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Abstract

Given that a Haskell program and a C program have the same behaviour, and the knowledge
that the Haskell program only accesses addresses in a certain partition, how can you prove
that the C program does also? Time Protection is a recently proposed and implemented set of
mechanisms for the seL4 microkernel. It eliminates microarchitectural timing channels, the
leaking of information through the timing of hardware events and also a major threat to
computer security. To verify Time Protection, we must take the existing refinement proof—
from selL4’s intermediate Haskell implementation to its true C implementation—and extend it
to show that its fouched addresses set does not stray from a defined partition. I give a summary
of the verification of seL4 and Time Protection so far, give a formalisation of touched addresses,
and then demonstrate a proof method on a small part of the kernel. Finally, I give an argument
that the methods can be scaled to verify the rest of the kernel.
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Chapter 1

Connection to the
Time Protection project

This project is part of a young program to produce the first ever proof that an operating system
(OS) kernel is free of a subtle type of security vulnerability called a timing channel. A kind of
covert channel—a mechanism in a system that is not intended to be used for communication
[Lampson, 1973]—timing channels leak information about the actions of your machine that
is not read from a secret buffer, but through the time it takes to execute certain operations.
Specifically, we are concerned with microarchitectural timing channels (WTCs), which are timing
channels that carry information as a result of processor state that is hidden from programs by
design, and is absent from the instruction set architecture [Ge et al., 2018]. This state includes
the state of the branch predictor, prefetcher, TLBs, and most critical for this project, data caches.

The nature of timing channels means that existing OS mechanisms that prevent the flow of
information, such as partitioning physical memory into separate virtual address spaces, are
insufficient to block them. Two processes, sharing no memory, files, pipes, signals, or any other
OS communication mechanism, can still communicate (albeit slowly) by sending messages
over a timing channel in your hardware. (I shall outline one such attack in Section 2.8.) Timing
channels pose a huge risk, as we live in a world where we run code without inspecting it on
our machines all the time. Software developers will download and run library dependencies
without much consideration. Your web browser runs thousands of lines of JavaScript code
you will never read, for every page you visit. Critical services run on the cloud in virtual
machines, alongside potentially thousands of other untrustworthy virtual machines on the
same hardware.

In fact, you may have already heard about uTCs and been affected by them without being
aware of it. The disclosure of the Meltdown [Lipp et al., 2018] and Spectre [Kocher et al., 2019]
attacks shocked the world, as nearly every modern processor from major manufacturers was
vulnerable [Metz and Perlroth, 2018]. These attacks put arbitrary kernel memory in cache, such
that it is readable through a cache timing attack. If we want to be assured that our computer
systems are secure, it is crucial that we eliminate pTCs.
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The most critical line of defence against security vulnerabilities is the kernel, so how might
we prevent pTCs there? Ge et al. [2019] implemented the set of OS mechanisms called time
protection to fundamentally eliminate pTCs for the seL4 microkernel [Klein et al., 2009]. The
mechanisms carefully use available hardware mechanisms on x86 and Arm platforms to
partition and flush microarchitectural state. The authors show empirically that the actions of
one component of the operating system can hidden to other components for the most part,
with minimal performance overhead. Remaining microarchitectural state not dealt with are
addressed by Wistoff et al. [2021, 2023], who introduce a new instruction for an open source
Risc-V processor core. Then, Buckley et al. [2023] ports the Time Protection mechanisms to
take advantage of the new instruction, to eliminate all known puTCs. Together, these works
show that elimination of uTCs for real-world kernels is feasible, and reinforces seL.4 position
as the world’s most secure microkernel.

To have total assurance that the time protection mechanisms in sel.4 are correct, however,
we must formally verify that seL4 eliminates uTCs. Formal verification is the process of
applying mathematical techniques to produce a computer-checked proof that certain properties
hold about our system. Computer-checked proofs exist that show that selL4 is free of errors
and always behaves correctly (so-called “functional correctness”), while enforcing security
properties like integrity, availability, and confidentiality [Heiser, 2020]. As mentioned at the
beginning, there is a project to extend these security proofs to also address the threat of timing
channels, which this project is a part of. If completed, it would be a result that is the first of its
kind. This is referred to in this thesis as “verifying Time Protection”.

Formal verification of time protection has had strong progress so far, but it hinges on the
answer to a currently open research question: Does the kernel itself obey the security policy?
I build on work by Buckley et al. [2023]; Sison et al. [2023], who formalise the notion of
preventing pTCs by an OS, and apply it in the context of seL4. The authors theorise that
verifying Time Protection is possible by giving an extension to the existing seL4 proof base
that produces a proof of time protection enforcement. To use this extension, we must give it a
proof that the kernel only dereferences memory addresses in a particular partition, determined
by the OS security policy, at certain times.! A proof of this invariant does not yet exist, but is
the goal of this project and many others.

This thesis presents one part of the story of proving this key invariant: what addresses the
kernel will access when it is called. I will develop a method for reasoning about the above
invariant at the level of the C implementation, given assumptions about a higher-level model
of the kernel implemented in Haskell. In doing so, I reduce the burden of verifying the C
implementation, by reducing it to a problem at the more abstract, and easier to reason-about
Haskell implementation. Recent developments between the seL4 proof maintainers and kernel
developers suggest a promising new direction for verifying time protection, (that could even
link with future proofs about the multikernel version of seL4). As a result, we do away with
the approach proposed by Buckley et al. [2023] to track what addresses the kernel accesses.
However, their foundational ideas still apply.

In conjunction with a series of other projects (particularly Nair [2025]), we endeavour to

!Called the “partition subset invariant” in Buckley et al. [2023], and is discussed later as Proposition 2.2.
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demonstrate a comprehensive method that, if followed to completion, can be used with the
framework of Buckley et al. [2023] to prove that seL4 correctly enforces time protection.

1.1 Overview of contributions

I make the following contributions:

« a survey of progress on verifying time protection, and more importantly the new pro-
posed direction for doing so (Chapter 2);

« a proposed method for reasoning about what addresses the kernel will access when
called, during refinement from the intermediate Haskell implementation to the concrete
specification (Chapter 3);

 a demonstration of these methods on a small subset of the kernel (Chapter 4);

- an argument that these methods are scalable to verification of the entire kernel (Chap-
ter 5); and lastly

+ close with some hypotheses for how that might be done (Chapter 6)
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Chapter 2

Review of related formal methods

This chapter outlines the prerequisite knowledge that underlies the rest of the thesis. I shall

+ Give an overview of seL4’s formal verification, and the techniques that are applied for
those proofs (Sections 2.2, 2.5 and 2.6),

« Discuss the proof of confidentiality for seL4, a key result that Time Protection is extend-
ing (Section 2.3),

« Clarify some key concepts about the design of seL4 (Section 2.4),

« Introduce the “backwards-reasoning” style of proof used to connect seL4’s executable
and concrete specifications (Section 2.7),

+ Give a glimpse of the problem that Time Protection seeks to solve (Sections 2.8 to 2.10),
and lastly

« Compare this thesis with previous work, including that of Buckley et al. [2023] (Sec-
tion 2.11).

The informed reader should feel free to skip sections as they please. However, Section 2.7 is
particularly important to understanding the rest of the proofs in this thesis, as I sketch proofs
in an esoteric way.

2.1 Assumed knowledge

I will assume that the reader has an understanding of operating system fundamentals (see
Comp3231 Operating Systems), basic knowledge about/ software verification (see Comp4161
Advanced Topics in Software Verification), and some familiarity with the seL4 microkernel (see
Heiser [2020]; Trustworthy Systems Team [2017]). I also assume that the reader is generally
familiar with the C and Haskell programming languages, but any listings will be accompanied
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by a brief explanation. I will briefly explain the most relevant concepts in this chapter, and leave
references to further reading, such as the seL4 documentation [Trustworthy Systems Team,
2017].

2.2 Correctness of selL4 is verified using data refinement

Before we look at the existing work on verifying time protection, let us review how the
verification of seL4 has proceeded so far and where this project will fit into it. All the following
work is conducted in the Isabelle/Hot interactive theorem prover [Wenzel, 2014].

The initial functional correctness proof of seL4 [Klein et al., 2009] uses a proof technique called
data refinement [de Roever and Engelhardt, 1998], abbreviated to just refinement. We say
that a low-level description of a system’s behaviour refines a high-level description if every
possible behaviour of the low-level specification is also a possible behaviour of the high-level
description. Rather than low-level or high-level, we say it is more concrete or more abstract
respectively. We will continue to use the spatial metaphor however, as we say refinement
carries down properties.! Refinement is a transitive property: if A refines B, and B refines C,
then A also refines C. The beauty of refinement is that any property that we can prove about
the abstract description can be carried down to apply to the concrete description as well. Hence,
when we are reasoning over a complicated system written in a language with complicated
semantics—i.e. the C implementation of seL4—we can instead reason over an abstract model of
the system in simpler mathematical terms.

There are three descriptions of seL4 in the refinement chain. At the top of the refinement chain
is the abstract specification. The abstract specification is hand-written and is declarative,
saying only what the kernel does but not anything about the data structures or algorithms
that would implement the behaviour. The classic example is scheduling. The scheduler is
only specified to pick a runnable thread, as opposed to the round-robin scheduler in the
C implementation. Below the abstract specification, there is the executable specification,
derived by a mechanical process from a Haskell implementation of the kernel. Its purpose
is to elaborate on how kernel objects and operations are implemented, while still avoiding
the details of the low-level optimisations present in the C implementation. The scheduler of
the executable specification will select the first runnable thread in the list of threads, that
has the highest priority. At the bottom there is the concrete specification, derived by a
machine process from the C implementation and is the most detailed of the three specifications.
I describe the executable specification and concrete specification in more detail in Section 2.5
and Section 2.6 respectively, as this project focuses on the refinement between them.

Past work proved that the executable specification refines the abstract, and that the concrete
specification refines the executable [Klein et al., 2009]. By transitivity, we have the concrete
specification refines the abstract. Thus, we have a machine-checked guarantee that the C

!Behaviours include when a system would raise an error. In any scenario, if A refines B and B would not fail,
then neither does A.
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implementation of the kernel behaves only in the ways described by the specification.? This is
called the functional correctness proof of seL4.

2.3 Confidentiality in sel4

However, adherence to a specification is useless if the specification itself is flawed, so there
are also proofs about the abstract specification that demonstrate that selL4 enforces crucial
security properties [Heiser, 2020]. Of particular interest to us is the information-flow proofs
that the kernel enforces confidentiality [Murray et al., 2013]. These security properties are then
carried down to apply to the C implementation via refinement.

Confidentiality says that a “domain” cannot learn any information about—i.e. observe the
effects of—the actions of other domains, unless an explicit communication channel has been
established between them.® Roughly speaking, a domain is a collection of threads that should
be “isolated” in a security sense. There is always one currently-running domain, and only
threads belonging to the current domain can be scheduled. What domains exist and the order
they are scheduled is fixed and compiled with the kernel [Trustworthy Systems Team, 2017].

I emphasise that these proofs do not eliminate information flow in general. Rather, they require
the system designer to first isolate untrustworthy components of the OS into their own domains.
Then, seL4 ensures that no channels exist between domains.

Note also that the current proof of confidentiality is limited to storage channels, where
information is carried through writing to storage locations. The purpose of verifying time
protection to extend confidentiality to cover timing channels in addition to storage channels.
Traditionally, all covert channels are classified as either storage or timing channels [DoD 1986].
Hence, verifying Time Protection would eliminate all covert channels.

2.4 Key concepts of the seL.4 microkernel

Let us briefly define some key terminology we use about seL4. I will use these terms to describe
the internals of the kernel, and in particular, the case studies in Chapter 4. The seL4 microkernel
is a capability-based OS kernel.

A capability is a kernel object that acts like a key: it entitles the holder some form of access
(read, or write, etc.) to another kernel object, such as a Notification or an Endpoint. Users do not
interact with capabilities directly, but rather through capability pointers (CPtr). Capabilities
are stored in capability table entries (CTE) slots, which are arranged in tree structures

The functional correctness proof of seL4 extends to the compiled binary as well, as developed by Sewell [2017].
The binary could be considered a specification, but only the above three specifications are the most important for
our purposes.

’An example of an explicit communication channel would be through a Notification object.
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known as capability spaces (CSpace). For a proper treatment, please see the seL4 Manual
[Trustworthy Systems Team, 2017].

2.5 Representation of the Haskell implementation

Before we can do any work on any implementation of a program, we must first translate it into
data types inside the theorem prover. This section will briefly describe how the intermediate
Haskell implementation of sel4 is translated into and deeply embedded in the executable
specification.

The Haskell implementation of sel4 is translated into Isabelle/HoL as monadic computations
on a monad developed by Cock et al. [2008]. * The monad “a kernel is a state monad—to
model computations which may modify the kernel state—equipped with a failure flag to model
Haskell code raising an error, and returns a set of states to model nondeterminism. For a
function that returns “a kernel, you can read the “a of as the type of the return value of the
function. For example, the type signature ’a list — machine-word kernel is a function that
given a list of words returns a word, depending on the state of the kernel and potentially
modifying it. The monad is isomorphic to k-state = (’a x k-state) set x bool.

The kernel state k-state is a record of global variables. These include: ksPSpace, the state of
the heap; ksCurThread, a pointer to the Tcs object for the currently-running thread; and most
important for our purposes, ksCurDomain, an 8-bit integer which identifies the currently-
running domain. Because the executable specification is a deep embedding, local variables in
the Haskell code are represented using higher order syntax, as variable bindings in Isabelle/HoL.

Cock et al. [2008] also defines a Hoare logic for proving properties about the Haskell specifi-
cation. The details of the logic are not crucial here, but we shall occasionally see statements
phrased using the Hoare logic.

For a more detailed treatment, see Cock et al. [2008].

2.6 Embedding the C implementation

The C implementation is modelled using a language called SimpL, developed by Schirmer
[2006]. It is a shallow embedding and has the following syntax (reproduced from Winwood
et al. [2009]):

c2Skip|v:==e|c; ;¢ | IFeTHEN ¢; ELSE ¢, FI | WHILE e DO ¢ OD
| TRY ¢; CATCH ¢, END | THROW | Call f | Guard F Pc

*However, we present it here in a way derived from Winwood et al. [2009].
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The semantics of each piece of syntax is what you would expect for an imperative programming
language. To embed C, Winwood et al. [2009] instantiate SiMPL with a model of C semantics
and a C memory model to form C-SimpL. The C parser embeds the C code into C-SimPL to
form the concrete specification. We reuse the verification condition generator by Schirmer
[2006] to verify instances of C code.

Note that function calls are represented as Call fwhere fis some symbol that can be mapped
to a function definition. This is opposed to the executable specification, where functions are
Isabelle/Hot functions, and so calling a function is function application in Isabelle/HoL.

For our purposes, the most important kind of syntax are the Guard statements. To evaluate
a statement Guard F P ¢, we check whether the proposition P holds. If it is false, we set the
failure flag of the nondeterministic state monad, which stops the program. Only if it is true, do
we continue to execute the SIMPL statement c. The component F denotes the kind of fault the
guard is checking.

You might notice that there is no “return” statement. All control flow in SimMpL is modelled
with exceptions; function bodies are surrounded by a TRY block, and to return early from a
function, it “throws” the correct exception.

Variables are either local or global variables. Global variables are handled the same as they
are in the executable specification, as fields in a state record. The fields have slightly different
types than they do in the executable specification; namely that it is more efficient to store data
as full machine words in C, so fields such as the currently-running domain (ksCurDomain) is
stored as a 64-bit integer. To get the global state record, we project the state with globals. To
give an example,

ksCurDomain (globals s)

would be the identifier of the currently-running domain in state s. Local variables are fields of
a state record, automatically generated by the C parser.

For more details, see Winwood et al. [2009].

Lastly, we ought to review the notation used for the heap. The heap is denoted with #, such
that accessing a pointer p to the heap is denoted # p, and updating the heap at pointer p
to be value vis denoted #Z(p — v). To access a field fof a struct we write &(p — f). For a
comprehensive description of the model of the heap, see [Tuch et al., 2007].

2.7 Refinement from the executable to concrete specification

How do we actually show that a C program is a refinement of a Haskell program? There is a rich
literature about (data) refinement, the canonical text being de Roever and Engelhardt [1998]
from whom we have borrowed terminology.® The seL4 refinement proofs use a proof method

3As a historical aside, data refinement is first published by Milner [1970, 1971], which are themselves synthesised
from a series of internal memos written by Milner.
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that is a variation of forward simulation [Winwood et al., 2009], a synonym for L-simulation
[de Roever and Engelhardt, 1998]. In forward simulation, we must show that a step in the
concrete specification leads to states that a step in the abstract specification could lead to. In
this section, we will briefly cover the tools and techniques used for refinement from Haskell
to C for seL4. For a detailed treatment of the correspondence framework, see Winwood et al.
[2009].

2.7.1 State relations

The first step of a refinement proof is to define a state relation® between the states of your
abstract program—the executable specification—and the concrete program—the concrete speci-
fication. For refinement from Haskell to C, that relation is called sr-rf. Its definition is too long
to present here, but in short, if we have that (s, s”) € sr-rf then the global kernel state of s and
s’ are semantically equivalent. For example, for the currently-running domain, we have that

(s,s") € sr-rf = ksCurDomain s = ucast (ksCurDomain s”)

where the right-hand side contains an integer cast because the current domain is a 8-bit integer
on the left, and a 64-bit integer on the right.

2.7.2 Correspondence statements

Refinement is often expressed as a correspondence statement between a Haskell and C
operation. A correspondence statement looks like

ccorres r xf PP’ hsac.

and each argument can be read as follows.

« The return values of a and c are related by return value relation r

+ Because return values in C are modelled as updating a local return variable, we need to
describe how to get the return value using the extraction function xf

« Pand P’ are the preconditions that must hold, about the Haskell and C states respec-
tively, for the correspondence to be true

« The hs parameter is a handler stack. Control flow in C is modelled as throwing and
catching exceptions (See Section 2.6). This parameter allows us to provide a list of
exception handlers for the C operation

« Lastly, a and c are the Haskell and C operations. These are referred to as the left-hand
side and right-hand sides.

51t is a relation and not a function as many kernel data structures in the executable side have many possible
concrete representations.



Thomas Liang Refining seL4’s Accounting of Touched Addresses for Time Protection

Succinctly, the above statement can be read as: for related (Haskell and C) states s and s’, such
that P s holds and P’ s” holds, the results of running a and c is related by return value-relation
r, where the return value of the right-hand side is given by xf.

In this thesis, the details of what the return-value relation r and extraction function xf is not
particularly important, so their definitions are always elided.

As an example, here is a correspondence rule we shall use later (Lemma B.3).

ccorres rvxf PC’ hsac
ccorres rv xf (As. Qs —> Ps) P’ hs (stateAssert {Q} > a) ¢

This can be read as follows. Suppose we know that operations a and ¢ correspond, given
arbitrary preconditions Pand C”. Now, suppose we prepended stateAssert { Q} to the left-hand
side, using the monadic bind operator >>. Consider what would happen if we executed the
left-hand side. If Q is false, then the left-hand side should fail, and our correspondence will
vacuously hold. Otherwise, if Q is true, then we will proceed with a and have whatever effect
a has. Knowing this, it must be that stateAssert { Q} > a corresponds also to ¢, given that
Qs — P s for the initial state s. A key side-effect of this rule is that now that we have a
precondition Q s —> P's, we may use the fact that Q holds for the rest of the correspondence
proof. I will elaborate on this soon.

2.7.3 Failure in the executable specification

You may notice that a correspondence statement assumes that its left-hand side, the Haskell
code, does not fail. If the left-hand side were to fail, our statement is vacuously true! How can
that be sound? The property that the Haskell functions do not fail is proved separately (as part
of the refinement from the abstract specification to the executable), in the form of so-called
“no-fail” lemmas. This alleviates the proof burden when we are proving correspondence. The
proofs of non-failure are combined with correspondence at the end to obtain the overall
refinement result.

There is a similar, related predicate called “empty-fail” lemmas. As the Haskell specification
is embedded in a non-deterministic monad, each computation returns a set of possible next
states. Empty-failure asks that if a function fails, then it returns no next states (i.e. it returns
the empty set).

2.7.4 Composing correspondence statements

We have now seen the primary definitions used for correspondence proofs: the state relation
between Haskell and C, the correspondence statement itself, and non-failure and empty-failure
lemmas. In this section, we will discuss the proof techniques we use with these definitions, two
main ways of composing correspondence statements, and how these proofs will be presented
in this thesis.

10
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Many rules about correspondence statements, such as the one presented above (Lemma B.3),
can be applied in the usual natural deduction way. To do so, there is a crucial rule that we
need: rules to generalise the preconditions of a correspondence statement’. We reproduce one
such rule (Lemma B.2, the weaker variant).

ccorresrxf QQ’ hs f g \s.As = Qs Ns A's = Qs
ccorresrxf AA" hs fg

This rule (and its variants) is typically the first step of a proof. In doing so, the “current
correspondence subgoal” (the leftmost premise of this rule) has arbitrary preconditions which
we can instantiate however we like, with further rules. Most correspondence rules will have
premises that take arbitrary preconditions, so this continues onwards until the proof'is complete.
This proof style allows us to more or less arbitrarily apply correspondence rules. Afterwards,
we prove the second and third preconditions of the generalisation rule above, to show that
those applications of correspondence rules were sound. For this reason, proofs are often made
of two phases: a correspondence step, and a preconditions step. To illustrate this proof
structure, let us take a look at an example.

Example 2.1 (Demonstration of composing preconditions). Suppose we have the following

two contrived rules:

ccorresrxf PP’ hsac
ccorresr xf (As. Bs — Ps) P’ hsac

(1)

ccorresrxf PP’ hsac
ccorresrxf (As. As — Ps) P’ hsac

)

for some fixed predicates A, A’, Band B’ (though Pis still a variable predicate). Now, we wish
to show

ccorresrxf CP’ hsac

ccorresrxf AP hsac

for another fixed predicate C. Suppose also that /\s. As = Bs = Cs.

Proof. A formal Gentzen-style proof is given in Figure 2.1. However, providing a full proof tree
for the later theorems in this thesis would be more confusing than helpful. Instead, we will
present those proofs in the style as follows. Readers who have used Isabelle/HoL (or similar
proof assistants) before may be familiar with this style, as I try to emulate Isabelle/Hovr’s
“schematic variables” [Wenzel, 2014].

"This is conceptually similar to the “generalisation” or “consequence” rule for Hoare logic [Hoare, 1969].

11
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Correspondence step. Our goal begins as
ccorres r xf ?g P’ hs f g.

Generalise our preconditions, as above.

First, apply rule (1). Our goal is now
ccorresrxf ?1 P’ hs f g.

Next, apply rule (2). Our goal is now
ccorres r xf 2?5 P’ hs f g.

Lastly, apply our assumption (instantiating ?, to C)!

Preconditions step. We instantiated our (executable) preconditions as follows. Note that we
never instantiated the concrete preconditions to anything significant.

. ?0 :(AS.A—)?l)
. ?1 = (ASB—) ?2)

e 2,=C

We call this a precondition chain. The precondition chain is terminated by C as the last step
we make is to apply our precondition.

We have ?( because we are given that A = B = C.

We have shown that the precondition chain holds, so we are done. O

The proof style used in this thesis “walks” up the branch of the proof tree that regards the
correspondence statements. It makes explicit our choice of what rule to apply next with the
variables of form ?;. This notation is inspired by and intended to correspond to schematic
variables that Isabelle creates and instantiates as it proceeds through a proof script.

Note that it is idiomatic to try to avoid placing preconditions in the concrete precondition P’
as much as possible. Although it is possible in the framework, in general we do not do have
any proof obligations regarding the concrete preconditions.

The second technique for composing rules is the so-called “splitting”-style. Most correspon-
dence statements for functions in the kernel have no premises, in the natural deduction sense.
Instead they are between a Haskell function on the left, and either a Call statement or a literal
operation on the right. To apply them, we must first adjust them into the right form. Applying
them uses the so-called split rule, which has additional premises in terms of Hoare logic or the
C-Smvpu verification condition generator [Cock et al., 2008], that ask that the operations on
either side preserve the preconditions. This process is supported by proof automation tactics.
As we do not do many proofs in the splitting style in this thesis, I direct the reader to Winwood
et al. [2009] for more details.
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2.8 Timing channels in data cache

Let us look at an example of a pyTC, where a process infers information about another process
through the execution time of an instruction. Many kinds of timing channels exist, but this
kind will give us a stronger intuition for why Time Protection must partition memory.

Suppose we have a typical OS running two processes: a spy process and a victim process. The
system is running on a single processor with a cache shared by all cores. The address spaces of
both processes are mapped to disjoint pages, so neither process and read from addresses of the
other process.

During the spy process’ time slice, it carefully accesses specific memory addresses to overwrite
every cache line with its own data, yielding to the victim process when it is done. The victim
process runs, influencing the cache with each memory access and leaving a “footprint” in the
cache. When control returns to the spy process, it accesses the same addresses it accessed
before, carefully measuring the time it takes for each access. If an access was fast, the spy
concludes there was a cache hit, and if an access was slow, the spy concludes there was a cache
miss. For any cache misses, the spy can conclude that the victim process must have accessed a
part of its memory that would write to that that cache line. Thus information has leaked from
the victim process to the spy process, despite their memory having been partitioned, through a
timing channel in the cache. This attack is known as a prime and probe attack [Ge et al., 2018].

2.9 How does time protection work?

To review, Time Protection eliminates timing channels between domains [Trustworthy Sys-
tems Team, 2017, 33]. As mentioned earlier in Section 2.3, a domain is a collection of threads
that should be isolated from one another. The existing proof that the kernel enforces confi-
dentiality give their strongest guarantees about domains [Murray et al., 2013], as we explain
later in Section 2.10. If you want to limit the information one part of your system can observe
about another, you should divide the threads of each part into separate domains.

The time protection mechanisms eliminate the timing channel in physically-addressed caches—
as described earlier in Section 2.8—by partitioning the cache itself [Ge et al., 2019]. The OS
allocates physical pages of memory in a careful fashion, such that each domain can only
affect cache lines that no other domain can affect. It uses a technique called page colouring,
which takes advantage of structure created by set-associative caches [Kessler and Hill, 1992].
Set-associative caches use certain set-selector or index bits of the memory address, to decide
which section of the cache to store a value in. Each of these sections is disjoint, and is referred
to as a cache “colour”. On architectures where set-selector bits overlap with the page number
of addresses, each page can only be resident in the section of cache of a particular colour.
Therefore we can divide the colours, and hand each domain only the capabilities to pages of a
particular set of colours. Then, threads in each domain can only map in pages of the chosen
colours. With this mechanism enabled, a thread can access any virtual address (in user-mode),
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and it will not touch cache lines that are not in the colour of its domain. Later, when we discuss
domain “partitions”, you can instead think “cache colour”.

Since this mechanism relies on page allocation, it is limited to timing channels in physically-
indexed caches. On most hardware, only off-core caches (generally L2...LLC) are physically
indexed [Ge et al., 2019]. The timing channels in on-core caches must be handled differently;
Wistoff et al. [2021] solves this with a hardware instruction to flush on-core state, during
domain switches. Verification of those mechanisms does not depend on the outcomes of this
project, so we consider timing channels in on-core caches not in the scope of our concerns.

It is important to note that the time protection implementation (and its verification explained
below) is being done on an experimental modification of the selL4 microkernel that only
supports a “separation kernel policy”, which requires that no information is permitted to flow
between domains. This policy is quite restrictive, and is only adopted in scenarios like a cloud
hosting service, which would run VMs for mutually-distrusting clients that should not be
able to interact with one another. In a cloud scenario, each VM would run in its own domain.
Implementing and verifying time protection with less restrictive policies is left as future work
for the overarching time protection project.

The first implementation of Time Protection was done by Ge et al. [2019], for the x86 architec-
ture. Later, Buckley et al. [2023] re-implemented Time Protection for RISC-V, taking advantage
of the fence. t instruction introduced by Wistoff et al. [2021, 2023]. This project builds the
ideas of Buckley et al. [2023]. However, this project’s proof artefacts are derived from the
mainline sel4 verification work, because this project is independent of the implementation of
Time Protection.

2.10 Verifying time protection enforcement

The partitioning described above is insufficient to show total assurance of our system. Note
the caveat above that the partitioning of off-core caches is a kernel mechanism that only
affects code run in user-mode. There are no mechanisms preventing the kernel, running in
kernel-mode, from accessing any physical address it wishes to. As a result, a vulnerability could
exist that would allow a malicious actor to craft system calls to read and write to a cache timing
channel. No hardware mechanisms that can mitigate this exist. Software-level protection would
have to trigger on every memory access, which would impose a sever performance penalty, so
a software-level mechanism is also infeasible. In order to have total assurance of the security
of our system, we must formally verify that calling the kernel will only access addresses in the
partition of the currently-running domain.

There has been significant progress in verifying the time protection mechanisms for seL4.
Sison et al. [2023] formalised the notion of a system being free of timing channel as follows.
Timing channel freedom is expressed as a noninterference property [Goguen and Meseguer,
1982; Murray et al., 2013], for all pairs of domains D and D’. Informally speaking, D does not
interfere with D’ if for all sequences of system calls made by threads in any domain, the state
of the OS is “observationally equivalent”—i.e. it looks the same—from the perspective of D’,
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with and without the effects of of system calls made by D. Timing channel freedom is defined
by extending the notion of state to include microarchitectural state, modelled abstractly as

« the flushable state, such as on-core caches, branch-predictor state, etc. which can be
cleared during domain switch time

« the portion of the partitionable state assigned to the current domain, such as the off-core
cache lines of the same colour

« any parts of the partitionable state used for kernel shared data, and

« the exact wall-clock time.

Thus, if D does not interfere with D’ with respect to this extended state, then we have eliminated
the timing channel from D to D’.

Buckley et al. [2023] investigated timing channel-freedom for seL4 based on the above work
by Sison et al. [2023]. Most relevant to our work is the following two contributions. They
introduce the terminology of an touched addresses set (TA set), an over-approximation of
the set of addresses that a system will access when run. More specifically it is the address of
every kernel object the kernel has has retrieved since the last domain switch. Crucially, they
also give an extension to the existing information flow proofs to cover timing channels, and
hence show time protection enforcement. This extension requires provably correct tracking of
the TA set, such that it obeys the invariant:

Proposition 2.2 (Partition subset invariant [Buckley et al., 2023, p.11]). The physical transla-
tions of all addresses in the TA set form a subset of the union of the physical addresses that reside
in the currently running user domain’s partition.

This project seeks to help obtain a proof of the partition subset invariant holds about the C
implementation of sel4.

Verifying time protection enforcement hinges on a way to correctly track the TA set, and is an
open research problem. We need the TA set so that we can reason about how the kernel affects
off-core caches, which is partitionable state. Again, we need that the kernel only touches
the partition of the cache that the currently running domain is permitted to touch. We shall
see a method to track the TA set for the abstract specification by [Buckley et al., 2023] in
Section 2.11.1

2.11 Related work

Lastly, we shall discuss some closely-related existing work, that I do not apply directly in this
thesis. We shall see the method of reasoning about touched addresses put forward by Buckley
et al. [2023], about whether there are any insights to be gained from verification projects
for kernels other than seL4, and lastly some recent work on tracking touched addresses for
machine code.
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2.11.1 Tracking the touched addresses set for the abstract specification

The authors of Buckley et al. [2023] laid the groundwork to show time protection enforcement
at the abstract specification level, and to use refinement to carry that property to apply to
the C implementation. This direction is natural, as all previous security proofs are carried
down by refinement from proofs over the abstract specification. Their approach to track the
TA set was as follows. They add the TA set to the abstract state, to record what memory
addresses have been accessed so far in execution. Note that the field is ghost state, which means
it only exists in the specification of the kernel in the theorem prover, and does not exist in
the C implementation at all. Before every access to a kernel object, they insert a statement to
add that object to the TA set. Hence, at the end of a system call, the TA set field of the state
contains every memory address that was accessed by the kernel. The authors add an assertion
in the machine semantics for reading and writing to a memory address, that checks if the
address is contained in the TA set. If the address is not contained, the access fails. Then, if the
refinement proofs succeed, we can be certain that none of the above assertions are triggered,
so all necessary objects must have been accounted for in the TA set.

However, this approach has met substantial proof engineering challenges. Many lemmas
involved in the functional correctness proofs rely on the property that certain operations are
pure, that is, they do not mutate state. By inserting these operations that add to the TA set,
previously pure functions become impure, even though the state they are mutating is not real.
Hence, large swathes of the refinement proofs are broken, and are yet to be repaired. Moreover,
the above approach has a pitfall: At the abstract level, the layouts of all kernel objects have not
been determined yet, and they only exist at lower steps of the refinement chain. This means
that the TA set grows as we go down the specifications.

Suppose that we repair the refinement using the above approach, how our tracking of the
TA set at abstract level could be refined down to the executable or concrete levels, such that
the proof of time protection enforcement could also be refined, is still an open question. Our
approach in this thesis circumvents this problem, and is described in Section 3.2.

2.11.2 Verifying isolation of an operating system with refinement

One of the earliest attempts at verifying isolation properties for an OS is KIT [Bevier, 1989].
They show that a machine-code implementation of the kernel is correct with regards to a
specification, giving a precise semantics of the machine-code instructions. Their proofs are also
done in a similarly compositional way: the author shows refinement of individual components
of the kernel, before composing them to state refinement of the entire kernel. Their specification
is quite simple, and the scale of their refinement is much smaller than that of seL.4. Moreover,
there is nothing that resembles tracking of touched addresses.

A detailed survey of OS verification projects is given by [Klein, 2009].
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2.11.3 Capturing touched addresses for assembly verification

Verbeek et al. [2020] presents an automated method for verifying the memory usage of assembly
code. Their process begins by using (unverified) tools to lift up assembly into a higher-level
representation. Then, they find bounds on the touched addresses for each block of code by
symbolic execution. They import these bounds into Isabelle/HOL to verify that they hold.
Verification is done using novel Hoare logic that accounts for the memory addresses accessed
by the program in each Hoare triple. Thus they use automated theorem proving techniques to
prove the generated Hoare triples. Composing the Hoare triples allow the proofs to scale to
cover large programs.

They define a memory usage Hoare triple as follows:

Definition 2.3 (Memory usage WRT a certain state change [Verbeek et al., 2020, p. 103]). The
set of memory regions M is the memory usage WrT the state change from o to ¢’, iff any byte
at an address a not inside one of the regions is unchanged.

usage(M,0,0") =Va.(Vre M.[a,1]Xr) = ¢’ : %x[a,1] =0 : *[a, 1]

Here, o0 and o’ refer to states of the program, the notation [a, s] denotes a region of s bytes
starting from memory address a, the relation ry X r; denotes that two regions do not overlap,
and =[a, s] denotes reading s bytes from address a. Intuitively, it says that, M is the only memory
usage to get from a state o to o”, iff the value at any address a that is not in M, is the same in
both o and ¢”.

Definition 2.4 (Memory usage Hoare triple [Verbeek et al., 2020, p. 104]). A memory usage
Hoare triple is defined as:

{P} f{O; M} =Voo’'.P(c) A exec_scf(f,0,0") > Q(c”) A usage(M,o0,0”)

Assume exec_scf just means to take a “step” in the simulation of the program.

At first glance, using a Hoare logic for memory access seems highly promising, due to the
ability to automatically prove Hoare triples, and that Hoare triples enable straightforward
composition of proofs about subprograms. Moreover, the existing verification of seL4 already
expresses properties using a Hoare logic. Perhaps we could adapt the current Hoare logic for
seL4 to account for memory usage as well.

However, their Hoare logic has a fatal flaw: it cannot account for reads. As code that only
reads from an address will not mutate it, that address can be excluded from the memory usage
set, and the Hoare triple continues to hold. Reads are only accounted for insofar as the tool
that does symbolic execution of code blocks will include them, but they are not part of the
verification. For our purposes, since reads still impact the cache, we must provably account for
them as well. It is unclear how to adapt their Hoare logic to account for reads as well.

Moreover, since their work is focused on machine code, many of their concerns are irrelevant
to us. For example, they generate preconditions that the return address of a function is not
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clobbered during the execution of a function body. Since we are dealing with C programs,
that is not something that concerns us. The other side of our work being concerned with a C
implementation, is that the C code we analyse will still be changed by compiler optimisations
and instruction reordering. Considering how my chosen approach might be relevant for time
protection elimination of the binary is out of scope.

2.12 Summary

In this chapter, we first covered key concepts of the formally-verified seL4 microkernel: its
structure, kernel objects, and interface [Trustworthy Systems Team, 2017], the structure of
the verification of sel.4’s functional correctness [Klein, 2009]; and saw an overview selL4’s
confidentiality proofs, which Time Protection aims to extend [Murray, 2013].

We saw that the Haskell implementation of seL4 is deeply embedded in a monadic style with
its own Hoare logic [Cock et al., 2008], and how the C code is translated into C-SimpL and
equipped with a model of variables [Winwood et al., 2009] and the heap [Tuch et al., 2007]. We
discussed the refinement from sel.4’s Haskell implementation to the C implementation: the key
definitions used, how correspondence statements are stated, and also composed [Winwood
et al.,, 2009].

Next, we reviewed the notion of a pTC, prime-and-probe as an example of a pTC attack, and
how the Time Protection mechanisms work to eliminate them [Ge et al., 2019].

Lastly, we reviewed some past work, from tracking the touched addresses at the abstract level
[Buckley et al., 2023], past verification of operating systems [Bevier, 1989; Klein, 2009], and a
similar attempt at tracking touched addresses for binaries [Verbeek et al., 2020].
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Chapter 3

Formalised accounting of
touched addresses

In this chapter, I shall

« Outline the ideal outcomes of my project, enriched by the context given in the previous
chapter (Section 3.1),

« Describe how we will reason about the touched addresses set, particularly how we differ
from Buckley et al. [2023] (Section 3.2),

« Explain how that approach embeds into the concrete specification (Section 3.3),

« Explain how that embedding can be verified via refinement from the executable specifi-
cation (Section 3.4), and lastly,

Justify the subset of the kernel I will demonstrate these methods on (Section 3.5).

3.1 Restatement of the goals of this project

Using what we have seen in the previous chapter, let us review the goals of this project. To
verify Time Protection, we need a proof of the partition subset invariant (Proposition 2.2).
This project will try to show that the invariant holds about seL4’s concrete specification, as a
refinement of the executable specification. To do so, I will extend the existing refinement to
also account for touched addresses, in a way that is scalable to the entire kernel.

First, I define a way of encoding touched addresses for the executable specification and concrete
specification. Then, I will develop methods for refining information about touched addresses
at the executable level to the concrete level. I will demonstrate these methods on a carefully-
chosen subset of the kernel, as a proof-of-concept that they may be applied for the entire
kernel.

20



Thomas Liang Refining seL4’s Accounting of Touched Addresses for Time Protection
Let us clarify the scope of the project.

+ We will assume certain invariants hold about the executable specification. How those
assumptions will be eliminated is not in scope, and is the topic of another thesis project.

« We will find these results using interactive theorem proving. It is currently unclear how
the problem may be reducible to a process that does not require human interaction (i.e.
push-button verification). The refinement proofs we are extending are done interactively.

+ Where relevant, our method does not need to support the full C language. Our work
is for the purposes for verifying the seL4 microkernel, which has been written in a
particular style of C [Klein et al., 2009].

« Lastly, like all previous time protection verification work, we assume a separation kernel
policy and focus on the Risc-V version of seL4.!

In general, as formal verification is an expensive and tedious process, I will endeavour to
minimise the work of a proof engineer that would be required to expand our method to the
rest of the kernel.

3.2 Adding reasoning about touched addresses

In Section 2.10, we saw that the previous attempt at accounting for touched addresses by
Buckley et al. [2023] faced difficulty. They encode the touched addresses as a set of addresses
in kernel ghost state. Functions that access kernel objects first add the address of the object to
the set. However, previously pure functions are now impure, invalidating large swathes of the
proof-base which depended on purity.

There is an alternative approach that circumvents the issues encountered by Buckley et al.
[2023]. This approach was proposed in private correspondence with my supervisors and other
maintainers of the seL4 proofs. We believe that this approach is amenable to future verification
of a multikernel version of seL4.

Rather than dynamically tracking the TA set itself during simulation, we instead show that
each memory access is within the static partition of the currently running domain. This is a
set that does not change at runtime, circumventing issues of making operations impure. The
purpose is that the set of addresses in the current domain’s partition is an over-approximation
of the TA set, and obviously obeys the partition subset invariant (Proposition 2.2). We can
encode that property by similarly inserting assertions at every memory access, that we shall

"Whether this assumption has significant implications on the refinement has not been explored deeply, as none
of our work directly references any architecture-specific parts of the kernel. We choose Risc-V as Wistoff et al.
[2021] implements the crucial fence. t instruction for Risc-V.
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call partition guards.? With this approach, we do not modify any state, which avoids breaking
existing proofs that slowed down the first attempt. But, because memory layouts of kernel
objects are not determined until concrete specification, these assertions must live at concrete
specification. In other words, we can no longer refine the proof of time protection enforcement
from abstract specification down to concrete specification, and instead have to verify the time
protection mechanisms directly at the concrete specification level.

Adding assertions at pointer accesses at the concrete specification has precedent. In order to
adhere to the C standard, all pointer accesses are already surrounded by a guard that checks
the address is not-null and aligned. The translation validation work, done by Sewell et al.
[2013], strengthened all pointer dereference guards to check that the object being pointed to is
of the correct type.

Not refining time protection enforcement seems to run counter to the precedent set by ex-
isting security proofs. However, we can still leverage refinement to carry useful invariants
at the abstract specification level to show that our earlier assertions hold at the level of the
concrete specification.

Finally, we arrive at where my project connects with earlier work. We need to verify that par-
tition guards inserted at the concrete specification hold, judiciously assuming some invariants
to be refined down from abstract specification. The assertions allow us to prove that the set
of addresses accessed by the kernel—by virtue of these partition guards asserting that they
are in the current domain’s partition—obeys the partition subset invariant. The partition can
then be used with the framework of Buckley et al. [2023] to produce a proof of time protection
enforcement, as required. How the invariants will eventually be proven is the topic of Nair
[2025], another thesis project.

To do so, we will insert partition guards at every pointer access. We will also assume that
some useful invariants can be refined down from abstract specification to be used at concrete
specification. If we can prove that the partition guards never trigger, using refinement from
executable specification, we have proven the property we want.

From here on, where I say “verify” some part of the kernel, I mean to repair the refinement
proof from the corresponding part of the executable specification.

3.3 Inserting the partition guards into the concrete specification

First, I shall discuss how I plan on implementing the partition guards, which is composed of
two sub-problems: how to modify the concrete specification, and how the assertions can be
stated formally.

2Partition is a slightly loaded term, as seL.4’s domains were previously called partitions [Murray et al., 2013].
Do not think “domain partitions” means “partition partitions”! A more precise term might be “domain partition
guards” and “domain partition oracles”. Nevertheless, we shall call them partition guards for the sake of brevity.
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We can leverage existing infrastructure for inserting the partition guards. As mentioned above,
when the concrete specification is derived, every pointer access is surrounded by a guard
that checks the address is not-null and aligned. Sewell et al. [2013] developed substitution
machinery to create a copy of the concrete specification with every pointer guard replaced
with guards that give stronger guarantees about the object that is being pointed to. Then, a
largely automatic proof shows that this new copy of the concrete specification is a refinement
of the original. I will reuse the substitution machinery developed by the authors to insert
partition guards for my project. This machinery is implemented in over 300 lines of Isabelle/ML
code, so reusing it saves a considerable amount of time.

The much more difficult problem is how to state the assertions at all. Recall that cache colours
are allocated to domains by the initial task, the thread that runs when the OS boots. In other
words, the partition of the currently running domain is a function of the runtime state of
the OS. In sel4, that manifests as the allocation of capabilities and what permissions those
capabilities have to different capability spaces. Deriving properties from runtime security
policy has been done already, as part of the work that showed seL.4’s access control mechanisms
enforce integrity and authority confinement [Sewell et al., 2011]. There, the authors develop a
model of security policy based on the capabilities that are present.® The proofs of integrity
and authority confinement are expressed using this model, and they are trivially preserved by
refinement to the concrete specification. This model can also be used to find the mapping of
domains to partitions of colours as well. A complication arises because the above model is
defined in terms of the abstract specification, but we wish to use this model at the concrete
specification in order to phrase our assertions. How to obtain the partitioning at the abstract
specification level and then refine it down to be used at the concrete specification level is an
open research question, and the topic of another thesis project.

My project addresses this by making the first of two assumptions:

Proposition 3.1 (The Partition Oracle). There is a mapping of addresses to the domain partition
they belong to (given by an oracle function).

We can parametrise the refinement from executable specification to concrete specification over
the partition oracle. One nice property of doing so is that if the oracle is set to be the trivial
mapping where all domains are permitted to touch all memory addresses, then the assertions
are trivially discharged. In this case, the partition guarded—concrete specification becomes
semantically equal to the original specification.

3.4 Refining from the executable specification

Having answered how we can represent the partition subset invariant for the concrete specifi-
cation, we now need to do the same for the executable specification.

3This is in a session called Access.
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One useful property of the correspondence statements is that it assumes that the left-hand
side—the Haskell operation—does not fail. As a corollary, any assertions that are in the left-
hand side become additional preconditions which we can use to prove the correspondence.
What assertions in the executable specification would help us discharge the partition guards
in the concrete specification?

We can exploit the fact that sel4 is written in a very particular style. One rule it obeys is that it
never takes pointers to the stack. In other words, each time the C implementation dereferences
an address, it is the address of data on the heap, namely kernel objects! All the partition guards
are surrounding accesses to kernel objects.

We would like to express the invariant that all accesses to kernel objects in the executable
specification also only lie in the partition of the current domain. A natural approach is to
mimic what we have done for the concrete specification and insert partition guards into the
executable specification around each access to a kernel object. Let us call these executable
partition guards, and the former ones concrete partition guards.

This leads us to our second and last assumption.

Proposition 3.2 (Structural similarity of kernel object accesses). Each pair of corresponding
functions in the executable and concrete specifications perform accesses to the same kernel objects,
in the same order.

This assumption is motivated by how the existing refinement from executable to concrete
heavily exploit their structural similarity Winwood et al. [2009]. Although this proposition is
not strictly necessary for our approach to succeed, it makes our proofs easier and increases our
confidence that our approach can be scaled to the whole kernel. We will see the importance of
this conjecture during the demonstration of these methods in Chapter 4, particularly because
of how we depend on one crucial rule Theorem 4.9.

How do we insert partition guards into the executable specification? There is no existing
tooling for performing substitutions in the executable specification as there is for the concrete
specification. Fortunately, in the Haskell implementation, all* kernel objects are instances of
the PSpaceStorable typeclass, with methods

getObject :: PSpaceStorable a => PPtr a -> Kernel a
setObject :: PSpaceStorable a => PPtr a -> a -> Kernel ()

All accesses to kernel objects pass through these functions. Haskell has no pointers, but the
executable specification simulates them by storing kernel objects in a global map of physical
addresses to kernel objects. Every access of a kernel object in the concrete specification should
have a corresponding call to getObject or setObject. Thus a simple way of inserting partition
guards would be to update the definitions of getObject and setObject to have them. Doing
so requires very little effort by the proof engineer, and also allows us to iteratively update the
specification.

“All objects that are stored in physical memory.
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I note that overriding getObject and setObject is not exhaustive. These two methods are
operations of the PSpaceStorable typeclass. Kernel objects that are not only accessed by the
kernel but also accessed by the hardware, namely virtual memory pages and hardware page
tables, will override their definitions of getObject and setObject. However, these objects
are exceptional because they affect other parts of the hardware. Our project is only concerned
with memory accesses made by the kernel, so these are out-of-scope.

Importantly, both the executable and concrete specifications only model accesses to the
beginning of kernel objects. An operation in the C implementation to set a single field of
a struct is translated as overwriting the entire struct with one field changed. The Haskell
implementation assumes that all kernel object accesses are aligned. Therefore, we proceed
with the assumption that every dereference of a pointer by the concrete specification will have
a corresponding dereference in the executable specification.

To summarise, we will insert similar partition guards into the executable specification. I
believe this is sufficient to discharge the concrete partition guards,® because most functions
are structurally similar, access the same objects in the same order, and all dereferences are
aligned to the beginning of kernel objects. Additionally, doing so is simple, only requiring
small modifications in a compositional way. Discharging the partition guards in the executable
specification is not in scope Nair [2025].

3.5 Choosing a subset of the kernel

How can we choose a suitable representative fragment of the kernel to demonstrate our method
on? One approach would be to verify a single system call, and growing our proof one system
call at a time. To reduce the difficulty of a proof, we can sculpt the state of the kernel in the
preconditions so that the system call triggers only one specific code path. However, even the
simplest system calls pass through a large number of parts of the kernel. I believe verifying an
entire code path within one year is likely unfeasible.

Alternatively, we can select individual functions of the kernel to prove our property about.
Focusing on a single module of the kernel could enable more proof reuse. For example, the
same invariants and other lemmas about a data structure in a kernel object could be used in
multiple proofs about one module of code. Moreover, when we are selecting parts of the kernel
to verify, we can select it at the granularity of functions or even sections of lines of code. Such
flexibility is an asset under the limited time constraints of an Honours project. Thus, we will
proceed with the latter approach.

In consultation with proof maintainers and kernel developers, I have also identified some
criteria for selecting parts of the kernel.

« Prefer functions that do not depend on other system (i.e. “leaf” functions)

*Recall that discharging the executable guards is done by refinement from the abstract to executable specifica-
tions. Repairing that refinement is the goal of another project Nair [2025].
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« Prefer functions that do not involve retyping memory.
o Prefer functions that modify minimal shared kernel data.

« Prefer functions that do not change the current running thread.

We avoid functions that involve retyping memory as they are already treated as an edge case
in the existing proofs. They are not really key to the argument that such a proof method is
viable for the entire kernel.

Global data structures that are shared between domains are an exception to the other partition-
ing of kernel objects. They are treated in a particular way [Ge et al., 2019] which makes them
effectively uncoloured. As a result, accesses to shared kernel data that disobey the partition
subset invariant are irrelevant. Moreover, there is active development on minimising the
amount of shared kernel data, so what is and is not shared is in flux. It is possible that what
we dismiss now as shared, could become partitioned in the future and must be accounted for.

We also avoid functions that change what the current running thread is. The reason is the
same reason we avoid verifying complete syscalls: 1pc interacts with too many subsystems of
the kernel

In consultation with other proof and kernel maintainers, I settled on the function lookupCap
and its dependencies.

3.6 Summary

In short, we represent the partition subset invariant by inserting partition guards into the
executable and concrete specifications, surrounding each access to a kernel object. I give a
brief argument why I believe that to be a sound representation, and why those partition guards
in the executable specification is a sufficient assumption to resolve the concrete guards, at least
for functions that are structurally similar (Proposition 3.2). Lastly, I describe our approach for
choosing what part of the kernel to verify (LookupCap).
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Chapter 4

Refinement of touched addresses on
a simple part of the kernel

In the last chapter, we saw an approach to formalising the partition subset invariant for the
concrete specification, and then the assumptions we need about the executable specification to
prove it. In this chapter, I will describe the work that has been carried out this year. I apply the
aforementioned methods on proving that the invariant holds for a set of simple procedures,
lookupCap and updateCap, by repairing their correspondence proofs. However, the proofs
require assumptions about a major dependency function resolveAddressBits. We will step
through these proofs in sections Section 4.3 and Section 4.4. In this chapter, I refer to proving
that the partition subset invariant holds for a function as “verifying” the function, or “repairing
the correspondence for” the function.

The work was done on the verification of the Risc-V version of the kernel. Although I do not
believe the correspondence proofs differ greatly based on the platform architecture, I did not
investigate this in detail. As described in Chapter 3, the Risc-V version of the kernel has the
strongest story for Time Protection, and is what the overall verification project is focusing on.

I have tried to simplify the notation in this chapter as much as possible for readability. Most of
the Isabelle/HoL terms presented are not the same as the true terms in the proof script. I shorten
the long noisy generated names for variables (and their projection and update functions) and
also elides tedious coercions between logically equivalent types. Where there are significant
deviations, they are marked, sometimes by a footnote.

4.1 Definitions and assumptions

First, I will cover how exactly I defined the partition oracle and guards. The partition guards in
the executable specification are the primary assumption for our proofs.
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4.1.1 The partition oracle

The partition oracle defined in terms of an underdefined function.

Definition 4.1 (The partition oracle). Given a (virtual) memory address a : machine-word,
the domain that it belongs to is given by dom-of-addr a where

dom-of-addr : machine-word — domain.
The partition of a domain d : domain is given by partition-of-domain d where
partition-of-domain d = {a | dom-of-addr a = d}.

Note that the oracle is explicitly not parametrised by the state of the kernel. On principle,
the partitioning of memory between domains is a function of runtime state, because it is
derived from the allocation of capabilities to the threads in each domain. Moreover, the time
protection extension [Buckley et al., 2023] expects the touched addresses set as a function of
state. However, the allocation of capabilities between domains for Time Protection is fixed
once the system has booted [Ge et al., 2019]. I exploit this fact to simplify the proofs. Otherwise,
we would have an additional proof burden of showing the state has not changed, each time

we reference the partition oracle. How to reconcile this assumption with the reality that it is
runtime state is left as future work (See Section 6.1).

By defining the oracle as a set comprehension, we get this injectivity property for free.

Lemma 4.2 (Domain partitions do not overlap).
a € partition-of-domain d A a € partition-of-domaind’ — d =d’

Proof. If a € partition-of-domain d, then we have that dom-of-addr a = d. Similarly, we also
show that dom-of-addr a = d’. It must be that d = d’. O

These definitions reflect the corresponding definitions in the proof artefacts of Buckley et al.
[2023].

We will define some useful lemmas about partition oracle once we define the partition guards.

4.1.2 Partition guards in the concrete specification

As mentioned in Section 3.3, I reuse the substitution machinery from the translation validation
work Sewell et al. [2013] to insert the partition guards for the concrete specification. The
embedding used by the concrete specification is described in Section 3.3.

Definition 4.3 (Concrete specification—partition guard). We will use the abbreviation

dompart-guard p s = p € partition-of-domain (ucast (ksCurDomain (globals s))) .
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The function ksCurDomain gets the currently-running domain from the global kernel state.
In the concrete specification, domains are represented by 64-bit integers. However, in the
executable specification, domains are represented by 8-bit integers, so we must cast it. So far,
this cast has not caused any additional proof difficulty.

We use the substitution machinery to search the translated C code for statements of the form
Guard C_Guard {s | c-guard (ps)} b
and rewrite them with a partition guard® as

Guard C_Guard {s | c-guard (p s)}
(Guard C_Guard {s | dompart-guard (ps) s} b).

Here, pis a pointer that is about to be dereferenced (in b), and b is the guard body that is executed
if the guard holds. In the concrete specification, local variables in C are encoded as fields of a
record, so pis a projection of the state record. Notice that we nest the guard statements within
each other: the b on the first line has been replaced with another Guard term. We could have
instead rewritten the predicate as the conjunction: {s | c¢_guard p A dompart-guard ps}. As
we shall see later, the former representation makes it easier to “discharge” one guard at a time,
because of existing tactics on correspondence statements.

Let us take a look at an example. Here is an excerpt from the C function lookupCap.

lookupCap_ret_t lookupCap(tcb_t *thread, cptr_t cPtr)

{
lookupSlot_raw_ret_t lu_ret;
lookupCap_ret_t ret;
ret.cap = lu_ret.slot->cap;
return ret;

}

The function 1ookupCap returns the variable ret which has type lookupCap_ret_t. The field
ret.cap is initialised by dereferencing the pointer lu_ret.slot! In the concrete specification,
prior to inserting the partition guards, the dereference is embedded as

Guard C_Guard {c-guard lu_ret.slot} (‘ret.cap :== #Z &(lu_ret.slot — [cap])).
After inserting the partition guards, we get the statement

Guard C_Guard {c-guard lu_ret.slot}
(Guard C_Guard {s | lu_ret.slot € partition-of-domain s}
(‘ret.cap :== #Z &(lu_ret.slot — [cap]))).

'In reality, the machinery also inserts a guard that is useful for translation validation, but I omit those guards
for brevity.
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Thus, every pointer dereference has a guard asserting the pointer is in the partition of the
current domain. We trust that the substitution procedure is correct and finds all the pointer
dereferences in the concrete specification. Insertion of the partition guards is done automati-
cally.

Correspondence statements are generally phrased as between (the translations of) a Haskell
function and C function, by their names. After the insertion of these guards, the C function
unfolds differently, and any existing correspondence proof will no longer succeed. The validity
of statements between Haskell operations and non-Call SIMPL statements is unaffected.

I regret that the substitution has been done in-place, which has made our proof method less
expressive. [ will elaborate on this in Section 6.1.

4.1.3 Partition guards in the executable specification

In this section, we will see many definitions from the executable specification, which is derived
from a Haskell implementation of the kernel. Although we will do proofs on their embedding
inside the logic, I present them here as their Haskell code. Where the definition only exists
inside the logic, I typeset them in the usual mathematical way.

First, we need to define a guard function, much like the concrete specification’s dompart-guard.

Definition 4.4 (Executable specification—partition guard). In Haskell, we define a partition
guard function

isInDomainPartition :: Domain -> Word -> Bool
isInDomainPartition _ = True

However, we override that definition in the logic to be

isilnDomainPartition d p = p € partition-of-domain d.

To keep the Haskell source actually runnable, and not needing to expose a partition oracle, the
Haskell definition is a constant function that always returns True. In hindsight, it may have
been more convenient if isInDomainPartition retrieved the current domain itself. However,
whether that would have incurred additional proof burdens is unknown.

As mentioned in Section 3.4, the executable specification models pointer accesses with a
global map from physical addresses to kernel objects. Specifically, every time the executable
specification wishes to fetch or update a kernel object, it calls getObject and setObject with
the physical address of that object.

To add partition guards for every pointer access, we create partition guard—variants of these
functions in terms of the above guard function.

Definition 4.5 (Partition guard—variants for fetching and updating objects). We define
new Haskell functions as follows, in terms of the regular functions. (The final argument
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lookupCap lookupCapInDomPart
lookupCapAndSlot lookupCapAndSlotInDomPart
lookupSlotForThread lookupSlotForThreadInDomPart

v

resolveAddressBits getThreadCSpaceRoot ol resolveAddressBitsInDomPart
/ /
getSlotCap getSlotCapInDomPart
| !
getCTE getCTEInDomPart
! !
getObject getObjectInDomPart

Figure 4.1: The new call-tree for partition-guard variants. On the left, in black, are the orig-
inal functions. On the right, in green, are the partition guarded-variants. Notice that as
getThreadCSpaceRoot does not access any kernel objects, it does not have a variant.

to stateAssert is the error message shown when the assertion fails, if the specification were
executed.)

getObjectInDomPart :: PSpaceStorable a => PPtr a -> Kernel a
getObjectInDomPart ptr = do
stateAssert (\s -> isInDomainPartition (ksCurDomain s) ptr)
"objectynotingpartition of current_domain"
getObject ptr

setObjectInDomPart :: PSpaceStorable a => PPtr a -> a -> Kernel ()
setObjectInDomPart ptr val = do
stateAssert (\s -> isInDomainPartition (ksCurDomain s) ptr)
"objectynotin partition of current_domain"
setObject ptr val

Then, as we choose to repair the correspondence statement of a particular function, we create a
copy of its definition in the Haskell implementation, except we manually update any functions
it calls to point to the guarded getObjectInDomPart and setObjectInDomPart instead. The
new call tree is shown in Figure 4.1.
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For example, consider the function lookupSlotForThread. It has the following definition.

lookupSlotForThread :: PPtr TCB -> CPtr -> KernelF LookupFailure (PPtr CTE)
lookupSlotForThread thread capptr = do

threadRootSlot <- withoutFailure $ getThreadCSpaceRoot thread

threadRoot <- withoutFailure $ getSlotCap threadRootSlot

let bits = finiteBitSize $ fromCPtr capptr

(s, _) <- resolveAddressBits threadRoot capptr bits

return s

To define a version equipped with partition guards, we need to replace each call to a function
that accesses kernel object, (i.e. getSlotCap and resolveAddressBits) with their partition
guard—variants. The naming convention for functions with partition guards is to add the
suffix InDomPart. So our new definition must call the functions getSlotCapInDomPart and
resolveAddressBitsInDomPart respectively. We modify the above definition for the guarded
variant lookupSlotForThreadInDomPart as follows.

lookupSlotForThreadInDomPart :: PPtr TCB -> CPtr ->
KernelF LookupFailure (PPtr CTE)

lookupSlotForThreadInDomPart thread capptr = do
threadRootSlot <- withoutFailure $ getThreadCSpaceRoot thread
threadRoot <- withoutFailure $ getSlotCapInDomPart threadRootSlot
let bits = finiteBitSize $ fromCPtr capptr
(s, _) <- resolveAddressBitsInDomPart threadRoot capptr bits
return s

The process of doing so is rather mechanical, and can likely be automated. I will elaborate on
this in Section 6.1.

Mechanical details of the proof script structure Why not modify the definitions of
getObject and setObject in-place, rather than create new definitions? There are a large
number of invariants stated about definitions in the Haskell implementation. Notably, each
definition often has accompanying specification lemmas, which are Hoare triples about its
behaviour and that are vital for verification. An example of a specification lemma is given by
Figure 4.2. The preconditions of these lemmas do not have enough information to discharge
partition guards, so the operation would fail, and the lemmas would be false. To fix that, we
would need to add preconditions about touched addresses to all of these specification lemmas,
which would be messy. The new definitions with partition guards need specification lemmas as
well, and it is often easier to prove these specification lemmas using the specification lemmas
of the definition without the guards. Much like the guards in the concrete specification, it
would be best to have these guarded variants in a new Isabelle/HoL locale (See Section 6.1).
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{ valid-objs’ } getSlotCap t { Ar. valid-cap’r and cte-at” ¢}

Figure 4.2: A specification lemma for getSlotCap. The definitions of the predicates in the
preconditions and post-conditions is not crucial.

4.2 An introduction rule for partition guards

Having defined the partition oracle and partition guards, we may now begin to prove theorems
about them. We begin with a useful lemma.

Lemma 4.6 (Predicate for moving concrete specification—-guards).

Vss’. (s,s”) € rf-sr A isinDomainPartition (ksCurDomain s) ptr A True —

dompart-guard ptr s

This lemma connects executable guards—isInDomainPartition— with concrete guard statements—dompart-gua
The rf-sr term is the state relation, which holds when the states of the executable and concrete
specifications s and s’ are equivalent.

Proof. Immediate from unfolding the definitions of islnDomainPartition and dompart-guard.
Because the two states s and s’ are related, both states must have the same currently-running
domains, so the partitioning is the same. O

We need this oddly-shaped lemma to instantiate existing rules for moving guards in the
concrete specification into preconditions of a correspondence statement. Below are rules that
were proved in earlier work.

Lemma 4.7 (Move concrete specification—-guards into preconditions). Rewrite a correspondence
statement with a Guard term removed, given that the preconditions imply the guard’s predicate.

Vs.s’.(s,s’) esrAPsAP' s — G’ s’ ccorres st xf AC" hsac
ccorres sr xf (A and P) (C’' n{s| P’ s}) hs a(Guard F{s | G’ s}c)

Vs.s’.(s,s’) EsrAPsAP s — G ¢ ccorres st xf AC" hsa(c;; d)
ccorres sr xf (A and P) (C’' N{s| P’ s}) hs a ((Guard F{s | G’ s}¢) ;; d)

If we apply these rules in a backwards-reasoning style, we ‘eliminate” the Guard term.
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What is the difference between the two rules? The first rule shows correspondence of

a and Guard F{s | G’s}c
whereas the second rule shows correspondence between

(a and Guard F{s | G’s}c) ;; d.

When might we use the second rule instead of the first? Having the tail operation d is slightly
more convenient, as it allows this rule to be applied as an introduction rule while we are in the
middle of a proof. We can only apply the former rule as an introduction rule, if it is the last rule
of a correspondence proof. Also note that because the executable specification is embedded in
a monadic style, it is impossible to determine whether a term a is a single statement or several
statements bound. We still have to express the left-hand side as the arbitrary a, making the left
and right-hand sides have different shapes. The choice of rule is, to my knowledge, a matter of
convenience.

If we instantiate the leftmost premise of these rules with Lemma 4.6, we get these two useful
rules which let us convert concrete specification—partition guards on the right-hand side, into
preconditions in terms of isinDomainPartition.

Lemma 4.8 (Move concrete specification—partition guards). Rewrite a partition guard on the
right-hand side as a precondition.

ccorres sr xf AC’ hsac
ccorres sr xf (A and (As. isilnDomainPartition (ksCurDomain s) p)) C’ hs
a (Guard C_Guard {s | dompart-guard ps}c)

ccorres st xf AC’ hsa(c;; d)
ccorres sr xf (A and (As. isilnDomainPartition (ksCurDomain s) p)) C’ hs
a ((Guard C_Guard {s | dompart-guard ps}c) ;; d)

Proof. By Lemma 4.7, where the first precondition is discharged by Lemma 4.6, and taking P
to be
As. isilnDomainPartition (ksCurDomain s) p.

These rules will allow us to prove an introduction rule for partition guards.

Theorem 4.9 (Partition guard-introduction). Given an arbitrary correspondence statement
between operations a and ¢ ;; d, we may prepend a partition guard to both the left and right-hand
side operations.
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ccorres r xf PP" hsa(c;; d)
ccorres r xf (As. isilnDomainPartition (ksCurDomains) p — Ps) (P’ n{s|p=p'}) hs
(stateAssert (As. islnDomainPartition (ksCurDomain s) p) > a)
((Guard C_Guard {s | dompart-guard p’ s} c) ;; d)

One could imagine a rule between just a and a program c. As we will not apply this rule in this
thesis, we elide it.

Before we prove it, we ought to first understand each part of it. Let us start from the bottom
last parameter of the conclusion.

We prepend a partition guard to the left-hand side, connected with the >> operator (monadic
bind that ignores the parameter). Then, we surround the right-hand side with a partition guard.

Entirely for convenience, the precondition of the concrete state requires p = p’, as pointer
expressions have different syntactic representations in the concrete and executable specifica-
tions. You could imagine an alternate rule where p = p’ is its own premise; although equally
expressive, the current presentation is slightly more convenient when using existing tactics
for correspondence proofs.

Lastly, the precondition on the executable state is that for some state s
isilnDomainPartition (ksCurDomain s) p — Ps.

This is not an additional proof obligation on the user of the rule, but actually makes the rule
more universally applicable. (Where usually the precondition would just be P, now P is in
in negative position.) Recall that at the end of a correspondence proof, we must show that
the preconditions of each correspondence statement we have used implies the next. As a
result of the precondition, after the introduction rule is applied, we permanently have the
fact islnDomainPartition (ksCurDomain s) p in that precondition proof. This is helpful when
there is more than one partition guard on a single value between both sides (which occurs in
the proof in Section 4.4). In that case, you can apply the introduction rule once, then apply
the regular guard moving rules multiple times. The preconditions generated by the guard
moving-rules can be discharged by the precondition obtained from the introduction rule.

Let us prove this rule.

Proof. We proceed in a backwards-reasoning style and begin by generalising the preconditions
with Lemma B.2. Because the concrete precondition references both p and p’, which appear in
each of the left and right-hand sides, we need the states to be related to relate p and p’. Hence
we will use the “stronger” variant in this proof.

Our goal begins as
ccorres sr xf 7o P’ hs
(stateAssert (As. islnDomainPartition (ksCurDomain s) p) > a)
(Guard C_Guard {s | dompart-guard ps}c)
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where variables of the form ?; represent unknown parts of the goal that will be filled in as we
apply rules.

Correspondence step. Fix our executable and concrete states as s and s”. Next we take cases on
whether the predicate islnDomainPartition (ksCurDomain s) p holds, which is the predicate
of the executable partition guard we are introducing. Suppose it is the case that it does not
hold. Then the left-hand side operation must fail, as the call to stateAssert will trigger. Thus,
our correspondence is vacuously true and we can then assume we are in the other case. In
other words, we assume that

isinDomainPartition (ksCurDomain s) p. (4.1)

Formally, this step can be done by applying Lemma B.1. I elide the proof of the empty-fail (---)
premise as it is uninteresting, and can found automatically by the verification condition
generator proof automation developed by Cock et al. [2008]. Our goal is now:

ccorres sr xf 71 P’ hs

(stateAssert (As. islnDomainPartition (ksCurDomain s) p) > a) ¢’

To remove the right-hand side guard, apply Lemma 4.8, making our goal:

ccorres sr xf 75 P’ hs

(stateAssert (As. islnDomainPartition (ksCurDomain s) p) > a) ¢’

Next, to remove the left-hand side guard, apply Lemma B.3. That gives the goal:
ccorres sr xf 73 P’ hsac.

This is our assumption—the arbitrary correspondence statement—so we are done with this
step.

Preconditions step. We applied three correspondence rules, and instantiated our (executable)
preconditions as follows. As usual, we never instantiated the concrete preconditions to anything
significant.

« 29 = (As. isinDomainPartition (ksCurDomain s) p — ?;)
« 71 =7, and (4s. isinDomainPartition (ksCurDomain s) p)

« 75 = (As. isinDomainPartition (ksCurDomain s) p — ?3)

?3 = (As. islnDomainPartition (ksCurDomain s) p — P)

The precondition chain is terminated by P as the last step we make is to use the arbitrary
correspondence statement in our assumptions, which has the (executable) precondition P.

We must show ?(, which holds by transitivity of implication.
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We have instantiated correspondence statements for the entire left and right-hand side of our
goal, and shown that each precondition implies the next. Our proof is complete. O

Thus, we have proved a crucial rule:

« Lemma 4.7, which lets us rewrite concrete partition guards as preconditions, and

« Theorem 4.9, which lets us introduce partition guards to both sides of a correspondence
statement, and adds that the guard holds to the precondition chain.

In particular, Theorem 4.9 is perhaps the most important theorem I present. We shall see how
it is applied in the following section. The reason we need Proposition 3.2 is that this rule is
easiest to apply for structurally similar procedures.

4.3 Repairing correspondence of a simple procedure

Equipped with an introduction rule for partition guards and other useful lemmas, we can
finally verify some programs. We will

+ Explore how to phrase refinement between guarded-variants of functions, and then
define and prove a key so-called “upgrading lemma” (Section 4.3.1)

+ Discuss temporary assumptions we make as the proof has been left to later work (Sec-
tions 4.3.1 and 4.3.2), and then

« Wrap up the proof (Section 4.3.4).

In the preceding sections, we set the stage for being able to refine touched addresses from the
executable to concrete specifications. As mentioned in Chapter 3, I demonstrate the proposed
methods by repairing the correspondence of the function 1ookupCap,? or in other words, that
the Haskell function lookupCapInDomPart corresponds to the C function lookupCap with
partition guards inserted. From here on however, although I refer to them as “functions”, the
sides of the correspondence statements that comprise the refinement proof are not necessarily
C or Haskell functions. For example, getSlotCap corresponds to the C operation slot->cap,
where slot has type cte_t *. Figure 4.3 shows the dependency tree between “functions”,
as well as which “functions” have correspondence statements phrased about them. In this
section, we will generally refer to correspondence statements by the name of the function in
the executable specification. The names in the executable specification can be considered the
canonical ones.>

*Note that its name is the same in both the executable and the concrete specifications.

*In fact, the executable specification used to be known as the “design specification”.

37



Thomas Liang Refining seL4’s Accounting of Touched Addresses for Time Protection

ExecSpec

lookupCapInDomPart |4

lookupCapAndSlotInDomPart

{ C

lookupSlotForThreadInDomPart |« » | lookupSlot
‘[ |8

| getThreadCSpaceRoot

CSpec

lookupCap

v

resolveAddressBitsInDomPart I »| resolveAddressBits

v v

getSlotCapInDomPart P»| slot->cap

getCTEInDomPart

v

getObjectInDomPart

Figure 4.3: Operation dependency trees for the Haskell and C lookupCap functions. The
horizontal arrows represent operations that have correspondence statements proved about
them.

We will build up the repaired correspondence proof for lookupCapInDomPart bottom-up,
but before that let us briefly discuss the structure of the repairs. Repairing correspondence
of the top-level functions lookupCapInDomPart and lookupSlotForThreadInDomPart is
straightforward. Both functions do not dereference any pointers themselves, so their cor-
respondence proofs can be repaired by instead composing correspondence statements for
the partition guard-variants. At the bottom of the diagram, the three Haskell functions
getSlotCapInDomPart, getCTEInDomPart, getObjectInDomPart all correspond to one line
of C code, slot->cap. This is the tricky part, and the part we will spend most of our time.
Lastly, we will assume correspondence of resolveAddressBitsInDomPart. I will justify why
I believe that making that assumption is reasonable later.

4.3.1 Extending correspondence to guarded variants

Let us begin with developing the correspondence proof of getSlotCapInDomPart. It helps to
first review the correspondence statement of getSlotCap. (There is a subtle difference not
shown in the diagram. The original proofs show correspondence between getSlotCap and
the pointer dereference slot->cap.) Formally, we have the following.

Theorem 4.10 (Correspondence statement for getSlotCap). A call getSlotCap ptr corresponds
to dereferencing the value of ptr to access the field cap.*

*Two technical details are omitted. As we note in Figure 4.2, the pointers on the left and right-hand sides have
different syntactic representations. They require additional ceremony to be equated. Hidden by ellipsis are premises
and preconditions that roughly state that x is not a global variable.
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getSlotCapInDomPart :: PPtr CTE -> Kernel Capability
getSlotCapInDomPart ptr = do

cte <- getCTEInDomPart ptr

return $ cteCap cte

getCTEInDomPart :: PPtr CTE -> Kernel CTE
getCTEInDomPart = getObjectInDomPart

Figure 4.4: The Haskell definitions of getSlotCapInDomPart and getCTEInDomPart. The
purpose of the alias getCTEInDomPart is to instantiate the type variable in the type
of getObjectInDomPart.

ccorres ccap-relation xf True -+ (getSlotCap p) (x :== ' &(p — [cap]))

We want to show correspondence between getSlotCapInDomPart and the guarded pointer
dereference, or more formally that for some set of premises, we have that:

ccorres r xf PP’ hs
(getSlotCaplnDomPart ptr)
(Guard C_Guard {s.ptr € partition-of-domain s} (x :== Z &(p — [cap]))).

We shall build up a proof of this.

First, the shape of our information about touched addresses is quite different between the left

and right-hand sides.

The definitions of getSlotCapInDomPart and getCTEInDomPart is shown in Figure 4.4 On
the left-hand side, the partition guard is buried at the bottom of the call tree, through a call
to getCTEInDomPart and then to getObjectInDomPart. On the right-hand side, we already
have the expression for the pointer dereference. Can we “lift” the guard on the side of the
executable specification up the call tree, to the level of getSlotCapInDomPart?

Lemma 4.11 (Rewrite getSlotCaplnDomPart in terms of stateAssert). A call to the function
getSlotCaplnDomPart is equivalent to a partition guard and then getSlotCap.

getSlotCaplnDomPart ptr = do
stateAssert (As. isilnDomainPartition (ksCurDomain s) ptr);
getSlotCap p
od

Proof. Unfold the definitions of all the functions getSlotCap, getCTE, getSlotCaplnDomPart,
and getCTEInDomPart. The equality holds by associativity and the distributive property of
monadic bind. O
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We have one last useful lemma to define and prove. Since we still have the original correspon-
dence statement of getSlotCap, can we use it to prove correspondence of the partition-guarded
variant getSlotCapInDomPart? In a way, we “upgrade” the existing proof, so we call this kind
of lemma an upgrading lemma.’

Lemma 4.12 (Upgrading lemma for getSlotCap). Given correspondence of getSlotCap, we have
correspondence with the guarded variant getSlotCaplnDomPart and a partition guard.

ccorres r xf P P’ hs (getSlotCapp>>= ) (c;; ¢’ p)
ccorresrxfPP' N{s|p=p’} hs(getSlotCaplnDomPartp >= f)

((Guard C_Guard {s | dompart-guard p’ s} c) ;; ¢’ p)

Proof. We shall proceed in a backwards-reasoning style and generalise the preconditions with
Lemma B.2.

Our goal begins as
ccorres r xf 2o Q" hs (getSlotCaplnDomPartp >= f)
((Guard C_Guard {s | dompart-guard p’ s}c) ;; ¢’ p).
Correspondence step. First, rewrite the conclusion using Lemma 4.11 to obtain
ccorresrxf?y Q’ hs

do stateAssert (As. isinDomainPartition (ksCurDomain s) ptr);
getSlotCap ptr

f
od

((Guard C_Guard {s | dompart-guard p’ s}c) ;; ¢’ p).

This matches the form of our introduction rule (Theorem 4.9)! Applying it gets us to

ccorresrxf?; Q" hs
(getSlotCapp >= f)
((Guard C_Guard {s | dompart-guard p" s} c);; ¢’ p).

which is our assumption. We are done.

Preconditions step. The only correspondence statement we applied was Theorem 4.9, which
leaves our preconditions untouched. There is nothing to prove.

Having shown correspondence of each part of the operations, we are done. O

With this upgrading lemma, proving correspondence of getSlotCapInDomPart is straight-
forward.

] would love to use the word “lift” but that word is far too overloaded.

40



Thomas Liang Refining seL4’s Accounting of Touched Addresses for Time Protection

Theorem 4.13 (Correspondence of getSlotCaplnDomPart). A call getSlotCaplnDomPart ptr
corresponds to a partition guard on ptr, followed by dereferencing the value of ptr to access the
field cap.®

ccorresrxfPP' N{s| p=p’} hs(getSlotCaplnDomPartp)
(Guard C_Guard {s | dompart-guard p’ s} c)

Proof. As this proof is not key to our overall argument, I will give only a proof sketch.

We can apply the rules Lemma B.4 and Lemma B.5 to append dummy statements: Skip for the
right-hand side, and >>=return for the left-hand side. Then, we can apply Lemma 4.12. That rule
leaves our preconditions untouched, so there are no obligations regarding the preconditions
either. We are done! O

Let us summarise the key points involved in completing this proof.

« Lift the partition guards on the left-hand side up to the level of the proof. We found a rule
to rewrite getSlotCaplnDomPart into a partition guard followed by a call to getSlotCap
(Lemma 4.12).

« Then, by applying the partition guard—introduction rule Theorem 4.9 we encode the
argument that the left-hand side must fail, and so we may assume it does not.

« That gives us enough information to discharge the the guard on the right-hand side.

This proof forms the primary technical contribution of my project. We will revisit this proof
later and explore its ramifications, but to summarise: We have composed both existing lemmas
and newly-defined lemmas to use only the knowledge that partition guards on the left-hand
side must succeed, in order to discharge partition guards on the right-hand side. The new
correspondence statements do not have any new preconditions; they are identical to the old
statements, except that the left-hand sides now contain (and assume the success of) partition
guards.

4.3.2 An additional assumption

The major caveat in my proof of correspondence for lookupCap is that we assume the corre-
spondence for the function resolveAddressBitsInDomPart.

5As in Theorem 4.10, the preconditions and premises are hidden by ellipsis. They are like the presentation of
Theorem 4.10, and they are just what is necessary to apply the theorem later. They are not crucial for the proof.
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Proposition 4.14 (Correspondence of resolveAddressBitsinDomPart). We elide difficult parts
of the statement with ellipsis, as this statement is not proven and so they are unimportant.

ccorres (-+) rab-xf (-+-) (-++) []
(resolveAddressBitsinDomPart cap” cptr’ guard”)

(Call resolveAddressBits)

Due to the difficulty of this proof, it is left as future work. See Section 6.1. However, this
assumption is not used for the proof of correspondence of getSlotCapInDomPart above
(Section 4.3.1). To clarify, it does not take away from the primary technical contribution of
this project.

Similarly, we also assume its specification lemma. The purpose of this is described in Sec-
tion 4.3.3.

Proposition 4.15 (Specification lemma of resolveAddressBitsinDomPart).

{ valid-objs” and valid-cap” cap }
resolveAddressBitsinDomPart cap addr depth
{ Arv. cte-at’ (fst rv) }

The specifics of what the predicates (valid-objs’, valid-cap’, etc.) are defined to be is not critical
to my argument.

4.3.3 Extending specification lemmas for guarded variants

When we prove correspondence for lookupSlotForThread and lookupCap, we do so in the
“splitting”-style that generates subgoals about whether the functions called uphold the correct
postconditions. These subgoals are resolved automatically by the verification condition gener-
ator and weakest precondition proof automation [Cock et al., 2008; Schirmer, 2006; Winwood
et al., 2009]. However, we need to supply them the same specification lemmas about the par-
tition guarded-variants (getSlotCapInDomPart and lookupSlotForThreadInDomPart) that
exist for the regular functions (getSlotCap and lookupSlotForThread).

Lemma 4.16 (Calling getSlotCaplnDomPart does not mutate the state).
{ P} getSlotCaplnDomPart ¢ { Arv. P}

Lemma 4.17 (Specification lemma for getSlotCapInDomPart). This is nearly identical to the
specificaiton lemma shown in Figure 4.2.

{ valid-objs” } getSlotCaplnDomPart t { Ar. valid-cap” r and cte-at’ ¢}
Lemma 4.18 (Specification lemma for lookupSlotForThreadInDomPart).

{ valid-objs’ } getSlotCaplnDomPart t addr { Ar. cte-at’ r}
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Proof. The proofs of all three lemmas proceed the same. First, we rewrite in terms of stateAssert
with the corresponding lemma (Lemma 4.11). Then, by unfolding definitions, we arrive at what
we need. In Isabelle, it is done by the existing weakest precondition proof automation [Cock
et al., 2008], which draws on the above specification lemma Proposition 4.15. O

4.3.4 Finishing the top-level proof

We have shown correspondence for getSlotCap, and the specification lemmas required to ver-
ify correspondence of lookupSlotForThread and then 1lookupCap. The proofs here are done
by amending the existing proof of correspondence for the functions without partition guards.
A thorough presentation of those proofs would detract from the clarity of this manuscript; I
direct the interested reader to [Winwood et al., 2009] and to the proof artefacts.

Theorem 4.19 (Correspondence of lookupSlotForThreadInDomPart).

ccorres (-+) (++) (valid-pspace” and tcb-at” thread) (---) []
(lookupSlotForThreadlnDomPart thread cptr)
(Call 1ookupSlot)

Proof. Proceed the same as the original proof, renaming any references to the called functions
(e.g. getSlotCap) with the new partition guarded-variant (e.g. getSlotCaplnDomPart). As
lookupSlotForThreadInDomPart calls resolveAddressBitsinDomPart, we need to apply Propo-
sition 4.14 and Proposition 4.15 to discharge that part of the correspondence. O

And at last, our top-level result.

Theorem 4.20 (Correspondence of lookupCap).

ccorres (+++) (++-) (valid-pspace’ and tcb-at” a) (-+) []
(lookupCaplnDomPart a b)
(Call 1ookupCap)

Proof. Same as above. O

I omit the exact return-value relations and extraction functions used, as they are unimportant.

Importantly, we have not added any new preconditions to these correspondence statements
compared to the versions without partition guards. We are able to discharge the concrete
guards entirely by using the information obtained from the executable guards!
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updateCapInDomPart :: PPtr CTE -> Capability -> Kernel ()
updateCapInDomPart slot newCap = do

cte <- getCTEInDomPart slot

setCTEInDomPart slot (cte { cteCap = newCap })

Figure 4.5: The definition of updateCapInDomPart.

cap_untyped_cap_set_capFreelndex(cap_t cap, uint64_t v64) {
cap.words[1] &= ~@xfffffffffe000000ull;
cap.words[1] |= (v64 << 25) & Oxfffffffffe000000ull;
return cap;

Figure 4.6: The definition of cap_untyped_cap_set_capFreeIndex.

4.4 Testing the methods on another procedure

A crucial goal of my project is to show that my methods are scalable to the entire kernel.
In this section, we shall see the ideas from the previous section applied to repairing the
correspondence proofs of an independent but related function updateCap. As before, we want
to show correspondence from the partition guarded-variant updateCapInDomPart, whose
definition is shown in Figure 4.5.

The function updateCap is quite similar to lookupCap, as it interacts with no complicated
data structures and is a straight-line function. All it does is write a capability object into a
capability table entry (CTE).

However, unlike lookupCap, it corresponds to two operations in the C implementation. It
corresponds to a single line of C code that sets a capability through a pointer: *dest = cap.
However, it also has a correspondence statement with cap_untyped_cap_set_capFreelIndex,
whose definition is shown in Figure 4.6. This sets the “free index” of a capability, which involves
careful bitwise operations to the words that the capability composed of.

The function updateCapInDomPart in the executable specification is used in two correspon-
dence statements with different concrete operations. Currently, only one of those state-
ments has been repaired, and the other is incomplete. I proved correspondence between
updateCapInDomPart and the operation *slot = cap. The correspondence statement be-
tween updateCapInDomPart and the function cap_untyped_cap_set_capFreelndex is in-
complete, but nearly done.

First, let us take a look at how we can prove the former statement. Then I will discuss the
difficulties with proving the latter.
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We want to prove’

ccorres dc xfdc T (-+-) hs (updateCaplnDompart dest cap) (#(&(dest — cap) — cap)).

Following the same structure as the correspondence proof for getSlotCap, we want to rewrite
updateCapInDomPart in terms of stateAssert. Although there are two accesses to a kernel
object and thus two partition guards, logically they are guarding the same pointer, slot. That
leads us to this lemma.

Lemma 4.21 (Rewrite updateCaplnDomPart in terms of stateAssert).

updateCaplnDomPart dest cap = do
stateAssert (As. isinDomainPartition (ksCurDomain s) dest);
updateCap dest cap
od

Proof. This proof proceeds identically to Lemma 4.11, except that after unfolding, we have two
partition guards on the left-hand side. However, two guards checking the same condition is
idempotent, so we may rewrite it with just one. O

Proceeding the same as the proof of Theorem 4.10, we will prove an upgrading lemma for
updateCap.

Lemma 4.22 (Upgrading lemma for updateCaplnDomPart). Given correspondence of the base
updateCap, we have correspondence with the guarded variant updateCaplnDomPart and a
partition guard.

ccorres r x f PP’ hs (updateCaplnDomPart dest cap >= f) (c3; ¢’ p)

ccorresrxfPP N{s|p=p"}hs(updateCaplnDomPart dest cap >= f)
((Guard C_Guard {s | dompart-guard p’ s} c) ;; ¢’ p)

Proof. We can prove this the same way we proved Lemma 4.12; it is immediate after applying
the rewrite rule Lemma 4.21 and then the introduction rule Theorem 4.9. O

Now we can prove the overall correspondence statement.

Theorem 4.23 (Correspondence statement for updateCaplnDomPart).

ccorres dc xfdc T (-+-) hs (updateCap dest cap) (#(&(dest — cap) > cap)) .

Proof. 1dentical to Theorem 4.10. Hooray! O

"I elide the definitions of dc and xfdc as they are not important to the proof.
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The similarity in the proof structure suggests that these proofs can be automated, but we leave
that for future work Section 6.1.

The second correspondence statement, with cap_untyped_cap_set_capFreelndex, is in a
broken state. However, I have made enough progress in the proof such that the partition guards
do not occur in positive position anywhere—we do not have any obligations to discharge the
partition guards, we just have them as (useless) assumptions! To speculate on why the proofs
do not proceed, in the correspondence step of the original proof, most of the work is done by
proof automation. However, in my modified proof, I had to manipulate the partition guards
manually. It is likely that rearranged the subgoals and assumptions just enough that the
existing proof does not succeed.

Why not define an upgrading lemma? A major flaw of the current proof technique is that,
although the partition guards are inserted in the executable specification in new definitions
(those with names ending in InDomPart), the partition guards are inserted in-place in the
concrete specification. This means that very few correspondence statements still hold, and
for any correspondence statement whose right-hand side is a Call statement, we cannot “lift”
the guards up the way we do on the left-hand side. Concretely, we would like to rewrite a
hypothetical Call cap_untyped_cap_set_capFreeIndex_in_dom_part as

Guard C_Guard (-++) ;; Call cap_untyped_cap_set_capFreeIndex

but cannot yet do so. This is a shame, as there is an existing library of tools for rewriting
C-SimpL expressions. I will elaborate on this in Section 6.1.

4.5 Summary

I sought to demonstrate how to track the touched addresses set, such that we can show that
the partition subset invariant holds, in the way outlined by Chapter 3. We defined our partition
oracle, and a method for inserting partition guards into both the executable and concrete
specifications. Next, we repaired correspondence of getSlotCap, and managed to reuse those
proof methods on a similar function updateCap. To do so, we first defined an introduction
rule for partition guards (Theorem 4.9), proved rewrite rules to rewrite Haskell functions in
terms of stateAssert, and then composed existing correspondence rules.

As aresult of the proof, I show that partition guards in the executable specification are sufficient
to discharge partition guards in the concrete specification; no other preconditions are necessary.
We transform the knowledge that the executable guards must have succeeded to argue that
the concrete guards must also. This validates our hope that, when we have structurally similar
functions (Proposition 3.2), our limited assumptions about the executable specification are
sufficient.

I also highlight some flaws with the implemented approach, which I elaborate on in Section 6.1.
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Chapter 5

Discussion of scalability of the
proposed proof methods

5.1 How much effort did these proofs take?

A natural metric to measure scalability is time spent, so-called “proof effort”. Below I present
breakdown of how the time was spent for each part of this demonstration. Looking at these
numbers too closely can be a bit misleading. Each task was not done completed sequentially,
and rather each required several iterations. Moreover, despite using the unit person-weeks,
these are not weeks of full-time concentrated effort, but rather many development sessions
interleaved with other coursework. The tasks are presented in rough chronological order—
which differs slightly from the order the work has been presented—which means I was less
familiar with the tooling and environment (e.g. using Isabelle, the structure of the seL4 proof
base, and the refinement framework).

Task Effort (person-weeks)
Setup partition oracle and guards ~4
Repair compositional correspondence lemmas ~6
Repair of getSlotCap ~5
Repair of updateCap ~1

The most remarkable trend in these figures is that repairing the correspondence statements
of updateCap took only one week, while repairing the simpler function getSlotCap took
more than a month. Although I regret that this is a small sample size, it suggests that it was
not difficult to adapt the proof techniques for getSlotCap to updateCap. In other words, the
techniques are applicable to other parts of the kernel.

However, the figures are strongly skewed because of the effort of becoming familiar with the
tools and environment. It is safe to say it required several months for me to feel comfortable
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with writing the proofs. Before that time, I received significant technical advice from my
supervisor and assessor as well.

I note that Staples et al. [2014] conducted a survey on the verification of seL4, and demonstrate
a strong correlation between proof effort and lines of proof. However, I believe that this project
is a poor sample. While Staples et al. [2014] analyses work that is dominated by writing proofs,
roughly one third of my project was spent amending the specification to reason about touched
addresses. Moreover, rather than thousands of lines of function definitions and implementation,
the total change I made to (the hand-written part of) the concrete specification is less than ten
lines of code. Yet, doing so took about the same amount of time as the proof of correspondence
for getSlotCap, a proof that involved many times more lines of code. Thus, the stark difference
in project structure suggests that we should not expect the results of Staples et al. [2014] to be
applicable.

Lastly, because I discovered this research late in the project, it was too late to properly measure
the same factors. With that being said, if these methods are applied properly to the entire
kernel, we ought to analyse whether they turned out as scalable as predicted. In that case,
it would be crucial to apply the same productivity criteria. I briefly mention this again in
(Section 6.1).

5.2 Do these techniques apply to other parts of the kernel?

So far, we have only had a glimpse of the procedures in the kernel. The functions lookupCap
and updateCap do not contain any loops, or any recursion, nor do they interact with any
complicated data structures. The one complicated structure we encountered is the CSpace trees
in the definition of resolveAddressBits. However, we currently assume correspondence
of resolveAddressBits. The simplicity of targeted functions is intentional; as outlined in
Chapter 3, we stray away from tricky behaviour like kernel object retyping, inter-process
communication, and so on. Due to the complexity that tricky components of the kernel impose
on the functional correctness proofs, we can infer that they would bring their own problems
for our goal of refining touched addresses.

A complex structure does not necessitate complexity when refining touched addresses, however.
Complicated functions that compose many other functions, but themselves do not dereference
any pointers do not need to be repaired, as no partition guards have been inserted. Generally,
when we show correspondence of two functions, they are structurally similar (Proposition 3.2),
and each line has a natural corresponding line on the other side. This is a property that was
exploited for the original refinement proofs between executable and concrete specifications
[Winwood et al., 2009]. In these cases, for each guard on the right-hand side, there should be
another guard in the same place on the left-hand side. The correspondence between updateCap
and set_capFreelndex is an interesting case. On the left-hand side, we had two partition
guards. On the right-hand side, as there are two array index operations, we have four partition
guards, albeit they check that the same pointer is in the correct partition. In short, structural
similarity between the executable and concrete sides make doing this proof simpler. We must
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hope that most pointer dereferences will have corresponding guards on the executable side
that can be used to discharge them.

5.3 Summary

I believe that the result of this project is sufficient to be cautiously optimistic that our methods
are scalable to the entire kernel. The effort of each phase of this project is strongly skewed by
my unfamiliarity with Isabelle, the seL4 proof structure, and particularly the correspondence
framework. I believe that, at least for components of the kernel that are structurally similar
across their Haskell and C implementations (Proposition 3.2), my approach will be sufficient
and applicable.
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Chapter 6

Conclusion

This thesis investigates how to extend selL4’s refinement from its intermediate executable
specification to its concrete specification, such that we can reason about the touched addresses
of the kernel. The purpose of this reasoning is a future proof of Time Protection, where we
must show the partition subset invariant: that the kernel does not dereference pointers that
point outside the partition of the currently-running domain (Proposition 2.2).

It achieves this goal by describing how to encode touched addresses through the insertion
of partition guards such that the partition subset invariant is obtained by refinement (Chap-
ter 3), demonstrating how to extend the existing refinement proofs to cover the partition
guarded-specifications (Chapter 4), and lastly constructing an argument that these methods
are encapsulated and reusable for the rest of the kernel (Chapter 5).

I end this thesis by discussing some future work, and the implications of this thesis for the
verification of Time Protection.

6.1 What comes next?

Throughout the thesis, I have alluded to possible improvements to the work I have presented.
I have accumulated that discussion here.

Obviously, the natural goal is to extend this approach to cover the entire kernel, and repair the
entire refinement proof—a far-away goal! What are some steps before we achieve that?

The immediate next step is to finish the proof of correspondence between updateCap and
the helper function cap_untyped_cap_set_capFreeIndex. As mentioned in Chapter 4, the
current breakage is unrelated to our touched addresses refinement, and it would be a crucial
additional example that the methods are scalable.

A crucial assumption that I have made is the correspondence statement for and specification
lemma for resolveAddressBits. I leave this for future work as it is a notoriously complicated
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procedure. It traverses a CSpace object (a recursive data structure, roughly a tree of capability
entries), and the existing correctness proof is remarkably complicated in comparison to its
surrounding proofs. In the executable specification, it is defined as a recursive function, whereas
in the concrete specification, it contains a while loop. It is difficult to connect these different
control flow structures, as well as to set up the induction for the left-hand side and to state
and prove the loop invariants for the right-hand side. However, this proof will eventually have
to be done, but I believe it can be deferred until simpler parts of the kernel are repaired.

So far, all the repaired functions have been part of the “CNode module” of the kernel, and I
believe pursuing the repair of that entire module next is a natural way forward. It would cause
us to encounter our first true data structure, doubly-linked lists, as the kernel uses them to
hold MbpB nodes.

Another way to bolster the argument that these methods are scalable to the entire kernel would
be to conduct a survey on the “complexity” of functions in seL4 (that have correspondence
statements about them). This survey must ask questions such as:

» How often do functions dereference pointers?
« How often do functions just compose others?

« How often are the Haskell and C function structurally identical?

As we have seen, the answers to these questions is strongly correlated to the difficulty of
repairing a correspondence proof.

Another priority should be a more rigorous analysis of the methods’ scalability. We can repeat
the experimental design of Staples et al. [2014], recording perceived effort and project-level
factors such as schedule pressure.

Insert concrete partition guards into a new module A critical flaw of the current imple-
mentation of the approach, as mentioned at the end of Chapter 4, is that the partition guards are
inserted into the concrete specification in-place. A proper application of this approach should
use the substitution framework to create guarded-variants in a locale.! Doing so gives us the
same expressiveness in the right-hand side of a correspondence statement, as we have had in
the left-hand side. We could rewrite the right-hand sides of statements in terms of a Guard
statement followed by the base operation. To repeat an example given in Chapter 4, we would
like to rewrite a hypothetical Call cap_untyped_cap_set_capFreeIndex_in_dom_part as

Guard C_Guard (-+-) ;; Call cap_untyped_cap_set_capFreeIndex

but cannot yet do so. One question that needs to be answered is how existing lemmas about
the unmodified C functions could be reused for the new modified C functions, or if that is
possible at all.

'In Isabelle/HoL, locales roughly correspond to the notion of modules in general-purpose programming
languages. See the section on locales in Wenzel [2014, p. 103] for the details.
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Automatic insertion of executable partition guards In a similar vein, it would save proof
engineering effort to extend the Haskell translator to also generate the partition guarded-
variants. An additional benefit would be that these definitions do not need to clutter the
Haskell source code. Because this project only required repairing the correspondence of a few
functions, I deemed that implementing the tooling for generating these definitions was not
worth it.

Lastly, to quicken the process of applying these methods to the rest of the kernel, it would be
helpful to investigate more proof automation. So far, I only present some helpful lemmas, and
some general guidance on doing proofs (rewrite as an assert, write an upgrading lemma, apply
the introduction rule, etc.). As more of the proofs are repaired and patterns emerge, what can
be automated will become more apparent.

After these methods have been applied to the entire kernel, the most urgent question is how
to instantiate the Time Protection theory with them? At the moment, the partition subset
invariant is embedded as the specifications equipped with assertions. However, it is not in a
closed form or a proposition at all; we might like a functional form of the invariant. How this
form can be obtained requires further investigation.

In the broader context of this project, we need a proof of the invariants we assume about the
executable specification (i.e. the partition guards and oracle), from the abstract specification.
That is the topic of another thesis project, Nair [2025], and will be completed in future work.

6.2 Closing remarks

The sel4 microkernel is poised to be the first OS microkernel with a formally-verified story
for eliminating pTCs with its Time Protection mechanisms. As our computer systems are
increasingly shared with untrustworthy users, and increasingly execute more untrustworthy
software, eliminating pTCs is crucial for total assurance of security. This thesis forms a small
first but optimistic step towards one phase of verifying Time Protection and more secure
computer systems.
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Notation used in this thesis

The empty list is denoted with [], 4 la Haskell.
Throughout this document, you will see the notation
{ Pk
for some boolean proposition P. It is syntactic sugar for a set comprehension, that is
{x| Px}

or the set of all states x such that P x. For our purposes, x will often be named s, as it refers to
the state of the kernel.

This is commonly used with the kernel Hoare logic, as the preconditions and postconditions
are predicates on the state: Hoare triples have the form

{P} f{Arv. O}.
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Useful existing proved lemmas

Throughout this thesis, particularly in Chapter 4, we make use of many already-proved lemmas.
To keep the prose in earlier chapters clear, but to still be exhaustive, I produce the less crucial
lemmas here. I am unsure whether they are formally published anywhere.

Lemma B.1 (If the left-hand side would fail, assume it does not). This is the key rule that
transforms assertions on the left hand side to satisfy preconditions.

{As. =Ps} a{False} empty-fail a ccorresrxf GG" hs (a>=b)c
ccorres r xf (As. Ps — Gs) G’ hs(a>=b)c
Lemma B.2 (Generalisation of correspondence preconditions). This rule has both a weak

variant, that is used often, and a stronger variant, which requires that the executable and concrete
states be related.

ccorresrxf QQ’ hs f g \s.As = Qs Ns A's = Qs
ccorresrxf AA" hs fg

/\ss’.As/\s’ e A A(s,s") €sr-if = Qs
/\ss’.As/\s’EA’A(s,s’)Esr-rf = s e’
ccorresrxf AA" hs fg

ccorresrxf QQ" hs f g

Lemma B.3 (A left-hand side assertion corresponds to doing nothing). If precondition P holds,
then stateAssert { P } has no effect.

ccorres rv xf PC" hsac
ccorres rv xf (As. Qs —> Ps) P’ hs (stateAssert {Q} > a) ¢

Lemma B.4 (Remove a Skip at the end of the right-hand side). This rewrites the right-hand
side to remove skip statements. If substituted in reverse, you can insert a skip statement.

ccorres - a(c;; Skip) = ccorres -+ ac

Lemma B.5 (Remove a return at the end of the left-hand side). This rewrites the left-hand side
to remove redundant return. If substituted in reverse, you can insert a return.

ccorres -+ (a>>=return) ¢ = ccorres - ac
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