SCIENTIA
L

3

b

Sa
e '

AUSTRALIA

School of Computer Science and Engineering
Faculty of Engineering

The University of New South Wales

Updating L4v Invariants to Aid Time
Protection Proofs

by

Sai Nair

Thesis submitted as a requirement for the degree of

Bachelor of Advanced Computer Science

Submitted: November 2025
Supervisor: Dr. Rob Sison Student ID: z5418256

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs
Abstract

Microarchitectural timing channels threaten the security of computers across the globe. Re-
cently, a set of operating system mechanisms, collectively called time protection, was proposed
by Qian Ge as a way to close these channels, and was implemented and demonstrated to work
correctly in an experimental version of seL4. A follow-up paper by Buckley, Sison et al. de-
scribed a potential workflow for formalising time protection in sel.4 by linking these mechanisms
to existing proofs about the flow of information between security domains.

This report discusses a modified approach to formalising time protection in sel.4, and details the
efforts made to add an invariant on top of sel4’s abstract specification. The invariant specifies
that any kernel objects accessible to a security domain may only reference other memory regions
accessible to that domain. This report also discusses the process through which this result can
be utilised in more concrete specifications of sel.4 to show that it partitions kernel memory in
accordance with time protection.

Acknowledgements

First and foremost, I would like to thank Dr. Rob Sison and Dr. Thomas Sewell for their guidance
during this year. I have pestered you countless times about things big and small: the number of
times I've come to you with an issue, and you’ve correctly guessed what it is (and how to solve
it!) before I ask is astounding. I've learnt such an incredible amount about formal verification
and research as a whole, thanks to both of you.

I also thank you both and Dr. Miki Tanaka for introducing me to formal methods as a field,
which has become the thing I look forward to working on at any given moment.

I'd also like to thank my wonderful family, both by blood and otherwise. You may have no idea
what I do, or what any of the funny symbols on my computer mean, but you’re always just as
pumped as I am when things go right, and are always there to give advice and comfort when
things don’t.

Then, we have all my friends in Trustworthy Systems. Chatting with you and listening to many
of you in Monday talks has been a highlight of my week since I first joined. The camaraderie
between thesis students in particular was also wonderful to be a part of, sharing in our individual
wins and setbacks.

Finally, to single out a colleague, I would like to thank Thomas Liang, my companion through
this journey into time protection. Your witty remarks and deep understanding of the project
have kept me both sane and able to steadily move forward on my own part of the project. 1
couldn’t have asked for a better counterpart in this endeavour. Fistbump!

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

Abbreviations

OS Operating Systems

TA Touched Addresses

TCB Thread Control Block

pTC Microarchitectural Timing Channels
L4v L4.verified

ASpec Abstract Specification
Alnvs Abstract Invariants
ExecSpec Executable Specification
CSpec Concrete Specification
HOL Higher Order Logic

Isabelle Isabelle/HOL

ii

Sai Nair Updating Liv Invariants to Aid Time Protection Proofs

Contents

1

2 Background| 3
2.1 Covert Channeld 3
[2.1.1 Microarchitectural Timing Channels| 4

2.2 Formal Verificationl Lo 5
[2.2.1 Hoare Logic and Invariants| 5

[2.2.2 Refinement and Correspondence| 7

B Prior Workl 9
B SeLdl . . . 9
[3.2 Isabelle/HOL[. 10
B3 LAV . . . 10
[3.3.1 Models, Specifications and Correspondence] 10

.32 Refinementl 11

B4 Time Protectionl e 12
B.4.1 Touched Addresses Lo o 13

8.4.2 Issues with Prior Workl. oo 14

iii

Sai Nair Updating Liv Invariants to Aid Time Protection Proofs

4 Methodology| 16
4.1 New Development| 16
4.2 Cache Colour Allocation| o 17

[4.2.1 Proving the Kernel Object Invariant| 17
[4.2.2 Refining the Kernel Object Invariant{. 18
E23 0racldo 18
S N T 19

6 Results] 20

.1 Setup for Invariant| L 20
BIT _Oracld oo oo 20
[5.1.2 Helper Methods| o 21
[>.1.3 Articulating the Invariant| 22

5.2 Proving Lemmas for Invariant|. o oL 24
[5.2.1 Kernel Heap Methods| 24
[£.2.2 crunch and Automationl oo oo 25
[5.2.3 Further progress| 26

[5.3 Refining to ExecSpec|. 27
b.3.1 Modified corres Statement|o o000 28
[5.3.2 Intermediate Step| 28
[5.3.3 Proofs of Concept| 29

5.4 Reuse of Prior Time Protection Workl 30

6 Future Workl 32
6.1 Invariantl. 32

[6.1.1 Repairing existing proofs| 32
[6.1.2 Completing Proof of Invariance| 33

v

Sai Nair Updating Liv Invariants to Aid Time Protection Proofs

6.2 Refinement] 34
[6.2.1 Updating ExecSpec| o o 34

[6.2.2 Completing Correspondence Proofs for ExecSpec methods|. 34
[7__Conclusion| 36
[Bibliography| 38

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

Chapter 1

Introduction

Covert channels are a type of security vulnerability that maliciously exploit unintended infor-
mation leakage to bypass the security policies of a system [Lampson, 1973]. A particular subset
of these covert channels, timing channels, bypass the security policies of an operating system
(OS) kernel through variations in the timing of observable events, such as the response time
of a separate device [Schaefer et al., 1977]. Microarchitectural timing channels (4TCs) are an
even more specific type of covert channel relating to kernels |Ge et al., 2018]. They act on
shared hardware resources in a system, such as caches, and exploit variations in the timing of
operations in these microarchitectural components to violate kernel security policies and enable
communication of confidential data.

pTCs have been demonstrated to be practically exploitable, with the Meltdown and Spectre
attacks having been reported as recently as 2018 [Kocher et al., 2019, [Lipp et al., 2018]. These
attacks demonstrated that even secure applications developed according to best practices are
capable of being turned into unwitting trojans that leak secrets via pTCs. This highlights the
need for kernels to be the main line of defence with regard to security: if the kernel is vulnerable,
no application running on top of it can be trusted to be truly secure.

Despite this fact, sell4 is the first kernel to have made a concerted effort towards verifying
functional correctness and, importantly for this thesis, verifying the absence of security vul-
nerabilities [Heiser, 2020]. Unfortunately, whilst other security vulnerabilities, such as storage
channels, have been removed from sel.4 [Murray et al., 2013|, uTCs still have the capability to
expose secrets, as no proofs in sel.4’s proof base, L4v, relate to them.

Ge has proposed a series of OS mechanisms named time protection as a method of closing
pTCs in sel4 [Ge, 2019]. Amongst other mechanisms, she proposes partitioning caches between
separate processes based on the type of cache. Whilst she demonstrated the efficacy of time
protection in a modified version of sel4, she found hardware limitations of the x86 and ARM
architectures prevented the full closure of yTCs. As time protection has since been implemented
in selL.4 on top of the RISC-V architecture (with updated hardware) and has subsequently been
researched [Buckley et al., 2023|, we now seek to formally prove a time protection result in L4v
as well.

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

The aforementioned research by Buckley et al. produced a paper that presents a pathway to
achieving this goal. The main suggestion of the proposal relevant to this thesis is to perform
touched address (TA) accounting in all specifications of sel.4, where all accesses to memory
addresses are tracked as a set of ‘touched’ addresses. With this TA set, a time protection
property can be articulated and proved in L4v.

Separate work by the team at Proofcraft, a commercial group specialising in formal verification,
will generate this TA set for the concrete specification of L4v in such a manner that no TA
accounting is required in the other specifications. Whilst their work is on multi-core verification,
the common nature of the TA accounting required in both projects means their efforts will
significantly reduce the work required to verify time protection. Instead of handling this TA
accounting, the required task becomes showing that any pointers accessible in a given security
domain only point to accessible memory.

This property can be proved by maintaining an invariant from kernel start-up in an abstract
specification of selL.4. This invariant would enforce that any kernel objects accessible to a security
domain only reference other accessible regions of memory. This would directly show that any
touched addresses lie within valid security bounds of memory, replacing the prior work to add
TA accounting to enforce this property.

This report includes the following contributions to proving a time protection property in L4v:

A discussion of prior work in formalising spatial partitioning, as a requirement of time
protection, in selLl4, as well as issues with this prior approach (Chapter 3).

e A discussion of a novel approach to formalising spatial partitioning (utilising the aforemen-
tioned invariant condition) and refining this result to the concrete layers of L4v ((Chapter 4)).

e An account of how this invariant condition was constructed, and proved to be invariant
across a sample of L4v’s abstract specification, along with a discussion of the process of

proving these invariance results (Sections 5.1 and [5.2]).

e An account of how this invariant can be related to the intermediate specification in L4v,
presenting example proofs of this process and a pattern to simplify this proof process for

the remaining sections of the abstract specification ([Section 5.3)).

e A description of how this work can be extended to eventually prove invariance across the
entire abstract specification, and how this result can be refined down to the intermediate

specification (Chapter 6))

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

Chapter 2

Background

Before continuing with an explanation of the goals of this thesis, why it is important and what
was achieved, we first discuss some concepts that are integral to understanding the remainder
of this report.

introduces what covert channels are, building up to a definition of a microarchi-
tectural timing channel, and explores why their closure is something to strive for.
introduces formal verification and several adjacent topics utilised in this thesis, and discusses
the reasons for their usage.

2.1 Covert Channels

A covert channel is an unintended pathway for information flow that is exploited by a ma-
licious actor [Lampson, 1973]. Within an OS, this is often a way for a malicious process to
violate security policies and gain sensitive information. Such channels are clearly problematic
as they undermine the ability of a system to enforce strict isolation between separate processes,
effectively ensuring no sensitive process can be trusted to run on the system.

Covert channels are classifiable based on the mechanism through which they leak data. Phys-
ical channels leak data through some physical means, whether that be temperature [Masti
et al., 2015, Murdoch, 2006, power consumption [Kocher et al., 1999|, electromagnetic radi-
ation |Genkin et al., 2015, |(Quisquater and Samyde, 2001] or sound [Backes et al., 2010, |Genkin
et al., 2014].

As an example, a secret key used during RSA encryption can be deciphered from the two
different operations used during modular exponentiation: squaring only on a 0 bit, or squaring
and multiplying on a 1 bit [Kocher et al., 1999]. As the two different operations consume
different amounts of power, an attacker can deduce the bits of the secret key by measuring the
power consumption of the machine over time.

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

Physical channels generally leak information from a system to an external agent who requires
physical access to the machine, making it a concern of physical security (which is beyond the
scope of a kernel’s responsibility).

On the other hand, there exist covert channels which leak information within a system,
enabling an attacker process to gain access to confidential secrets. These internal channels
directly concern the kernel, as it manages the execution of separate processes and is responsible
for enforcing isolation between them. These kinds of channels can be broken down into two
further subcategories: timing channels, and storage channels |Schaefer et al., 1977].

Timing channels work by analysing the timing of certain key events in order to glean information.

An example of a timing channel is presented in

Snippet 2.1: Password Checker with Timing Channel

char xcorrect pw = "abc";

int check pw(char xinput) {
for (int i = 0; 1 < strlen(input); i++) {
if (i >= strlen(correct pw)) return 0;
if (input[i] != correct pw][i]) return 0;
}

return 1;

Based on the length of the correct prefix of the guessed password, the password checking al-
gorithm has a variable runtime. Variations in the timing of the algorithm can therefore leak
information about the password, with longer runtimes meaning a longer prefix of the guess is
correct.

On the other hand, storage channels transfer information through the modification of a storage
location in a manner that violates security policy, enabling the transfer of sensitive data between
processes. For example, a privileged user might modify the metadata of a file in such a way that
an unprivileged user might be able to glean confidential information from it.

Whilst both categories of covert channels are a security vulnerability that should be addressed,
timing channels in particular have also been demonstrated to be exploitable remotely, making
the endeavour to remove them from sel.4 even more critical [Brumley and Boneh, 2003].

2.1.1 Microarchitectural Timing Channels

The specific kind of timing channel we discuss in this report is the microarchitectural timing
channel (uTC) |Ge et al., 2018|. This is a class of timing channels which specifically targets
hardware state in order to facilitate uncontrolled information flow between processes. Such
channels utilise the shared nature of microarchitectural state such as caches, which are often
abstracted away from the OS itself.

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

uTCs are distinct from algorithmic timing channels such as the one facilitated by
An OS is unable to control the processes running on top of it, and so those forms of timing
channels cannot be avoided at the OS level, while 4 TCs can be more directly addressed by the
OS and kernel.

uTCs often arise from well-intentioned efforts to improve the average case performance of systems
by optimising for temporal and spatial locality using caches. Since these caches are shared across
all processes and are also directly responsible for timing variations based on whether a memory
access hits or misses the cache (i.e. whether the address is in the cache), there is very clear
potential for these timing variations to leak secrets, which are pTCs.

The Spectre and Meltdown attacks utilised 4 TCs in order to break isolation between processes,
as well as break isolation between processes and the OS [Lipp et al., 2018| Kocher et al., 2019].
Other attacks make use of known techniques such as prime and probe and flush and reload in
order to achieve their exploits [Osvik et al., 2006, [Yarom and Falkner, 2014]. These attacks
demonstrate the need for mitigation methods aimed at closing yTCs at the kernel level.

2.2 Formal Verification

Formal verification is the process of mathematically proving results about a given system. These
results are described in a logic, a methodology of reasoning about the veracity of statements.
Examples of logics include Higher Order Logic (HOL) or Zermelo—Fraenkel set theory (ZF).

Formal verification is preferred over other methods of reasoning about the correctness of pro-
grams and systems (e.g. testing) for its strong guarantee of correctness, for some definition of
‘correct’ determined by a specification of intended behaviour. As all reasoning is done math-
ematically, there is no potential for a program to exhibit unexpected or undefined behaviour
beyond what the specification of the program dictates.

Note that this does not prevent the specification from being incorrect, which is a common
source of bugs within formally verified programs. As an example, when formally verifying a
sorting algorithm, its specification may specify that the output of the program is sorted. The
program may contain logic errors even with this specification, as it might return no elements,
which trivially satisfies the condition even though it is not the intended behaviour.

2.2.1 Hoare Logic and Invariants
Hoare Logic

Within this thesis, we will often discuss invariants, a concept stemming from Hoare logic. Hoare
logic is a formal system which specifically reasons about programs in terms of preconditions and
postconditions [Hoare, 1969]. Preconditions are requirements of the state of the program before

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

a function call. If the preconditions are satisfied, then we get guarantees about the state of the
program after the function call, called postconditions.

The syntax for this logic is {|{P[} f {|Q[} with P being the preconditions, @) being the postcon-
ditions and f being the function call in the system. These three components are collectively
labelled as a Hoare triple. As an example, the Hoare triple

{Trucl @ := 6 {la # 7}

says that for any initial state (since the precondition True is always satisfied), setting x equal
to 6 gives a guarantee immediately afterwards that x is not equal to 7.

Invariants

We can extend this logic to introduce the concepts of invariants. We consider an invariant to be
any result about the state of the program that remains true throughout execution. That
is, a predicate P about the state of a program is an invariant if it can be shown true for an
initial state of the system and if, for all functions f in the system, {{P[} f {P]} i.e. the property
is maintained across all function calls once it is true.

Weakest Precondition

There are multiple ways of transforming proofs about Hoare triples into more conventional
implication proofs, with one of the more common methodologies being the weakest preconditions
transformer. It works by reasoning about the weakest possible precondition that could generate
a given postcondition in a Hoare triple |[Dijkstra, 1975].

For example, if we have a function f and a postcondition @), the weakest precondition is the
predicate P such that
{P'ly f{R} <= P'=P

That is, P’ is a valid precondition for the Hoare triple if and only if P’ implies the weakest
precondition P.

To generate a weakest precondition for a given function and postcondition, we treat the function
in question as a sequence of instructions. We can progressively work backwards from the final
instruction to the first, taking the postcondition at each step and generating the weakest pre-
condition for that instruction. We then take that precondition and treat it as the postcondition
of the previous instruction to generate a new weakest precondition, repeating this process and
working backwards until we have the weakest precondition for the very first instruction. This
generated precondition is then the weakest precondition for the pair of that entire function and
that particular postcondition.

With this generated weakest precondition P, we know that any possible precondition for the
Hoare triple must imply P. As such, we can perform a more standard implication proof using

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

traditional proof techniques to show that the desired precondition P’ implies the generated
weakest precondition P.

2.2.2 Refinement and Correspondence

When coding a program to complete a task, the end goal is to have an executable binary that
performs that task. However, directly coding this binary, whether as binary or even as assembly,
is avoided in many contexts as it is hard to perform higher level reasoning about the program.
Programming languages provide abstractions that enable a programmer to understand their
code at a higher level without needing to reason about the low level implementations of each
command or function. This enables the programmer to reason about and write more complex
programs.

Similarly, when formally verifying a program, the final binary must be verified to match a speci-
fication, but performing proofs directly on the binary is difficult as the low level implementation
details are generally hindrances to verification and formal reasoning. Instead, one can prove
results on a higher level implementation of the program which abstracts over the hardware im-
plementation of certain methods and is therefore easier to reason about. This simplifies the
process of proving that the program adheres to a given specification.

However, this abstraction serves no purpose unless we can relate it back to the binary. Just as a
programming language can be compiled (or interpreted) into machine code, an abstract specifi-
cation can be refined into a concrete (binary) implementation (e.g. [de Roever and Engelhardst,
1998|). In this manner, the results that come about at the abstract level can be reutilised in the
concrete layer without the difficulty of directly verifying the binary.

Correspondence

One way to perform this refinement, which is utilised by sel.4’s refinement proofs, is through
‘correspondence’ proofs relating an abstract and concrete specification [Cock et al., 2008, Klein
et al., 2009, Klein et al., 2010]. A correspondence proof shows that if the two programs start
in two ‘related’ or equivalent states (where each pair of corresponding fields in the states are
effectively equivalent), then the possible final states after the function calls are also related. It
achieves this by analysing each step of the corresponding function calls and proving that the
state relation is preserved at each step, with the correspondence proof for lower level methods
being utilised to show correspondence for higher level methods.

These correspondence proofs can then be ‘chained together’ to show that any two sequences of
corresponding function calls maintain this state relatedness. By doing this, it can be proved
that the two specifications correspond for the entire runtime of the programs, regardless of which
functions are called and in which order. demonstrates this process: the initial states
s; and s} are related, and the resultant states after the function call £1 and £} remain related,
and so on.

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

f1 o fz N
S.I v 82 = 83

Y

State relation

S 4 1 > S, > S3

Y

Figure 2.1: Chaining Correspondence Proofs to Relate Abstract and Concrete Executions

In this manner, we can show that the two specifications are proper counterparts and successfully
refine the abstract specification into the concrete implementation. In particular, this enables
us to show that the execution of the abstract program simulates all possible concrete program
executions paths, i.e. for each concrete program execution path, there is a corresponding abstract
program execution path. This means that any results proved about the abstract specification
also apply to the concrete implementation, ‘refining’ the results as desired.

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

Chapter 3

Prior Work

With the discussion of fundamental topics complete, we now discuss the foundational work which

this thesis relies upon: seL4 (Section 3.1)), Isabelle/HOL (Section 3.2|) and L4v (Section 3.3).

Regarding the particular topic of verifiably closing ' TCs at the kernel level, the efforts of Ge and
Buckley et al. are currently one of a kind to the best of my knowledge [Ge, 2019, Buckley et al.,
2023]. Whilst there are other projects which seek to reason about timing related information
flows |[Arm Limited, 2024, Braun et al., 2015| Brickell et al., 2006, Bernstein, 2005} Liu et al.,
2016], there are none relating to specifically kernel level verification of the closure of yTCs.

As a result, we will discuss the prior work on closing 4TCs on seL4 in particular, and discuss
potential drawbacks of the approach proposed by Buckley et al. (Section 3.4]).

3.1 sel4

selL4 is a member of the L.4 microkernel family being developed by Trustworthy Systems, a re-
search group specialising in systems and formal methods research at the University of New South
Wales [Heiser and Elphinstone, 2016]. It is ‘a high-assurance, high-performance operating system
microkernel’ which aims to provide security guarantees without sacrificing performance, boast-
ing two to ten times better results on key benchmarks compared to other microkernels [Heiser,
2020].

From a formal verification standpoint, seL.4 uses interactive theorem proving with a proof as-
sistant in order to verifiably guarantee results about the microkernel. These results range from
functional proofs about correctness of operations, to security proofs, which show that the kernel
is able to sufficiently isolate separate processes running on top of it. With these proofs, we can
trust that, short of hardware failure, seL.4 will always perform to those guarantees.

To reason about information flow, sel.4 implements security domains, which are a construct
used to isolate independent subsystems [Trustworthy Systems Team, 2017]. Security domains

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

are used to control and limit the information flow between these independent subsystems. A
thread will belong to exactly one domain, and only runs when the domain is active. This is a
useful concept to note when discussing information flows between separate processes, as will be
necessary when discussing the closure of pTCs.

3.2 Isabelle/HOL

Proofs about seL.4 make use of an interactive theorem prover named Isabelle in order to facilitate
the formal verification of sel.4. Isabelle is a generic theorem proving system, meaning it provides
a metalogic with which logics can be implemented |[Nipkow et al., 2002].

Instances of Isabelle with these logics implemented (e.g. Isabelle/HOL, Isabelle/ZF [Paulson,
2013]) can then use the implemented logic to write formal logical statements and reason about
them. These statements can be used to formally verify results about programs or mathematical
concepts.

Isabelle is also interactive, as the user guides the proof process with commands to modify the
proof state, and Isabelle programmatically checks that the sequence of user provided instruc-
tions constitutes a valid proof of the stated property. This check provides a guarantee of the
correctness of the result.

These mechanically verified proofs rely on a small ‘trusted proof base’ upon which further proofs
are built upon, hence providing guarantees about a formally verified program that require very
little trust. This is a critical requirement for sel.4 which aims to make guarantees about the
kernel’s behaviour so that, true to Trustworthy Systems’ name, the kernel is worthy of trust.

3.3 L4v

L4.verified (L4v) is a project built on top of sel.4, which aims to formally verify the microkernel’s
correctness and security using Isabelle/HOL (henceforth referred to as Isabelle) [Klein et al.,
2009, Klein et al., 2014]. L4v makes extensive use of Isabelle sessions and locales (logical
groupings of theories, proofs and assumptions) to methodically and comprehensively provide
guarantees about sel4 in a way that is modular (with locales depending on and referring to
other locales) and better organised than one prohibitively large proof environment.

3.3.1 Models, Specifications and Correspondence

L4v contains several layers of models of selL.4, each with their own specification of expected
behaviour, and correspondence proofs between these specifications.

Figure 3.1| shows the three specifications: the abstract specification (ASpec), the executable/de-
sign specification (ExecSpec) and the concrete specification (CSpec). The ASpec describes the

10

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

Builds on Builds on

top of top of
[ASpec K:{ Alnvs K:{ Security Proofs]
@Pmofs Q

[ExecSpec]
@Proofs [Non-interference]

[CSpec] ﬂBuilds on
top of
Builds on Builds on
top of top of
[Access K:{ InfoFlow]Q:{ Time Protection

Figure 3.1: Structure of specifications and related proofs

behaviours expected of the kernel in Isabelle, with several other sessions built upon it to prove
results about this abstract representation. The ExecSpec acts as an intermediate representation
of the kernel, describing an implementation of the kernel in Haskell. Finally, the CSpec reasons
about a version of the C code that implements sel.4: the C code is parsed and imported into
Isabelle, and is reasoned about in Isabelle. With these three specifications and correspondence
proofs between them, we can reason about the C implementation of seL.4 at different layers of
abstraction.

also shows the extra Isabelle sessions built on top of the ASpec in particular. The
abstract invariants (invs in the Isabelle session AInvs) are a collection of invariants which are
maintained throughout the execution of the ASpec, and which can be used to prove results in

the ExecSpec and CSpec during refinement, which is discussed in

The security proofs are the other set of sessions built on top of the ASpec and AInvs. They
verify results related to security policy management, enforcing the confidentiality and integrity
of privileged information. In particular, InfoFlow is a set of proofs controlling the available
channels of information transfer between two security domains, and between the OS and a given
process. This session proves the absence of covert channels such as storage channels, and is
where proofs regarding the closure of pTCs should be built upon.

3.3.2 Refinement

L4v makes use of refinement to relate its ASpec, ExecSpec and CSpec specifications without
repeating the same proofs at each layer [Klein et al., 2010]. visualises the correspon-
dence proofs that perform this refinement, which are completed in two Isabelle sessions named
Refine (between the ASpec and ExecSpec) and CRefine (between the ExecSpec and CSpec).

For this thesis, we focus on the corres statements in Refine which relate the ASpec and
ExecSpec, written as follows.

11

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

Snippet 3.1: Shape of corres Lemmas

proposition corres lemma:
"corres ret_rel
P P!
e el "n

In this statement, e and e’ are the two expressions which are stated to be equivalent in the two
specifications. P and P’ are the preconditions under which the expressions are equivalent. As
an example, get_tcb is only valid to use if there is a thread control block (TCB) at the address
provided, so that is a necessary precondition for a corres proof relating to it. Finally, ret_rel
is a method that relates the values returned by the two expressions, checking whether they are
equivalent in the two specifications. For this thesis, the expressions and preconditions are the
main parameters of note.

Assertions

A topic of particular note for this thesis is the fact that assertions can be added at each layer,
asserting that a certain condition must be true when the assertion is reached during execution.
An assertion provides guarantees at the layer in which it is added, but its condition must also
be proved true at some stage, as is typical in formal verification.

This proof obligation gets pushed to the correspondence proofs, going to Refine for assertions
in the ExecSpec and CRefine for assertions in the CSpec. With correspondence proofs, we
can instead show the asserted condition is true in the higher level specification, and that it
corresponds to the assertion being true in the lower level specification, successfully refining this
property down. This presents a way for the proof obligation to get pushed up a layer to a higher
level specification.

In this thesis, we focus on Thomas Liang’s addition of assertions to the ExecSpec layer, which
he did using a method named stateAssert [Liang, 2025|.

3.4 Time Protection

All of this explanation leads to the goal at hand: verifiably closing 4TCs in sel.4. Ge has
proposed a methodology called time protection to achieve this goal, and has implemented it on
an experimental version of seL4 |Ge, 2019|, both on top of x86 and ARM architectures. Her
work serves as a good proof of concept for time protection, demonstrating its potential as a
method of closing all 4 TCs in sel.4.

Time protection has several requirements on how the kernel must operate in order for it to
ensure the absence of pT'Cs. Most of these are listed without further explanation as they do not
impact the work of this thesis, and are already well discussed and explained in Ge’s PhD thesis:

12

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

1. When time-sharing a core, a context switch between domains must force any microarchi-
tectural state to be reset to a predefined ‘reset’ state unless the state supports spatial
partitioning.

2. Each domain must have a separate copy of the OS text, stack and (as much as possible)
global data.

3. Access to other shared OS data must be made deterministic.
4. State flushing must be padded to its worst-case latency.

5. When sharing a core, the OS must disable or partition interrupts other than the preemption
timer.

The main concern for this thesis is the first requirement, part of which requires that for some
spatially partitionable microarchitectural state, such as off-core caches, the resource is spatially
partitioned between security domains by cache colours. Cache colours are a partitioning of
physical pages in memory, with colours uniquely defining where in the cache a page can lie.

Hence, part of the first time protection requirement is that the system must enforce that, for
spatially partitionable state, separate security domains must occupy separate regions of the
cache, with no overlap between these regions. This requires that each security domain is only
allowed to touch the regions of memory associated with its allocated cache colour(s), with no
colour allocated to two security domains.

The second requirement presents a motivation for why this spatial partitioning is necessary.
Enforcing that each domain only accesses its own copy of the OS text, stack and global data
requires spatial partitioning of the copies of this state. This in turn motivates enforcing that each
domain’s copy of this state is written to its allocated cache colours to ensure spatial partitioning.

The rest of the first requirement requires that for any other state which cannot be spatially
partitioned, it must be temporally partitioned, meaning that on a context switch from one security
domain to another, the shared resource must be reset to some predefined state. These two parts
of the first requirement ensure that the only state accessible to a security domain is the state
which it has been allocated, preventing two such domains from sharing state (with only a few
necessary exceptions).

This thesis takes a focus on proving the spatial partitioning of memory through the allocation
of cache colours to security domains.

3.4.1 Touched Addresses

Buckley et al. have suggested a methodology for implementing a proof of this spatial partitioning
of memory (amongst other suggestions for proofs of all the requirements of time protection) in a
follow-up paper to Ge’s original time protection paper [Buckley et al., 2023|. In their paper, they
suggest performing touched address accounting. This involves keeping track of any addresses that
are read from or written to, which we consider touched addresses (TAs). We keep track of these

13

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

TAs at each of the three specifications in L4v, and then prove subset relations between the TA
sets, namely that
TACSpec c TAExecSpec - TAASpec

This enables the ASpec to reason about the potentially touched addresses using a safe overap-
proximation of the actual touched addresses. This enables a proof showing that the touched
addresses all lie within the set of addresses accessible to a given security domain (determined by
cache colours). This can be articulated in Isabelle by showing the overapproximation (as a set)
is a subset of the set of all addresses accessible to the domain. Buckley et al. began working to
complete this proof in 2023 within a time protection Isabelle session extending off of the existing

InfoFlow proofs, as seen in

For this discussion of background, we restrict the scope of discussion to TA set accounting at
the ASpec layer, as that is the layer most directly relevant to this thesis. TA accounting at the
ASpec entails adding a field to the program state to track the predicted TA set, and modifying
all functions to update the TA set whenever an address is potentially touched.

This ‘prediction’/overapproximation is necessary as the ASpec is abstract and should remain
agnostic of implementation details. Hence, it will not be able to follow an exact execution
path to decide which addresses are touched. As such, Buckley et al. suggest maintaining an
overapproximation as it allows the result to be proved on all traces which touch addresses lying
within the overapproximation. This means that implementing assertions that touched addresses
lie within this overapproximation will suffice, instead of having to reason about exact traces.

3.4.2 Issues with Prior Work

During the implementation of this TA accounting in 2023, several issues with the proposal arose.
In the ASpec, around 125 methods had to be updated extensively, adding assertions to correctly
track potentially accessed addresses |[Buckley and Sison, 2023].

More critically, in the process of implementing this TA accounting, well over 900 proof breakages
were observed in AInvs and the security proofs. These breakages were seen in the form of lemmas
that needed to be sorry-ed, meaning that the proof engineer effectively asserted that the lemma
was true without proof.

The reason for these breakages was that certain invariants relied on the fact that some methods
do not update the state of the model during execution. That is, they assumed that for certain
functions f,

{PL /AP

for all predicates P. After parametrising the TA set into the ASpec, however, these invariants
no longer held, as these functions would access memory addresses. This resulted in the TA set
being updated, which constituted an update to the state.

Fixing this issue required rephrasing these properties to utilise the fact that the relevant functions
did not modify the state modulo TA accounting i.e. not including changes to TA accounting.

14

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

This was an arduous task, and required an estimated one to two years of development, with at
least 9 months’ worth of work remaining by the time the project was put on hold.

15

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

Chapter 4

Methodology

We now discuss an updated approach to verifying spatial partitioning in L4v, motivated by a
novel proposal detailed in This proposal leads to a modified proof process, changing
what the proofs at each specification layer look like, which is discussed in

4.1 New Development

As discussed in the prior plan of action had a large time commitment dedicated
to simply fixing the breakages created during the updates to the ASpec. A new proposal from
Proofcraft, briefly discussed in removes the need for handling this accounting at
the ASpec level. Their separate work on multi-core support for sel.4 similarly requires TA
accounting, but their work renders TA accounting at the ASpec level infeasible, as it would
interfere with existing machinery they have developed.

As such, they have decided to perform TA accounting and directly show that this TA set lies
within the cache colour allocation, all at the CSpec level. Whilst this work is yet to begin, the
result of this work would be usable in the formalisation of time protection. This would remove
the need for TA accounting in the higher level specifications and save years’ worth of proof work
in resolving the aforementioned breakages.

Since we now need to ensure that TAs lie within their allocated cache colours in the CSpec itself,
Thomas Liang, as part of his thesis, moved the relevant assertions into the CSpec, where pointer
guards already perform checks on every memory access [Liang, 2025]. He extended these pointer
guards with a check that any memory access must target an address within the colour allocation
of the current security domain, which removed the need for separate assertions in higher level
specifications.

However, this guard still requires a proof that the added condition holds.

16

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs
4.2 Cache Colour Allocation

L4v currently relies on abstractions representing the capabilities of a given security domain in
its security proofs, in order to determine which memory can and cannot be accessed by a given
process. As the cache colour allocation dictates which regions of memory security domains can
access, these security proofs are the logical place to implement this allocation. Since the security
proofs are built upon the ASpec, any properties relating to this allocation should likewise be
written on top of the ASpec.

To show that the CSpec guards’ condition holds, we need to introduce a corresponding property
in the ASpec that can be used to prove this condition. As the team at Proofcraft is now pushing
the proof that the TA set lies within the cache colour allocations down to the CSpec, we no longer
need to consider a TA set when deciding this property. Instead, we can state a property that
directly reasons about kernel object references, since these references determine which memory
locations are accessed.

Property 1 (Kernel Object Property). All kernel objects in the allocated colour(s) for a given
security domain only reference other addresses within the allocated colour(s) for that domain.

With this property, we can reason about what addresses can be touched at all, presenting a
pathway to showing the TA set lies within the cache colour allocation at the CSpec level.

In order to prove this property, we can phrase it as an invariant in the AInvs, which is maintained
throughout the running of the abstract specification of the kernel. The process of proving this
invariant is discussed in and the invariant’s definition in Isabelle is presented in

By ensuring this invariant is always maintained, it can be utilised during refinement to indirectly
prove that the conditions added to the pointer guards in the CSpec are true, which is discussed
further in

4.2.1 Proving the Kernel Object Invariant

Proving that an invariant is maintained requires showing that it is true at some state (either
on program start-up or shortly after) and that all methods in the specification maintain the
invariant.

The kernel object invariant only satisfies the former requirement after system initialisation.
During system initialisation, a root process allocates capabilities for every other process,
violating the kernel object property by modifying other security domains’ memory and violating
spatial partitioning. This is naturally a concern, as this requires some way to ‘switch on’ the
invariant after system initialisation, instead of verifying it to be true from start-up.

After system initialisation, however, we can make an assumption about the resultant state,
asserting that the system initialiser allocates the capabilities for each domain based on the

17

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

cache colours allocated to it. There is precedent for making such an assumption, as the existing
security proofs in L4v assume that the system initialiser configures the system’s capabilities in a
manner that enables information flow control to be enforced [Murray et al., 2013]. By similarly
assuming that the system initialiser provides a well-formed capability state for us to work with
in our time protection work, we satisfy the first requirement to prove the invariant.

To demonstrate that the invariant is continually maintained, we need to prove that it is main-
tained by the ASpec method call kernel. The common pattern of proving such abstract
invariants is to complete proofs on lower level methods, and compose those proofs to prove
invariance across higher level methods, building up towards call_kernel.

The proving of this invariant is also the place that the prior time protection work of Buckley et
al. is most likely to be usable, as both the invariant and the TA accounting relate to checking
memory accesses. As such, part of the work of proving this invariant is to investigate to what
extent the existing infrastructure can be reused.

4.2.2 Refining the Kernel Object Invariant

Once the invariant is proved over the ASpec, it then needs to be refined down to the CSpec,
where the pointer guards are. As discussed in properties in the ASpec are refined
down to the ExecSpec via corres proofs in Refine. In particular, assertions in the ExecSpec
will provide guarantees at the ExecSpec layer, whilst requiring a proof of the assertion’s validity,
which can be discharged via a corres proof.

Hence, we can refine the kernel object invariant down to the ExecSpec with two steps. First,
we add an assertion to the ExecSpec that, in a given method, an accessed memory address
lies within the cache colour allocation of the current domain. Then, we add a corres proof
which utilises the invariant to show that the ASpec implementation of the method matches this
behaviour, also maintaining the assertion condition.

Similarly, to refine the kernel object property down to the CSpec, we utilise the concrete coun-
terpart to corres, ccorres proofs. The assertion in the ExecSpec can be refined down to the
CSpec via ccorres proofs in CRefine, with the guard/assertion at each of the two layers directly
corresponding with each other. This makes for a more obvious correspondence connection (even
if the proof itself is not made easier). This ccorres proof will satisfy the guard conditions,
completing the refinement process.

In this manner, the abstract invariant can be refined down to discharge the concrete guard
conditions, successfully proving the time protection requirement that the CSpec TA set is a
subset of the cache colour allocation.

4.2.3 Oracle

Another requirement to proceed with proving the kernel object invariant in the ASpec is that
we must have an implementation of the cache colour allocation. At the moment, there is no

18

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

clear pathway to determining this allocation as the ASpec and its security proofs do not have
any reference to the concept of cache colours, since this is one of the implementation details
abstracted over.

Without such a method to determine the colours accessible to a given security domain, the rest
of the project cannot progress. Hence, we need to construct an oracle function that is assumed
to perform such a mapping correctly, without providing an implementation. Naturally, the true
colour allocation will satisfy certain conditions which we will need to utilise, such as having no
overlap between domains, and so we will also need to assume this oracle will also satisfy these
properties.

The oracle function can be used in proofs to do this domain-colour mapping, standing in for
an implemented function. This ensures that any implementation which satisfies the oracle’s
requirements will be able to replace the oracle, including the desired allocation when it is devel-
oped.

With this colour oracle, progress can be made on the other tasks of proving invariance across
the ASpec and refining the invariant to the ExecSpec, whilst deferring the investigation into
how to implement such an allocator. Due to the differences between the ASpec and ExecSpec,
two separate oracles will actually be needed, though in principle they should represent the same
underlying allocation. Relating these separate oracles will be discussed in and [6]

4.3 Aims

With the ASpec invariant, the two levels of refinement and the CSpec pointer guards, there is
a clear point of delineation at the ExecSpec for two theses: this thesis, and Thomas Liang’s
thesis. Thomas Liang was tasked with investigating the ExecSpec-CSpec refinement and adding
assertions to both layers |Liang, 2025|, and so the remaining parts of the task are the aims of
my thesis, which are to determine

1. the feasibility of proving an invariant that establishes in the ASpec, both in
terms of setup and proofs.

2. the feasibility of refining the invariant condition to satisfy the ExecSpec assertions added
by Thomas Liang, noting any modifications that need to be made to the assertions for
refinement to work.

3. whether prior time protection work in TA accounting is reusable.

19

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

Chapter 5

Results

We now discuss how these aims were met during the course of this thesis, and the work done to
achieve these goals.

In we discuss the process of articulating the kernel object invariant condition in
Isabelle. We then discuss proving the condition’s invariance across several representative samples
of the ASpec, and the proof patterns utilised in doing so, in Finally, we discuss the
refinement of this invariant condition to the ExecSpec, along with the insights gained during

the proof process, in [Section 5.

5.1 Setup for Invariant

5.1.1 Oracle

As mentioned in in order to articulate the invariant condition, I needed an oracle to
determine which regions of memory are allocated to which security domains. This is because
there is no clear pathway to providing an implementation for such an allocation in the ASpec at
this time.

This oracle acts as a stand in for a defined implementation, specifying certain properties that
it must satisfy. It can be replaced by an implementation at a later date and as long as the
properties asserted of the oracle are shown to hold for that implementation, any proofs relying
on this oracle should also work with the implementation.

20

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

Snippet 5.1: Colour Allocation Oracle

axiomatization
colour oracle :: "domain = obj ref set"
where
colour oracle no_ overlap:
"x # y = (colour oracle x N colour oracle y = {0})"

shows how the oracle is aziomatised into the Isabelle theory file. This means it is
effectively taken for fact that such a method exists which satisfies the properties underneath.
Axiomatisation is risky to use as the axiomatised method is not checked at all and hence presents
a way to introduce contradictions into the trusted proof base (e.g. if two contradictory properties
are declared for the oracle).

Axiomatisation is necessary in this case as it presents a way of creating an oracle that is simply
asserted to exist without needing to provide a definition, instead only providing properties. So
far, the only property added to the colour oracle is that no two security domains have overlapping
regions of memory assigned to them (excluding 0, or null). As further properties are identified
which the oracle must satisfy, they can be added to the list of its properties and will then be
imposed on the replacement implementation.

5.1.2 Helper Methods

With the oracle defined, I could use it to define methods to help with articulating the invariant
condition. These methods should check that all references that a kernel object makes to other
addresses should lie within the cache colour allocation of the current security domain.

Creating these definitions ended up being a fairly mechanical process. It involved iterating
through each type of kernel object, identifying what object references it has as part of its state,
and adding a condition to the definition checking that all such references lie within the set of
valid addresses.

A snippet of the kernel object check’s definition is presented in to provide examples
of what the definition looks like and hint at how the definition was generated. The remaining
cases are elided as they do not provide further insights. The capability check is defined in terms
of an existing method obj_refs, which performs a similar accounting of the references contained
by a capability, and returns the set of these references.

21

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

Snippet 5.2: Kernel Object Helper Methods

primrec check kernel object ref :: "kernel object = obj ref set = bool"
where
"check kernel object ref (Endpoint ep) obj dom = (
case ep of

IdleEP = True
| SendEP s = (set s
| RecvEP 1 = (set r

C obj dom)
C obj_dom)
)H
| "check kernel object ref (CNode «¢s) obj dom = (
Vx. case (cs x) of
Some cap = check cap ref cap obj dom
| None = True

)Il

primrec check cap ref :: "cap = obj ref set = bool"
where
"check cap ref cap obj set = obj refs cap C obj set"

The definition was not defined directly in terms of the oracle. Instead, it accepts the set of valid
addresses as a parameter. This was done in case there ended up being other potential uses for
the method, which relied on sets of addresses which did not come from the colour allocation. In
the end, however, this situation was not encountered.

5.1.3 Articulating the Invariant

With the helper methods defined, the invariant condition was ready to be articulated. Over
the course of this thesis, the definition underwent several iterations, with each iteration being
developed based on my understanding at the time. Every progression to a new definition was
spurred by issues that arose with the prior definition.

Initially, the condition only specified one pointer and kernel object as parameters, as seen in
This meant that any methods which handled several kernel objects needed to
specify each one as a separate clause in its preconditions and postconditions.

Snippet 5.3: Initial Colour Invariant Articulation

definition colour invariant
where
"colour invariant ptr kobj s =
(ko_at kobj ptr s A ptr € colour oracle (cur_domain s)) =
check kernel object ref kobj (colour oracle (cur domain s))"

22

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

This invariant condition had two issues. First, this required manually deciding which pointers
and kernel objects needed clauses, which was tedious and error prone. Second, as the condition
would differ for each method based on the references the method touches, proving this version
of the property was invariant would be difficult, if not impossible.

Hence, I generalised the definition to require the condition to be true for all kernel objects and
their pointers, generating a property that I expected I could prove was invariant across the
ASpec.

Snippet 5.4: Second Colour Invariant Articulation

definition colour invariant
where
"colour invariant s = V ptr kobj.
(ko_at kobj ptr s A ptr € colour_ oracle (cur_domain s)) =
check kernel object ref kobj (colour oracle (cur domain s))"

[Snippet 5.4s definition of the invariant condition served its purpose well for a majority of the
thesis, facilitating demonstrative proofs which showcased the proof process, as well as how it
could be automated (discussed in [Section 5.2.2)).

However, when it came time to attempt proving invariance across schedule, the ASpec method
which determines which security domain should run next, it became evident that this invariant
condition was not general enough. It only stated that the kernel object property was true for
the current domain, which meant that when it came time to switch domains, the new domain
may not satisfy the condition. Hence, schedule would not maintain the invariant without extra
side conditions.

Therefore, the invariant was generalised one final time to arrive at the current articulation of
the invariant.

Snippet 5.5: Current Colour Invariant Articulation

definition colour invariant
where
"colour invariant s = V ptr kobj. V dom € (domain list s)
(ko_at kobj ptr s A ptr € colour oracle dom) =

check kernel object ref kobj (colour oracle dom)"

[Snippet 5.5s definition of the invariant condition states that the kernel object property is true
for all domains in the kernel, ensuring that no matter what domain is scheduled next, it will
also satisfy the property. This definition was implemented relatively late in the thesis, and led
to breakages for approximately one third of all my prior proofs. The repair of these breakages

will be discussed in

To the best of my knowledge, this invariant cannot be made more generic as the pointer, kernel
object and domain are all universally quantified. No other parameters in the invariant can be

23

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

generalised, so this should not need to be modified any further.

5.2 Proving Lemmas for Invariant

With the kernel object invariant condition defined, I wanted to prove that it is maintained
across call kernel. However, this is too large of a method to tackle at once, and so I first
proved maintenance across lower level methods in [Section 5.2.1] In doing so, I also utilised some

automation machinery discussed in [Section 5.2.

I then composed those proofs with each other to build up to higher level methods, with the goal
of building up towards call_kernel, in [Section 5.2.3

5.2.1 Kernel Heap Methods

The lowest level methods present in the ASpec are get_object and set_object, which retrieve
and update the referenced kernel object, respectively. Any method which utilises the kernel
heap must invoke one of these methods. This makes these methods, along with other methods
relating to the kernel heap, the ‘building blocks’ with which other methods are built.

As a result, I decided to begin my proof work by proving invariance across these lower level
methods, as they were easier to reason about and also presented a solid foundation upon which
proofs for higher level methods could be built upon. The Hoare triples for these methods all
only required weakest precondition style proofs, with any separate complexities coming from
variations in the definition.

Notably, most of the ‘getter’ methods did not require explicit proofs. As they extract information
from the state without modifying it in any manner, there were already existing results that any
predicate would be preserved by a function call. These results trivially prove kernel object
invariance for the getter methods, and so no separate proof was required.

On the other hand, some methods required side conditions, extra preconditions which had to
be included so that the invariant condition is a valid postcondition. For example, set_object
requires that the object being set also only references addresses in the memory allocation of the
current domain, as can be seen in

24

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

Snippet 5.6: set_object Invariance Lemma

lemma set _object colour maintained:
ll{’
colour invariant and
(valid ptr_in_cur_ domain ptr) and
(As. check kernel object ref kobj (colour oracle (cur domain s)))
I
set _object ptr kobj
{A_. colour invariant|}"

In this manner, all the kernel heap methods were either ignored (due to already being directly
provable) or were proved with or without side conditions.

5.2.2 crunch and Automation

During the kernel heap proofs, a clear pattern became evident. Proofs of invariance over higher
level methods would break down into the lower level methods they are composed of, and would
use the invariance proofs of those methods to build up the proof for the higher level method.
Eventually, this pattern would break down when side conditions were introduced or the method
was too low level to be broken down (e.g. set_object). In these cases, the proof would revert
to the aforementioned weakest precondition proof pattern established in

In the cases where there were no side conditions required for the method, this pattern presented
an opportunity for automation. This automation came in the form of crunch, a piece of ma-
chinery developed as far back as 2008 for L4v |Cock et al., 2008]. It had been developed for
the purpose of automating this process for any invariant: recursively breaking down methods,
proving the invariant across the lower level methods and building a proof back up for the original
method. showcases how crunch is utilised to prove several methods at once, and
how passing lemmas to aid the crunching process works.

Snippet 5.7: crunch-ing Several Methods

crunch reschedule required,
possible switch to,
set thread state act,
set priority,
set scheduler action,
tcb _sched action,
set__tcb queue,
set irq_state
for colour maintained: "colour invariant"
(simp: colour invariant def obj at update)

With crunch, I was able to simplify the proofs of 14 methods into one line expressions, removing

25

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

a couple of weeks’ worth of required work. There is also a reasonable chance that other methods
which were proved prior to my use of crunch can also be automated away. Overall, crunch
presents a way to reduce the manual workload required in proving the kernel object invariant
across the ASpec.

5.2.3 Further progress

With the kernel heap methods complete, I decided to approach the problem of proving invariance
across call _kernel head on. With crunch, I was able to attempt to prove call kernel directly.
Wherever this proof failed, I would take the method which it failed at, and create an invariance
proof for it as a separate lemma. Upon completion of these proofs, the call kernel crunch
would then fail in new places, which could be tackled separately again.

Repeating this process presented a quick way to find methods where proofs were needed, instead
of needing to scour the specification for methods and see if they would need proofs (or if existing
proofs already covered them).

In this manner, over 25 more proofs were completed besides the kernel heap methods, making
a good start on building up proofs towards invariance over call kernel. Six of these proofs
were completed using crunch. The remaining methods were more complex than the kernel heap
methods, and had more variation in how they were proved. For example, transfer_caps_loop
has a recursive definition, which meant the invariance proof for it involved induction. Even in this
complex case, however, the underlying proof for the inductive step was a weakest precondition
style proof.

Two methods not found via crunch, schedule and activate_thread, also had invariance
proofs completed for them. These are two of the three methods which are called directly by
call kernel, and were relatively reasonable to prove invariance over. These served as a nice
demonstration of the feasibility of proving this invariant for higher level methods. Their proof

statements are provided in and

Snippet 5.8: schedule Invariance Theorem

theorem schedule colour maintained:
"{[colour _invariant|}
schedule
{A_. colour invariant[}"

26

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

Snippet 5.9: activate_thread Invariance Theorem

theorem activate thread colour maintained:

||{|
colour invariant and
(As. valid ptr_in_ cur domain (cur_ thread s) s) and
(As. tcb_at (cur_thread s) s)

[t

activate thread

{A_. colour invariant[}"

Note that schedule was the cause of the final change to the invariant, which led to breakages
of several proofs. These breakages entailed certain methods (such as activate thread in
needing extra side conditions stating that the address being modified is in the current
domain (excluding null).

This is always true, but is only proved to be true in the security proofs, which are not accessible
in the AInvs session. This extra requirement is necessary here, however, because if a method
modifies an object at an address in another domain’s allocated memory, it will invalidate the
invariant condition for that domain, as the modified object needs to point to memory allocated
to the current domain.

To add this requirement succinctly to the methods that required them, it was made into a
separate helper method stating that a pointer is valid, meaning that it is not null and is in the
current domain’s colour allocation (as determined by the colour allocation oracle). This method’s

type signature can be seen in [Snippet 5.10, With this method’s addition to the preconditions of
many proofs, most of the breakages were successfully resolved.

Snippet 5.10: Valid Pointer Helper Method

definition valid ptr in cur domain ::
"64 word = 'a abstract state scheme = bool"

5.3 Refining to ExecSpec

All the proofs at the ASpec level are useless if they are unable to discharge the proof obligations
created by the assertions added by Thomas Liang at the ExecSpec level [Liang, 2025]. As there
are existing proofs of correspondence already present in L4v, I aimed to reuse as much of the

existing proof work as possible, discussed in [Section 5.3.1

I also tried to identify a proof pattern that would be simple to use and reusable for as many
proofs in Refine as possible, discussed in I then proved modified correspondence
lemmas across a few methods as proofs of concept to demonstrate the proof pattern, as seen in
Section 5.3.3

27

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

5.3.1 Modified corres Statement

To use the abstract invariant to show that the ExecSpec assertion condition holds, I needed to
modify the ASpec preconditions to include the condition that the address is in the correct colour
allocation for the current domain. I then utilised this precondition to show that the assertion
on the ExecSpec side is satisfied.

Proving this modified version of the lemma required an update to the proof itself, adding a
proof step to directly demonstrate that the assertion’s condition is upheld. This proof step
showed that the assertion does nothing during execution, which meant that it could be ignored
for the rest of the correspondence proof. This allowed the rest of the original proof to proceed
unhindered, reducing the novel proof work that I had to do.

So overall, the correspondence proof for any functions f and f’ (in the ASpec and ExecSpec,
respectively) was transformed to include an extra ASpec precondition and ExecSpec assertion.
The shape of the corres proofs before and after modification are presented in
and [5.12] respectively, with £’’= (stateAssert (As. isInDomainColour (ksCurDomain s)
ptr) [>> £’ ptr), a version of £’ with the relevant assertion(s) added.

Snippet 5.11: Shape of Initial corres Lemma

proposition corres f:
"corres r
P P!
(f ptr) (f' ptr)"

Snippet 5.12: Shape of Modified corres Lemma

proposition corres f inCurDomain:
"corres r
(P and (As. ptr € colour oracle (cur_domain s))) P’

(f ptr) (f'' ptr)"

With this modified lemma proved, the plan is to prove that the added ASpec precondition is
satisfied using the abstract invariant (as they both relate to the ASpec), though this is out of
the scope of this thesis as proving invariance across the entire ASpec will take time.

5.3.2 Intermediate Step

Directly relating the ASpec precondition to the ExecSpec assertion was a fairly involved task,
requiring several large changes to be made to the steps in the original proof in order to relate
the extra precondition and assertion. Whilst this was definitely feasible to complete, splitting
the modifications into two separate steps, each proving a separate lemma, made the process
simpler.

28

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

The final step, as discussed above, was to generate the required correspondence proof with
the precondition on the ASpec side, but prior to that I proved a separate lemma with the
corresponding precondition on the ExecSpec side. The shape of this lemma is presented in

snippet 5.13

Snippet 5.13: Shape of Intermediate corres Lemma

proposition corres f inCurDomain':
"corres r

P (P'" and (As. isInDomainColour (ksCurDomain s) ptr))
(f ptr) (f'' ptr)"

This was much simpler to prove, as the added precondition directly proved the assertion true, as
they were both on the ExecSpec side. As such, the only changes that needed to be made to the
proof was renaming the lemmas utilised. These had to be changed to instead use counterpart
lemmas for the modified method (which also needed to be proved).

From there, moving the precondition to the ASpec side was a two line proof, as there is already
existing machinery in L4v to strengthen either of the preconditions based on the other specifi-
cation’s preconditions. In this manner, the process of replicating a given correspondence proof
for a modified method boiled down to

1. reproving lemmas about the modified method
2. replacing rules to use these modified lemmas

3. adding a two line proof for each corres lemma being replicated

This is a very manageable process to emulate for the remainder of the ASpec, even if tedious
when repeated across the entire specification.

The only other bit of work required for this proof pattern to work was a proof relating the
ExecSpec and ASpec oracles. As these were both axiomatised, this was also effectively ‘ax-
iomatised’ by adding a property to the ExecSpec oracle stating its definition matched its ASpec
counterpart. Once the oracles are replaced by a concrete implementation, this property will
need to be properly proved, but will only need to be done once for the entire refinement process.

5.3.3 Proofs of Concept

With this pattern of proof, I successfully replicated and modified eight correspondence proofs
regarding get_object and set_object to include the added assertion and precondition. Each
method had four lemmas, each accounting for one of the types of objects that get_object and
set_object could be called upon: thread control blocks, page table entries, address space ID
pools and all other objects as a catch-all case. The proof pattern successfully worked when com-
pleting all of these proofs, including when these proofs had the added complication of depending
on each other. The shape of one of these proofs is provided in

29

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

Snippet 5.14: corres Lemma for modified get_tcb

lemma corres_get tcb inCurDomain:
"corres
(tcb _relation o the)
(tcb_at t and (As. t € colour_oracle (cur_domain s))) (tcb_at' t)
(gets (get_tcb t)) (getObjectInCurDomain t)"

I also attempted a proof for get_cap, a higher level method which Thomas Liang had added
assertions to [Liang, 2025]. The statement of this proof is presented in [Snippet 5.15

Snippet 5.15: Potential corres Lemma for modified get_cap

proposition get cap inCurDomain corres P:
"corres
(Ax y. cap_relation x (cteCap y) A P x)
(
cte_wp_at P cslot ptr and
(As. cte_map cslot ptr € colour oracle (cur domain s))
)
(pspace_aligned' and pspace distinct')
(get cap cslot ptr) (getCTEInCurDomain (cte map cslot ptr))"

I mostly completed this proof, with the main proof pattern successfully being emulated. How-
ever, in the process of proving counterpart lemmas for the modified method, an extra requirement
of the oracle was identified. The oracle needed to ensure that the entirety of a TCB was allo-
cated to its security domain. This result relies upon the fact that cache colours are page aligned,
which means the oracle’s memory allocation must similarly be aligned to pages, with an entire
page being allocated to one domain.

Whilst this requirement is self-evidently true based on the definition of colours, the manner in
which the oracle was implemented meant that the property needed to be explicitly stated for it.
The property was identified as a requirement late in the thesis and was unable to be articulated
as a property of the oracle in time for this report. This meant that lemmas showing that the
modified method, getCTEInCurDomain, did not fail had to be sorry-ed.

With those lemmas sorry-ed, however, the proof successfully completes, indicating that the
pattern does continue to work with higher level methods.

5.4 Reuse of Prior Time Protection Work

The investigation into the feasibility of reusing work from the prior attempting of verifying time
protection (up to 2023) was very short-lived. As the invariant approach was selected, the prior
TA accounting work became obsolete. This is due to the fact that the invariant already enforces

30

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

the condition that all objects in regions of memory accessible to a given security domain should
only point to other addresses accessible to a given security domain.

This meant that that all work done in the security domain’s time slice can only affect its own
partition of memory. Hence, there was no longer any need to track touched addresses using the
assertions added previously, as the invariant shows any possibly touched addresses already lie
within the correct regions of memory.

As such, this goal was met early in the thesis, with the conclusion being that the TA accounting
would not be reusable. Note that this does not include any other parts of the prior time
protection work, such as the theories written to make use of existing access and information
flow theories to derive properties relevant for time protection. The use of such work was out of
the scope of this thesis, and may remain useful in future work on time protection.

31

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

Chapter 6

Future Work

We now discuss the outcome of my work discussed in and how this proof work can be
extended to encompass the entire ASpec. This covers both the invariant proof work (Section 6.1))

and its refinement to the ExecSpec (Section 6.2)).

6.1 Invariant

6.1.1 Repairing existing proofs

As mentioned in the articulated invariant underwent several revisions before arriv-
ing at the current iteration, which is quantified over pointer, kernel object and domain. The
modification of the invariant condition to be across all domains in the kernel’s domain list was
done relatively late in the thesis, and broke several proofs which had been completed prior. As
such, whilst most of these proofs have now been repaired, there remains one major proof to be
repaired, which is the proof showing invariance across transfer_caps_loop. Any changes made
to the lemma during the repair of this proof will likely break other proofs (the obvious example
being transfer _caps, which is a wrapper function around it), which likely means that there are
also a handful of other repairs yet to be made.

This method presented a considerable challenge in its proof previously, and as such the proof
was unable to be completed in time for this report. However, the approach for repairing the
proof should follow a similar pattern to the repair of other proofs, and is likely resolvable with
around a couple of weeks’ worth of effort.

32

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

6.1.2 Completing Proof of Invariance
Remaining Work

To add the invariant to the abstract invariants in the ASpec, we need the invariant to be true
across call_kernel. As mentioned in schedule and activate_thread have had
proofs completed for them, completing two of the three functions called by call kernel. The
final method, handle_event, is a generic event handler which delegates to one of several methods
depending on what event it receives. This method now has proofs for a small proportion of its
cases, but there remain several more cases to address.

All four of the fault handlers and the one interrupt event handler have yet to be addressed, as
well as three of the five system call event handlers. The remaining two system call event handlers
are where the majority of the proofs outlined in have been targeted, building towards
a proof of invariance across the shared method which both handlers call, handle_invocation.
handle_invocation is missing proofs for

e cdl_intent_op e decode_invocation

e cdl_intent_cap e mark tcb_intent_error
e cdl_intent_extras e perform_invocation

e lookup_cap_and_slot e restart

e lookup_extra_caps e corrupt_ipc_buffer

All of these methods remain uninvestigated and are large methods in their own right, meaning
there is still a large amount of work left even within handle_invocation. When all of this
work is complete, the invariant should end up proven true, enabling refinement to progress to
completion as well.

Pattern to Progress

The previously established pattern to proving invariance, namely utilising crunch where possi-
ble to reduce manual workload and using weakest precondition style proofs for the remaining
methods, should remain fruitful with these remaining methods. This is evidenced by the fact
that this style of reasoning successfully completed over 45 invariance proofs at varying levels
of complexity, ranging from the most fundamental building block methods to the higher level
methods called directly by call kernel.

The main difference that will be encountered with the remaining methods is that they are generic
event handlers, meaning the proof work required for each method will be larger. For example,
handle_invocation will have to demonstrate that the nondeterministic state monads which it
passes into syscall maintain the kernel object invariant condition (as is required by syscall’s
side conditions for its invariance proof), which will complicate the proof significantly. As such,
these event handler proofs will likely require significantly more steps (and time) than the existing
proofs.

33

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

6.2 Refinement

6.2.1 Updating ExecSpec

For the refinement of the kernel object invariant to proceed, a full stack of methods, all incor-
porating the isInDomainColour assertion written by Thomas Liang [Liang, 2025], needs to be
written so that concrete correspondence proofs can be used to discharge C code level assertions.
This stack can be written in three ways:

e the existing set of methods can be updated by simply updating getObject and setObject,
which are used by all higher level methods and hence will add the relevant assertions
everywhere else.

e write a complete copy of the ExecSpec methods, which depend on each other, and which
use a modified getObject and setObject with the assertion added at the lowest level.
This is effectively the same as the first option, but keeping the original methods the same,
and creating a copy of each method instead.

e write a copy of each method which adds one large assertion for itself and uses lower level
methods without the assertions.

The first option is evidently the simplest in terms of updating the specification as it only en-
tails updating two methods, but it may make the concrete correspondence proofs between the
ExecSpec and CSpec more difficult. This is because the assertions are all at the lowest level
with one assertion per memory access, so the number of these assertions may explode when
handling higher level methods. The second option is an ineffective combination of the two other
options, which has difficulty both in creating a copy of the entire ExecSpec and in handling the
large number of assertions in proofs. The final option requires creating a completely separate
copy of all methods in the specification, as well as all lemmas about these methods. This may
be difficult to write, but will likely simplify the correspondence proofs. This is because each
proof will have to handle one large assertion (as the definition of each modified method utilises
unmodified versions of other methods) which is easier to reason about at all levels.

At the moment, Thomas Liang has found that the final option is the simplest for his ccorres
proofs |Liang, 2025]. It allows him to extend the existing correspondence proofs to prove a
modified version of the lemma, rather than having to duplicate the lemma’s proof and modify
it. Hence, this is likely to be the way that the ExecSpec will be updated in future, which will
impact how correspondence proofs between the ASpec and ExecSpec will work.

6.2.2 Completing Correspondence Proofs for ExecSpec methods

With the specification itself updated, the proof obligations generated by the added assertions
must be satisfied. Naturally, the proofs will get increasingly difficult as the assertion conditions
become more complex in higher level methods.

34

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

Nonetheless, I expect the proof pattern established in to continue to be usable for
these higher level correspondence proofs, as evidenced by the success in emulating the pattern
for the more complex get_cap. This should mean that novel proof work should be minimised
when proving correspondence across the ExecSpec, with most of the work being copying existing
proofs and renaming the utilised rules to use the counterpart proofs against the modified method.

There is also the requirement of proving correspondence between the implementation of the
oracle in the ASpec and ExecSpec. This proof will replace the sorry-ed lemma which currently
relates the two existing oracles. The difficulty in completing this proof will depend on the
complexity of the implementation, but importantly it will only need to be proved once: the
remaining results can reutilise this proof. As such, the difficulty of this proof is not of great
concern.

35

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

Chapter 7

Conclusion

1TCs are a type of security vulnerability which exploit the variations in the timing of hardware
operations to leak information between processes. As these hardware operations are abstracted
away from software, the only way to close these channels is to address them at the kernel level,
and this task is of critical importance for security oriented microkernels such as sel.4 [Ge, 2019].

In this report, I discussed the existing plan suggested by Buckley et al. to formally verify the
absence of yTCs in sell4 through an extension of the existing security proofs in L4v, adding
accounting for the set of addresses touched during execution |[Buckley et al., 2023|. I then high-
lighted the magnitude of proof breakages generated by this process, and suggested an alternative
pathway which avoids the years worth of proof work required to repair these breakages.

This new approach involved adding an invariant to the ASpec, and refining this result down to
the CSpec through the ExecSpec. This central invariant states that any kernel object accessible
to a given security domain only points to other memory accessible to the security domain. With
this novel approach detailed, I then recounted my progress in proving the invariant across the

ASpec in beginning with relevant definitions in progressing onto the
invariant lemmas in and ending with the proof of concept of refinement down to the

ExecSpec in [Section 5.

Finally, I outlined the takeaways from the results of this work in I discussed the
pathway to completing an invariant proof of the new invariant condition across the ASpec in
beginning with the repair of proofs broken by a late change to the definition and
ending with a discussion of the remaining work required to complete the proofs. Similarly, I
discussed the work done by both Thomas Liang and myself in refining this result in
and how the outcomes of the ASpec to ExecSpec proof of concept should affect future refinement
work.

With these takeaways, there is now a clear plan for continuing the work begun in this thesis. This
should facilitate proofs verifying cache colour spatial partitioning in the CSpec via a refinement
step in the ExecSpec, where assertions were added [Liang, 2025] and proved by this invariant.
In this manner, the spatial partitioning of memory according to cache colour allocations can be

36

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

proved in sel.4. This satisfies one requirement of time protection and brings us one step closer
to proving sel.4 is fully secure.

37

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

Bibliography

[Arm Limited, 2024] Arm Limited (2024). Arm Architecture Reference Manual for A-profile
architecture. Arm Limited.

[Backes et al., 2010] Backes, M., Diirmuth, M., Gerling, S., Pinkal, M., and Sporleder, C. (2010).
Acoustic side-channel attacks on printers. pages 1-16, Washington, DC.

[Bernstein, 2005] Bernstein, D. J. (2005). Cache-timing attacks on AES.

[Braun et al., 2015] Braun, B. A., Jana, S., and Boneh, D. (2015). Robust and efficient elimi-
nation of cache and timing side channels. arXiw preprint arXiv:1506.00189.

[Brickell et al., 2006] Brickell, E., Graunke, G., Neve, M., and Seifert, J.-P. (2006). Software
mitigations to hedge AES against cache-based software side channel vulnerabilities. TACR
Cryptology ePrint Archive, 2006:52.

[Brumley and Boneh, 2003] Brumley, D. and Boneh, D. (2003). Remote timing attacks are
practical. pages 1-14, Washington, DC, US.

[Buckley and Sison, 2023] Buckley, S. and Sison, R. (2023). Time protection handover,
07/2023. https://github.com/au-ts/l4v-private/blob/experimental-timeprot/
proof/infoflow/timeprotection/timeprot-handover_2023-07.md. Last accessed 17
November 2025.

[Buckley et al., 2023] Buckley, S., Sison, R., Wistoff, N., Millar, C., Murray, T., Klein, G., and
Heiser, G. (2023). Proving the absence of microarchitectural timing channels. arXiv preprint
arXiw:2310.17046.

[Cock et al., 2008] Cock, D., Klein, G., and Sewell, T. (2008). Secure microkernels, state monads
and scalable refinement. pages 167-182, Montreal, Canada.

[de Roever and Engelhardt, 1998] de Roever, W.-P. and Engelhardt, K. (1998). Data Refine-
ment: Model-Oriented Proof Methods and their Comparison. Number 47. United Kingdom.

[Dijkstra, 1975] Dijkstra, E. W. (1975). Guarded commands, nondeterminacy and formal deriva-
tion of programs. Communications of the ACM, 18(8):453-457.

[Ge, 2019] Ge, Q. (2019). Principled Elimination of Microarchitectural Timing Channels through
Operating-System Enforced Time Protection. PhD thesis.

38

https://github.com/au-ts/l4v-private/blob/experimental-timeprot/proof/infoflow/timeprotection/timeprot-handover_2023-07.md
https://github.com/au-ts/l4v-private/blob/experimental-timeprot/proof/infoflow/timeprotection/timeprot-handover_2023-07.md

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

[Ge et al., 2018] Ge, Q., Yarom, Y., Cock, D., and Heiser, G. (2018). A survey of microarchi-
tectural timing attacks and countermeasures on contemporary hardware. 8:1-27.

[Genkin et al., 2015] Genkin, D., Pachmanov, L., Pipman, I., and Tromer, E. (2015). Stealing
keys from PCs using a radio: Cheap electromagnetic attacks on windowed exponentiation.
pages 207-228, Saint Malo, FR.

[Genkin et al., 2014] Genkin, D., Shamir, A., and Tromer, E. (2014). RSA key extraction via
low-bandwidth acoustic cryptanalysis. pages 444-461, Santa Barbara, CA, US.

[Heiser, 2020] Heiser, G. (2020). The seL4 microkernel — an introduction. seL4 Foundation
Whitepaper.

[Heiser and Elphinstone, 2016] Heiser, G. and Elphinstone, K. (2016). L4 microkernels: The
lessons from 20 years of research and deployment. ACM Transactions on Computer Systems,
34(1):1:1-1:29.

[Hoare, 1969] Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commu-
nications of the ACM, 12:576-580.

[Klein et al., 2014] Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski,
R., and Heiser, G. (2014). Comprehensive formal verification of an OS microkernel. ACM
Transactions on Computer Systems, 32(1):2:1-2:70.

[Klein et al., 2009] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., and Winwood,
S. (2009). selL4: Formal verification of an OS kernel. pages 207-220, Big Sky, MT, USA.

[Klein et al., 2010] Klein, G., Sewell, T., and Winwood, S. (2010). Refinement in the formal
verification of seL4, pages 323-339.

[Kocher et al., 2019] Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Haburg,
M., Lipp, M., Mangard, S., Prescher, T., Schwartz, M., and Yarom, Y. (2019). Spectre
attacks: Exploiting speculative execution. pages 19-37, San Francisco, CA, US.

[Kocher et al., 1999] Kocher, P., Jaffe, J., and Jun, B. (1999). Differential power analysis.
volume 1666, pages 388-397.

[Lampson, 1973] Lampson, B. W. (1973). A note on the confinement problem. Communications
of the ACM, 16:613-615.

[Liang, 2025] Liang, T. (2025). Refining sel.4’s accounting of touched addresses for time pro-
tection. An Unpublished Honours Thesis Report.

[Lipp et al., 2018] Lipp, M., Schwartz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn,
J., Mangard, S., Kocher, P., Genkin, D., Yarom, Y., and Hamburg, M. (2018). Meltdown:
Reading kernel memory from user space. Baltimore, MD, USA.

[Liu et al., 2016] Liu, F., Ge, Q., Yarom, Y., Mckeen, F., Rozas, C., Heiser, G., and Lee, R. B.
(2016). CATalyst: Defeating last-level cache side channel attacks in cloud computing. pages
406-418, Barcelona, Spain.

39

Sai Nair Updating L4v Invariants to Aid Time Protection Proofs

[Masti et al., 2015] Masti, R. J., Rai, D., Ranganathan, A., Miiller, C., Thiele, L., and Capkun,
S. (2015). Thermal covert channels on multi-core platforms. pages 865-880, Washington, DC,
US.

[Murdoch, 2006] Murdoch, S. J. (2006). Hot or not: revealing hidden services by their clock
skew. pages 27-36, Alexandria, VA, US.

[Murray et al., 2013] Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried,
S., Lewis, C., Gao, X., and Klein, G. (2013). sel4: from general purpose to a proof of
information flow enforcement. pages 415429, San Francisco, CA.

[Nipkow et al., 2002] Nipkow, T., Paulson, L., and Wenzel, M. (2002). Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283.

[Osvik et al., 2006] Osvik, D. A.; Shamir, A., and Tromer, E. (2006). Cache attacks and coun-
termeasures: The case of AES. pages 1-20, San Jose, CA, US.

[Paulson, 2013] Paulson, L. C. (2013). Isabelle’s logics: FOL and ZF. http://isabelle.in.
tum.de/doc/logics-ZF.pdf.

[Quisquater and Samyde, 2001] Quisquater, J.-J. and Samyde, D. (2001). Electromagnetic anal-
ysis (EMA): Measures and counter-measures for smart cards. pages 200-210, Cannes, FR.

[Schaefer et al., 1977] Schaefer, M., Gold, B., Linde, R., and Scheid, J. (1977). Program con-
finement in KVM/370. pages 404-410, Atlanta, GA, US.

[Trustworthy Systems Team, 2017] Trustworthy Systems Team, D. (2017). seLj Reference Man-
ual, Version 7.0.0.

[Yarom and Falkner, 2014] Yarom, Y. and Falkner, K. (2014). FLUSH+RELOAD: a high resolu-
tion, low noise, L3 cache side-channel attack. pages 719-732, San Diego, CA, US.

40

http://isabelle.in.tum.de/doc/logics-ZF.pdf
http://isabelle.in.tum.de/doc/logics-ZF.pdf

	Introduction
	Background
	Covert Channels
	Microarchitectural Timing Channels

	Formal Verification
	Hoare Logic and Invariants
	Refinement and Correspondence

	Prior Work
	seL4
	Isabelle/HOL
	L4v
	Models, Specifications and Correspondence
	Refinement

	Time Protection
	Touched Addresses
	Issues with Prior Work

	Methodology
	New Development
	Cache Colour Allocation
	Proving the Kernel Object Invariant
	Refining the Kernel Object Invariant
	Oracle

	Aims

	Results
	Setup for Invariant
	Oracle
	Helper Methods
	Articulating the Invariant

	Proving Lemmas for Invariant
	Kernel Heap Methods
	crunch and Automation
	Further progress

	Refining to ExecSpec
	Modified corres Statement
	Intermediate Step
	Proofs of Concept

	Reuse of Prior Time Protection Work

	Future Work
	Invariant
	Repairing existing proofs
	Completing Proof of Invariance

	Refinement
	Updating ExecSpec
	Completing Correspondence Proofs for ExecSpec methods

	Conclusion
	Bibliography

