant policy into the kernel, mandating the use of a system-
wide criticality level. This causes it to be unsuitable for seL.4, where policy freedom is a core
principle of the kernel. The O(1) bitmap algorithm for determining the highest priority task
would potentially be useful, though sell4 already contains an O(1) scheduler. Unfortunately,
insufficient details were provided to recreate the algorithm, so we are unable to make use of it.

In general, a system-wide criticality level is not the direction we wish to pursue for seL.4. Building
on seL4’s history of verification and strong guarantees, we instead seek to create a system
where the scheduling and isolation guarantees are very strong. This would allow the scheduling
properties of high criticality tasks to be reasoned about without requiring any assumptions of
lower-criticality tasks.

3.7 seL4 Response time analysis

Millar| [2021] investigated the behaviour of the seL.4 MCS kernel, to ensure that it correctly
enforced scheduling behaviour. They constructed a relation between scheduling theory and the
implementation of sel.4 MCS. Using this, they identified a three deficiencies within the existing
implementation and then proposed solutions.

The first issue was a defect within the sporadic server algorithm that controlled budget replen-
ishment for scheduling contexts. The previous algorithm enforced a sliding window constraint,
such that an SC could consume no more than its budget over any window of time equal to its
period. This constraint was overly restrictive and would lead to lower-priority tasks having long

20

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

response times. The author successfully resolved this defect by altering the budget replenish-
ment to obey the sporadic constraint rather than the sliding window constraint. This allows the
system to correctly schedule periodic tasks.

The second investigated issue involved bounding priority inversion. Various protocols for han-
dling priority inversion caused by resource sharing were introduced in However,
while those protocols prevented unbounded priority inversion, in general, they still create a
large amount of priority inversion from priority ceilings. The author proposes that it is desirable
to enforce tighter bounds on this priority inversion, so that the response time of higher-priority
tasks can be guaranteed with a lower bound.

To accomplish this, they introduce resource scheduling contexts (RSC), which are a specialised
form of SC that can only receive budget via donation. However, the authors did not consider
potential alternative solutions. We consider this worthwhile of further investigation and cover
this in more detail in

The third identified issue concerned the correct attribution of execution time in the kernel.
Ideally, the kernel time would be attributed to the task that the kernel is operating on the
behalf of. The author investigated all causes of kernel entry and where the time should be
attributed to.

Further, in the previous version of the kernel, only a single timestamp was read, with all time
charged being split at that point. The authors changed this to use two timestamps, one read
just after kernel entry and one just prior to kernel exit. This allowed for a more accurate
estimation of the time spent in the kernel. These changes were generally effective, however
kernel time attribution that involved interrupt requests (IRQ), were only fully resolved with the
introduction of RSC’s.

21

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

Chapter 4

selL4

In this chapter, we present the current state of the seL4 microkernel, the operating system that
our work will focus on. First, we will present some general background regarding the sel.4
microkernel. Afterwards, we cover a limited number of areas in more technical detail, focusing
on those relevant to our work. Specifically, we will cover sel.4d’s capability system, system-calls,
inter-thread communication and scheduling.

4.1 General background

seL4 (non-MCS) is a third generation L4 microkernel that has been formally verified Klein
et al.|]2009]. In particular, this provides the strongest guarantee of isolation between various
components in the system.

sel4 controls privileges via capabilities Dennis and Van Horn| [1966], which are unforgeable
tokens that allow access to a resource. By requiring explicit delegation of rights, they support
the principle of least privilege. In addition, they allow for extremely fine-grained access control
while also supporting strong delegation properties.

However, the non-MCS selL.4 kernel did not extend this capability control of resources to time.
This was rectified in the sel.4 MCS kernel, introduced by Lyons 2018, explored in more detail
in

seL.4 has a number of design principles Heiser and Elphinstone [2016], that any addition or
extension to the kernel should follow. We focus on policy-freedom. This involves having as few
policy restrictions present in the kernel. System designers and users should then be able to define
system policies outside the kernel, in user level. This is a natural consequence of minimality,
while also making the kernel applicable to the widest possible range of situations.

The practical result of policy-freedom is that when designing the kernel, it is both acceptable
and desirable to move policy decisions out of the kernel and into user-space. However, this

22

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

must only be done when it would not unduly compromise the other goals of the system, such as
performance or security.

For the remainder of this chapter, we will exclusively discuss the seL4 MCS kernel.

4.2 Capabilities

sel4 is a capability-based OS, meaning that access to all resources is controlled via capabilities.
The first user-level thread started in a system is provided with capabilities that grant access
to all resources in the system. That initial thread is then permitted to allocate resources as
required.

Capabilities are tracked within capability space (cspaces). These consist of capability nodes
(cnodes), which are capabilities that contain capabilities. These may include capabilities to
additional cnodes, allowing for multi-level cspaces to be constructed. An individual entry in a
cnode is known as a slot in the cspace, which can either be empty or contain a capability to a
kernel object.

Capabilities have associated access rights, of which there are four: read, write, grant and grantre-
ply. These have different effects depending on which kernel object the capability provides access
to.

The kernel provides a number of system calls for interacting with and manipulating cspaces and
capabilities. First, there are some basic operations, move and delete. Move simply moves a
capability from one slot to another, while deletion removes a capability from a cspace.

New capabilities can be derived from an existing capability. A copy operation derives a new
capability with equal access rights as the original. However, it is also possible for the derived
capability to have diminished rights, which occurs via a mint operation. Minting also supports a
special type of derivation known as badging, the details of which we cover below in. A capability
can also revoked, which leaves the capability itself unaffected, but deletes any capabilities that
were derived from it.

4.3 Memory management

We now briefly outline the basics of sel.4s memory management. In line with policy-freedom,
in seL.4, memory is managed by user-level. Firstly, the kernel reserves a small amount of system
memory for its own use. The rest of system memory is then provided to the initial startup
thread in the form of untyped capabilities.

Untyped capabilities represent unused memory. These memory regions can be split into smaller
untyped capabilities, or retyped into kernel objects for use by threads. All memory used by

23

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

user-level threads, whether explicit kernel objects, or memory frames, must be retyped from
untyped capabilities.

4.4 System calls and invocation

selLl4 supports two broad categories of system calls. The first category is true system calls,
distinguished in the kernel by system call number. First, there is the Yield system call used
for scheduling, which we cover in more detail in section below. The other true system calls all
facilitate message passing, fundamentally consisting of sending and receiving. When performed
on endpoint and notification objects, this supports inter-thread communication, which we will
detail further in the following section.

However, it is also possible to invoke a send operation on a kernel object, which forms the second
category of system calls, object invocations. This sends a message with the kernel as the implicit
destination. The other parameters of the invocation are encoded in the message parameters. The
kernel then decodes these parameters to determine which should be taken. Where a response is
required, the user-level thread receives the kernel’s reply in the same format as a message from
another thread.

4.5 Scheduling

seL4 supports a kernel-based fixed-priority scheduler. However, the scheduling properties of
threads are split between two separate kernel objects. Threads themselves are represented by
Thread Control Blocks (TCB) and this contains the thread’s priority. However, a separate
object, Scheduling Contexts (SC) represent access to CPU time. For a thread to run its TCB
must have a SC bound to it. This binding is restricted to being one to one, only a single SC
can be bound to a TCB at any point.

We now describe SC’s in more detail, before further describing the behaviour of the kernel
scheduler.

4.5.1 Scheduling Contexts

Scheduling contexts are an abstraction for the allocation of CPU time, based on the sporadic
server algorithm. The fundamental parameters on an SC are its period 1" and total budget C,
where C' < T. The budget is the maximum amount of CPU time that the SC allows to be
consumed over the period.

SC’s support this behaviour with a queue of refills, analogous to the replenishments of sporadic
server theory. Each of these refills have an amount and a timestamp. The amount tracks how
much time a thread can execute for, while the timestamp tracks when that time is eligible for

24

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

use. There is a limit on the maximum number of refills a SC can possess, configurable by system
designers. This allows system designers to trade-off more accurate tracking of replenishments
with increased preemption overhead.

The sell4_Yield system call depletes the head refill of the scheduling context. This causes the
bound thread to not be runnable, triggering a reschedule. When the SC later has a refill released,
it becomes runnable again.

Capabilities to a scheduling context provide the right to bind and unbind that SC to another
object and check the amount of time consumed on the SC. Notably however, the SC capability
does not provide the right to set the SC’s budget or period. We recall that untyped memory can
be used to create any kernel object, and this includes scheduling contexts. Control of scheduling
properties needs to be restricted to allow strong enforcement of scheduling guarantees. Allowing
any thread with access to untyped capabilities to configure scheduling properties would be an
unacceptable compromise of this.

Instead, there exists a schedControl capability, which provides access to CPU time management
on a single core. Therefore, a distinct schedControl capability exists for each core. A schedCon-
trol capability can be used to set the scheduling parameters, such as budget and period of an
SC, however this binds the SC to that core, only allowing the use of CPU time on that core.

Scheduling contexts support a number of different scheduling behaviours. With the period set
to zero, SC’s operate in a round-robin fashion.

SC’s also support constant-bandwidth server behaviour. This strictly enforces the sliding window
constraint, where over any period T, the thread can consume no more than its budget. This
is in contrast to the sporadic server behaviour, which is additionally supported by SC’s. The
sporadic server mode allows the SC to continue to accumulate budget while preempted by a
higher priority thread. The sporadic thread can then use the accumulated budget to briefly
exceed the sliding-window constraint. SC’s can be toggled between constant-bandwidth and
sliding window behaviour when configured by the schedControl capability.

4.5.2 Kernel scheduler

The kernel scheduler supports 256 priority levels, (0-255), based on the priority set in the thread’s
TCB. All threads that are currently runnable, which means they are not blocked and have a
bound SC with a released head refill, are tracked in queues in the scheduler. The exception is
the currently running thread, as in many cases the currently running thread directly changes
state from running to blocked. By not keeping the currently running thread in the scheduler,
enqueue and dequeue operations can be avoided, improving performance. This is known as
Benno scheduling Heiser and Elphinstone| [2016].

25

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

Release queue

The release queue tracks threads which would otherwise be runnabled, except their bound SC
does not have a released head refill. The queue is ordered by the release time of the SC’s head
refills and a timer interrupt is programmed for the release time of the head of the queue. At
that point, the relevant SC will have a released head refill, so its bound thread is removed from
the release queue and placed in the scheduler.

4.6 Communication

selLl4 supports communication between threads both through IPC and notifications. IPC pre-
dominantly supports protected procedure calls, while notifications function as a synchronisation
mechanism. We explore IPC in more detail below, but we do not cover notifications in further
detail, as they do not significantly impact our work.

4.6.1 IPC

In sell4, IPC is facilitated by threads sending and receiving messages over endpoints, which
function as message ports. The payload of these messages are stored in an IPC buffer, of which
one is associated with each thread The message payload can consist of both data and capabilities.

When a sending and receiving thread meet on an endpoint, the kernel sends the message by
copying the contents of the IPC buffer from sender to receiver. This is known as an IPC
rendezvous. For efficiency, smaller messages are sent only using CPU registers, avoiding the
copy operation.

If a thread sends or receives onto an endpoint without a corresponding thread ready to ren-
dezvous, the thread can block on the endpoint. It remains associated with the endpoint, waiting
for another thread to later invoke the endpoint and trigger a rendezvous.

Multiple threads can be queued on an endpoint, if multiple threads invoke the endpoint in
the same manner without corresponding threads to rendezvous with. However, endpoints only
consist of a single queue, which contains sending threads or receiving threads as necessary. By
design, an endpoint cannot contain threads waiting to both send and receive, as these threads
would have rendezvoused with each other, rather than blocking and waiting on the endpoint.

Sending and receiving system calls are available in both blocking and non-blocking variations.
The blocking variations operate as described above, permitting the thread to block on the
endpoint if it cannot immediately rendezvous. In contrast, if there is not another waiting thread
immediately ready to rendezvous, the non-blocking variations do not perform the IPC and
continue execution.

In seL4, IPC should primarily be viewed as supporting protected procedure calls, whereby a
thread can invoke a procedure in a separate thread or protection domain. The fundamental

26

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

operations that support this are selL4_Call, invoked by the caller and then sel.4_ReplyRecv,
which is invoked by the callee. We briefly outline these operations.

e seL4_Call: Performs a send followed by a receive on the same endpoint. Blocks the thread
until the recipient replies. In addition, it sets up a separate reply channel that the server
can use to reply directly to the client.

e seL4_ReplyRecv: Replies to a client, then receives on the endpoint waiting for a new
request.

Other IPC invocations exist, including standalone sending and receiving invocations. However,
these are primarily used for system initialisation or exception handling.

Badging

Endpoint capabilities additionally have a badge associated with them. When a capability is
invoked to send a message to an endpoint, the kernel transfer the sender’s badge to the receiver.

A capability with a badge of zero is said to be unbadged and carries no specific meaning. However,
when an unbadged endpoint capability is derived, the child capability can have a badge set on
it. An example use is allowing a receiver to differentiate between multiple senders.

Finally, a badged capability cannot be unbadged or used to create further child capabilities with
a different badge.

Scheduling context donation

selLl4 also supports scheduling context donation, whereby the sending of a message can donate
its SC for use by the receiver. When the receiver replies, the SC is sent back with the return
message.

SC donation is not explicitly chosen by users, rather, if the sender uses an invocation that
supports it and the receiving thread does not have a SC bound to it, the sender’s SC will be
donated. Servers that do not have a SC are known as passive and receive scheduling contexts
via donation. Active servers possess their own SC and do not receive scheduling contexts via
donation.

Finally, as mentioned, scheduling context donation is only permitted via some system calls.
Specifically, those that combine sending and receiving in a single system call. Otherwise, a
client that donates its SC with only a sending invocation would then be unable to run as it no
longer possesses an SC. It would then be unable to perform the receiving invocation and could
not receive the reply that would return the SC. Similarly, a server could reply, returning the SC
to the client, but then be unable to run. The server would then be unable to invoke a receive
on the endpoint and be unable to process and further requests.

27

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

Therefore, SC donation is only permitted using the combined send and receive system calls.

Reply objects

Reply objects allow the recipient of a message (i.e. a server) to track the sender and later reply
to them. When a server receives on an endpoint, it must also provide a reply object. When
a client invokes a server over an endpoint using a sel.4_Call, the server’s reply object becomes
active, representing a reply channel back to the client. By invoking the reply object, the sever
can reply directly to the client.

A server can also call onwards to another server. This leads to a doubly-linked stack of reply
objects to be created, allowing the call chain to be tracked. If a scheduling context has been
donated, the stack of reply objects is used to track it.

Each reply object contains two pointers, used for tracking the reply stack in the usual manner
for a doubly-linked list. There is an additional pointer referencing TCB’s with two possible
meanings, depending on the thread’s state. The referenced thread can be receiving on an
endpoint, with the reply object ready to track the call stack. Alternatively, the referenced
thread is the reply target of the reply object. A reply IPC message will be sent to that thread
when the reply object is invoked.

Faults and exception handling

The TPC mechanism is also used to support exception handling for threads. All threads can
have two exception-handling endpoints associated with them, a standard exception handler and
a timeout exception handler. When a thread causes an exception, the kernel generates an IPC
message with the relevant details and sends it to the relevant endpoint. A thread waiting on
that endpoint to receive can then take an appropriate corrective action.

The standard exception handler covers errors where the thread can only be recovered with the
aid of another thread. For instance, if a thread accesses an unmapped virtual memory page, the
thread will only be able to continue if that page is mapped.

In contrast, timeout faults occur when a thread attempts to run but has no available budget.
Unlike standard faults, timeout faults do not need to be handled. If a thread does not have a
timeout fault handler, no fault message will be sent and the thread will continue running after
its budget is replenished.

28

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

Chapter 5

Approach

5.1 Goals

The primary goal of this thesis is to improve the model and implementation of the sel.4 MCS
kernel, originally developed by |Lyons et al. [2018]. Specifically, we aim to address issues with
the model that force inefficiencies and complexity on system built upon it. As we still desire
to retain the achievements of the original seL4 MCS kernel, we align our broad goals with the
original goals for that system.

Specifically, the system should support:

Capability-controlled enforcement of time

Policy freedom

Efficiency

Temporal Isolation

e Overcommitment

Safe resource sharing

We do however, emphasise that in line with the principle of minimality, the seL.4 MCS kernel
offers only a small set of features. It is not a mixed-criticality system in its own right, rather it
aims to be a platform to allow system designers to create secure, temporally isolated systems.
Therefore, policy freedom is a key goal, and it is both acceptable and desirable to leave policy
decisions to system designers where possible.

29

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

5.1.1 Scope

We also outline the scope of this thesis, in particular focusing on items that will be out of scope
and left for future work:

e Multiple processing cores: In this thesis we will focus on single-core processors. Multi-
ple cores can require more complex resource control and synchronisation, complicating
scheduling analysis.

e Variable processor speed: Processors with variable clock speed can mean that CPU clock
cycles are not a consistent length of time. This leads to additional challenges with bench-
marking and comparing performance.

e Verification: The aim is for the sel.4 MCS kernel to be verified, just as the baseline sel.4
kernel was Klein et al. [2009]. This will be taken into consideration when evaluating design
choices, however, the actual task of verification is beyond the scope of this thesis.

This thesis will instead focus on investigating and a resolving a number of key issues present
within the kernel, presented in the next section.

5.2 Assessment of Issues

In this section we present some current issues with the sel.4 MCS kernel along with a discussion
of some potential solutions.

5.2.1 Budget Expiry in Passive Servers

We recall that the seL4 MCS kernel supports passive resource servers, commonly used to en-
capsulate shared resources. They generally do not run on their own, but instead operate on
behalf of other tasks. As passive servers, these do not have their own budget, but are donated
budget by the task they are operating on behalf of. If a passive server runs out of budget while
executing, there are three broad options available to the system:

e Do nothing: This is the simplest option and is the default behaviour. When the scheduling
context associated with the passive server is replenished at its next period, the server will
be able to run again. While this may be acceptable for some systems, it is not appropriate
for a server shared by clients of mixed criticalities. This is because any other tasks that
require the shared resource will be blocked while the server is waiting for the budget to
replenish. This can lead to a significant increase in the blocking time of tasks in the
system. Crucially, this can cause a high-priority task to be dependent on a low-priority
task, breaking the isolation between criticality levels that we desire sel.4 to support.

30

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

e Supply additional budget: Through a thread’s timeout exception, another thread can be
informed when the passive server exhausts its budget. Provided this thread has appro-
priate privileges, it can provide additional budget to the server, allowing it to continuing
executing. If the task using the passive server is a high-criticality task, this may be the
most desirable option. However, lower-criticality tasks that exceed their allocated budget
are violating their contract with the scheduler. It is preferable to not reward tasks that
violate their contract.

e Revert the server: Some passive servers can be easily restored to a previous clean state.
This allows the server to be used by other tasks. However, reverting the server has a non-
zero cost and not all resources support revertion. Further, this requires that all operations
involving the passive server follow a transaction model, whereby each operation can be
reverted and restarted if required. This enforces policy on user level, which violates one
of the selL4 design principles.

While there are options that can be taken when a task’s budget expires inside a passive server,
all of them have limitations. Ideally, we would prefer to prevent budget expiry from occurring
inside passive servers altogether.

One option for supporting this is enforcing a minimum budget that a task must possess to be
able to enter a passive server. These properties should be configurable at user level, but if the
minimum budget was set to the passive server’s WCET, then budget expiry inside the server
could be prevented. The check for sufficient budget would most likely need to be implemented
on the IPC kernel path. Further, a policy decision exists regarding how tasks that attempt to
access a resource with insufficient budget should be handled. This policy decision should be
made at user-level, but some options the kernel could support include:

e An exception handler, allowing a user-level fault handler to intervene.

e Block the thread associated with the task until its budget is replenished and exceeds the
required minimum budget.

e Return to the task with an error indicating insufficient budget available and allow the
calling task to decide what action to take.

5.2.2 Bounding Priority Inversion

Priority inversion is an unavoidable consequence of sharing resources within a system. The pro-
tocols presented in prevent priority inversion from becoming unbounded. However,
with the IPCP protocol, when a low-priority task accesses a resource, intermediate tasks between
the ceiling priority and the low-priority task will be blocked, even if they have no dependence on
the resource. Currently, the bound on this blocking time is length of the single longest critical
section associated with the resource. Once any critical section ends, the task’s priority should
drop down from the ceiling priority and the intermediate task will be able to pre-empt it. How-
ever, when determining the worst-case response time of tasks, this contribution to the blocking

31

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

time from resource-based priority inversion must be considered. Therefore, it can be desirable
to introduce kernel-enforced bounds on priority inversion caused by resource access.

We additionally reframe this issue from an alternate perspective. Currently in sell4, clients of
a passive server must completely trust that server. For example, whether maliciously or due to
an error, if a server never replies to the client, the server can keep and run on the client’s SC
indefinitely. Introducing a kernel mechanism that limits the time a server can consume on a
donated SC would reduce the trust needed in a system, making it easier to perform schedulability
analysis on a system.

We present the existing solutions that have been proposed:

e Nothing: Doing nothing is not strictly a solution. However, all other solution protocols
are likely to introduce some form of performance overhead. Therefore, on a sufficiently
congested system it is possible that doing nothing is the best solution.

e OPCP: The original priority ceiling protocol can result in reduced preemption by delaying
the priority boost. However, the need to track global state significantly complicates the
protocol and can lead to greater overhead. An implementation of OPCP in user-space has
already been demonstrated [Lyons| [2018], however it is possible that better kernel support
would improve the usefulness of OPCP. However, this could compromise on policy-freedom,
as a kernel implementation of OPCP may strongly lead to it being the preferred policy.

Unfortunately, the global state of OPCP would almost certainly compromise confidential-
ity between tasks if supported in the kernel. The system ceiling of OPCP restricts all tasks
in the system from locking resources. Two otherwise isolated subsystems could then po-
tentially communicate by manipulating the system ceiling and then testing whether they
can acquire a lock. This would violate confidentiality and isolation and therefore, we do
not consider OPCP to be a viable option.

e Resource scheduling contexts: Resource scheduling contexts (RSC) were introduced by
Millar Millar| [2021]. They are a variation upon scheduling contexts designed for use with
passive resource servers. We recall that the current model of SC donation occurs when
a server does not possess its own SC. The caller’s SC is then transferred to the server,
allowing it to run.

In contrast, RSC’s are designed to be permanently bound to passive servers. RSC’s are
configured with a maximum budget, however, this is not automatically replenished based
on a period. Therefore, the sever is still passive, as it can only receive budget and run via
donation. Donation still occurs when the server is called by a client, however RSC donation
is distinct from normal SC donation. Rather than the client’s SC being transferred in its
entirety, the caller’s SC and the RSC become linked. The server with the RSC is then
permitted to consume up to the minimum of the donating SC’s available budget and
the RSC’s maximum budget. Therefore, the server can consume no more budget than is
available in the donating SC, in line with the scheduling properties required by donation.
However, the RSC’s maximum budget also restricts the maximum continuous time that
the server can run for. When the server replies to the client, its usage is charged against
the clients SC and the RSC forfeits any remaining budget it holds. Thus, in line with the
passive server model, it is unable to run until another client donates some budget.

32

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

As a result, the RSC’s maximum budget restricts the maximum continuous time that the
passive server can run for. This limits the blocking time that can be caused by the passive
server.

However, it is possible that when the RSC’s budget depletes, the critical section has not
completed. It is not fully clear what would happen in such a situation. The resource server
would be unable to run as it has no budget and will not be replenished automatically, while
the original task would be blocked waiting for a reply from the server. This would need to
be resolved by an external process. This specific issue is permissible, as it would be up to
system designers to prevent such a situation from occurring. However, it would make the
system more complex and would need demonstrable benefits to be worth the trade-off. In
general, as outlined above, budget expiry in a passive server is preferably avoided.

This model also associates thread priority with scheduling contexts, rather than TCB’s.
This priority is therefore only settable using a schedControl capability, which we recall
is used to configure all scheduling properties of a SC. The model also restricts donation
to only be permitted to RSC’s with a higher or equal priority than the original SC, to
prevent the task from being pre-empted by lower-priority tasks. We do note that this
is a restriction on policy freedom, while also being relatively straightforward for system
designers to enforce at user level.

The schedControl capability is also changed under this model. In line with its additional
role of setting priorities, it would possess a maximum controlled priority (MCP). This is
the maximum priority that a particular schedControl capability can configure on a SC or
RSC. Presumably, when schedControl capabilities are derived, the child capabilities MCP
can be set to less than or equal to the original capability. This would allow for weaker
schedControl capabilities to be created that only have the privilege to affect the system
below a certain priority level.

Further, this model would require switching scheduling contexts upon every IPC, which
would result in performance degradation due to the overheads involved. In particular, every
time the active scheduling context changes, the consumed budget needs to be charged to
the previously active SC. The existing model of SC donation avoids this overhead as the
active SC remains the same, it is simply passed between the client and the server.

33

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

Chapter 6

Design and Implementation

6.1 Budget Expiry in Passive servers

We now present our design and model for preventing budget expiry from occurring within a
passive server.

Our goal is to support better scheduling behaviour, in particular by preventing blocking time
caused by budget expiry within passive servers. As outlined in [subsection 5.2.1] this issue
can be addressed reactively through timeout handlers. However, we believe that a proactive
solution, preventing budget expiry from occurring is a superior option. We therefore propose the
introduction of a threshold to IPC, a minimum budget required to complete an IPC operation.
By setting this threshold to the WCET of a passive server, we could completely eliminate budget
expiry.

Our core design goals are:

Policy freedom: As far as possible, not restrict the possible designs that can be implemented
by system designers and users.

Minimality: In line with the microkernel principle of minimality, we seek to keep the kernel as
simple as possible while implementing the required behaviour.

6.1.1 Thresholds

There are a number of design choices associated with the threshold itself:

e Which kernel object should a threshold be associated with?
e What do we consider a thread’s available budget?

e How should thresholds be configured?

34

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

We investigate these design options in the following sections.

Thresholds and kernel objects

There are two main candidates for kernel objects that can be associated with the threshold:

¢ Endpoints

e The server’s thread control block

A sensible choice for the threshold value would be the WCET of the passive server. This value
would ensure that the server always has sufficient budget to complete its execution and would
prevent budget expiry from occurring. However, to maintain kernel minimality, we leave the
responsibility of determining the correct threshold value to system-designers. This additionally
supports policy-freedom, by allowing system-designers to set the threshold as desired.

This link with the server’s WCET most naturally lends the association of the threshold with
the server’s TCB. Unfortunately, this can lead to a long-running kernel operation which we now
illustrate with an example.

We will cover the specific details of how the kernel handles clients with insufficient budget below.
For now, we assume that clients with sufficient budget are allowed to proceed with the IPC,
while other threads are delayed until they accumulate sufficient budget.

We consider an endpoint with no server waiting on it, but n clients queued to send. When a
server then receives, the kernel needs to check each client’s available budget against the server’s
threshold before allowing the IPC rendezvous to occur. Potentially, all n threads would need to
be checked, if the first n — 1 clients had insufficient budget, but the final thread was sufficient.

We can avoid this long-running kernel operation by associating the threshold with the endpoint.
This allows the budget check to occur before the client is permitted to enter the endpoint, either
rendezvousing with a waiting server, or enqueuing on the endpoint queue. As the kernel only
needs to check the budget of a single thread at a time, the long-running operation is avoided.

On a single-core system, there is typically a single passive server associated with an endpoint.
Therefore, the link between the threshold and the server’s WCET remains clear. Where there
are multiple servers on a single endpoint, setting the threshold to the maximum WCET of the
servers would work well. Further, multiple servers receiving on an endpoint must be equivalent
and therefore would very likely have similar WCETSs regardless.

Therefore, we choose to associate threshold values with endpoints as this avoids a long-running
kernel operation, with only minimal impacts on system designers.

35

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

Endpoint object vs capability

Now that we have decided on making the threshold a property of endpoints, we must further
decide between the endpoint capabilities or the objects themselves. The principal distinction
is that there is only a single underlying kernel object, but potentially multiple capabilities,
distributed out to multiple threads. Associating the threshold with the object itself would
support only a single threshold value which all clients must obey.

However, as each thread must possess an endpoint cap, thresholds associated with the caps
would allow for system designers to assign different thresholds to different threads. Different
endpoint capabilities could be badged to access different operations provided by the passive
server. These operations could have different WCETs and thus there may be a use case for
different threshold values for different capabilities.

Another possible use would be setting a lower threshold for a critical client, to ensure that it can
enter the endpoint. However, we argue that in this case, the correct design would be to allocate
that client more budget, rather than reducing the endpoint threshold for it. This is because
setting a lower threshold does not guarantee that that client will be successfully served, rather
it creates the possibility of budget expiry.

Both the endpoint object and the endpoint capability would need to be increased to size to store
the threshold value. This is straightforward for the endpoint object and its size can be increased
with no major repercussions. However, all capabilities share a common size. This is required
so that capability nodes can hold any capability within their slots. Therefore, increasing the
size of endpoints caps would require increasing the size of every capability. As all sizes in sel.4
work with powers of 2, capabilities would need to be doubled in size, which would double the
memory footprint of the entire capability system. The majority of this space would be unused
and wasted. This would also require moderate changes to the kernel to increase the size of
all capabilities. These changes, if implemented, would compromise on simplicity and kernel
minimality.

Overall, we choose to associate the threshold with the endpoint object. This is a modest restric-
tion on user policy-freedom, with regards to setting different thresholds for different operations
of a passive server. However, implementing thresholds on endpoint capabilities would require
moderate changes to the kernel, which we currently consider an unacceptable compromise of
minimality in light of the potential benefits. However, if in future the benefits are considered to
outweigh the drawbacks, we believe its implementation is fairly straightforward.

Calculation of available budget

We recall that the available budget in a scheduling context is composed of a number of refills.
It is possible that a client has multiple released refills, which must all be summed together to
calculate the clients total available budget. This means that the maximum number of refills,
which are configured from user-level, affects the kernel’s worst-case execution time.

36

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

While this is not ideal, we believe this is the only viable option. The alternative would be to
only consider the budget in the head refill when comparing against the threshold. This would
limit the kernel time spent checking available budget to a constant time operation. However,
this design has some unacceptable compromises that we now illustrate with an example. In the
following section we will cover in detail the behaviour of threads with insufficient budget. For
now, we assume the client threads are blocked until they have sufficient budget.

We consider a client thread that calls in to a thresholded endpoint. It has multiple released
refills, the sum of which is sufficient, but the head refill alone is insufficient. As the head refill is
insufficient, the thread will initially be rejected and blocked. The normal behaviour for blocked
threads is to have their refills merged, which will lead to the head refill having sufficient budget.
This would then lead to the thread being permitted to enter the endpoint.

There are a number of issues with this example where we only check the budget of the head
refill. First, it imposes an extra constant-bandwidth restriction. At all points in the example,
the thread possessed sufficient budget, yet its refills were merged and deferred regardless. This
violates the sporadic server algorithm and negatively affects schedulability analysis.

Secondly, the time savings from checking only the head refill are made irrelevant. Once the
thread blocks due to insufficient budget, all the refills need to be merged regardless. This is
again a kernel operation dependent on the maximum number of refills.

We therefore conclude that summing all the released refills is the best option. While the kernel
WCET becomes dependent on the maximum number of refills, there are some mitigating factors.
The privilege to set the maximum refills of a SC is restricted to the schedcontrol capability and
does not need to be widely distributed. Therefore, a static analysis of the contribution to the
kernel WCET from this behaviour will still be possible.

6.1.2 Behaviour with insufficient budget

We now consider the behaviour that occurs when a client thread calls into an endpoint with a
threshold set. Before continuing, we clarify our terminology:

e Available budget: Sum of the budget in released refills.
e Maximum budget: Maximum budget that can be held in the client’s SC.
o Sufficient budget: A client’s available budget exceeds the thresholds.

¢ Insufficient budget: A client’s available budget is less than the threshold.

If a client calls into the endpoint with sufficient budget, the IPC operation continues normally.
A client that calls with a maximum budget less than the threshold will be rejected immediately
with an error returned to the user. However, if the available budget is insufficient, but the
maximum budget is greater than the threshold, we have a number of options regarding how the
system should behave:

37

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

1. Fail the IPC immediately and return to the user.
2. Wait until the thread has sufficient budget, then return to user level.

3. Wait until the thread has sufficient budget, then complete the IPC operation without
explicitly returning to the user.

Options 1 and 2 have the benefit of allowing clients to choose how they wish to handle failed
calls due to insufficient budget. For instance, clients could try and use their remaining budget
to perform another operation before retrying the call. However, clients may not have sufficient
budget to complete another operation or may not have other useful work to perform. Further,
such a change would disrupt the existing model of call invocations as analogous to function
invocation. Unlike function invocations, calls may need to be retried, not due to a parameter
error, but simply insufficient budget. Therefore, we consider it an acceptable compromise of
policy-freedom to not allow clients to choose alternate behaviours upon a failed call.

We also note that the main behaviour for clients in option 1 would be to wait for sufficient
budget and then retry the call invocation. This wait operation would need be implemented as
a system call, as a thread’s available budget is known only to the kernel. Therefore, regardless
of the chosen option, a kernel mechanism to wait for sufficient budget needs to exist. Once
this mechanism exists, it is trivial to configure the kernel to invoke it automatically after an
invocation with insufficient budget. Further, a kernel mechanism for restarting system calls
already exists. Therefore, the additional kernel complexity to implement option 3 over option 1
is small.

As a result, we choose option 3 for its superior user experience, no major restrictions on policy-
freedom and minimal additional kernel complexity.

Waiting for sufficient budget

As detailed above, a kernel mechanism needs to be provided to allow threads to wait until they
possess a certain amount of budget

First, we note that the existing yield system call is unsuitable for this use. We illustrate this
with an example in [Figure 6.1} Consider a thread with a bound SC, where the maximum budget
is 100 units, currently split into two refills of 50 units each. Finally, the thread bound to SC
requires 60 units of available budget, to pass a threshold.

If the existing yield system call is used, we recall that it depletes the head refill and schedules
it for replenishment one period later. As this will not cause refills to be merged, this does not
guarantee that the thread will have sufficient budget in the future. In the example presented,
even after yield is called, there are still two refills with 50 units of budget each, which are
insufficient to pass the threshold. Therefore, we must introduce a new kernel mechanism.

There are two broad alternatives we could pursue:

38

Mitchell Johnston Strengthening scheduling guarantees of seL4 MCS with IPC budget

limits
1N
T

(a) Before Yield is called.

EN-
:

(b) After Yield is called.

v

Figure 6.1: An illustration of the yield system call. Shows the state of SC refills before and after
Yield is called.

1. The first option is to leave the SC refills untouched. Then, we would create a separate
mechanism that would keep the thread blocked until future refills are released such that
its total budget becomes sufficient.

2. The second option is to immediately defer and merge the SC refills such that a single refill
with sufficient budget is created in the future. When the thread resumes running on that
refill it will have sufficient budget.

The first option would require us to create a new blocking mechanism to keep the thread blocked
until it has sufficient budget through the release of (potentially multiple) refills. The existing
release queue waits for the release of a SC’s head refill only. Once a thread’s SC has a valid
head refill, the thread is moved into the scheduler. However, when we consider thresholds, it
is possible for a thread to have a released head refill that is insufficient and still need to wait
for the release of additional budget. This would require either significant modification to the
existing release queue, or a new additional release queue with different semantics. Both of these
option would introduce additional kernel complexity.

In contrast, the second option allows us to implement our desired behaviour using the existing
scheduler mechanisms. We would immediately defer and merge refills until the SC’s head refill,
at some point in the future, contains sufficient budget. Then, the thread would not be runnable,
as its SC would not possess a released head refill. The thread could then be inserted into the
existing release queue and, once the head refill is released, become eligible for scheduling. By
configuring the kernel to then restart the IPC operation, the thread should now have sufficient
budget to succeed. By avoiding the need to introduce a new queue, this approach better aligns
with kernel minimality.

39

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

E-I-B- ,

T

(a) Initial state
T

(b) Merging successive refills

v

v

125

T

(c) Deferring a full period

Figure 6.2: An illustration of the two options for deferring budget. Shows the state of SC refills
before and after budget is deferred for the two options.

We choose option two due to its much simpler implementation requirements, with minimal
drawbacks. Now that we have decided to defer and merge refills immediately, there are again
two options of how this can be performed:

1. Merge successive refills until a refill with at the least desired budget is created.

2. Remove all refills and create a single refill, 1 period in the future with the SC’s full budget.

We illustrate these two options in We show refills for a SC with a total budget of
125, fragmented into multiple refills. The SC needs its budget merged up to 100 units of budget.
Part (b) of the figure shows the final state after successive refills are merged, only up to the
required amount. Part (c) of the figure shows the final state where the budget has been deferred
a full period.

The first option will allow threads to execute earlier, as they will be allowed to run once their
released refills would have sufficient budget. In contrast, the second option would cause us to
always defer threads for a full period of their SC. This would be equivalent to the worst-case
for the first option. However, while the worst-case behaviour is equivalent, our average case
performance will be superior for the first option.

The trade-off we need to consider is the kernel time required for these operations. The first

option has a kernel run-time dependent on the maximum number of refills in the thread’s SC.
The second option would instead be a constant time kernel operation.

40

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

An increased kernel WCET dependent on the maximum number of refills is not ideal. However,
we recall that checking the available budget of the thread is also dependent on the maximum
number of refills. Therefore, the additional kernel complexity required for option two is relatively
minor, with potentially significant average-case performance benefits.

Additionally, we choose to make this new behaviour of deferring and merging refills explicitly
available for users as system call. As we already need to implement this for internel kernel oper-
ations, providing it to users as a system call requires minimal additional complexity. Therefore,
we introduce a new variant of yield, which we call seL4_YieldUntilBudget. This accepts a single
parameter, whereby threads can specify a desired quantity of budget that the kernel will merge
and defer until a refill is created with that quantity of budget. If the requested budget is greater
than the SC’s maximum budget, an error is instead returned to the user.

6.1.3 Thresholds - revisited

We now revisit some finer details of thresholds, specifically how we permit users to configure
them and which invocations can be performed on an endpoint with a threshold set.

Also, we expect that endpoint thresholds will involve some overhead on the IPC path, even when
threshold behaviour is not enabled on that endpoint. To avoid imposing a performance penalty
on systems that do not make use of thresholds, we place threshold support for the kernel behind
a compile flag. This should reduce the performance impact on systems that do not use threshold
behaviour. However, we choose to make the new seL4_YieldUntilBudget system call available
to all builds, regardless of whether they compile threshold support into the kernel.

Configuration of thresholds

The key design choice is how we should permit thresholds to be configured:

e Set during endpoint creation and unchangeable afterwards.

e Configurable by users at any time via a system call.

We believe it would be a rare occurrence for a server’s WCET to vary during the execution of
a system. However, we concede that it is not impossible. As we expect the threshold value to
be based on the WCET of a passive server, there should generally be no need for it to change
while the system is running. Nevertheless, if we can support varying the threshold value at any
time, without excessive compromising of kernel minimality, that would be preferable.

Supporting arbitrary configuration by users is possible, but we must impose some restrictions.
Firstly, only a subset of capabilities to the endpoint should possess the right to set the threshold
value. Otherwise, any client could reduce the threshold value before calling, which would effec-
tively invalidate the protection the threshold provides. Unfortunately, none of the existing rights
on capabilities (send, receive, grant and grandReply) map to the privilege of setting a threshold

41

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

value. To avoid needing to introduce a new right on capabilities, maintaining minimality, we
choose to restrict this privilege to the original unbadged endpoint capability.

When considering arbitrary threshold changes by users, we must also consider how the changes
in threshold value will be propagated to threads that are associated with the endpoint. For
instance, if the threshold value is increased, should threads that are already enqueued on the
endpoint have their available budget checked against the new threshold value? Also, consider
a thread that previously had its budget deferred, but after the threshold value was decreased
its available budget would have been sufficient. Should that thread now be enqueued on the
endpoint immediately?

Given that we expect changing a threshold value after initialisation will be an exceedingly rare
operation, we choose to prioritise kernel minimality and simplicity. With this consideration in
mind, we decide on the following design. We permit the threshold value to be changed by user-
level at any time, however only the thread possessing the original unbadged endpoint capability
has this right. In line with minimality, we decide that any threads enqueued on the endpoint
or that have had their budget deferred will not be immediately affected by the threshold value
change. Those threads will only interact with the new threshold value when they next attempt
to invoke the endpoint.

To support this, we introduce a new system call for setting the threshold of an IPC endpoint
”sel4_Endpoint_SetThreshold”. We recall that sel.4 system calls are divided into true system
calls, recognised by the kernel, and object invocations, which are invoked via a message passing
system call on an object, with the kernel as the implicit recipient. Nearly all existing config-
uration system calls fall into the latter category, however this direct approach cannot be used
for endpoints. The kernel has no way of distinguishing whether a sending invocation on an
endpoint is intended as a system call or simply a normal message that happens to have the same
parameters. We wish to avoid placing restrictions on messages that can be passed via IPC, so
we must use this alternate approach.

This model allows users the freedom to change threshold values at any time, allowing us to
support cases where this may be desirable, even though they may be rare. As we can support
this without requiring significant increased kernel complexity, we settle on this model over only
allowing configuration upon endpoint creation.

Permitted invocations

Currently, a client could invoke a passive server using a system call that does not permit SC
donation. The IPC rendezvous would still occur, but the SC would not be donated. The passive
server would therefore be unable to run, causing similar issues to budget expiry.

As our desired behaviour for endpoint thresholds is that passive servers are protected from
budget expiry, this is unacceptable. To address this, we also place a restriction on the invocations
that can be used to invoke an endpoint with a threshold set. Specifically, we only allow sending
invocations that permit SC donation. Other invocations fail immediately and return an error

42

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

to the client. However, we place no restriction on what invocations can be used to receive on an
endpoint with a threshold set.

6.1.4 Summary

We now present a summary of the design choices that we have made.

We have introduced a new threshold onto endpoints, associated with the object. By default, the
threshold would be set to zero and in this state it would have no effect. This threshold value can
be set using a new invocation, however, only the original unbadged endpoint capability possesses
this right.

When an endpoint has a threshold set, threads are only allowed to send on the endpoint using
invocations that permit SC donation. After a thread invokes a send operation, the available
budget in the thread’s SC is compared to the threshold value. If the available budget is sufficient,
then the IPC continues as normal.

However, if the budget is insufficient, the refills in the SC are deferred and merged into a single
refill that exceeds the threshold. The thread is then placed in the scheduler release queue to
wait until this new head refill is released. At that point, the IPC invocation is retried by the
kernel in a manner transparent to the thread. If instead the maximum budget of the SC is less
than the threshold value, an error is returned to the calling thread.

We present a flowchart of this in

6.2 Passive server budget limits

In this section, we present a design that aims to limit the budget that a passive server can
consume on a donated scheduling context. This will both bound priority-inversion and reduce
the trust that clients must place in passive servers that they call.

6.2.1 Desired semantics

We base our design on the threshold behaviour presented above, proposing an extension to
support the desired properties. We extend the meaning of endpoint thresholds, such that they
can additionally represent a limit on the budget that can be consumed on the SC before it is
returned to the client. We refer to this restriction on budget consumption as a budget limit.

If the passive server consumes more than this limit, we consider this to be a budget overrun
and the kernel will forcibly return the SC to the client. The client will have its IPC aborted
and an error message passed to it from the kernel. This may leave the server in a stuck state,
so we would invoke the server’s timeout handler to restore the server to a sane state. We note

43

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

|

Client sends on endpoint

}

IPC transparently retried

No Threshold set Maximum
on endpoint budget . Budget deferred and
greater than Yes merged
Yes threshold
No l
Yes Available Thread added to release
— budget exceeds queue
threshold
No \
Error returned to client Head refill released —

IPC continues

Figure 6.3: A flowchart of the processes that occur when an IPC is invoked on an endpoint with
a threshold.

that we consider the guarantee to be between the SC and the client. Even if the SC is further
donated to other servers, the guarantee between the SC and the original client should remain
in effect. These semantics should ensure that a server can consume no more budget than the
budget limit, bounding priority inversion caused by servers.

We note that we consider the threshold value to be the maximum budget that the server is
permitted to consume. Therefore, the client will observe slightly more budget consumed on its
SC, as a result of the kernel execution time involved in the IPC operation.

Additionally, the budget limit behaviour should be an optional extension of the threshold be-

haviour above. System designers should be able to choose whether an endpoint enforces solely
threshold behaviour, or threshold and budget limit behaviour.

6.2.2 Configuring budget limit behaviour

We recall from the previous section that thresholds are individually configurable on endpoints.
We now consider how we can permit system designers to enable budget limit behaviour on
endpoints with thresholds set.

There are three broad options for how we could permit budget limits to be configured.

1. Configurable system-wide.

44

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

2. Configurable on each endpoint object.

3. Configurable on endpoint capabilities.

We consider the first option to be an excessive restriction on policy-freedom. Especially when
considering servers of mixed-criticalities, it may be desirable to enforce differing strengths of
guarantee on them.

We recall from the previous section that we decided to associate thresholds with endpoint objects
rather than capabilities. We primarily chose this design as there was insufficient space to store
the threshold value in the capability. However, unlike thresholds, a budget limit toggle requires
only a single bit of space. Therefore, these could be accommodated within endpoint capabilities
without requiring them to be increased in size.

This supports better policy-freedom, without the major implementation compromise that would
occur if thresholds themselves were stored in endpoint capabilities. We therefore decide to
associate the budget limit toggle with endpoint capabilities, allowing greater freedom for system
designers.

However, we believe that it is not a reasonable design for budget limits to be set more granularly
than threshold values. One of the goals of budget limits is to bound priority inversion. This
bound will only be effective if it applies regardless of which client is calling into the passive server.
If there is a client that can call into the passive server without budget limits in effect, it can
cause longer priority inversion than the expected bound. Therefore, the scheduling guarantees
offered would be significantly weakened. As a result, we consider the best design to associate
the budget limit toggle with the endpoint object

However, if in the future, endpoint thresholds are moved to endpoint capabilities, then it would
be natural for the budget limit toggle to also be moved with them. The obligation would then
rest with system designers to ensure the budget limit is enabled if a bound on priority inversion
is desired.

6.2.3 General design

For a single client and server pair, the implementation of our desired semantics is relatively
simple. Reply objects are already used to track donated SC’s, so we extend them with a new
sub_budget field. Additionally, we add a field to SC’s that tracks the budget consumed on it,
along with a boolean that marks the SC as having budget limits enabled. When the client calls
into the server over an endpoint with a threshold with budget limits enabled on the capability,
the SC’s consumed budget tracking is reset to zero, and it is marked as having budget limits
enabled. Additionally, the reply object’s sub_budget is set to the threshold value. If the SC’s
consumed budget reaches the sub_budget set in the reply object, the SC is returned to the
client. The IPC operation is aborted, and then an error is returned to the client. Once the SC
is returned to the client, regardless of the means, it is marked as no longer having budget limits
enabled.

45

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

We now consider how this design would support nested calls, where in all cases we assume
that SC donation is occuring. For brevity, we refer to an endpoint without a threshold set as
a normal endpoint and an endpoint with a budget limit enabled as a limit endpoint. First,
two nested call over normal endpoints do not require any specific behaviour, so this case is
straightforward. No changes are required to support this case. Next we consider the behaviour
where a server is first invoked over a normal endpoint, which then calls over a limit endpoint.
As the call over the normal endpoint does not require any form of guarantee, we can treat this
case effectively identically to the single client and server pair. The call over the limit endpoint
requires a guarantee to enforced, but the original call over the normal endpoint does not impact
the guarantee.

When we explore the case of two nested calls over limit endpoints, the situation is slightly more
complex. We consider a client C' that calls over a limit endpoint into a server s;, that then
again calls into a server sy over a limit endpoint. In this situation, we restrict s; to only be able
to call into so if s1’s remaining budget limit exceeds the threshold. We consider this a natural
interaction, as the budget limit represents the budget that s; has available for use before the
SC must be returned to the client C. This necessarily limits the second threshold value to be
less than the first threshold value. There are two budget guarantees in effect, both to C and s,
that operate independently. If so exceeds its budget limit, the SC will be forcibly returned to
s1, which will be allowed to continue running normally up to its own budget limit. If s; then
exceeds its budget limit, then the SC will be forcibly returned to the client C.

With this design, the budget limits and guarantees of both the limit endpoints are enforced.

The final case involves an initial call over a limit endpoint, followed by a call over a normal
endpoint. We again consider a client C calling over a limit endpoint into a server si, then sy
calls over a normal endpoint into so. In this case, there is a budget limit guarantee made only
to C. If the budget limit is exceeded, the SC should be returned to C, regardless of whether it is
bound to s; or s9 at the time. If a budget overrun occurs in so, the SC will be returned directly
to C', skipping over s;. We therefore consider it necessary to invoke the timeout handlers of
both s; and s2, as otherwise the servers could be stuck and unable to receive new IPC messages.

However, this poses implementation issues. Reply objects form a doubly linked list, but only
contain a reference to the thread directly prior in the call chain. In this example, the reply
object associated with so would only contain a reference to s;. Therefore, when we consider
how to return the SC to the client C, we have 3 broad options.

1. Walk down the reply stack to find the relevant thread.
2. Add direct return pointers to reply objects.

3. Prevent this call structure from occurring.

The first option requires no additional object changes as it involves iterating down the reply
stack until the relevant thread is found. However, the kernel execution time for this operation
is O(n) based on the size of the reply stack. Additionally, our design requires that the timeout

46

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

handler for each thread skipped over to be invoked, until the thread the SC is returned to is
found. This design would lead to longer kernel execution times and potentially multiple timeout
handlers all running consecutively. This could result in significantly increased response times
for the client thread, as a budget overrun would require a long set of operations before the
client can run again. These issues reduce the usefulness of the budget limit for protecting clients
from servers, as the scheduling guarantees it offers to clients are weaker. Overall, while this
design is simple, we consider a kernel execution time heavily dependent on user level parameters
undesirable and therefore consider other solutions.

The second option involves add a direct pointer from each reply object which references the
thread that the budget limit guarantee is made to. When a budget overrun occurs, this direct
pointer would theoretically allow for an O(1) operation to handle the overrun. Notably, this
allows us to find the thread the SC needs to be returned to without walking the reply stack.
However, we do still need to walk the reply stack in order to invoke the timeout handlers of all
the intermediate threads. Therefore, that requirement means that this design is not a major
improvement from the first option.

Further, seL4 maintains a general symmetry, where if an object X contains a reference to Y,
that object Y must contain a reference to X. This helps during the deletion of objects, to ensure
that all references are cleaned up before the object is deleted. However, with the second option,
there could potentially be many reply objects that all reference a client TCB. Therefore, it is
not possible to store back references to all the reply objects and this option is not feasible.

The third option involves imposing a restriction on IPC to ensure that the call stack grows in
a manner that we can account for. We saw above that the only problematic case is where a
thread is first invoked over a limit endpoint and then calls over a normal endpoint. To prevent
this, we create a restriction that a donated SC with a budget limit enabled can only be donated
further over an endpoint with a budget limit set. When considering whether donation should
be permitted, the kernel will additionally compare the threshold value against the remaining
budget limit and only permit it if the budget limit is greater. We do not enforce any restriction
on calling active servers. In a call chain that does not involve any endpoints with budget limits
enabled, this change would have no effect. In that situation, threads would be free to donate
SC’s over any endpoint. However, once the SC has been donated over an endpoint with a budget
limit set, that SC can only be donated further over other endpoints that also have thresholds
set.

The basic effect of this is that servers invoked over endpoints with budget limits can only further
call other servers over other budget limit endpoints. We note that this restriction does not apply
to endpoints with thresholds where the budget limit is disabled.

We first consider how this restriction resolves the issue we encountered earlier. We consider an
example of servers si, so, s3..5, all calling the subsequent server, where a budget limit is in effect
and SC donation is occurring. If budget overrun occurs in any server s, then the server that
the SC should be returned to is always s,_1, exactly one level down. This avoids the need to
either walk the reply stack or maintain an additional pointer reference.

Calling into an active server involves a separate SC, on one where the budget limit behaviour is

47

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

not enabled. Therefore, we do not need to impose any restriction on calls into active servers.

The primary downside of this approach is the significant restriction of policy freedom, limiting
how system designers can construct servers that communicate over IPC. However, we argue
that in a time sensitive system, the restriction we impose is not unreasonable. We now explore
the designs that we are restricting and consider the alternatives that are available to system
designers.

First, the presence of an endpoint threshold and budget limit signifies that the server receiving
on that endpoint has time guarantees associated with it. Specifically, the server is making a
guarantee that the donated SC from the client will have at most ‘threshold’ budget consumed
on it before it is returned. It would be a poor design pattern for that server (s1) to forward
donate the SC to another server (s) without any time guarantees, which is the case over an
endpoint without a budget limit.

Instead, we believe that s; should only donate to s2 over an endpoint with a budget limit set.
This will create another budget limit guarantee, one enforced by the kernel, from s to s;. This
helps s1 ensure that it will be able to meet the budget limit obligation that it owes to the original
client.

In the aforementioned example, a client donated a SC to s; over an endpoint with a budget limit,
and then attempted to further donate that SC to so over an endpoint without a budget limit.
This design would not be permitted, but we believe there are two readily accessibly solutions:

1. Firstly, if strong timing guarantees are required, the WCET of so should be determined
and a budget limit threshold set on its endpoint. Then, donation can occur in a manner
permitted by our model.

2. Alternatively, if strong timing guarantees are not required, then the budget limit on the
first endpoint should be disabled. The threshold can remain enabled as it does not restrict
the calls that can be made.

In the first instance, we recognise that to implement our design, the WCETSs of all servers
involved in the call chain must be known. However, in this case, we argue that the benefit of
the budget limit is to strengthen the guarantee of the server’s WCET value.

It is possible that a WCET is computed in a manner that is overly optimistic, such that the
server’s execution time is only bounded by it in most cases. However, under rare and exceptional
circumstances, the server may exceed its WCET value. Such a WCET would be relatively
untrustworthy, but a possible reason this may occur is to reduce the cost of a developing a
system, as verifying the WCET of code can be very expensive. Enforcing this WCET with
kernel budget limits increases the trustworthiness of the WCET, as even if the server exceeds
it, the WCET will be enforced by the kernel. This strengthens the WCET and makes it more
useful for schedulability analysis of the system.

The second alternative allows system designers to still prevent budget expiry from occurring in
passive servers, without requiring any restrictions on how they configure their systems.

48

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

Therefore, we consider this restriction to not be a major issue, despite it infringing on policy-
freedom. While it does restrict some user-level designs, there are readily available alternatives
that we consider acceptable.

6.2.4 Revocation and deletion

In a capability-based system, such as sel4, kernel objects are owned by user threads. Therefore,
kernel objects can be deleted at any time and we must consider the consequences of this on the
guarantee that we are establishing.

We consider three main relevant kernel objects, thread controls blocks, scheduling contexts
and reply objects. First, thread control blocks and scheduling contexts are core objects to the
guarantee. If either the scheduling context or any threads that are part of call chain are deleted,
we consider the guarantee invalidated. If the scheduling context is manually bound or unbound,
we also consider the guarantee to be invalidated.

However, reply objects are a unique case. Generally, threads do not hold capabilities to their
own TCB or SC. However, servers do own capabilities to their reply objects. The consequence
is that a server can potentially delete its reply object, disrupting the tracking of the call chain
that we require to maintain the budget limit guarantee.

We consider it potentially desirable for the budget-limit guarantee to be preserved even if a reply
object is deleted. Otherwise, the guarantee made to the client could be easily invalidated by
the server by deleting its reply object. This means that client’s still need to maintain relatively
high levels of trust in their servers, reducing the benefit of budget limits.

However, we leave this extension for future work, and in the current model presented we still
allow the guarantee to be invalidated if reply objects are deleted.

49

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

Chapter 7

Evaluation

We now evaluate our design using a series of benchmarks. First, we present an example demon-
strating endpoint threshold’s preventing budget expiry from occuring, even in the prescence of
a malicious client.

Secondly, TPC cost is well known to be a major performance factor of microkernels Liedtke
[1993]. As our design involves change on the IPC path, we also aim to demonstrate that the
overhead of our changes on the IPC path is acceptable.

7.1 Hardware

We perform these tests on an NXP i.MX8-MM evaluation kit, containing the ARMv8-A based
Cortex-A53 SoC running at 1.2GHz with 2GiB of physical RAM. The system contains 4 pro-
cessing cores, but all threads are pinned to the first CPU core.

7.2 Endpoint thresholds

We first consider the performance impact where only endpoint thresholds are compiled into the
kernel, without kernel support for budget limits. In the following section we will consider the
additional performance overhead introduced by budget limits.

Unless otherwise specified, all tests are performed using SC’s with no additional refills.

7.2.1 Preventing Timeout Exceptions

Firstly, we test that endpoint thresholds can prevent timeout exceptions from occurring in a
passive server, even where a client is malicious. We set up a passive server that loops tightly,

20

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

with the loop parameters being carefully set such that the server requires very close to 10ms of
budget. We can therefore also consider this value its WCET.

Then, we also set up a malicious client of the passive server. This client has a SC with a
budget of 12ms and a period of 20ms. The client calls the server in a loop, but before each
call it consumes an incrementally larger amount of budget, with the goal of causing a timeout
exception in the server. We configured our client to burn its budget by also executing a tight
loop. Over subsequent calls, the client extended its loop to burn increased quantities of budget.
There is additionally a timeout handler configured for the server, which exists only to count
the number of timeout exceptions caused. We first run a test using the baseline kernel, then
our modified kernel with a range of threshold values set. We present the results from this test
in table below. The tests were repeated multiple times, but there was no variance
between runs. In the table, we additionally present the budget gap, which is the difference
between the threshold value set and the server’s WCET.

Threshold value (u.S) | Budget gap (u.S) | Timeout Exceptions
0 (baseline kernel) 10000 260
0 (modified kernel) 10000 260
10000 0 0
9950 50 7
9900 100 16
9500 500 85
9000 1000 170

Table 7.1: Timeout exceptions with varying threshold values

Without a threshold set, on either the baseline or the modifed kernel, the server experiences
many timeout exceptions. When we instead set the threshold value to 10000us, equal to the
WCET of the passive server, timeout exceptions are completely eliminated.

However, if we reduce the threshold, even slightly to 9950us, a few timeout exceptions occur.
This aligns with our expectations, as we have created a budget gap of 50us, between 9950us and
10000us. If the client donates a budget above 995015, but below the server’s WCET of 10000us,
donation will be permitted as it exceeds the threshold, but budget expiry will still occur as the
donated budget is insufficient. In line with our expectations, as we further reduce the threshold
value and the budget gap increases, the number of timeout exceptions that occur corresponding
increase, relatively linearly. Finally, we note that the client did not reduce its donated budget
down close to zero. Therefore, the linear relationship does not map neatly to the Ous threshold
cases.

Overall, we observe that when properly configured, thresholds can completely eliminate time-
out exceptions. They behave as expected when configured lower than the server’s WCET,
predictably allowing only a subset of budget values to pass.

o1

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

7.2.2 System call overheads

As part of the changes made to support endpoints, we introduced a new variant of seL.4_Yield,
sell4_YieldUntilBudget. However, this introduces some additional kernel overhead even on un-
related slowpath invocations. This is likely because there is an additional system call numbers
that the kernel must branch through when checking.

As we do not intend to restrict this new variant of yield to only builds with threshold behaviour
enabled, this overhead will affect all systems running on the MCS kernel. These overheads were
measured using the existing seL4Bench benchmarking suite and we present results for a number
of the basic sel.4 system calls.

System call Baseline | With sel4_YieldUntilBudget | Overhead
sell4_Call (Fastpath) 265 (0) 267 (3) < 1%
seL4 ReplyRecv (Fastpath) | 290 (0) 289 (0) < 1%
seL4_Call (Slowpath) 947 (14) 948 (14) < 1%
seL4 ReplyRecv (Slowpath) | 972 (16) 975 (14) < 1%
seL4_Send 783 (9) 798 (8) 2%

Table 7.2: System call overheads from the introduction of sel.4_YieldUntilBudget. Results are
cycles, presented as: mean (standard deviation)

As the new system call is only introduced on the slowpath, as expected, the fastpath results are
essentially unaffected. Various operations on the slowpath are all slightly slower, but none of
the overheads introduced exceed 2%.

While we consider these overheads acceptable, they are surprisingly high. The new system
call we have introduced is not being executed in these examples, rather its mere presence is
causing moderate overheads for unrelated system calls. On the slowpath, the kernel uses a
switch statement to choose which operation to take based on the system call number passed
from user level. Our current hypothesis is that the additional system call caused a change in
how the compiler handled this switch statement, leading to slightly increased slowpath costs.
However, we leave a thorough investigation of this behaviour for future work.

7.2.3 IPC overhead

We now specifically investigate the overheads we have introduced on the IPC path due to
thresholds. We first consider the overheads on a successful IPC rendezvous. Afterwards, we will
consider the kernel cost involved when the available budget is insufficient and budget must be
deferred and merged.

92

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

Successful IPC overhead

To measure the additional overhead introduced by endpoint thresholds, we set up IPC path cost
tests based on the seL4Bench benchmarking suite. The existing IPC bencmarks set up a client
and a passive server. The client reads the CPU cycle counter, then calls onto the endpoint. The
passive server is waiting to receive on the endpoint and immediately afterwards, it also reads
the CPU cycle counter. The difference between the two cycle counts read is computed as the
kernel cost of the IPC operation.

We first run this test unmodified on the baseline kernel. Then, we again run the same test with
threshold support compiled into the kernel, but the threshold value on the endpoint is disabled
by setting it to zero. Next, we modify the test to set a very small threshold on the endpoint,
such that the client’s SC will always have enough budget and the IPC will succeed. However,
the kernel will still need to compare the SC’s available budget against the threshold.

We perform these tests for both the fastpath and the slowpath. We force the kernel to use the
IPC slowpath by setting the message length to 10, which means the message cannot fit solely in
CPU registers. The results of these tests are presented in table

Fastpath | Fastpath overhead | Slowpath | Slowpath overhead
Baseline 265 (0) N/A 947 (14) N/A
Thresholds disabled | 279 (4) 5% 959 (10) 1%
Thresholds enabled | 304 (2) 15% 976 (12) 3%

Table 7.3: IPC Call overhead from endpoint thresholds. Results are cycles, presented as: mean
(standard deviation)

From these results, we can see that the introduction of endpoint thresholds has a measureable
cost, however in general these overheads are relatively modest, all being under 15%. Notably,
with thresholds compiled into the kernel, but disabled on the endpoint, the fastpath overhead
is 5%. For the fastpath, the overhead with a threshold enabled is around 15%, while on the
slowpath, the overhead is 3%. On the fastpath, this overhead can be entirely attributed to
the cost of comparing the available budget against the threshold value. On the slowpath, the
overhead is proportionally lower as the overall path cost is higher.

Deferred IPC overhead

With the addition of threshold endpoints, there is a new case that can occur when calling into an
endpoint. If the donated SC’s maximum budget is greater than the threshold, but the current
available budget is insufficient, the refills of the SC are merged are deferred. The broad kernel
operations that are required during this process are

1. Checking the available budget against the endpoint threshold

2. Deferring and merging the SC’s budget

93

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

Kernel .I >

Server

Client

y

Low-prio

t'] t2 t3 t4

Figure 7.1: The structure of the deferred IPC overhead test. We omit kernel execution times
that are not of interest in this test.

3. Inserting the thread into the release queue

4. Choosing another thread to schedule

To benchmark this, we set up a new test involving a client and a low-prio thread, with a lower
priority than the client. We illustrate the structure of this test in Note that in the
figure we only show the kernel execution time we are interested in, omitting the rest. First, we
set up the low-prio thread as runnable, but pre-empted by the client. This is the state of the
test at £1. Then, between ¢; and t5, the client consumes some of its budget so that its available
budget is insufficient to pass the threshold. Then, at to, the client reads the cycle counter and
calls onto the endpoint. Between o and t3, the kernel will defer and merge the client’s SC’s
budget. Once this operation is complete, at t3, the low-prio thread will no longer be pre-empted
and start running. It then immediately reads the cycle counter. The difference can again be
used to determine the kernel time required for the operation. At t4 the passive server receives
and replies on the endpoint, however it does not play a role in benchmarking, rather its role is to
reset the test and allow the client to continue running. Finally, we also configure a high priority
thread, omitted from the that yields its budget in a tight loop. Its role is to pre-empt the client,
causing its budget to be split into multiple refills. We perform the test with the client’s SC
configured to support various numbers of extra refills.

There is not an existing direct analogue to use as a baseline, so we instead compare against two
existing kernel operations. For this section, we use our modified kernel for all tests. First, we
compare against a successful call, for a comparison against the existing successful IPC costs.
Then, we also set up a similar benchmark to above, but the client calls onto an endpoint with
no receiver, but also no threshold set. This will cause the client to be blocked, which will
also require the kernel to invoke the scheduler and resume the low-prio thread. As before, we
present results for both the fastpath and the slowpath, in We force the kernel to use
the slowpath by increasing the size of the message payload such that it does not fit in CPU

54

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

registers.

Operation Extra refills | Fastpath | Slowpath

IPC call N/A 279 (4) | 959 (15)

IPC block N/A 852 (11) | 796 (17)
Threshold defer 0 1150 (24) | 1015 (17)
Threshold defer 10 1391 (18) | 1300 (26)
Threshold defer 20 1665 (25) | 1545 (19)
Threshold defer 30 1942 (30) | 1819 (20)
Threshold defer 40 2174 (18) | 2079 (23)
Threshold defer 50 2446 (24) | 2331 (29)

Table 7.4: TPC Call overhead from endpoint thresholds. Results are cycles, presented as: mean
(standard deviation)

First, while we present the IPC fastpath call costs for comparison, as expected, its cost is
far lower than all the others. The seL4 fastpath is a highly optimised codepath that is only
applicable under a specfic set of conditions, such as the IPC payload fitting in CPU registers. If
any of these conditions are not satisfied, then the kernel switches over to the slowpath. Blocking
on an IPC endpoint is a case where the kernel switches over from the fastpath to the slowpath.

We note that the fastpath IPC block cost is higher than the slowpath cost. Our current hy-
pothesis is that the larger message payload causes the kernel to immediately switch over to the
slowpath code. However, with the smaller number of message registers, the kernel performs
more checks on the fastpath, only switching over to the slowpath when it finds that there is no
waiting receiver thread. This would lead to the increased observed fastpath cost.

We believe a similar effect causes the fastpath threshold defer costs to be higher than the
slowpath costs. In the fastpath cases, the kernel only switches over to the slowpath after it has
performed the budget calculation and determined that the budget is insufficient. This would
explain the extra cost observed in the fastpath results..

As is expected, deferring and merging budget involves significant cost compared to either a
slowpath call or a thread blocking on an endpoint. With a large number of refills (50), the
threshold defer cost is about 2.5 times the cost of a slowpath IPC, which is a substantially larger
kernel cost. However, with a more modest quantity of refills, the defer cost is significantly lower.
With 10 refills, the kernel cost required to defer and merge the budget is around 1.5 times the
cost of a slowpath call.

This is still a significant increase in cost, however, we still consider these increased kernel costs
acceptable in the context of avoiding budget expiry.

7.3 Budget limits

In this section, we present the additional overheads introduced by the budget limit mechanism.
We evaluate the performance of a kernel compiled with support for both thresholds and the

95

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

Attempted vs observed consumption
12000

10000

8000

6000

4000

Client's observed consumption (us)

2000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Server's attempted consumption (us)

Figure 7.2: Budget consumed on the client’s SC against the budget that the server tries to
consume.

budget limit extension. Similar to the above, we first demonstrate that our solution is effective
and then consider the overheads we have introduced on the IPC path.

7.3.1 Preventing budget overrun

We first test that thresholds with budget limits can prevent budget overrun. Our setup involves
a client and a server. The client first resets the consumed time tracking on its SC. It then
calls into the server and after the server replies, or the IPC is aborted, the client checks how
much time has been consumed on its SC. This allows us to determine how much time the server
consumes.

Before replying to the client, the server tries to consume a particular amount of budget using a
carefully crafted loop. Over subsequent runs the server tries to consume increasing quantities
of budget, in increments of 300us. We perform all these tests over an endpoint with a threshold
set to 10000us with budget limits enabled.

In we observe that when the server attempts to consume less budget than the
threshold of 10000us, the relationship is extremely linear. This reflects that in these cases, as
expected, the budget limit is having no effect. However, once the server tries to consume more
than the threshold, the budget limit takes effect, capping the consumption at the threshold

o6

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

value. Regardless of how much extra budget the server attempts to consume, the budget limit
successfully limits the consumed budget to the threshold value.

We do note that the consumption is not strictly capped at the threshold value of 10000us.
Rather, when the server tried to consume more budget than the threshold, the client observed
10011us of budget consumed on its SC. However, this is in line with our expectations.

Our model considers the threshold value the amount of budget that the server is permitted
to consume. However, the version of the kernel that we based our work on does not precisely
account for its own execution time. Rather, it attributes its execution time to the thread that
runs afterwards. Therefore, when the kernel sets the timer interrupt to enforce the budget limit
for the server, it must allow for its own execution time during the call operation. As a result, the
kernel must set an interrupt for the threshold value plus the kernel WCET. This ensures that
even if the kernel consumed its full WCET, the server is still able to run for the full threshold
value. There is then some further kernel execution time that occurs when the SC is returned
to the client. On our test system, the kernel WCET was configured as 10us. Therefore, the
observed consumed budget of 10011us is in line with our expectations.

In this manner, we can see that the budget limit is effectively limiting the budget consumed by
a passive server, reducing the trust that a client must place in passive servers that it calls.

7.3.2 IPC overheads

To measure the IPC path costs, we again run a test based on the sel.4bench suite. Similar to
the above, it involves two threads that perform IPC operations with one another. By reading
the cycle counter before and after, the kernel time taken can be determined.

In this evaluation we present results for both sell4_Call and sel.4_ReplyRecv, as our design
required changes on both code paths. We again present results for endpoints with the threshold
disabled (set to zero) and budget limits enabled, where the threshold is a non-zero value. We

present our results for seL.4_Call in and seL4_ReplyRecv in

Fastpath | Fastpath overhead | Slowpath | Slowpath overhead
Baseline 265 (0) N/A 947 (14) N/A
Thresholds disabled | 282 (0) 6% 1085 (12) 15%
Budget limit enabled | 363 (0) 37% 1127 (11) 19%

Table 7.5: seLl4_Call overhead from endpoint thresholds. Results are cycles, presented as: mean
(standard deviation)

From these results, we see that the overheads introduced by budget limits are far more significant.
Where thresholds are disabled, the additional cost on the fastpaths are relatively small, both less
than 6%. However, even with thresholds disabled, the slowpaths experienced a more significant
increase in overhead of 13% to 15%. We attribute this additional cost to the additional budget
tracking that the kernel must perform. This includes checking whether a thread has exceeded its

o7

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

Fastpath | Fastpath overhead | Slowpath | Slowpath overhead
Baseline 290 (0) N/A 972 (16) N/A
Thresholds disabled | 300 (3) 3% 1102 (13) 13%
Budget limit enabled | 352 (5) 21% 1208 (17) 24%

Table 7.6: seL4_ReplyRecv overhead from endpoint thresholds. Results are cycles, presented as:
mean (standard deviation)

budget limit and setting the timer interrupt to enforce when a budget limit would be exceeded.
We do however, believe that there is room for further optimisations in this area.

When budget limits are enabled, the overheads on the fastpath are significantly greater, up
to 37%. We attribute this cost to the additional bookkeeping required for enforcing budget
limits, the additional fields to be written to the SC and reply objects. In addition, the timer
interrupt may also need to be set. Finally, there is also an increase in the cost for the slowpaths
where budget limits are enabled, which can be similarly attributed to the additional bookkeeping
required.

Overall, while these overheads are significant, we believe that the stronger scheduling guarantees
they provide are worth the trade-off for mixed-criticality real-time systems. While performance is
always important, for these systems, reliability and guaranteed behaviour are essential. Further,
we believe it is highly likely that additional optimisations are possible, reducing the overheads
introduced. However, we leave such optimisations for future work.

7.4 Summary

Overall, these results demonstrate that the proposed changes effectively manage budgets, com-
pletely preventing both budget expiry and budget overrun when correctly configured. The
overheads from threshold behaviour alone are modest and acceptable, allowing for the system to
enforce stronger scheduling guarantees without compromising on performance. The overheads
from the introduction of budget limits are more significant, but we believe these are acceptable
in exchange for the stronger scheduling guarantees provided.

o8

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

Chapter 8

Conclusion

In this thesis, we presented improvements to the sel.4 model for mixed-criticality systems. Our
changes improved the scheduling behaviour of sell4 in regard to avoiding budget expiry and
preventing budget overrun. We have demonstrated that these changes are effective, improving
the scheduling behaviour and schedulability analysis of sel.4 systems.

However, our changes introduced moderate overheads into the kernel, and we left a portion of
our design, specifically the revocation behaviour of budget limits unimplemented. These areas
would benefit from future development, improving the performance and further strengthening
the scheduling properties that sel.4 offers.

8.1 Future Work

There are still a number of issues and model improvements that need to be addressed before
sell4 can be considered a truly effective kernel for mixed-criticality systems. A development
of the aforementioned revocation behaviour for our budget limit design would strengthen the
guarantees provided and further reduce the trust that threads in the system must place in one
another. Further, the designs presented in this thesis would also benefit from further performance
optimisations, reducing the overheads they impose.

This thesis has not given any consideration to multicore systems, instead we focused our atten-
tion on single-core systems only. A future rigorous analysis of the scheduling behaviour of sel.4
on multicore systems would be important to effectively apply selL.4 to a wider range of hardware
platforms.

This thesis also did not explore the impact of hardware interrupts on scheduling behaviour.
Further work is required to enforce scheduling properties on interrupts and interrupt handlers.

Finally, after further improvements to the scheduling behaviour and guarantees, the scheduling
properties of sell4 could be verified. This would build upon sel4’s heritage of being a ver-

99

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

ified microkernel, and would provide the strongest proof of sell4d’s scheduling properties and
guarantees.

60

Mitchell Johnston Strengthening scheduling guarantees of seLj MCS with IPC budget
limits

Bibliography

Jack B. Dennis and Earl C. Van Horn. Programming semantics for multiprogrammed computa-
tions. Commun. ACM, 9(3):143-155, mar 1966. ISSN 0001-0782. doi: 10.1145/365230.365252.
URL https://doi.org/10.1145/365230.365252.

Phani Kishore Gadepalli, Robert Gifford, Lucas Baier, Michael Kelly, and Gabriel Parmer.
Temporal capabilities: Access control for time. In Proceedings of the 38th IEEE Real-Time
Systems Symposium, pages 56—67, December 2017.

Phani Kishore Gadepalli, Runyu Pan, and Gabriel Parmer. Slite: OS support for near zero-
cost, configurable scheduling. In IEEFE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 160-173, 2020.

Gernot Heiser and Kevin Elphinstone. L4 microkernels: The lessons from 20 years of research
and deployment. ACM Trans. Comput. Syst., 34(1), apr 2016. ISSN 0734-2071. doi: 10.1145/
2893177. URL https://doi.org/10.1145/2893177.

Michael Hohmuth and Hermann Héartig. Pragmatic nonblocking synchronization for real-time
systems. pages 217-230, 01 2001.

Zubin Hu, Jianchao Luo, Xiyu Fang, Kun Xiao, Bitao Hu, and Lirong Chen. Real-time schedule
algorithm with temporal and spatial isolation feature for mixed criticality system. In 7th
International Symposium on System and Software Reliability (ISSSR), pages 99-108, 2021.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Har-
vey Tuch, and Simon Winwood. sel4: Formal verification of an OS kernel. Technical report,
October 2009.

Adam Lackorzynski, Alexander Warg, Marcus Vo6lp, and Hermann Hartig. Flattening hierar-
chical scheduling. pages 93-102, 10 2012. doi: 10.1145/2380356.2380376.

Jochen Liedtke. Improving ipc by kernel design. In Proceedings of the Fourteenth ACM Sympo-
sium on Operating Systems Principles, SOSP 93, page 175-188, New York, NY, USA, 1993.
Association for Computing Machinery. ISBN 0897916328. doi: 10.1145/168619.168633. URL
https://doi.org/10.1145/168619.168633.

Jochen Liedtke. On p-kernel construction. SOSP, December 1995. URL www.cs.uah.edu/
~weisskop/papers/LiedkeSOSP.pdfl

61

https://doi.org/10.1145/365230.365252
https://doi.org/10.1145/2893177
https://doi.org/10.1145/168619.168633
www.cs.uah.edu/~weisskop/papers/LiedkeSOSP.pdf
www.cs.uah.edu/~weisskop/papers/LiedkeSOSP.pdf

Strengthening scheduling guarantees of seL4 MCS with IPC budget limits Mitchell Johnston

C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment. J. ACM, 20(1):46-61, jan 1973. ISSN 0004-5411. doi: 10.1145/321738.
321743. URL https://doi.org/10.1145/321738.321743.

Anna Lyons. Mized-Criticality Scheduling and Resource Sharing for High-Assurance Operating
Systems. PhD thesis, University of New South Wales, September 2018.

Anna Lyons, Kent McLeod, Hesham Almatary, and Gernot Heiser. Scheduling-context ca-
pabilities: A principled, light-weight operating-system mechanism for managing time. In
Proceedings of the Thirteenth EuroSys Conference, EuroSys '18, New York, NY, USA, 2018.
Association for Computing Machinery. ISBN 9781450355841. doi: 10.1145/3190508.3190539.
URL https://doi.org/10.1145/3190508.3190539.

Curtis Millar. Guaranteed response time for mixed-criticality systems on sel.4. May 2021.

Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke, Sean
Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. selL4: from general purpose to a proof of
information flow enforcement. In IEEE Symposium on Security and Privacy, pp. 415-429),
May 2013.

Gabriel Parmer. Composite: A component-based operating system for predictable and dependable
computing. PhD thesis, Boston Univertisy, August 2009.

Brinkely Sprunt, Lul Sha, and John Lehoczky. Scheduling sproad and aperiodic events in a hard
real-time system. Technical report, April 1989.

Mark Stanovich, Theodore P. Baker, An-I Wang, and Michael Gonzalez Harbour. Defects of
the posix sporadic server and how to correct them, (revised september 16, 2011). Technical
report, September 2011.

Udo Steinberg and Bernhard Kauer. Nova: A microhypervisor-based secure virtualization ar-
chitecture. In Proceedings of the 5th Furopean Conference on Computer Systems, EuroSys
'10, page 209222, New York, NY, USA, 2010. Association for Computing Machinery. ISBN
9781605585772. doi: 10.1145/1755913.1755935. URL https://doi.org/10.1145/1755913.
1755935.

Udo Steinberg, Alexander Bottcher, and Bernhard Kauer. Timeslice donation in component-
based systems. In Workshop on Operating System Platforms for Embedded Real-Time Appli-
cations (OSPERT), pages 16-22, July 2010.

Steve Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution
time assurance. In IFEFE Real-Time Systems Symposium, pages 239-243, 2007.

Marcus Volp, Adam Lackorzynski, and Hermann Hértig. On the expressiveness of fixed-priority
scheduling contexts for mixed-criticality scheduling. 2013.

62

https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/3190508.3190539
https://doi.org/10.1145/1755913.1755935
https://doi.org/10.1145/1755913.1755935

	Introduction
	Background
	Mixed Criticality Systems
	Real-time Systems
	Formal Verification
	Operating Systems
	Trust
	Scheduling
	Periodic scheduling
	Sporadic scheduling
	Criticality scheduling

	Shared resources
	Resource servers
	Priority inversion

	Related Work
	COMPOSITE and Temporal Capabilities
	NOVA microhypervisor
	L4Re microkernel
	seL4 mixed-criticality systems kernel
	Slite scheduling
	Mginkgo microkernel
	seL4 Response time analysis

	seL4
	General background
	Capabilities
	Memory management
	System calls and invocation
	Scheduling
	Scheduling Contexts
	Kernel scheduler

	Communication
	IPC

	Approach
	Goals
	Scope

	Assessment of Issues
	Budget Expiry in Passive Servers
	Bounding Priority Inversion

	Design and Implementation
	Budget Expiry in Passive servers
	Thresholds
	Behaviour with insufficient budget
	Thresholds - revisited
	Summary

	Passive server budget limits
	Desired semantics
	Configuring budget limit behaviour
	General design
	Revocation and deletion

	Evaluation
	Hardware
	Endpoint thresholds
	Preventing Timeout Exceptions
	System call overheads
	IPC overhead

	Budget limits
	Preventing budget overrun
	IPC overheads

	Summary

	Conclusion
	Future Work

	Bibliography

