UNSW

AUSTRALIA

School of Computer Science and Engineering
Faculty of Engineering

The University of New South Wales

A Usable System Model for Time
Protection

by

Varun Sethu

Thesis submitted as a requirement for the degree of

Bachelor of Engineering in Computer Engineering

Submitted: November 2025

Supervisor: Prof. Gernot Heiser & Dr Rob Sison
Student ID: 25362311

A Usable System Model for Time Protection Varun Sethu

Abstract

This thesis explores how the current system model for time protection on sel.4 can be ex-
tended to support cross-domain communication. To achieve this, it proposes and evaluates
a design for cross-domain notifications and also proposes a design for cross-domain shared
memory. Additionally, this thesis argues that a more efficient implementation of cross-
domain shared memory is not presently achievable on the evaluation platform. Doing so
would require introducing new hardware features or reworking the current time-protection
implementation to adopt alternative LLC-partitioning schemes.

ii

Varun Sethu A Usable System Model for Time Protection

Acknowledgments

I would firstly like to thank Professor Gernot Heiser and Dr Rob Sison for their invaluable
guidance and supervision during this project. It has been an absolute blessing and really
helped me stay on focus.

I would also like to thank Julia Vassiliki and Nils Wistoff. Their support was absolutely
critical, as much of the work achieved during this thesis would have been practically
impossible without them. I would like to thank Julia for all her work in setting up the
remote Cheshire infrastructure and porting time protection to Cheshire, as well as for the
help she provided when I was debugging finicky timing channels or dealing with arcane
hardware issues I had never encountered before. I am also grateful for her patience in
answering my many questions and guiding me through any problems I faced with tooling.
I would like to thank Nils for answering all the random questions I had about Cheshire,
despite being half-way across the world and busy with his PhD thesis.

I would like to thank Lesley Rossouw, Sai Nair and Charran Kethees for their discussions
throughout the year about their honours work. Particularly Lesley, who has been an
invaluable source of advice and guidance, acting as a sort of informal buddy at TS.

And finally, I would like to thank my friends and family, namely Shaji, Bindu, Tarun and
Prashansa for all their support during what has been quite an intense year.

iii

A Usable System Model for Time Protection Varun Sethu

Abbreviations

CPU Central Processing Unit

TLB Translation Lookaside Buffer

MMU Memory Management Unit

LLC Last Level Cache

OS Operating System

DPLLC Dynamically Partitionable Last Level Cache

WCET Worst-Case Execution Time

v

Varun Sethu A Usable System Model for Time Protection

Contents

1

(L1 Covert Channels and Side Channelsl 2
(1.2 sel4 and Time Protectionl oL 2
1.3 Extending the Model of Time Protection|. 3
(1.3.1 Shared memory|. 4
(3.2 Notificationsl o 4

(1.4 Thesis Problem Statement and Outlinel. 4
|2 Background| 6
2.1 Caches and Their Architecturel oo oL 6
[2.1.1 Address decomposition|. L. 6
2.1.2 Cache architectures o0, 7
[2.1.3 Cache colouring|. o o 8
[2.1.4 Cache hierarchy| 9

2.2 Timing Channels| 10
221 Flush + Reload|. oo 11
2.2.2 Prime + Probel 11

2.3 sell4 Background| 12
[2.3.1 Capabilities] 12

A Usable System Model for Time Protection Varun Sethu

232 Threads 13
[2.3.3 Virtual memory management| 0L 13
.34 Notificationsl 14
[2.3.5 Endpoints and [PC|. 0 oo 16
2.3.6 TRQS e 16
237 Domainsl. 16
RA_Cheshird - o o o 17
AT TLC . o o oo o e e 17
2.4.2 Microarchitectural flushfo oo 18
2.4.3 OpenSBI 18

2.0 Time Protectionm seldlo o 18
[2.5.1 Requirement 1 for Time Protection|. 19
[2.5.2 Requirements 2 & 3 for Time Protection|. 20
[2.5.3 Requirement 4 for Time Protectionl. 20
[2.5.4 Requirement 5 for Time Protectionl. 21
255 Time Protection on RISC-VI. 21
2.5.6 _The domain switch on RISC-V| 22

[2.6 Time Protection in sel.4 — Taking It Further| 23
3__Related Workl 24
3.1 Constant Time Programmingl 24
|3.2 Pre-tetching and Forced Determinism|. 25
3.3 Noise Injection| 26
3.4 Time-Padding|. 27
[3.5 Cache Partitioning| L oo 28
(3.5.1 CATalyst| 28

vi

Varun Sethu A Usable System Model for Time Protection

29

29

30

31

31

[3.8 Channel Benchmarkingl 00 0. 32
3.9 Summary] 34
4 Benchmarking Methodology| 35
4.1 Quantitying Leakage| o o 35
4.2 Channel Matrices| 35
4.3 Benchmarking Environment| 0o 000000 36
[Notification Design| 37
[5.1 The Problem of Multiple Signals| 38
[5.1.1 N signals awakens NV threads| 39
[.1.2 N signals awakens 1 thread| 40

[5.2 Notification Design and API|. 40
[5.2.1 Signalling| o 40
(.22 Waiting] 41
0.2.3 Pollingl. 41
(b.2.4 Domain associationl. Lo 41
0.2.5 APl as a state machinelo 0oL 41

5.3 Information Flow Requirements|. 43
-4 Summary| e e e e 44

vii

A Usable System Model for Time Protection

|6 Notification Implementation|

6.1 General Implementation Details|.
6.2 Signal Implementation|
6.3 Time-Padding.

[6.3.1 Solution 1 — Hardware support|

[6.3.2 Solution 2 — Noise injection]

[6.3.4 Bounding the WCET|

6.4 Wait Implementation|.

6.5 Domain Switch Delivery]

F Notification Evaluation & i orl

[7.2.1 Signal latency|.

[7.2.2 Poll latency|

viii

Varun Sethu

Varun Sethu A Usable System Model for Time Protection

I8 Shared Memory Design| 75
8.1 Determinisation on Domain Switeh|o o000 76
[8.1.1 Cache inclusivity| 76

[8.1.2 Pre-fetching and a common colour| 77

[8.1.3 Pre-fetching and a distinct colour|. 80

[8.1.4 Summary| 88

8.2 Copy-on-Domain-Switch| 00 o 89
[8.2.1 Copy pertormed by the kernell 89

[8.2.2 Copy pertformed by a trusted thread| 89

[8.2.3 Which to implement?| 0. 91

9 Shared Memory Implementation| 92
9.1 Kernel Approach| o o 92
9.1.1 Domain and frame associationl 92

[9.1.2 Domain switch operations| 93

9.2 User-Level Approach| oo 94
[9.2.1 Constant time-padding and bounding the WCET|. 94

{10 Shared Memory Evaluation & Discussion| 95
[10.1 Timing Channel Benchmarks| 95
(10.1.1 Direct reads/writes benchmarkl 96

(10.1.2 Copy latency benchmarkl 100

(10.1.3 Unrelated activity benchmark|. 105

(10.1.4 Summary|o e e e e e 105

10.2 Performancel. L Lo 108
0.3 Discussionl oL Lo 110
10.4 Further Workl oo oo 110

1X

A Usable System Model for Time Protection

|Appendix A — Proof of Noise Uniformity|

[Appendix B — Existing Timing Channels|

[Bibliography|

Varun Sethu

112

121

Varun Sethu A Usable System Model for Time Protection

Chapter 1

Introduction

As the global demand for computing grew, CPU manufacturers needed to come up with
more innovative architectures and designs to improve the performance of their chips. To
achieve this, manufacturers decoupled the interface from implementation to produce an
instruction set architecture (ISA). The ISA acted as an API for the CPU, allowing manu-
facturers to scale the complexity of their implementation (known as the microarchitecture)
without affecting existing software targeting the CPU. Over the years, several features have
been introduced to improve the performance of CPUs, with two very specific examples
being caches and speculative execution. Caches aim to reduce the cost of accessing main
memory, acting as a temporary storage of data that was previously accessed by the CPU.
The idea being that if a program had accessed a piece of data before, it was likely to access
it again. Speculative execution, on the other hand, allowed the CPU to begin executing
instructions for a branch point in a program that had not yet been taken, greatly speeding
up many programs. There have been several other advancements in CPU design, all of
which enable hardware to present a consistent interface to software while still achieving
significant performance gains.

As CPU design progressed, there were warnings that the increasing complexity of the
microarchitecture could be exploited by bad actors |Ge et al.| [2017]. Many such warn-
ings were ignored until 2018, when the Spectre [Kocher et al., [2019] and Meltdown |Lipp
et al., [2018] attacks were introduced. These attacks relied on vulnerabilities around spec-
ulative execution’s impact on caches, which unknowingly allowed attackers to read data
that the operating system (OS) would otherwise not permit. At their core, these attacks
stem from the increasing complexity of microarchitectures, which forced CPUs to manage
more intricate interactions and the lasting effects these interactions had on the internal
microarchitectural state. Kocher et al|[2019] exploited this complexity and discovered a
mishandling of caches during speculative execution, where speculatively executed instruc-
tions left erroneous measurable traces in the CPU cache. Since the cache is shared between
multiple threads and never reset, attacking processes could observe sensitive information
that they should not have access to via these erroneous cache impacts.

A Usable System Model for Time Protection Varun Sethu

1.1 Covert Channels and Side Channels

Secure systems maintain restrictions on which subcomponents can communicate with each
other. However, when these rules are broken, and a method of communication opens up
that does not use a legitimate or intended communication path, then the system main-
tains a covert channel. In contrast, side channels refer to the unintentional leakage of
information within a system. Unlike covert channels, which require two parties to actively
communicate, side channels allow an attacking process to gain information about a victim
process without the victim’s knowledge.

Spectre and Meltdown demonstrated how channels can be used to leak information in a
manner disallowed by a system’s security policy, specifically how microarchitectural timing
channels can be used to achieve this goal. Microarchitectural timing channels exploit
variations in program execution time — caused by microarchitectural state — to encode
and transmit information. For example, if a CPU stores a piece of memory within its
cache, subsequent accesses to that memory will be significantly faster. Two processes can
exploit this behaviour to communicate via a shared, read-only memory buffer: one process
accesses the first byte of the buffer to load it into the cache, while the other measures its
access time for the same byte. A fast access may indicate a “1”, while a slow access may
indicate a “0” — successfully sending information over a buffer that neither process has
permission to write to.

Covert/side channels can be created through any mismanaged shared resource, and the
increasing complexity of microarchitectures has provided fertile ground for the introduction
of additional mismanaged resources. To address these issues, (Ge et al. [2019] introduces
time protection — a set of OS-level mechanisms aimed at preventing the creation of timing
channels on increasingly complex microarchitectures. The authors demonstrate how these
mechanisms can be applied to prevent timing channels within systems built on top of selL.4.

1.2 selL4 and Time Protection

Microarchitectural timing channels exploit shared resources to transmit information that
would otherwise be restricted by a system’s security policy. Therefore, any method aimed
at eliminating timing channels must implement mechanisms to partition resources and
restrict sharing. In the context of time protection, there are two primary methods for re-
source partitioning: spatial partitioning, which involves dividing state into non-overlapping
regions, and temporal partitioning, which involves dividing shared resources across time
[Ge et all |2019]. While most microarchitectural state can only be partitioned temporally,
certain components, such as the last-level cache (LLC), can also be partitioned spatially.

sell4 is a microkernel with security being a core pillar of its design, guaranteed by a small
trusted compute base and thorough formal verification [Klein et al.,|2009,2014]. Significant
engineering work has already gone into extending the kernel to support time-protection.
The current system model for time protection in sel.4 revolves around the idea of domains,

Varun Sethu A Usable System Model for Time Protection

which are a collection of software components and processes that represent a single unit
in a system’s security policy. Domains were initially introduced by Murray et al.| [2013]
to prevent leakage of information through scheduling decisions, but |Ge et al.| [2019] later
extended them to prevent leakage via timing channels. sel.4 identifies a few key shared
resources that must be partitioned between these domains to achieve time protection:

1. Microarchitectural state that supports spatial partitioning (such as the LLC).

2. Microarchitectural state that does not support spatial partitioning (such as TLBs).
3. Interrupts.

4. The operating system kernel itself.

To spatially partition resources between domains, the model assigns each domain a specific
region of the resource and ensures it can access only that region, preventing any observation
or interference from others. Temporal partitioning is achieved by assigning domains a
fixed time slice; at the end of a domain’s time slice, all resources that cannot be spatially
partitioned are reset and flushed, preparing them for the next domain [Ge et al., 2019].
Since the kernel itself is a shared resource and difficult to partition, selL.4 provides each
domain with its own dedicated copy of the kernel, where each kernel copy maintains a
unique text segment, stack, and global data segment |Ge et al., 2019].

While powerful, the model does not provide any mechanism for safe communication across
domains, making it impractical for many real-world use cases. A natural next step in the
development of this model is to introduce mechanisms that allow controlled communication
between domains.

1.3 Extending the Model of Time Protection

All useful systems require the ability for subcomponents within the system to commu-
nicate. For a system built around traditional sel.4, communication between threads of
execution is achieved through shared memory and coordinated via an asynchronous sig-
nalling mechanism known as notifications. Unfortunately, as outlined earlier, systems built
on top of time-protected seLL4 have no similar mechanisms for communicating. Using the
traditional methods directly would completely violate the time-protection guarantees that
the time-protected kernel aims to provide.

As such, it then becomes natural for us to explore extending the existing model of time
protection in selL.4 to support communication. More specifically, explore how to introduce
notifications and shared memory across temporally isolated domains. All communication
primitives discussed in the remainder of this thesis involve a writer/sender domain and a
reader /receiver domain, and are one-way. Information flows exclusively from the writer to
the reader domain, and we take deliberate measures to ensure that no back channel exists
from the reader to the writer. We will ensure that our designs prevent leaking information
that the writer/sender did not intend on sending through the communication primitive.

A Usable System Model for Time Protection Varun Sethu

1.3.1 Shared memory

A key design pillar of sel.4 is the user-level management of memory, which allows user-
level threads to share buffers of memory by mapping physical frames into multiple address
spaces. This makes shared memory a simple way to achieve communication in sel4,
and a technique that many applications will use to communicate large amounts of data
quickly. Given this, it makes sense to explore introducing shared memory as a cross-
domain communication mechanism within time-protected selL4. Extending the current
system model to support shared memory is not straightforward. Simply mapping the
buffer into each domain would violate the security guarantees the current model of time
protection provides, as it would require domains to share portions of the LLC — something
the model strictly prohibits. Additionally, special measures must be taken to prevent the
introduction of a back channel from the reader to the writer.

1.3.2 Notifications

Notifications in sell4d act as semaphores, enabling threads to wait (block until a signal
is received) and also signal (unblock the first thread that waited on the notification).
Any model of communication using shared memory must also maintain a mechanism for
coordinating access to this shared memory, which is precisely the problem notifications
solve. It then becomes natural for us to attempt to generalise notifications such that they
can be used across domains. Like shared memory, cross-domain notifications are not an
easy feat. They are essentially a problem of coordinating communication across distinct
copies of the kernel while still maintaining time protection and not introducing any back
channels.

1.4 Thesis Problem Statement and Outline

Well-defined communication mechanisms between domains are essential for any system
built on time-protected seL.4. As such, this thesis will explore extending time-protection
to enable strict one-way cross-domain shared memory and notifications. The proposed
communication primitives are designed to prevent the leakage of information beyond what
is explicitly conveyed through these primitives.

We will explore these primitives over several chapters. [Chapter 5| and [Chapter 6| will out-
line the design and implementation of a new cross-domain notification object, enabling
threads in distinct domains to signal each other without leaking any additional informa-
tion. will then evaluate the presented design by conducting various timing
channel benchmarks, demonstrating that no information, except signals, can flow between
domains.

will explore possible designs for cross-domain shared memory. It will argue that
there is only one presently viable software-only method for implementing cross-domain

Varun Sethu A Usable System Model for Time Protection

shared memory. The alternative method will require reworking the present implemen-
tation of time-protection on our target platform rather substantially. will
also demonstrate how the proposed design for cross-domain shared memory can be imple-
mented without extending the kernel any further, only requiring a working implementation
of cross-domain notifications. will then discuss the implementation details of
the presented designs. Finally, will evaluate the presented design and imple-
mentation of cross-domain shared memory. It will demonstrate that no information can
leak through shared memory buffers outside what is explicitly written to them. Our ex-
ploration of cross-domain shared memory will then conclude with a motivation for future
work. Arguing that a more efficient implementation of cross-domain shared memory will
require reworking the present implementation of time protection on our target platform
slightly — particularly, the LLC partitioning mechanism that it employs.

A Usable System Model for Time Protection Varun Sethu

Chapter 2

Background

Before continuing any further, we must first examine some key ideas and terminology that
underpin this thesis.

2.1 Caches and Their Architecture

Caches are the key example of microarchitectural state within essentially all modern CPUs.
They exist to mitigate the fact that accesses to main memory are significantly slower than
CPU operations, aiming to speed up subsequent memory accesses by storing previously
used data. At a high level, caches rely on two key principles: temporal locality, the idea
that recently accessed data is likely to be accessed again; and spatial locality, the tendency
for programs to access memory locations close to those previously used. When reading
from main memory, a CPU will initially check the cache for the data being requested, and
if present, will read it directly from the cache. If the requested address is not present, the
CPU will read an entire cache line (typically 32 — 64 bytes) containing the target address
from main memory and store the result within the cache. Reading an entire cache line
instead of individual bytes allows the processor to exploit spatial locality, as subsequent
requests for nearby addresses can be immediately serviced by the cache.

2.1.1 Address decomposition

To understand how an address is decomposed and used to index a specific entry in a
cache, we will consider a hypothetical 32-bit machine. On this machine, a cache line will
consist of 2048 bytes; therefore, we require log, (2048), or 11 bits to index an individual
byte within this cache line. Alongside this, we will require some bits in the address to
index into the actual cache itself, these bits are known as the cache identifier. On this
hypothetical architecture, the top 21 bits are dedicated to the cache identifier and the

Varun Sethu A Usable System Model for Time Protection

bottom 11 bits are dedicated to the offset, which is used to index bytes within a cache
line. This decomposition is pictured in

Cache identifier (21 bits) Offset (11 bits)

Figure 2.1: Hypothetical decomposition.

The actual specifics as to how the identifier field is structured depends on the overall cache
architecture. Upon a lookup, the cache will use the identifier to perform a search of all
entries present within the cache. If the requested identifier is found, the CPU will use the
offset bits to index the corresponding byte in the cache line.

2.1.2 Cache architectures

There are many cache architectures, with the one most commonly used in practice known
as a set-associative architecture. The set-associative architecture decomposes the cache
into a set of buckets known as sets. These sets are then further broken down into smaller
individual slots known as ways.

Set 0 Way 1 Way 2
Set 1 Way 1 Way 2
Set 2 Way 1 Way 2

In a set-associative architecture with 4 sets, an address on a 32-bit machine with 2048
byte long cache lines is decomposed as a log, (2048) = 11 bit offset, logy (4) = 2 bit set
identifier, and a 19 bit tag.

Tag (19 bits) Set (2 bits) Offset (11 bits)

31 12 10

The set a cache line belongs to is determined purely by its address, specifically, the 2
set bits. When a cache line is inserted, the hardware uses these bits to determine the
appropriate set for insertion and then places the line in the first free way in the set. If no
ways are free, it will evict a way according to some eviction policy and place the cache
line there. The story is similar for a lookup. The hardware will first determine what set a

A Usable System Model for Time Protection Varun Sethu

line belongs to and then perform a parallel lookup for the tag within the set. If an entry
with the same tag bits is identified, then it has successfully resolved the cache line to an
entry in the cache.

2.1.3 Cache colouring

Consider a set-associative cache on a 32-bit machine with 4 sets (2 set bits). In this cache,
there are 11 bits dedicated to the offset and 19 bits dedicated to the tag. Alongside this,
the machine also supports virtual memory, with the upper 20 bits of an address being used
to determine the page number and the lower 12 bits being used to index into the page.
This presents us with two differing ways that addresses are decomposed on the machine,
with the first being how the cache deals with addresses and the second being how the
memory-management unit (MMU) decomposes addresses.

Tag Set Offset

Page number Offset

31 11

The interplay between these two decomposition schemes give rise to an interesting prop-
erty. Observe that the last bit in the page number coincides with the upper bit of the set
identifier. It then follows that the cache lines residing in a page ending in 0 can only map
to the sets 0 (00) and 1 (01), whereas a cache line residing in a page ending in a 1 can
only map to sets 2 (10) and 3 (11). This situation is depicted more clearly in

The distinct regions of the cache that arise from this interplay between virtual memory
and set-associative caching structures are known as cache-colours. The interesting insight
is that addresses that reside in different cache colours will never map to the same cache
sets within a cache. This insight will be of great value later when describing the present
model of time protection as cache colouring is used to spatially partition specific caches.

Varun Sethu A Usable System Model for Time Protection

31 12
| tags) |
| Colour §

-
y

o /I ©
g n
g ..q_‘),- VD | Tag Word 0 Word 1 Word 2 Word 3
n VD | Tag Word 0 Word 1 Word 2 Word 3
oy
=]
o
8 VD | Tag Word 0 Word 1 Word 2 Word 3
VD | Tag Word 0 Word 1 Word 2 Word 3

Figure 2.2: Cache colouring 2024].

2.1.4 Cache hierarchy

Caches within a machine are organised into strict hierarchies, typically the L1, L2 and L3
caches, with the last cache in any hierarchy being known as the last-level cache (LLC).
These caches differ in their size and performance characteristics. The L1 cache, which is
closest to the CPU, is optimised for fast reads, but maintains a rather small size (32 KiB
on many modern chips). The L2 and L3 caches, on the other hand, lie further away from
the CPU and maintain sizes on the order of a few MB (around 1 MB for the L2 and 4-64
MB for the L3). Alongside differing performance and size requirements, the caches differ
in what addresses they use to index into the cache. Typically, L1 caches are wvirtually
indexed, meaning that they use the virtual address when indexing into a cache. L2 and
L3 caches, on the other hand, are physically indexed, using the physical address for cache
lookups.

On many architectures, the L1 cache is split into two components: the L1 data cache
(L1-D) and the LI instruction cache (L1-I). The L1-D exclusively holds data, while the
L1-T exclusively holds instructions. This split-cache design improves CPU performance by
enabling the simultaneous access of both data and instructions.

The existence of multiple cache levels logically leads to the question of how data is dupli-
cated between levels. In an inclusive cache, if data is present in the L1 cache, then it must
also be present in the lower level L2 and L3 caches. The inverse holds for an exclusive
cache, where data being present in the L1 cache implies that it is not present in either
the L2 or L3 caches. Many ARM chips, such as the ARM Cortex series chips, maintain
an exclusive policy between the L1 and L2 caches, whereas many Intel x86 chips maintain
inclusive hierarchies.

The RISC-V system-on-chip (SoC) used for implementing the ideas discussed in this thesis

A Usable System Model for Time Protection Varun Sethu

maintains a two-level cache hierarchy, one on-core cache (L1) and an LLC shared between
multiple cores. The cache hierarchy guarantees that if a cache line is not present in the
L1 cache, then a read of that line will bring it into both the L1 cache and LLC. The
hierarchy does not maintain this inclusivity relationship forever though. It is possible for
the same cache line to be later evicted from the L1 while still being present in the LLC,
this presents interesting consequences when attempting to reason about the existence of
a cache line within the cache hierarchy.

2.2 Timing Channels

Secure systems maintain restrictions on what subcomponents can communicate with each
other. However, when these rules are broken, and a method of communication opens up
that does not use a legitimate or intended communication path, then the system maintains
a covert channel. Covert channels enable the unauthorised flow of information in a manner
that the security policy of a system would otherwise disallow |[Lampson) [1973]. Tangential
to the idea of a covert channel is a side channel, which enables the unintentional leakage of
data. Side channels consist of some victim and attacker process, with the attacker process
using the side channel to spy on the victim process without its knowledge [Kocher, 1996].
The main distinction between a side channel and a covert channel is the covert channel’s
requirement of cooperation to transmit information, this requirement also implies that
covert channels maintain a significantly larger capacity and can transmit more informa-
tion with a higher resolution. An interesting point is that despite requiring cooperation,
covert channels can also be used to transmit information “unknowingly”, but they require
introducing a Trojan to the victim process. Trojans are a piece of malicious code that is
unknowingly introduced into a victim (usually via shared libraries) and leaks information
to the attacking process silently [Andersonl 1972].

Shared microarchitectural state, such as caches discussed previously, enable the construc-
tion of microarchitectural timing channels. Microarchitectural timing channels exploit
variations in program execution time — caused by microarchitectural state — to encode and
transmit information. For example, if a CPU stores a piece of memory within its cache,
subsequent accesses to that memory will be significantly faster. Two processes can ex-
ploit this behaviour to communicate via a shared, read-only memory buffer: one process
accesses the first byte of the buffer to load it into the cache, while the other measures
its access time for the same byte. A fast access may indicate a “1”, while a slow access
may indicate a “0” — successfully sending information over a buffer that neither process
has permission to write to. We exploit timing channels using timing attacks, with the
two primary timing attacks used throughout this thesis being the Flush + Reload attack
[Yarom and Falkner| 2014] and the Prime 4+ Probe attack [Liu et al., [2015; Osvik et al.,
2006; [Percival, 2005], both of which can be used as an exfiltration technique in the Spectre
and Meltdown attacks |[Kocher et al., 2019; Lipp et al., 2018§].

10

Varun Sethu A Usable System Model for Time Protection

2.2.1 Flush + Reload

The Flush + Reload attack consists of a victim and an attacker process (also known as
a spy), the attacker aims to learn something about the victim process by observing how
the victim interacts with a buffer of memory shared between the two of them. When both
processes share memory, they also inadvertently share parts of the last-level cache (LLC).
The attacker exploits this by observing cache access patterns, allowing them to extract
sensitive information from the victim in a way that violates the system’s security policy
[Yarom and Falkner, [2014].

The attack consists of three stages, first, the attacker flushes specific cache lines from the
LLC using an instruction such as clflush, it then yields time to the victim process. The
victim process runs for a bit and, with each memory access into the shared buffer, brings
more data into the LLC. The spy, when it gets another time slice, will then time the
amount of time it takes to access cache lines within the shared buffer. Fast access implies
that the victim touched the cache line while running, whereas slow access implies that it
did not. Using this information, the spy can infer what cache lines the victim accessed,
and consequentially infer information regarding the victim’s execution. This attack can
be used to target RSA and trace the execution of the square-and-multiply routine, tracing
this routine is sufficient to allow the attacker to break encryption [Yarom and Falkner|
2014].

while (true)

{
flush_11cQ);
yield_timeslice();

uint32_t start = current_time();
shared_buffer[0];
uint32_t elapsed = current_time() - start;

if (elapsed < threshold)
{

// Victim accessed this cache line

Listing 1: Example spy process.

2.2.2 Prime + Probe

The previous attack relied on the existence of a shared buffer between the spy and victim
process. In practice, this is not a requirement, and the Prime + Probe technique extends

11

A Usable System Model for Time Protection Varun Sethu

cache timing channels to scenarios with no shared buffer. The attack introduces the notion
of a victim set, which is a set of cache lines in the victim’s address space that the spy is
interested in observing. The spy process must then determine how the victim set maps
into its address space to construct an eviction set — a set of cache lines that overlap with
the victim’s set. If the attack targets the virtually indexed L1 cache, this mapping is a
straightforward one-to-one correspondence.

To begin the attack, the spy will first prime the eviction set by touching each cache line in
the set, bringing them into the cache. Like the previous technique, the spy then yields its
time-slice back to the victim. As the victim runs, it may potentially evict cache lines that
the spy had brought into the cache. This is problematic, as when the spy is next allocated
a time-slice, it can use this information to infer what cache lines the victim touched. In
the final stage of the attack, the spy iterates through all the cache lines in its eviction
set. If the access to a cache line is fast, it implies that the line was not accessed by the
victim. Conversely, if the access is slow, it suggests that the victim evicted the spy’s entry
by accessing the same cache set [Liu et al.l [2015} Osvik et al., [2006; Percival, 2005].

To effectively pull off this attack, the spy must know how cache lines in its address space
overlap with cache lines in the victim’s address space. This requirement is relatively easy
to satisfy when targeting the L1 cache, as it is virtually indexed. However, there are still
practical attacks that target the LLC using similar techniques [Liu et al., [2015; |Osvik
et al., 2006; Percival, 2005].

2.3 selL4 Background

sel4 is a capability-based microkernel with a strong focus on security and correctness.
It is formally verified [Klein et al., [2009} 2014] to ensure both functional correctness and
enforcement of its security properties [Murray et al.l [2013; Sewell et al., 2011]. Being a
microkernel, it provides a relatively small set of features and delegates most traditional
OS-responsibilities to user-level threads that communicate over IPC. Typical sel.4 based
systems consist of some initial thread and upon boot, seL.4 will hand information regarding
the current system environment to this initial thread, from which it can create new threads
and manage resources.

2.3.1 Capabilities

selLl4 uses capabilities to control access to kernel resources, where a capability is defined
as an unforgeable token representing the rights to access an entity or object [Dennis and
Van Horn| 1966]. User-level threads interact with kernel resources via invocations on
capabilities, with all kernel resources typically exposing their APIs via such invocations.
Capabilities are organised into CSpaces, with a CSpace representing a structured tree of
capabilities. To invoke a capability, user applications use a CPtr (capability pointer) to

12

Varun Sethu A Usable System Model for Time Protection

index into a CSpace and identify the desired capability. In addition to invocations, capa-
bilities support copying and minting, copying will create a duplicate of the capability with
the same access rights whereas minting involves duplicating the capability with reduced
rights [seL4 Foundation) 2024].

Memory management in selLl4 is handled entirely at user-level, with the kernel having
no method for dynamically allocating any data structures that it requires. As such, the
kernel must provide an abstraction over physical memory that user-level applications can
supply when requesting new kernel objects. This abstraction is known as untyped memory,
with the kernel providing untyped capabilities for the management of this memory to
the initial thread. These capabilities can be retyped into various data structures such as
TCBs, notifications and physical frames of memory [seL.4 Foundation, |2024]. Additionally,
untyped capabilities have a boolean property device which indicates whether the memory
is writeable by the kernel or not, as it may be in an area of RAM not addressable by
the kernel. Device untyped capabilities can only be retyped into frame objects [seL4
Foundation, 2024].

2.3.2 Threads

Threads in sel.4 model an execution context, allowing for the management of processor
time [seL4 Foundation) 2024]. The key bookkeeping structure for a thread in sel4 is the
thread control block (TCB) which maintains various metadata regarding a thread; namely
the thread’s CSpace and virtual address space (VSpace). On boot, the kernel constructs
an initial thread with a basic CSpace. This thread uses the untyped capabilities provided
to it to create additional threads for the system running on top of seL4. Threads are
given a priority between 0 and 255. The sell4 scheduler will always schedule the thread
with the highest priority if it is runnable. If there are multiple runnable threads with the
maximal priority, then they are scheduled in a first-in-first-out, round-robin style fashion
[seL4 Foundation, [2024].

2.3.3 Virtual memory management

selLl4 provides virtual memory management through thin APIs over the hardware for ma-
nipulating hardware paging structures, rather than the higher-level abstractions found in
systems like Linux. Common to all hardware architectures is the Frame, representing a
frame of physical memory. Frames are mapped into VSpaces by manipulating the ap-
propriate paging structures for the VSpace. The separation of frames and VSpaces also
enables frames to be mapped into two separate address spaces, enabling shared memory
between threads. It should be noted, however, that when attempting to map a frame into
two distinct VSpaces, the capability for the frame must be duplicated and each mapping
should correspond to a unique copy of the initial frame capability [seL4 Foundation, 2024].

13

A Usable System Model for Time Protection Varun Sethu

2.3.4 Notifications

Notifications are a synchronisation primitive provided by sel4, they represent a set of
binary semaphores and support the usage of small 32-bit badges to differentiate notifiers.
They, like everything else in sel4, are allocated by retyping untyped memory, with the
returned capability allowing for threads to either: signal, poll or wait on the notification.
Signalling alerts any threads currently waiting on the notification, while waiting simply
blocks the current thread until the target notification is signalled. The internal structure
of a notification is simple, consisting of a 32-bit notification word and a queue of threads
currently blocked on it [seL4 Foundation, 2024].

The exact behaviour of signalling or waiting on a notification depends on its internal state,
which can be waiting, active, or idle. A notification enters the waiting state when a thread
blocks on it, and transitions to the active state when it is signalled while no threads are
waiting.

When signalling on an idle or active notification, the kernel will bitwise OR the badge
value associated with the signal with the data word currently stored in the notification. If
the notification is in the waiting state, however, the badge value is immediately delivered
to the head of the blocked thread queue. When a thread waits on a waiting or idle
notification, the requesting thread is added to the end of the thread queue, and the kernel
marks the requesting thread as blocked. If, however, the notification is in the active state,
the data word stored in the notification is immediately delivered to the thread and the
notification’s badge is reset to 0 [seL4 Foundation, [2024]. A state diagram outlining the
above is illustrated in [Figure 2.3 with pseudocode outlining the process in more detail
being provided in |Listing 2| and [Listing 3|

Figure 2.3: Notification state diagram.

14

Varun Sethu A Usable System Model for Time Protection

if (ntfn.state == IDLE || ntfn.state == ACTIVE)
{
ntfn.badge = bitwise_or(ntfn.badge, badge);
ntfn.state = ACTIVE;
}
else if (ntfn.state == WAITING)
{
head = dequeue(ntfn.tcb_queue);
head.badge = badge;
head.state = RUNNING;
if (ntfn.tcb_queue is empty)
{
ntfn.state = IDLE;
}
}

Listing 2: Signal pseudocode.

if (ntfn.state == IDLE || ntfn.state == WAITING)
{
enqueue (ntfn.tcb_queue, thread_);
thread_.state = BLOCKED;
ntfn.state = WAITING;

X
else if (ntfn.state == ACTIVE)
{
thread_.badge = ntfn.badge;
ntfn.badge = O;
ntfn.state = IDLE;
}

Listing 3: Wait pseudocode.

An important and interesting implementation detail regarding notifications is that since
the kernel cannot perform any dynamic allocations, the queue of threads blocked on a
notification is stored within the TCBs associated with the threads themselves. The noti-
fication maintains a pointer to the TCB for the first thread in its queue, and the next and
prev pointers for the queue are maintained within each TCB.

15

A Usable System Model for Time Protection Varun Sethu

2.3.5 Endpoints and IPC

seL4 use small kernel objects known as endpoints to perform inter-process communication
(IPC). IPC is the microkernel mechanism for the transmission of small amounts of data
and capabilities between threads. This same mechanism is also used for communication
with kernel-provided services. Endpoints consist of a queue of threads waiting to send, wait
or receive messages and can be optionally badged to distinguish senders on an endpoint
[seL4 Foundation, [2024].

2.3.6 IRQs

Interrupts on selL4 are delivered as notifications, with a thread able to configure an inter-
rupt to be delivered on a particular notification. A thread can then wait for the interrupt
by blocking on the configured notification. sel.4 introduces the IRQHandler capability to
represent the ability for a thread to configure a notification to receive an interrupt [seL4
Foundation, 2024].

2.3.7 Domains

To maintain confidentiality, sel.4 allows for threads to be associated with distinct scheduler
partitions known as a domains [Murray et al., 2013]. Domains are statically configured
at compile-time with a cyclical schedule and are not preemptible, an example domain
schedule is provided in Threads can be associated with a domain, and the
kernel will cycle between domains and only ever schedule the threads associated with the
currently active domain. If there are no threads that can currently be scheduled in the
domain’s time-slice, then the kernel will schedule a dedicated idle thread.

Threads are assigned to domains via the DomainSet_Set invocation on the Domain capa-
bility passed to the initial thread. There is only one Domain capability, so the Domain_Set
invocation differentiates domains with the domain number passed to it [seL4 Foundation),
2024]. The length of a domain’s time-slice is provided as a multiple of the kernel tick
interval, which is the duration of time between timer interrupts.

16

Varun Sethu A Usable System Model for Time Protection

Domy Dom; Domy
<>
100 ms 200 ms 100 ms

Figure 2.4: A static schedule for a hypothetical three domain system.

2.4 Cheshire

selL4 is capable of running on various platforms and devices. The platform of interest to
us during this thesis is Cheshire. Cheshire is a minimal SoC built around the RISC-V
CVA-6 core |Ottaviano et al., 2023]. Its goal is to provide a lightweight and configurable
compute environment that is capable of easily targeting FPGAs with limited resources.
Due to its highly configurable nature, different deployments of Cheshire can have different
platform specs, the deployment used by this thesis for benchmarking has a core that runs
at 50 MHz, maintains a 32 KiB L1 data-cache, a 16 KiB L1 instruction-cache, and a 128
KiB LLC.

24.1 LLC

Cheshire features a highly configurable set-associative LLC |Ottaviano et al., 2023|. This
thesis uses a configuration of the LLC that consists of 64-byte cache lines and 256 distinct
cache sets, with each cache set consisting of 8 distinct ways. All-in-all, this produces an
128 KiB LLC with 4 distinct cache colours. An interesting feature of Cheshire’s LLC is
the ability for each of its ways to be individually configured as scratchpad memory (SPM)
at runtime, providing the host with fast on-chip SRAM |Ottaviano et al., [2023]. It is im-
portant to note that if a way is configured as SPM, it cannot be used for regular caching
purposes, therefore configuring a single way as SPM will reduce the effective associativity
of the cache by one. The LLC maintains a randomised eviction policy, whereby a way is
evicted at random when a set is full. This randomised eviction policy maintains interest-
ing consequences for the design of cross-domain shared memory, as will be discussed in

17

A Usable System Model for Time Protection Varun Sethu

2.4.2 Microarchitectural flush

Throughout this chapter, we have seen a lot of literature that demonstrate how microarchi-
tectural state within a CPU can be used to exploit timing channels by constructing timing
attacks. Existing work highlights the ineffectiveness of modern architectures to protect
against such attacks due to the inability to reset microarchitecture state effectively |Ge
et al., 2018|.

Drawing from these lessons, the CVA-6 core that Cheshire is built around introduces a spe-
cial fence.t instruction that flushes the L1 cache and resets all other microarchitectural
state within the CVA-6 core to a known state [Wistoff et al., 2021]. Since the latency of
the fence.t operation depends on the state of said micro-architectural state, the instruc-
tion also features a simple time-padding mechanism that will pad the time between the
last core-local timer interrupt (CLINT) and the fence.t invocation to some configured
worst-case execution time (WCET) [Wistoff et al. [2023]. The fact that the instruction
pads relative to the last timer interrupt allows it to be used to pad any operations that
proceed fence.t to some WCET.

To enable time-padding, the implementation exposes a custom cspad control-status reg-
ister (CSR), the core will read this value on the arrival of a timer-interrupt and use this
when performing time-padding. It is also worth pointing out that fence.t is not the only
instruction configured to flush the L1-D cache, Cheshire configures the CVA-6 core so that
the regular fence instruction also flushes the L1-D cache.

2.4.3 OpenSBI

The RISC-V architecture maintains three privilege levels: machine-mode (highest privilege
with unrestricted system access), supervisor-mode (for OS kernels), and user-mode (for
applications). Since supervisor-mode is not the highest privilege level and does not have
direct access to the hardware, many operating systems targeting RISC-V are deployed on-
top of a thin firmware layer known as OpenSBI. Whenever the kernel attempts to access
a CSR or any other hardware resource that it is not configured to have permissions for,
Cheshire will trap into OpenSBI who will then interact with the hardware on behalf of
the kernel |[RISC-V International, 2025]. Cheshire maintains its own fork of OpenSBI
with some minor platform-specific changes, this is the build of OpenSBI that we will use
throughout this thesis [PULP Platforml 2025b).

2.5 Time Protection in selL4

Time protection refers to a collection of operating system mechanisms that jointly prevent
interference between separate domains within a system, ensuring that it is impossible to
construct a timing channel between what should be isolated domains [Ge et al., 2019].
To achieve time protection, the current model partitions all resources shared between

18

Varun Sethu A Usable System Model for Time Protection

domains either spatially: which involves dividing state into non-overlapping regions, or
temporally: which divides shared resources across time |Ge et al., |2019]. To spatially
partition resources, the model ensures that each domain is assigned a specific region of the
resource and guarantees that it can only access its dedicated region. Temporal partitioning
is achieved by assigning each domain a fixed time slice; at the end of a domain’s time slice,
all resources that cannot be spatially partitioned are reset and flushed in preparation for
the next domain [Ge et al.l 2019]. However, resource partitioning alone is insufficient
to achieve time protection. To fully realise time protection, seL4 must enforce all the
following requirements [Ge et al., [2019]:

R1. When switching domains (known as a domain switch), the OS must reset microarchi-
tectural state to a defined state, unless the hardware supports spatially partitioning
such state.

R2. Each domain must have its own private copy of the OS text, stack and global data
(as much as possible).

R3. Access to any remaining shared OS data must be deterministic to avoid leakage.
R4. State flushing must be padded to its worst-cast latency.

R5. When sharing a core, the OS must disable or partition any interrupts apart from
the preemption timer.

2.5.1 Requirement 1 for Time Protection

Some microarchitectural state such as the LLC can be spatially partitioned using tech-
niques such as cache colouring. Cache-colouring based partitioning assigns a unique colour
to each domain to prevent interference between domains within the LLC. The implemen-
tation of this partitioning scheme in sel.4-based systems is relatively straightforward and
can be done with virtually no help from the kernel. On boot, the kernel will provide the
initial thread with the seL4_BootInfo structure, which, alongside much else, contains a
description of the physical ranges of memory associated with each untyped capability [seL.4
Foundation, 2024]. Knowing the physical addresses associated with untyped capabilities
allows the initial thread to divide memory into coloured “pools”, which can then be used
to allocate kernel structures and memory frames of a specific colour. As long as the initial
thread ensures that all data structures and frames for a domain are allocated from a single
coloured memory pool, cache colouring guarantees that cache lines associated with differ-
ent domains will not overlap, thereby effectively spatially partitioning the LLC among
domains [Ge et al., 2019].

Not all microarchitectural state can be partitioned, and in such cases the kernel must
reset this state upon a domain switch. The unfortunate reality however, is that the kernel
is limited here by the extent to which the architecture it is targeting supports flushing
microarchitectural state |Ge et al.l 2018]. x86 provides limited support for resetting on-
core state, while ARM supports flushing the L1 D-cache, TLB and branch-predictor. The
story is slightly different on RISC-V with all SoCs built around CVA-6 supporting the
fence.t microarchitectural flush and padding instruction [Wistoff et al., 2021} [2023].

19

A Usable System Model for Time Protection Varun Sethu

2.5.2 Requirements 2 & 3 for Time Protection

System calls will leave some residual impact on microarchitectural state, i.e. they may
maintain some cache footprint that is potentially observable outside the kernel [Ge et al.)
2019]. This issue can be addressed by having each domain maintain a unique copy of the
kernel to prevent the kernel from being used as a timing channel [Ge et al., [2019)].

Ge et al.| [2019] proposed a policy-free kernel clone mechanism, whereby the initial thread
can construct a copy of the kernel from user-provided frames of memory. Each cloned
kernel maintains its own kernel-code and read-only data segments. Realistically, some data
needs to be shared between clones and special care is taken to ensure that accessing this
shared data is sufficiently deterministic, i.e. by pre-fetching shared data when switching
between kernels. The kernel clone mechanism enables the initial thread to construct a fully
partitioned system, with each domain allocated its own unique kernel, backed by memory
drawn from the domain’s coloured memory pool. It is worth pointing out that not all ports
of time-protection maintain this kernel-cloning mechanism. Work done by [Buckley et al.
[2023] in porting the time-protected kernel to RISC-V introduced a static policy, where
the kernel clone for each scheduler domain is created on boot. On the RISC-V port, the
initial thread cannot create kernel clones and can only associate threads with an existing
kernel clone by attaching them to a target domain.

2.5.3 Requirement 4 for Time Protection

As previously outlined, all resources that cannot be spatially partitioned must be tempo-
rally partitioned by flushing them during a domain switch. The latency of these flushing
instructions typically depends on the contents of the resources [Ge et al., 2019]. For ex-
ample, the flush latency of the L1 cache varies depending on the number of cache lines
currently stored within it. It then becomes a requirement that all these microarchitectural
flush operations be padded to their worst-case execution latency. If this is not done, then
a channel exists via the flush latency.

In practice, time-padding is achieved by configuring an upper bound on the WCET of the
domain switch latency. If there is no direct-hardware support for time-padding, then the
kernel will busy-wait until this specified WCET has elapsed. On Cheshire and other CVA-6
based systems, there exists support for WCET padding via the fence.t instruction. CVA-
6 allows for the time between the core-local timer interrupt and a subsequent fence.t
invocation to be padded to some WCET [Wistoft et al., 2023]. Without padding, the next
domain can observe variations in the domain switch latency, as the domain switch latency
directly affects when the first thread in the new domain is scheduled |Ge et al., [2019].

20

Varun Sethu A Usable System Model for Time Protection

Domain Switch

CLINT fence.t Next Thread

Figure 2.5: Padding the domain switch latency.

2.5.4 Requirement 5 for Time Protection

Interrupts can be used as a channel between domains, a Trojan can program interrupts
to fire during the spy’s time slice. This is problematic as the system clock at the time the
interrupt is fired can be used to encode messages . This channel, although
maintaining a relatively low bandwidth, is still problematic. To mitigate this, the model
allows for the partitioning of interrupts, with only some set of interrupts being associated

with each domain |Ge et al., 2019).

Online

The Trojan programs
the timer to fire while
the spy is running.

The timer interrupt
preempts the spy’s
execution.

A shared timer

Figure 2.6: Interrupt being used as a channel between domains 2019].

2.5.5 Time Protection on RISC-V

The original implementation of time-protection targeted the ARM and x86 architectures;
however, due to the lack of architectural support, there was still at least one timing channel
on each architecture that could not be closed 2019; |Ge et al. 2018]. By observing
these limitations, it was argued that to fully realise time protection, a new hardware-
software contract was required, one that allowed for microarchitectural state to be fully

flushed |Ge et al.l 2018].

21

A Usable System Model for Time Protection Varun Sethu

Due to the limitations in x86 and ARM architectures, Wistoff et al. [2021] proposed the
fence.t instruction as an extension to RISC-V. Further work carried out by |[Buckley et al.
[2023] ported time-protection to RISC-V, more specifically a RISC-V based system using
the CVA-6 core. Doing so allowed them to make use of the new fence.t instruction to
flush on-core microarchitectural state. Additionally, this port made several simplifications
to the model of time-protection, namely the fact that the provided implementation now
constructs a unique kernel clone for each domain at boot, switching the currently active
kernel image whenever there is a domain switch [Buckley et al.| 2023].

Ge et al|[2019] used pre-fetching to determinise shared-kernel data in the LLC during
domain switches. With time-protection now tied to seL.4’s domain scheduler, most shared-
kernel data can be partitioned, leaving only a small remainder accessed deterministically
on domain-switches [Buckley et al. [2023]. Further unpublished work carried out by Julia
Vassiliki, Nils Wistoff, Dr Rob Sison and Professor Gernot Heiser has ported the original
RISC-V re-implementation to Cheshire. By doing so, all remaining shared kernel data
can now be placed within scratchpad memory, thereby eliminating any potential timing
channels as SPM is never cached by the LLC. The implication of this, however, is that
the effective associativity of Cheshire’s LLC is now 7 instead of 8, as one way is marked as
SPM. All the designs discussed in this thesis will be implemented on top of the Cheshire
port.

2.5.6 The domain switch on RISC-V

Understanding the domain switch operation will be of vital importance for the rest of
this thesis so we will take some time now to look at it in more detail on RISC-V. On
Cheshire, the domain switch is triggered by the arrival of a CLINT. On a CLINT, the
interrupt handling path will reset the timer interrupt and schedule a new one to arrive
some number of milliseconds in the future. After resetting the timer interrupt, the kernel
will identify that the current domain’s time-slice has elapsed and trigger a domain switch.

The domain switch occurs in two distinct phases, during the first phase, the kernel will
identify the next domain to schedule and switch to its kernel image. After switching
the kernel image, the kernel now operates within the cache colour associated with the
kernel of the new domain. The kernel will now perform a fence.t invocation to erase any
impact the old domain had on the non-partitionable microarchitecture. The implication
of performing the fence.t after switching the kernel image is that only the operations
performed up to and including the fence.t are padded to a WCET. These operations
are: handling the CLINT, resetting the timer, switching the kernel image, and invoking
fence.t. The second half of the domain switch, while not strictly part of the domain
switch itself, involves determining the first thread in the new domain to schedule and
scheduling it. It is important to note that all the domain switch operations happen after
resetting the time interrupt. As such, the latency of all these operations are charged to
the new domain, and the new domain can observe this latency by observing when its first
thread is scheduled.

22

Varun Sethu A Usable System Model for Time Protection

2.6 Time Protection in seL4 — Taking It Further

The current model of time protection in sel.4 requires all kernel data structures and mem-
ory frames used within a domain to be allocated from that domain’s coloured memory pool.
As a result, there is no clear way for threads in two different domains to communicate with
each other while still maintaining time protection. Communication in most deployments
of seL.4 involves using shared memory to transfer large amounts of data between threads,
alongside the use of notifications to orchestrate the access to this data; it then becomes
natural for us to explore extending these communication primitives such that they can be
used across domains. The remainder of this thesis is dedicated to exploring this very prob-
lem. We explore cross-domain notifications in [Chapter 5|and [Chapter 6| and cross-domain
shared memory in [Chapter 8| and [Chapter 9 Our exploration of cross-domain notifica-
tions and shared memory will lead to the introduction of new kernel objects that enable
domains to signal each other and communicate without leaking information. We will also
look at how the proposed design for cross-domain shared memory can be implemented at
user-level, completely cutting the kernel out of the picture.

23

A Usable System Model for Time Protection Varun Sethu

Chapter 3

Related Work

This chapter surveys various timing channel mitigation techniques and explores how they
can potentially inform the design of cross-domain shared memory and notifications. We
will also examine the existing literature on timing channel benchmarking and explore it
may guide the method by which we may evaluate our proposed designs for cross-domain
notification and shared memory.

3.1 Constant Time Programming

A common and recommended approach in many cryptographic applications is to use
constant-time programming to eliminate channels [Bernstein, 2005]. To focus on how
these techniques may be applied, we will look at |Meier et al. [2021], who builds upon these
principles to guide the implementation of the constant-time arithmetic library saferith.
The authors build upon three key requirements that constant-time programming aims to
maintain:

1. No loops that leak the number of iterations taken.
2. No memory accesses that leak the address or index that was accessed.

3. No conditional statements that leak which branch was taken.

The authors propose a simple API that ensures all applications using the library are com-
pliant with the above requirements. While basic benchmarks are presented to demonstrate
the constant-time behaviour of operations such as Exp, the evaluation lacks substantive
evidence showing whether constant-time programming effectively eliminates timing chan-
nels in typical cryptographic algorithms. In fact, [Schneider et al.| [2024] demonstrates that
many constant-time programming techniques are undermined during compilation, pri-
marily due to aggressive compiler optimisations and the introduction of secret-dependent

24

Varun Sethu A Usable System Model for Time Protection

instructions. This highlights the fragility of such techniques and the difficulty of imple-
menting them correctly in practice. Additionally, certain constant time techniques such
as avoiding secret-dependent table lookups require direct hardware support [Pagel |2003].

Discussion and Takeaways

The literature highlights that many constant time programming techniques are relatively
fragile and difficult to implement, on top of this, many techniques offload the responsibil-
ity of time protection onto the application. sel.4 aims to ensure that time protection is
an abstraction provided by the OS, much like memory isolation; confining even untrusted
programs from leaking information to the outside world. Relying on every application
running on selL4 to use constant time techniques fundamentally breaks this abstraction.

While it is infeasible to expect all applications to use constant-time techniques when inter-
acting with the communication primitives we construct, some of these ideas still provide
practical guidance for the design of such primitives. When implementing primitives such
as cross-domain notifications, it is crucial to maintain the invariant that operation latency
remains independent of notification state. The principles of constant-time programming
could find some applications here and act as a guide for maintaining such an invariant,
but any design using these principles will require thorough benchmarking and verification.

3.2 Pre-fetching and Forced Determinism

Ge et al. [2019] illustrates the use of pre-fetching to ensure that all access to shared ker-
nel data (SKD) within time-protected sel4 is sufficiently deterministic. The approach
involves identifying all the cache lines associated with shared kernel data and then man-
ually “touching” them on a domain switch to force them into the L1 cache and LLC |Ge
et al., [2019]. The authors demonstrate the effectiveness of this approach when combined
with separated kernel images in closing the timing channel associated with a shared kernel
image. An important omission in the paper, however, is the sensitivity of the proposed
method to specific cache implementation details, particularly the inclusiveness or exclu-
siveness of the cache hierarchy. In the absence of architectural guarantees, it remains
unclear how the timing behaviour of subsequent accesses to pre-fetched cache lines are
affected if those lines are evicted from any part of the cache hierarchy.

Buckley et al. [2023] extends this analysis and presents some insight into the use of pre-
fetching for shared kernel data in time-protected sel.4 on RISC-V. They highlight that pre-
fetching is completely insufficient for closing timing channels through SKD, and the only
principled solution for closing such channels is via targeted flushes of the address associated
with shared kernel data from the LLC. They also highlight the verification challenges with
pre-fetching, as verifying the effectiveness of pre-fetching requires a detailed model of the
LLC’s eviction policy to truly prove correctness and safety. It is worth pointing out that
these conclusions are drawn in the context of shared kernel data, where due to the lack
of partitioning and colouring, the cache lines of which can be arbitrarily affected by the

25

A Usable System Model for Time Protection Varun Sethu

activities of threads in partitioned domains. There remains the question of whether pre-
fetching is effective when we can guarantee that threads cannot interfere with the cache
sets associated with the pre-fetched memory block, aside from direct reads and writes,
that is, when the memory being pre-fetched resides in a dedicated colour.

Discussion and Takeaways

Buckley et al. [2023] argues that pre-fetching fails to close timing channels through shared
kernel data. This implies that pre-fetching is not a suitable solution for implementing
cross-domain shared memory if the colour used to back the shared memory is common to
either the reader or writer domain. This stems from the fact that when cache lines belong
to a common colour, as is the case with SKD and domain partitioned data, it becomes
difficult to predict, without a formal model of the eviction policy, how pre-fetching inter-
acts with cache lines that map to the same cache set(s) as SKD within the LLC, as well
as how those overlapping lines, in turn, affect the data being pre-fetched.

There is still, however, a remaining question as to if pre-fetching works if the shared buffer
is allocated its own dedicated colour. In this situation, we are no longer concerned with
how pre-fetching affects overlapping cache lines that are unrelated to the buffer. Instead,
we focus on how it affects the cache lines associated with the shared buffer. It is entirely
plausible that even without a definitive conclusion about whether a specific cache line in
the shared buffer is present, we may still conclude that pre-fetching ensures the probability
of a cache line being present in the LLC is independent of the buffer’s state before pre-
fetching. In such a situation, we would not be able to observe or construct a timing channel
via the microarchitectural state of the buffer.

As such, pre-fetching may be an effective solution for determinising the microarchitectural
state associated with a buffer, it is just that the results of [Buckley et al.| [2023] strongly
suggest that it is ineffective if the colour of the buffer is a colour common to any other
domain. Pre-fetching may be a viable approach, but any implementation of shared memory
that uses it must be benchmarked thoroughly to demonstrate that no timing channel via
the microarchitectural state of the buffer exists after pre-fetching.

3.3 Noise Injection

The noise injection technique aims to reduce the signal-to-noise ratio of a timing channel
by introducing “noise” into the attacker’s measurements. This can be done either by
injecting noise directly into timing measurements or by perturbing memory access patterns
so that the attacker observes noisy behaviour. Approaches such as virtualised timestamps,
as proposed by [Vattikonda et al. [2011], attempt the former but remain largely infeasible
under the current model of time protection due to lack of hardware support. Consequently,
the more promising approach is the techniques that Brickell et al. [2006] employed to
produce a secure AES implementation. The implementation outlined in the paper involves
compacting, randomising and preloading lookup tables, which were sufficient in removing
the timing vulnerabilities in AES outlined by Bernstein| [2005].

26

Varun Sethu A Usable System Model for Time Protection

Discussion and Takeaways

A potential application of this technique would involve touching random cache lines associ-
ated with a shared buffer on a domain switch, thereby introducing noise to any information
that could be leaked via this buffer. However, as |Cock et al. [2014] points out, noise is
usually an ineffective means of closing channels. As they state, what is really needed is
noise that is anti-correlated to the distribution of the timing channel. In many situations,
this is impossible or infeasible to generate, or it may incur a significant performance over-
head. It should also be noted that noise injection is not a principled solution; it relies
heavily on experimentation, as the amount of noise that must be introduced to mitigate
a channel depends on the capacity and resolution of the channel. As such, it is unclear if
this technique is truly one that will find much application in any design for cross-domain
shared memory or notifications.

3.4 Time-Padding

Ge et al.| [2019] outlines the use of time-padding to mitigate channels that arise due to
the latency of operations with non-constant execution time. The authors employ this
approach to close the cache-flush channel, which results from variable L1 flush latencies.
The method involves padding operations with non-constant latencies to their worst-case
execution time, and the authors provide empirical evidence to support the efficacy of this
approach, as the cache-flush channel outlined in the paper is sufficiently closed. Time-
padding has also been explored thoroughly before, Braun et al.| [2015] used it to design a
set of compiler directives for generating fixed time functions, they do this by employing
software-based time-padding and use uniform random noise to handle secret dependent
error.

Discussion and Takeaways

This approach was effective in closing the cache-flush channel studied by |Ge et al.| [2019],
as well as various other channels studied by [Wistoff et al.| [2023]. It is worth pointing
that this method does have one fundamental flaw, failure to accurately bound the WCET
latency will result in a complete failure of this mechanism to mitigate any timing chan-
nel. Additionally, a purely software-based approach to time-padding does present some
performance overhead, justifying the introduction of a hardware-based padding primitive
in Wistoff et al.|[2023].

Regardless, this technique is clearly effective, and due to its integration within the existing
system model, is very much a technique worth using when implementing cross-domain
shared memory and notifications. It may find particular value if we ever encounter the
need to flush or determinise the microarchitectural state associated with a shared memory
buffer or pad signals on a notification to a constant time.

27

A Usable System Model for Time Protection Varun Sethu

3.5 Cache Partitioning

The previous techniques focused on mitigating timing channels when resources are shared
between domains. It is also important to explore partitioning schemes — particularly cache
partitioning — and how these alternatives might support the construction of cross-domain
notifications and shared memory. One possible direction for this thesis is to migrate sel.4’s
current time protection model to a dynamic cache partitioning scheme. This would allow
cache partitions to be created on the fly and assigned to shared buffers or data structures
between domains. However, unfortunately due to time constraints this avenue of work
was not explored.

3.5.1 CATalyst

Liu et al. [2016] outlines a method for dynamically partitioning the LLC using Intel’s cache
allocation technology (CAT). CAT allows for the creation of up to 4 “classes of service
(COS)” and allows for the association of logical processors with a COS. The implication
of this interface is that all threads on the same logical processor share a COS.

CATalyst introduces secure pages and splits the LLC in two, with one half used for pinning
secure pages in the cache and the other for regular caching. This effectively turns the LLC
into a “hybrid” cache, with the secure half acting as a software-managed cache and the
unsecured half acting as a hardware-managed cache. At a high level, the idea is that a
process will interact with the secure portion of the cache via the map_sp and unmap_sp
system calls. The map_sp system call will load secure pages into the requesting process
and pin them in the secure cache, the process can then use the secure page without fear
of the page being evicted by cache contention.

The authors use this idea to close a side channel that they identified in GnuPG; using
map_sp and unmap_sp to map/unmap the pages containing the “square routine” onto
secure pages. The security evaluation provided in the paper illustrates that the technique
is indeed capable of eliminating the identified side channel.

Discussion and Takeaways

One potential application of CATalyst in the context of this thesis is to use secure pages to
back shared buffers. However, this approach presents several challenges. The paper does
not describe how one would map secure pages into multiple processes, requiring further
exploration. Moreover, utilising CATalyst would constrain the approach to x86 architec-
tures. Furthermore, it is unclear if CATalyst is compatible with sel.4’s current use of cache
colouring to partition the LLC, or if a suitable compatible alternative exists. Regardless,
CATalyst provides a valuable exploration of an alternative cache partitioning scheme be-
yond cache colouring and introduces dynamic partitioning approaches that do not depend
on static cache partitions.

28

Varun Sethu A Usable System Model for Time Protection

3.5.2 SecDCP

Wang et al.| [2016] presents a dynamic cache partitioning scheme known as SecDCP that
allows for the association of security tiers with parts of the LLC. The authors outline that
previous attempts to construct dynamically partitioned caches were vulnerable to cache
timing attacks, as the hardware would need to infer partition sizes based on the run-time
behaviour of applications and design their solution to prevent this. It is important to
note that this paper’s definition of dynamic partitioning consists of caches with arbitrary
partitions, the amount of cache lines associated with these partitions are then updated
dynamically based on the needs of applications.

SecDCP requires the system to denote several security tiers and a hierarchy among these
tiers, from this hierarchy it can resize arbitrary partitions by moving cache ways from
higher to lower tiers. The consequence of this design is that SecDCP can only guarantee
the one-way protection of leakage from HI tiers into LOW tiers.

Discussion and Takeaways

SecDCP’s reliance on defined security tiers to define partitions makes it somewhat limiting,
as it would require consumers of time protection in sel.4 to define a hierarchy among their
domains. Additionally, since the hardware has complete control over how partitions are
sized, there is limited room for software to control just how much of the cache is allocated
to each partition, especially since in general every domain in a time-protected sel.4 base
system would be allocated to the same security tier (no domain is more important than
another). All of these issues make it unclear specifically how much benefit approaches like
SecDCP provide over traditional cache partitioning techniques such as cache colouring.

3.5.3 Cheshire’s dynamically partitioned LLC

Cheshire’s dynamically partitioned last level cache (DPLLC) is a recently integrated feature
that enables the creation of cache partitions within its LLC. Its interface allows software
to specify the number of cache sets allocated to each partition and tag arbitrary address
ranges with a chosen partition. Unfortunately, there is not much public documentation
available, but much can be learned by inspecting the System Verilog code associated
with PULP Platform’s LLC [PULP Platform) 2025a]. The DPLLC is meant to be used
with PULP Platform’s transaction tagger [PULP Platform| |2023|, which allows for the
association of arbitrary memory ranges with a special tag; in the case of DPLLC, this tag
is the cache partition. The main functional feature of DPLLC is the ability to selectively
flush arbitrary cache partitions.

Discussion and Takeaways
DPLLC presents a dynamic cache partitioning scheme that grants software fine-grained

control over the cache sets assigned to partitions, alongside this, it allows partitions to be
created with finer grained granularity than a page, which is something neither CATalyst

29

A Usable System Model for Time Protection Varun Sethu

nor cache colouring allows for. We can make use of DPLLC by tagging all shared buffers
and data structures used between a pair of domains as belonging to a special partition.
On a domain switch, we selectively flush this partition, clearing all state related to these
structures from the LLC. DPLLC also enables greater control over the latency of this flush
operation, as we can directly control how many cache sets are associated with a partition.

Since DPLLC creates partitions on the granularity of sets, the sets used for a partition will
always overlap with the sets allocated to some colour. Thus, using DPLLC would require
the current implementation of time-protected sel.4 to move away from cache colouring
for partitioning the LLC and towards DPLLC, as the two approaches are fundamentally
incompatible. There is a decent amount of engineering work involved with this task, and
is well outside what is achievable during an honours thesis. However, moving the present
implementation to DPLLC and re-implementing our proposed communication primitive
designs may serve as an excellent direction for further work.

3.5.4 ARM MPAM

ARMv8.4-A introduced the Memory System Resource Partitioning and Monitoring (MPAM)
architecture to enable the partitioning of memory system components within an SoC [Arm
Limited, 2024b]. The architecture allows supervisory systems such as operating systems
and hypervisors to physically partition memory system resources among different execution
contexts. The core mechanism behind MPAM is the ability to tag every memory system
transaction with special identification metadata that follows it throughout the memory
hierarchy. The key identifier for MPAM is the partition ID (PARTID) which identifies the
execution context a request belongs to and the partitions it has access to. Not all mem-
ory system components support MPAM, so before using MPAM the supervisory software
must identify components that support MPAM as well as their supported capabilities.
One component of interest to us is the last-level cache, which on many ARM SoCs can
have their ways assigned by supervisory software to specific PARTIDs. ARM MPAM also
extends beyond LLCs. Where memory components support it, MPAM can regulate band-
width, allowing memory controllers to throttle requests from specific PARTIDs to enforce
bandwidth limits.

Discussion and Takeaways

Unlike Cheshire’s DPLLC, ARM MPAM is a general and flexible architecture, it sim-
ply provides mechanisms for supervisory software to create and control partitions and
leaves the actual enforcement and implementation of those partitions up to SoC designers.
Cheshire’s DPLLC on the other hand targets a very specific RISC-V SoC, so anything
developed using DPLLC maintains limited generality.

However, the generality of MPAM also maintains a downside, without a clear target plat-
form it is difficult to assess how applicable or useful MPAM is, as its applicability is entirely
dependent on what functionality the memory system exposes and how they respect parti-
tions. If we have a memory system such as the one present in the ARM Neoverse core, that

30

Varun Sethu A Usable System Model for Time Protection

supports way-based partitions instead of set-based partitions like DPLLC, then it becomes
possible to use MPAM for LLC partitioning alongside cache colouring. One potential ap-
plication for this would be to maintain the existing cache colouring implementation to
partition memory between domains, however when creating a shared buffer we will pin
that buffer to a specific way in the LLC. By doing this we can, in effect, confine accesses
to the shared buffer to one specific cache way, preventing reads into the shared buffer from
interfering with other entries within the LLC and vice versa.

Additionally, the fact that this is an ARM-only architectural extension means that it
provides limited value within this thesis, which will focus on the implementation of shared
memory and notifications on RISC-V. We may, in the future, find that when extending
these constructs to ARM that MPAM maintains some practical value.

3.6 Speculation Barriers

ARM maintains an SB instruction, which acts as a memory barrier that prevents specu-
lative execution until after the barrier has executed [Arm Limited, |2024a]. This in effect
eliminates particular side channel attacks, such as the bounds check bypass outlined in
Kocher et al. [2019]. Concurrently, x86 also features a speculation barrier via the LFENCE
instruction, that was retroactively patched after the results of Kocher et al.| [2019]; [Lipp
et al|[2018] to prevent speculation [Intel Corporation, [2024]. RISC-V presently has no
standardised architectural support for speculation barriers; however, there does exist an
existing extension proposal to introduce them in the near future [RISC-V International
Security Horizontal Committee, [2025].

Discussion and Takeaways

Speculation barriers do not really solve timing channels, they simply patch the specific
exploitation path of speculative execution. In essence, they are simply band-aids to a
much deeper problem, as using them still allows for the construction of timing channels
through the microarchitecture. As such, it is unlikely they will find much utility when
attempting to implement cross-domain notifications and shared memory, as speculation
barriers fail to truly mitigate timing channels.

3.7 Cross-Domain Notifications

Buckley et al.| [2023] presents some minor theoretical coverage on the problem of cross-
domain notifications, specifically, some concerns that may arise with their implementation.
They highlight that we cannot use traditional notifications between domains as the act
of signalling on a notification will result in the kernel writing to different addresses de-
pending on the notification state, these different addresses will leave differing impacts on
the microarchitecture, allowing for a potential timing channel. Additionally, they argue
that the potential mitigations required to prevent the construction of timing channels

31

A Usable System Model for Time Protection Varun Sethu

through notifications, such as the need to pad signals to a WCET, results in cross-domain
notifications likely having to be a distinct kernel object from traditional notifications.

Discussion and Takeaways

The problems outlined by Buckley et al. [2023] present some interesting insights into
how an implementation of cross-domain notifications may be achieved, many of which will
form a baseline level of influence for the design of cross-domain notifications discussed in
this thesis. The insight that notification delivery has the potential to be used as a timing
channel through microarchitectural state implies the need to defer notification delivery to
a domain switch, doing so allows the fence.t invocation that occurs before entering the
domain again to erase the microarchitectural impact that notification delivery maintains.
The previously discussed constraint, alongside the potential performance impact of various
potential mitigations, also motivates the requirement to have cross-domain notifications
be a distinct kernel object entirely.

3.8 Channel Benchmarking

Cock et al.| [2014] uses the channel matriz [Shannon, 1948| to evaluate timing channels.
A channel can be viewed as consisting of a sender S and a receiver R, the sender places
inputs drawn from a set I into the channel, from which the receiver infers some output
drawn from a set O [Cock et al.,[2014]. The channel matrix then consists of the conditional
probability of a reviver observing o € O given an input i € I. illustrates an
example channel matrix with a clear timing channel, and demonstrates a matrix
with no observable channel.

The channel matrix is constructed by obtaining a large histogram from experimental data.
For each output o;, the technique observes the number of times an input ; resulted in the
receiver reading o;. From this channel matrix, Cock et al. [2014] calculates the Shannon
capacity [Shannon| (1948] as a measure of the strength of the channel. There already
exists tooling for capturing these histograms from experiments within the selL4 ecosystem,
namely, channel-bench |Ge and Millar, 2019] which will be used extensively over the course
of this thesis.

Ge| [2019] highlights a flaw in the approach (Cock et al.|[2014] uses to quantify the strength
of observed channels. The Shannon capacity metric treats all pairs (i,0) as statistically
independent; hence, it misses any patterns between pairs. |Ge [2019] instead, proposes the
use of mutual-information (MI) [Shannon, 1948] to quantify the strength of a channel.
Mutual-information represents the average number of bits of information that a computa-
tionally unbounded receiver can learn about the input by observing the output. I.e. a high
MI value indicates a large reduction in the uncertainty of the secret given some known
output value. |Ge| [2019] also models time measurements as a continuous probability dis-
tribution instead of a discrete one like |Cock et al. [2014], as treating output time as purely
discrete would indirectly treat values as unordered and equivalent, i.e. a cluster of uniquely

32

Varun Sethu A Usable System Model for Time Protection

107°

Lines touched —10000

T s e 1074
0 10 20 30

Lines evicted /10*

Figure 3.1: An example channel matrix |[Cock et al., [2014].

-2
o 125 10
5 124 103
£ 123

3 —4
g 122 10
g 121

IJ PR [R T S T SN SR S S N T S S ST S S ST S S N H'Y

0 10 20 30

Lines evicted /10*

Figure 3.2: Channel matrix with no channel [Cock et al., 2014].

high values would be treated the same as a set of unique uniformly distributed values. Af-
ter sampling and constructing the corresponding probability distribution for each input i,
then uses the rectangle method to estimate the mutual information (denoted as
A) for the collected data.

Since values are sampled from benchmarks, there will always be some level of noise. As
such, it is impossible to full determine if a timing channel is closed via empirical measure-
ments alone, instead, we can only determine if the data collected provides any evidence
for the existence of a timing channel 2019]. To determine this, [Chothia et al| [2013];
suggest first determining the mutual information of a zero leakage channel
and comparing the mutual information of the collected benchmark results to that. This
zero-leakage mutual information is estimated by shuffling the outputs in the collected
benchmark data and associating them with random inputs, the mutual information is
then computed and recorded, with this process being repeated 200 times
. From the collected data, one can now calculate a mean, standard deviation and
the exact 95% confidence interval required for a measurement to correspond with zero
leakage (denoted as). If the observed mutual information .# is greater than .#(then
the observed data provides evidence for a leak, if the inverse is true (4 <) then the

33

A Usable System Model for Time Protection Varun Sethu

dataset contains no evidence of a leak [Chothia et all 2013} |Ge,|2019]. There exists tooling
for conducting this statistical test, namely LeakiEst |[Chothia et al., [2013] which will be
used throughout this thesis.

3.9 Summary

In this chapter, we looked at various techniques presented by the literature for mitigating
timing channels. Unfortunately, some techniques such as noise injection often prove too
complex and fragile for practical use; however, there remains much practical value in
constant time techniques and time-padding. Ideas such as pre-fetching may work, but
they will require rigorous benchmarking and evaluation when used. All these techniques
can greatly guide the development of cross-domain notifications and shared memory, and
we will see exactly how in [Chapter 5| and [Chapter 8|

We also explored the variety of techniques for cache partitioning outside of cache colour-
ing, with approaches such as CATalyst enabling for dynamically locking pages of memory
within the cache and DPLLC allowing the OS to assign arbitrary memory ranges to differ-
ent partitions. Unfortunately, however, due to the scope of what can be achieved during a
thesis, the usefulness of these techniques will remain unexplored, as many of them require
using an alternative architecture or completely reworking the current implementation of
time protection. These techniques do, however, serve as great potential options when
attempting to port any constructs we introduce to alternative architectures.

The chapter concluded with a discussion of channel benchmarking and the techniques
presently employed to quantify the strength of timing channels. The literature strongly
suggests using mutual information to compute the strength of timing channels and provides
plenty of existing tooling for doing so, with one such example being LeakiEst |Chothia
et al., 2013].

34

Varun Sethu A Usable System Model for Time Protection

Chapter 4

Benchmarking Methodology

Benchmarking timing channels is a key focus of this thesis, and as such it is worth look-
ing at how exactly channel benchmarks will be conducted throughout this thesis. All
benchmarks that we will develop will run on top of the channel bench toolchain |Ge and
Millar, |2019], with the RISC-V specific modifications made by Buckley et al. [2023]. The
toolchain features many methods for conducting various attacks over different microarchi-
tectural resources such as the LLC, L1-I cache, L1-D cache, etc. We will be using these
methods to develop the variety of timing channels that this thesis will explore.

4.1 Quantifying Leakage

We will quantify leakage using mutual information and compute the mutual information of
a benchmark result using LeakiEst [Chothia et al., 2013]. Since all systems have a degree
of noise, the mutual information measurement alone does not reveal much, and, a judge-
ment about leakage can only be made relative to the mutual information corresponding to
zero information leakage. The mutual information of a zero leakage channel is estimated
by shuffling the observed outputs and associating them with random inputs, this process
is repeated 200 times to attain a mean, standard deviation and 95% confidence interval
for the strength of the zero information leakage channel, the 95% confidence interval is
denoted as .#y. We say that if the observed mutual information of our channel is greater
than the 95% confidence interval for zero information leakage, then the benchmark result
in question provides evidence for the existence of a timing channel. lLe. if .#Z > .# then
there exists a leak.

4.2 Channel Matrices

A channel matrix represents the conditional probability of an observed output (i.e. Spy
probing time, y-axis) given some discrete input (i.e. number of cache sets primed by a

35

A Usable System Model for Time Protection Varun Sethu

Trojan, x-axis). All channel benchmark results in this thesis will be presented with a
channel matrix to visually represent a channel. Since channel matrices represent a condi-
tional probability distribution, they must be presented as a heatmap, where colours in the
heatmap indicate the probability as per the scale on the right. provides an ex-
ample of a channel matrix with a clear timing channel. Since the conditional distributions
of the cycle count observed by the Spy when the secret is 0 or 1 differ, we can conclude
from the channel matrix that a timing channel exists.

5400
102
5200
5000
4800
4600
0
0 1 2

Secret

Time (cycles)
Probability

Figure 4.1: An example channel matrix.

4.3 Benchmarking Environment

All benchmarks are conducted on Cheshire, running on the Genesys2 board [Digilent,
Inc.]. We will implement and benchmark all proposed designs on top of the port of time
protection to Cheshire carried out by Julia Vassiliki. We will run all benchmarks with
off-core peripherals such as the VGA controller disabled, as contention from these devices
introduces timing channels where one should not exist, more information as to how this
occurs is presented in Appendix[B] All benchmarks will consist of a Trojan and a Spy, each
confined to their domains D; and D; respectively. The benchmarks we conduct will assign
each domain a time slice of one timer tick, with the amount of time between timer ticks
varying based on the benchmark. Our benchmarks will also maintain the static domain
schedule of, D; followed by Dg. Unless stated otherwise, each domain will receive two cache
colours each, equating to 64 KiB of space within the LLC allocated to each domain. When
conducting a benchmark, we will collect 20,000 samples and construct a channel matrix
from those 20,000 samples. As a reminder of relevant platform specifications, Cheshire
runs at 50 MHz, maintains a 32 KiB L1 data-cache, a 16 KiB L1 instruction-cache, and a
128 KiB LLC.

36

Varun Sethu A Usable System Model for Time Protection

Chapter 5

Notification Design

This chapter, and its corresponding implementation chapter, is dedicated to exploring
the introduction of a new notification object that can be used between domains in time-
protected sel.4. The new object should allow for the transmission of signals between
domains, and disallow any information that is not a signal from leaking between the two
domains. We will make the previous requirement more concrete by first specifying a model
of cross-domain notifications.

A cross-domain notification is an object that connects a signalling/sender domain A with
a receiving domain B. Information can flow from A — B via the notification. Our design
will maintain the following information flow requirements:

R1. Information can only flow from A — B by A explicitly signalling on the notification.
Additionally, the impact that the execution of threads in A may have on the mi-
croarchitectural state associated with the notification should not enable information
flow from A — B.

R2. Only information related to signal delivery can flow from A — B, for example,
through changes induced in the microarchitectural state associated with the un-
blocked thread’s TCB when delivering a signal to a thread in B. All other informa-
tion flow from A — B is prohibited.

R3. No flow of information from B — A is permitted.
R4. Information about the communication between A and B via the notification should

not leak to any external domain C.

Before continuing on with the rest of this chapter, it is worth revisiting the existing sel.4
notification semantics as outlined in All discussed details are also summarised

in the state machine illustrated in

1. All notifications start off in the IDLE state. This state models a notification that
presently has no waiters or threads that have actively signalled on it.

37

A Usable System Model for Time Protection Varun Sethu

2. If a signal is made on a notification in the IDLE state, it transitions to the ACTIVE
state and the badge value associated with the caller’s notification capability is stored
in the notification word.

3. If a wait is made on a notification in the IDLE state, it transitions to the WAITING
state and the thread that requested the wait is immediately blocked.

4. If a notification is in the WAITING state, i.e. there is a thread currently in its wait
queue, then a signal on that notification immediately delivers the provided badge to
the head of the wait queue.

5. If a notification is in the ACTIVE state, i.e. has been signalled on previously, then a
signal on that notification just performs a bitwise OR of the notification’s current
badge with the badge provided by the signalling thread.

6. If a notification is in the ACTIVE state, i.e. has been signalled on previously, then a
wait on the notification will resolve immediately and not block the calling thread.

Now that the present semantics for notifications have been outlined, it is useful to discuss
the constraints imposed by the information flow requirements when attempting to gen-
eralise notifications so that they can be used across domains. First, consider the signal
operation. Presently, when performing a signal on a notification, sel.4 performs differ-
ent actions depending on the notification’s current state. I.e. if the notification is in the
WAITING state, then the signal will unblock the first queued thread. Alternatively, if the
notification is in the ACTIVE state, the signal will simply bitwise-OR the badge value
against the current notification word. As Buckley et al. [2023] points out, these differing
operations will leave different impacts on non-partitioned microarchitecture. Namely, the
L1 data and L1 instruction caches. This cannot be mitigated easily, and allows for infor-
mation to flow from B — A via B’s readiness to receive a signal; completely violating the
information flow constraints. The only reasonable solution to this problem is to defer the
actual delivery of notifications to the domain-switch, specifically, at the start of domain
B’s time-slice. By deferring delivery to a domain switch, we make it impossible for A to
observe the microarchitectural impact a signal has, as it is erased by the fence.t instruc-
tion that is executed before entering domain A again. The issue pointed out by [Buckley
et al. [2023] also elicits a secondary constraint, namely the constraint that the instruction-
cache lines and memory addresses that the signal operation touches be independent of
the notification state. We can satisfy the aforementioned constraint by drawing upon the
constant-time programming techniques discussed in

5.1 The Problem of Multiple Signals

Since the information flow requirements mandate that signal delivery take place at domain
switch time, there is a question as to how multiple signals on the same notification are
handled. To see this, assume that we have a notification with two present waiters. Two
signals are then performed on this notification, the first with badge o1 and the second with

38

Varun Sethu A Usable System Model for Time Protection

badge oy. The existing notification semantics would deliver o7 to the first waiter and o9 to
the second waiter. This behaviour is difficult to replicate when notifications are delivered
at the domain switch, as we lose information regarding what thread should receive what
badge value. Introducing a separate structure for storing these badges for delivery does
not work as it would imply the need for signal to touch different addresses depending
on the notification state, violating the B — A information flow constraint. The only
reasonable resolution to this problem is to accumulate the badge values by bitwise or’ing
them and delivering the accumulated value oy | o2 to all unblocked threads. The problem
of multiple signals also introduces a secondary question. Since all unblocked threads must
see the same badge value, if n signals to a notification are made, should we awaken n
threads on the next domain-switch or just one? We will now look at each option in detail
and examine its implications.

5.1.1 N signals awakens N threads

With these semantics, if a thread in A makes n signals to a notification with n waiters,
then all n waiters are unblocked. The primary challenge with this design lies in actually
delivering the notifications at domain switch time without introducing a channel. In the
present implementation of time-protection on RISC-V the time taken to perform a domain
switch from A — B is deducted from the time allotted to the first thread in B, with the
part of the domain switch whose latency is dependent on A being padded to a worst-case
execution time. Implicit in this operation is the assumption that the latency of a domain
switch is less than the time between timer interrupts. If this assumption is violated, then
the latency of the domain switch operation becomes observable by an external domain C
as it affects when C' is scheduled.

Dom A [/Dom B | Dom C

Figure 5.1: Domain switch latency (red) affects scheduled time of C'.

Allowing an unbounded number of notification deliveries to occur during a domain switch
complicates the design, as it removes any guarantee on the upper bound of domain switch
latency. This could, in extreme cases, lead to the catastrophic scenario illustrated in
Figure 5.1, where there is a channel through the fact that C is scheduled later in time
than it should be. In principle, we could resolve this issue by determining the maximum
number of notifications that may ever be delivered and then configure the timer interval to
accommodate the delivery of that many notifications safely. However, such an approach

39

A Usable System Model for Time Protection Varun Sethu

would expose an extremely brittle API to users, where even a minor misconfiguration of
the bound could completely compromise the time-protection guarantees of cross-domain
notifications. Another solution would be to deliver as many notifications as possible within
B’s time slice and defer the remainder to the next time-slice. However, this introduces a
degree of implementation complexity, as it is difficult to guarantee that the system will
never exceed B’s allocated budget.

5.1.2 N signals awakens 1 thread

The primary shortcoming of the previous design was that domain A could awaken an
unbounded number of threads in domain B. Unfortunately, accommodating for this be-
haviour introduced some implementation complexity. All this complexity can be mitigated
by redefining the semantics of notifications so that all the signals issued by A within its
time-slice are coalesced together, awakening only a single thread in B. Under this model,
we only need to ensure the timer interval is long enough to support the delivery of a single
signal, a significantly easier and less error-prone task than what was suggested earlier. Due
to the simplicity of this design, this is the approach that this thesis will focus on; however,
the n signals awakes n threads model provides an excellent source of further work.

5.2 Notification Design and API

The high-level design for cross-domain notifications that this thesis will explore can now
be summarised rather simply. The design involves introducing a new cross-domain no-
tification object. The delivery of signals on that notification is deferred until the next
domain switch that enters B. We will perform the notification delivery after switching
to B’s kernel image, i.e. after the fence.t invocation. If A performs multiple signals on
the notification while a thread in B is blocked on it, we will simply accumulate all these
signals and only awake one blocked thread in B.

We will now look at the API exposed by cross-domain notifications in more detail. The
APIT will consist of three primary operations Signal, Wait, and finally, Poll. Like tradi-
tional notifications, these operations are primarily wrappers around the Send, Recv and
NBRecv system calls. Additionally, since the proposed design for cross-domain notifica-
tions requires a mechanism to associate notifications with their receiver domain B, the
design extends the Domain capability with a new SetNotifications invocation. The new
invocation allows for this relationship between notification and domain to be constructed.

5.2.1 Signalling

A thread can signal on a notification via the Signal operation. Upon doing so, the badge
associated with the cross-domain notification capability is bitwise-OR’d against the present
notification word stored in the notification. A signal will only ever unblock a single thread,

40

Varun Sethu A Usable System Model for Time Protection

with multiple repeated signals within the same domain time-slice only accumulating badge
values and never unblocking more than one thread. At the next domain switch entering
the receiver domain, if the notification was marked as ready for delivery, the head of the
blocked queue is unblocked and the notification word associated with the notification is
reset to zero.

5.2.2 Waiting

A thread can block on a notification via the Wait operation. Upon doing so, the thread
is placed into a queue of threads that are presently blocked on the target notification.
If a Wait is performed on a notification that had previously been signalled on but had
no waiters, then the Wait operation resolves immediately and the notification word is
written to the caller’s badge register. The chosen semantics for Wait preserve the existing
behaviour of notification waiting, while also supporting a clear definition of Poll. If a
Wait on an active notification were to block the calling thread until domain B’s next
time-slice, Poll would no longer be well-defined, as it would allow a thread to observe the
notification state earlier than what Wait would allow for.

5.2.3 Polling

A Poll is much like a traditional Poll. If the notification is presently active, the call will
succeed and the notification word associated with the notification will be returned. If the
notification is not active then the call will return immediately but nothing will be written
to the calling thread’s badge register.

5.2.4 Domain association

Notifications need to be associated with the receiver domain so that signals can be delivered
at domain switch time. This is done via the SetNotifications invocation attached to the
domain capability. The invocation takes the receiver domain’s number and the capability
for the notification and attaches it to a per-domain queue of notifications that require
transmission upon entering a new domain.

5.2.5 API as a state machine

Much of the API for cross-domain notifications can be summarised into a simple state
machine consisting of four states: Idle, Active, Waiting and finally Deferred. The
Idle, Active and Waiting states mean the same thing as traditional notifications, they
indicate if a notification presently has any waiters or if the notification has previously
been signalled upon. The new state Deferred indicates if a notification requires delivery
at domain-switch time. A notification will only transition into this state upon a Signal

41

A Usable System Model for Time Protection Varun Sethu

and will immediately transition out after a domain switch into the receiver domain. We
can summarise all these details into the state diagram illustrated in[Figure 5.2} For brevity,
the diagram refers to t,, as the numbers of remaining threads that are presently blocked
on the notification after delivery.

A signals

sjrem ¢

B waits

Deferred

B waits A signals

Domain Tick & ¢, > 0

Figure 5.2: Cross-domain notification state diagram.

42

Varun Sethu A Usable System Model for Time Protection
5.3 Information Flow Requirements

We now revisit the information-flow requirements outlined at the start of this chapter
and discuss any modifications that may need to be made to our design to meet them.
To maintain the information flow requirements discussed in the initial cursory design, we
must take special care to ensure that the act of signalling or receiving on a notification
cannot be used as a timing channel.

We first consider the act of signalling on a notification. Since signal delivery is now deferred
to the domain switch, it is impossible for the latency of a signal to be dependent on the
number of threads that are presently waiting on the notification. Additionally, as long as
the same actions are performed regardless of the notification state, the act of signalling
will not leak any information about the notification state through the microarchitecture.

As such, the only channel via the signal operation that now needs mitigation is the cache
side channel, where the latency of the signal operation depends on the notification’s
presence in the LLC. This channel is easily mitigated by padding the signal operation to
its WCET. The requirement to pad signal also provides a justification as to which colour
the notification should be allocated out of. If we are to allocate the notification from the
same colour as the sender, then the cache lines associated with the notification may overlap
with the cache lines associated with the sender domain’s kernel clone. The implication
of this is that when signalling on a notification, the act of touching the notification may
inadvertently evict cache lines associated with the kernel’s system call exit path, affecting
the latency of the system call as a whole. This implies that we must pad the entire system
call to some WCET.

There is, however, an even simpler solution. If we do-away with the cache line overlap
and allocate the notification out of the receiver’s colour, then accessing the notification
will never evict cache lines associated with the sender’s kernel. With this change, only
the signal-handling function within the system call needs to be padded to its WCET,
leading to a significantly simpler implementation. If we allocate the notification from
the receiver’s colour, pad the signal operation to its WCET, and ensure that the signal
performs no operations that depend on the notification state, then we can be assured that
there will be no information backflow from B — A.

The information flow requirements also mandate that there should be no flow of informa-
tion from A — B outside to what is conveyed by a signal. Since the notification is allocated
from the receiver (B’s) colour, the only way for A to impact the microarchitecture associ-
ated with the notification and convey any information is by A explicitly signalling on the
notification. As such, we require no further mitigations.

The final information-flow requirement to address is the need to prevent leaks to an ex-
ternal domain C'. Under the proposed semantics for cross-domain notifications, the only
potential source of leakage arises from variability in domain switch latency. However, as
discussed earlier, if the timer interval is sufficiently long enough to support the delivery of
a single notification, this requirement remains satisfied.

43

A Usable System Model for Time Protection Varun Sethu

Regarding domain switch latency, another question is whether the domain switch latency
overhead introduced by notification delivery could act as a channel to leak information
from A — B. Since the variability of this operation can only depend on the activities of
B, it is impossible for A to influence this latency without actually performing a signal and
triggering a delivery. In such a case, the information conveyed by this timing variation is
strictly equivalent to the information conveyed by the signal.

So in summary, to ensure that we are completely maintaining the information flow require-
ments outlined earlier, we must ensure that the notification object is allocated from the
receiver B’s colour and the signal operation is padded to its WCET. No further design
modifications are required.

5.4 Summary

To summarise, this thesis will focus on a simplified implementation of cross-domain no-
tifications that maintain the API semantics outlined in To maintain the
information-flow requirements outlined initially, the notification will be allocated from
the receiver’s colour, and the signal operation will be padded to its WCET and never
perform any state-dependent actions. All these considerations lead to a relatively simple
design for cross-domain notifications, which should maintain a relatively straightforward
implementation.

44

Varun Sethu A Usable System Model for Time Protection

Chapter 6

Notification Implementation

focused on providing a rough illustration of the chosen design for cross-domain
notifications. This chapter will thus inspect some implementation concerns with cross-
domain notifications.

6.1 General Implementation Details

The implementation of cross-domain notifications presented in this thesis involves extend-
ing the kernel to introduce a relatively simple structure consisting of the cross-domain
notification’s present state, present value for the notification word, a linked list of TCB’s
presently blocked on the cross-domain notification, and finally, the next pointer associated
with a linked list of cross-domain notifications attached to a domain. The linked list of
blocked TCBs is maintained by hijacking the intrusive linked list that is presently used
for normal notifications. This is safe, as it is impossible for a thread to be blocked by a
regular notification and cross-domain notification at the same time. When attached to a
domain, notifications are placed in a per-domain linked-list of notifications that require
transmission when entering the associated domain. The head of this linked-list is placed in
scratchpad memory, and the next pointers are placed within the actual notification object
itself. It is worth noting that the head of the linked-list could also reasonably be placed in
partitioned kernel memory, as our notification semantics dictate that notification delivery
only occurs after switching the kernel image.

6.2 Signal Implementation

We now turn our attention towards the implementation of the signal/send operation.
As outlined in the signal operation will simply just mark the notification
as requiring delivery at a domain switch. Additionally, the actions performed by signal
should be independent of the notification state. The second constraint mandates that the

45

A Usable System Model for Time Protection Varun Sethu

signal routine must be branchless, or specifically, should never branch on a secret such
as the notification state. provides some pseudocode for the implementation of
signal.

#define b(z) -(!!(z))
#define branchless_assign(condition, i1f_value, else_value) \
(((b(condition)) & (if_value)) | (" (b(condition)) & (else_value)))

void sendSignal(cross_dom_notification_t* ntfnPtr, word_t badge) {
word_t old_badge = get_ntfn_badge(ntfnPtr);
word_t new_badge = old_badge | badge;

notif_state_t notif_state = get_notif_state(ntfnPtr);
notif_state_t new_state = branchless_assign(
(notif_state == Waiting) || (notif_state == Deferred),
/* if = */ Deferred,
/* else = */ Active

)

set_ntfn_badge (ntfnPtr, new_badge);
set_ntfn_state(ntfnPtr, new_state);

Listing 4: Illustration of the send routine.

The provided code-snippet makes reference to the branchless_assign macro, this is
a simple macro that will perform a conditional assignment using arithmetic and bit-wise
operations. The expanded macro will convert any boolean value to a string of 1’s, allowing
it to be chained together with other operations to perform an assignment without any
branches. What has been left out from the code snippet above is the WCET padding
operation applied to the signal routine, this is largely because implementing software-
based time-padding in a manner that eliminates all timing channels deserves a dedicated
section.

6.3 Time-Padding

Time-padding involves padding some variable operation to a constant cycle count ¢.. One
potential way to pad an operation to a target number of cycles t. is to sample the number
of cycles the operation takes and then busy-wait in a tight loop until ¢, total cycles have
elapsed. Some rough pseudocode of this operation is provided in However, when
we apply this directly to the signal operation, there still exists a minimal timing channel.
The channel-matrix for this channel when padding to 700 cycles is presented in

46

Varun Sethu A Usable System Model for Time Protection

register uint64_t start = riscv_read_cycle();
// notification signal code

register uint64_t end = riscv_read_cycle();
register uint64_t elapsed = end - start;

// Busy wait until elapsed cycles
while (elapsed < target) {
end = riscv_read_cycle();
elapsed = end - start;

Listing 5: Time-padding loop.

710
708
-1

706 10
702

1072
700
698
696

0

0 1 2

Secret

~
o
SN

Time (cycles)
Probability

Figure 6.1: Benchmark result with target of 700. .# = 0.0854. ., = 0.0005.

In the experiment we conducted to attain this channel-matrix, the Trojan is the domain
B, and maintains a priming buffer in its own domain. To send a secret of 1, it will prime
the entire buffer in order to evict the notification from the LLC. To send a secret of 0,
it will do nothing. The primary feature of the channel matrix illustrated in is
the fact that elapsed varies between 700 and 704. This variation in elapsed is explained
by the fact that each iteration of the busy-wait loop has a latency greater than one cycle,
so there will always be a margin of error when attempting to pad to some constant cycle

47

A Usable System Model for Time Protection Varun Sethu

count. In fact, it is this very error that gives rise to the observed timing channel, as
the two possible distributions of elapsed diverge quite greatly. In general, if there are
points between the two distributions where the probabilities diverge greatly, then there
will always be a timing channel. This is because an adversary can be more confident that
the observed value came from the secret distribution that has a higher probability for that
value.

The natural question, then, is how the naive padding loop gives rise to these two probability
distributions, and why they differ. To answer this, we examine the mechanics of the time-
padding loop. In the steady state, each iteration of the padding loop will take the same
amount of time, say n cycles. So in the steady state, the padding loop can essentially be
viewed as a function that will repeatedly add n to some cycle count x until it reaches ..
As such, we can characterise the padding loop as a simple mathematical function f that
takes some input cycle x and spits out some padded cycle count f(x) as an output, where

f@)=z+n- Fc_ﬂ.

n

We can further simplify this function through some algebra, providing the following ex-
pression for the time-pad function:

flx)=x+n- Fc;x-‘

This characterisation lets us view the padding loop as a transformation on a probability
distribution: it takes some initial latency distribution and produces a new one by applying
f- Thus, to see why the naive padding loop fails, we must understand how f alters key
features of the elapsed distribution and how these alterations create timing channels.

As an initial example, consider two initial distributions for elapsed, one sampled from
when the Trojan primes, and the other from when the Trojan does not prime. Assume
that the primed distribution has mode z;, and the unprimed distribution has mode . If
xp—t. and x,, —t. are not congruent modulo n, it is obvious that this padding function will
map them to distinct values; this is particularly problematic if the distributions are very
“spiky” with not a lot of variance, as it will result in the final output distributions having
values concentrated around a particular mode, where the modes of the two distributions
differ. Another problematic case for the padding operation is if one of the distributions
is uniform while the other is “spiky”. The padding function will map the latencies from
the uniform distribution uniformly among the values: {t.,t. + 1,t. +2,--- ,t. +n — 1},
while it will cluster the spiky distribution around t. + (m — ¢ mod n), where m is the
spiky distribution’s mode. We can see that because the padding operation is sensitive

48

Varun Sethu A Usable System Model for Time Protection

to characteristics of the initial input distributions, there are several ways it can fail and
leave a residual channel. Therefore, a simple or naive padding strategy is insufficient for
eliminating timing channels through execution latency.

6.3.1 Solution 1 — Hardware support

All the padding loop is doing is mapping values from the input distribution to distinct
buckets. Now, if there is only one such bucket, i.e. if n = 1, then it is clear that the
distribution after time-padding will not retain any qualities of the input distribution as
all modes or “features” will map to the same bucket. Constructing a padding-loop in
software where n = 1 on Cheshire is infeasible as there will always be some cycle overhead
associated with sampling the current cycle count, comparing it to a target value, and
potentially breaking out of the loop upon completion. To implement a loop where n =1
we require direct hardware support, similar to what is provided by fence.t. Presently,
there exists no such support on Cheshire, and fence.t’s padding capabilities are unusable
as they cannot be used in the system call path where there is no timer interrupt to pad
relative to.

6.3.2 Solution 2 — Noise injection

Braun et al. |[2015] addresses the error problem by adding noise: they sample from a
uniform distribution and add the resulting number of extra cycles to the final value after
padding. To see why this works it is useful to first concentrate on the padding function
itself

f(z) =te+ (z —t. mod n).

Due to the mod operation in the function, we can essentially view the padding transforma-
tion as taking some x and then mapping it to some point on a circle with n distinct boxes.
The key issue with the original transformation function was the fact that f would not
spread the input distribution uniformly along this circle, and would potentially concen-
trate the distribution at certain boxes along the circle. What Braun et al.| [2015] achieve
by introducing noise is the ability to “force” uniformity onto f. To see how, assume we
are an ant sitting in some box along the circle, we are not concerned about how we arrived
at that box, just the fact that we are there. Now say we roll a die with the numbers
{0,1,--- ,n — 1} written onto it, and after doing so, we move that many boxes along the
circle. Since the number of boxes we move past is random and has a uniform distribution,
we note that regardless of where we started off, we can end up essentially anywhere else
along this circle with equal probability. This fact allows us to “force” uniformity onto f,
as adding a uniform random variable U ~ U(0,n — 1) to the output of f “washes” away
the distribution and forces the final distribution to be uniform.

The actual implementation of this approach is a little more tricky though, as we need
to find a way to burn a random number of cycles on top of the padding operation. The

49

A Usable System Model for Time Protection Varun Sethu

approach we will take in this thesis involves subtracting a random number sampled from
U(0,n — 1) from the start timestamp before padding, and then using this adjusted value
in the time-padding loop. Doing this is essentially equivalent to turning the time-padding
loop into the transformation

f(z)=te+ ((z —U —t.) mod n).

Where U ~ U(0,n—1). It is not obvious why this operation has the same “washing” away
properties as we previously discussed, so we will prove the effectiveness of this technique
with a rough mathematical argument presented in Appendix [A]

Experimental evidence

To verify the effectiveness of this approach, we will construct a similar experiment to what
was constructed to demonstrate the initial timing channel with naive padding. Some rough
pseudocode for the experiment is provided below, the important detail worth pointing out
here is the fact that instead of padding end — start, we are instead padding end — start —
random() mod 5.

register uint64_t start = riscv_read_cycle();
register uint64_t __start = start + random() 7 5;

// motification signal code
/o
/o

register uint64_t end = riscv_read_cycle();
register uint64_t elapsed = end - __start;
// Busy wait until elapsed cycles
while (elapsed < target) {
end = riscv_read_cycle();
elapsed = end - __start;

This experiment was run on Cheshire and 20,000 samples were collected. When padding
to a target value of 700 and sampling elapsed after padding, we attain the channel matrix
in[Figure 6.2] The two distributions are clearly uniform, demonstrating the effectiveness of
this approach. It is worth pointing out that an adversary attempting to use the execution
latency as a timing channel does not observe elapsed, they actually observe end — start.
To demonstrate that this value is not secret dependent either, we construct a channel
matrix where end — start is the “output” value, giving us the result in The
distributions in this channel matrix are not uniform, they are actually the distributions
attained by summing two uniform random variables. The reason for this is evident via

20

Varun Sethu A Usable System Model for Time Protection

some algebra.

end — start ~ end — (__start — 1/(0,4))
~ (end — __start) + U(0,4)
~ U(700,704) +U(0,4).

710
708 107!
706
1072
700
698
696
0
0 1 2

Secret

~
o
B

Time (cycles)
~
o
N

Probability

Figure 6.2: Benchmark result with target of 700. .# = 0.0000. .#, = 0.0004.

712.5
710.0
707.5

705.0

Time (cycles)

o
H I]
N
o = -
< <
Probability

702.5
700.0
697.5

695.0

Secret

Figure 6.3: Benchmark result with target of 700. .# = 0.0002. .#, = 0.0003.

o1

A Usable System Model for Time Protection Varun Sethu

6.3.3 Solution 3 — Error correction

The fundamental issue with naive time-padding is that padding preserves qualities of the
original distributions. The previous solution attempted to resolve this by inserting noise,
however we can also attempt to resolve this issue by determining how far from some pre-
defined upper bound elapsed is after padding. We then execute noop’s until we reach that
upper bound. The software-routine for this operation is relatively straightforward. The
RISC-V assembly for this operation is illustrated in A key implementation detail
that is not immediately obvious is the need to align the array of no-ops to a cache line.
This requirement follows from the information backflow constraints discussed in
Without cache-line alignment, different values of elapsed would access different L1-I cache
lines, resulting in a potential channel through the L1-I cache.

1i t0, 700
sub t0, (elapsed), tO
la t1, 1f # jump to the address that will result in the
s1l1li tO, tO, 1 # correct offset
add ti1, t1, tO #
1i t2, 706 # don't jump if elapsed > 706 (never happens)
bge (elapsed), t2, 2f #
jr t1 # finally jump to correct moop
.align 4 # align so all noops are on the same
L1-I cache line
addi x0, x0, O
addi x0, x0, O
addi x0, x0, O
addi x0, x0, O
addi x0, x0, O
addi x0, x0, O

(]

Listing 6: RISC-V assembler for error correction.

Experimental evidence

Like the previous approach, we require experimental evidence to determine the validity
of this approach. We construct an experiment similar to what was previously conducted,
except this time we construct a channel matrix using end — start where end is sampled
after error correction. The pseudocode for the experimental setup is provided below.

92

Varun Sethu A Usable System Model for Time Protection

register uint64_t start = riscv_read_cycle();
// notification signal code

register uint64_t end = riscv_read_cycle();
register uint64_t elapsed = end - start;

// Busy wait until elapsed cycles
while (elapsed < target) {
end = riscv_read_cycle();
elapsed = end - start;

perform_error_correction(); // inlined
end = riscv_read_cycle();
log_tuple(notification_state, end - start)

The channel matrix we attain when padding to 700 cycles and collecting 20,000 samples
is provided in The design clearly works, as evidenced by the channel matrix.

822
820
818

816

Time (cycles)

o
H [I
N
o = =
< S
Probability

814

812

810

Secret

Figure 6.4: Benchmark result with target of 700. .# = 0.0001. .#, = 0.0004.

93

A Usable System Model for Time Protection Varun Sethu

6.3.4 Bounding the WCET

Before performing an evaluation of the techniques presented earlier, we must first bound
the WCET of the signal routine. The WCET can be found experimentally by saturating
the LLC and L1-D with dirty cache lines and populating the L1-I with unrelated instruc-
tions. After saturating the caches, we perform a signal operation and log how long the
sendSignal function takes in particular. Saturating the LLC and L1 will ensure that no
part of the kernel is present in any part of the cache hierarchy, and bringing in cache-lines
associated with the kernel will force the eviction of dirty cache lines that must be written
back to main memory. Repeating this experiment 10,000 times on Cheshire provides a
WCET of 230 cycles for the sendSignal function. The implementation of send presented
in this thesis will thus pad sendSignal to 250 cycles to retain a margin of error.

6.3.5 Evaluation and discussion

To decide between the two approaches, we will conduct a benchmark to determine the
overhead each respective approach introduces to the signal operation. The benchmark
we carry out will time how long the entire send operation takes, rather than just sampling
the value of end — start after time-padding. By doing this, we incorporate effects such as
a latency overhead imposed by the branch mis-predict on the final iteration of the padding
loop.

To benchmark the noise-based approach, we use a linear shift feedback register (LFSR)
seeded with the current cycle time. This choice has clear security drawbacks, as LFSRs
are susceptible to known-plaintext attacks and seeding with the current cycle makes the
output predictable. The RISC-V platform, and Cheshire in particular, does not provide a
hardware-based random number generator or any entropy sources that could be used to
seed a PRNG. Despite these limitations, evaluating performance with an LFSR remains
useful, as it provides a reasonable lower bound on how the noise-based method compares to
the error-correction approach. Benchmarking the noise approach also requires rebounding
the WCET. When carrying out the same methodology as previously discussed, we arrive
at a new WCET bound of 350 cycles when including the cost of generating a random
number using the LSFR. The results of the micro-benchmarks are presented in the table
below.

Method Mean (Cycles) | Standard Deviation
Error Correction 350 5
Noise Introduction 398 13

We observe that even with a relatively insecure and lightweight method of generating
random numbers, the error-correction approach maintains slightly superior performance.
Consequently, we adopt the error-correction approach for time-padding in the remainder
of this thesis, as it offers lower latency overhead and introduces no security-related com-
plexity. The situation may differ on architectures equipped with a hardware-based random
number generator, but no such feature currently exists on Cheshire.

54

Varun Sethu A Usable System Model for Time Protection

6.4 Wait Implementation

The implementation of wait just involves progressing the notification state machine based
on its present state. As was outlined in if the notification is idle then a wait
progresses it to the waiting state and if a notification is active then wait progresses it
to the idle state. There are also no special mitigations that need to be performed by the
wait routine, as the notification is allocated from the receiver’s colour. As such, we are

presented with the rough implementation of wait presented in

void receiveSignal(
cross_dom_notification_t* ntfnPtr,
tcb_t* thread,
bool_t isBlocking

) o
word_t badge get_ntfn_badge (ntfnPtr) ;
notif_state_t notif_state = get_notif_state(ntfnPtr);
tcb_queue_t wait_queue get_ntfn_wait_queue(ntfnPtr);

if (notif_state == Active) {
set_ntfn_badge (ntfnPtr, 0);
set_ntfn_state(ntfnPtr, Idle);
set_thread_badge(thread, old_badge);
return;

if (lisBlocking) {
set_thread_badge(thread, 0);
return;

tcb_queue_t updated_queue = tcbAppend(wait_queue, thread);
notif_state_t new_state = notif_state == Idle

7 Waiting,

: notif_state;

set_ntfn_wait_queue(ntfnPtr, updated_queue);
set_ntfn_state(ntfnPtr, new_state);

blockTCB(thread) ;

Listing 7: Illustration of the wait routine.

95

A Usable System Model for Time Protection Varun Sethu
6.5 Domain Switch Delivery

Notifications are placed in a per-domain linked-list, with the head of the linked-list stored
in scratchpad memory. On a switch into a new domain, the kernel iterates over all noti-
fications for which the domain is the receiver and advances their state according to the
state machine in If a notification is in the deferred state, then the head of its
blocked queue is unblocked and the notification’s current word is written to the threads
badge register. With all these considerations, we arrive at the rough pseudocode for the

domain switch operation presented in [Listing 8|

void domainSwitchDelivery(cross_dom_notification_t* ntfnPtr) {
notif_state_t notif_state = get_notif_state(ntfnPtr);
tcb_queue_t wait_queue = get_ntfn_wait_queue(ntfnPtr);
word_t badge get_ntfn_badge(ntfnPtr) ;

if (notif_state == Deferred) {
tcb_t* thread = wait_queue.head;
tcb_queue_t updated_queue = tcbDequeue(wait_queue);
notif_state next_state = updated_queue.head == NULL
7 Idle
: Waiting;

set_ntfn_wait_queue(ntfnPtr, updated_queue);
set_ntfn_state(ntfnPtr, next_state);
set_ntfn_badge (ntfnPtr, 0);
unblock_thread(thread) ;

Listing 8: Illustration of the notification delivery routine.

o6

Varun Sethu A Usable System Model for Time Protection

Chapter 7

Notification Evaluation &
Discussion

We will now turn our attention towards evaluating the presented design and implemen-
tation for cross-domain notifications. The design will be evaluated by conducting various
channel benchmarks and rudimentary performance benchmarks. As a note on notation,
A — B denotes a cross-domain notification from a sender domain A to a receiver domain
B. Additionally, all benchmarks will consist of a Trojan and a Spy. The benchmarks
may differ in whether the Trojan or the Spy is on the sending or receiving end of the
notification. In such situations, the threads will be distinguished using parentheses. The
suffix (A) will indicate that a thread is the sender of the notification and (B) will indicate
that a thread is the receiver of the notification.

7.1 Timing Channel Benchmarks

Recall the information flow constraints that cross-domain notifications must satisfy:

R1. Information can only flow from A — B by A explicitly signalling on the notification.
Additionally, the impact that the execution of threads in A may have on the mi-
croarchitectural state associated with the notification should not enable information
flow from A — B.

R2. Only information related to signal delivery can flow from A — B, for example,
through changes induced in the microarchitectural state associated with the un-
blocked thread’s TCB when delivering a signal to a thread in B. All other informa-
tion flow from A — B is prohibited.

R3. No flow of information from B — A is permitted.

R4. Information about the communication between A and B via the notification should
not leak to any external domain C.

o7

A Usable System Model for Time Protection Varun Sethu

We will now conduct a series of channel benchmarks to validate that these constraints are
satisfied. Where appropriate, each result for cross-domain notifications is accompanied by
a corresponding result obtained using a normal notification. This allows us to demonstrate
that the benchmarks are sensitive to the feature under evaluation. The benchmarking
environment is identical to that outlined in and all channels are quantified
using LeakiEst.

7.1.1 Unrelated information flow

The information flow requirements [R1|and [R2] mandate that no data can flow from A — B
except through explicit signals. While this should be mitigated by the fact that the
notification is allocated from the receiver’s colour, there is much value in benchmarking
and confirming this fact experimentally. In effect, we must benchmark that the impact
A’s activity may have on the LLC cannot leak through the microarchitecture associated
with the notification. To evaluate this, we use a benchmark consisting of a priming buffer
in A and a notification A ~ B with A acting as the Trojan and B as the Spy. The Trojan
encodes a single-bit secret by either touching the entire priming buffer to send a secret
value of 1, or doing nothing to send a secret value of 0. The Spy infers said secret by timing
how long a poll/wait (recv) on the notification takes. We expect the current design to
mitigate this channel as the notification is allocated from the receiver’s colour (domain
B), ensuring that none of the cache lines for the priming buffer overlap with those of the
notification.

Performing this benchmark with the poll operation is relatively straightforward, as B
can simply time how long a poll takes. The recv variant of this benchmark is slightly
more tricky, as the thread that performed the recv will be immediately blocked if the
notification is in the idle state. As such, the latency of the recv operation is not directly
observable by the thread performing the recv but instead by the thread that is scheduled
after the recv, as recv’s latency will influence the time at which it is scheduled. Thus,
to carry out this benchmark the Spy B must consist of two threads, one performing the
recv and the other observing how long the operation takes.

B; (recv) B, (observer)

—

recv latency duration

Figure 7.1: Effect of recv latency on scheduling of Bs.

The observer thread in B can observe the recv latency using a small modification of
the system tick detection logic described by |Ge| [2019]. The method Ge| [2019] presents
consists of a tight loop where the Spy repeatedly polls the current cycle count, placing it in

o8

Varun Sethu A Usable System Model for Time Protection

a variable. If there is a large jump in this cycle count, then a system tick has occurred. We
can modify this method to sample the difference in the time variable before and after the
jump, this difference will incorporate the latency of recv. The code snippet for achieving
this is provided in It is worth pointing out that this measurement will also
capture the domain switch latency, but this should be appropriately padded to a WCET
using fence.t’s padding capabilities.

uint64_t volatile current_time;
uint64_t volatile last_recorded_time;
SEL4BENCH_READ_CCNT (last_recorded_time);
for (;) {
SEL4BENCH_READ_CCNT (current_time) ;
if (current_time - last_recorded_time > TS_THRESHOLD) {
break;

last_recorded_time = current_time;

uint64_t elapsed_time = current_time - last_recorded_time;

Listing 9: Spy can detect differences between times-slices.

We will conduct this experiment with a kernel timer tick interval of 70ms and a domain
switch WCET bound of 150,000 cycles. The results for the recv variant of this channel
are presented in Due to the lack of a logically equivalent benchmark that can
be carried out on notifications, no equivalent benchmark is provided.

The results highlight a small timing channel. This timing channel arises due to an existing
timing channel related to scheduler data and the domain switch latency. More information
regarding this channel is provided in Appendix specifically in Section B.3. Unfortu-
nately, this benchmark while, not directly measuring the domain switch latency, will be
influenced by timing channels through it, so we must apply the temporary work-around
for this channel of pre-fetching relevant scheduler data. When we do so, we arrive at the
channel matrix depicted in highlighting a clear lack of a timing channel. Note
that further work is required to eliminate the base timing channel outlined in Appendix
[B], after which this benchmark should be rerun with those fixes applied. The workaround
of pre-fetching is relatively fragile and may break, so it is not a real solution to the base
timing channel.

When conducting the poll variant of this channel, we attain the channel matrix in
indicating a clear lack of a timing channel. All in all, based on the collected
results, there is strong evidence to suggest that the design prevents unrelated information
flow from A — B. Note that this benchmark only evaluated how information may flow

99

A Usable System Model for Time Protection Varun Sethu

from A — B via the impact they have on the notification within the LLC. Benchmarking
this is sufficient, as all other microarchitectural state is reset by fence.t when switching

from domain A to domain B.

+7.017e6

800

600

3 >

o =

g 2
Q

v 400 o

1S &

i—

200

o

0 1
Secret

Figure 7.2: Unrelated flow via recv with scheduler channel. .#Z = 0.031. .#y = 0.0022.

60

Varun Sethu A Usable System Model for Time Protection

leb
1072
7.0180
7.0178
7.0176
7.0174
7.0172
0
0 1 2

Secret

Time (cycles)
Probability

Figure 7.3: Unrelated flow via recv. .#Z = 0.0002. .# = 0.0006.

3000 1072
2900
2600
2500
0
0 1 2

N
[ee]
o
o

m
K Z
S i
L ©
o QO
£ 2700 2

Secret

Figure 7.4: Unrelated flow via poll. .#Z = 0.0003. .#, = 0.0008.

61

A Usable System Model for Time Protection Varun Sethu

7.1.2 Backflow channel

The information flow requirement prohibits any data flow from B — A, so we must
ensure that B’s activity within its address space cannot leak through the notification. Since
the notification is allocated from B’s colour, A can only observe information regarding
B’s activities by interacting with the signal operation. Specifically, by observing how the
latency of signal varies depending on the notification’s presence within the LLC.

To evaluate that this constraint is maintained, we use a benchmark with a priming buffer
in B and a cross-domain notification A ~ B. In this benchmark A is the Spy while B acts
as the Trojan. The Trojan encodes a binary secret by either touching the entire priming
buffer to send a secret of 1, or doing nothing to send a secret of 0. The Spy will infer
the value of said secret by timing how long a signal on the notification takes. The act
of touching the priming buffer serves to evict the cache lines for the notification from the
LLC. We expect the current design to mitigate this channel, as signal is padded to its
worst-case execution time.

When running the benchmark with a regular notification, we attain the results in
When re-running the benchmark with cross-domain notifications, we attain the
results in Note that in this benchmark, both the traditional and cross-domain
notification are in the idle state, and no thread in B is presently blocked on the noti-
fication. We can see that the presented design for cross-domain notifications maintains
no timing channel via the notification’s presence within the LLC and, as such, effectively
mitigates this form of leakage from B — A.

4000
3900

3800

w
~
o
o

Probability

w
[«2]
o
o

Time (cycles)

3500

3400

3300

Secret

Figure 7.5: Traditional notification backflow channel. .Z = 0.2317. .#, = 0.0002.

62

Varun Sethu A Usable System Model for Time Protection

-1
3600 10

3500
] >
[¥] =
g 3400 3
) 10_2 ‘E
.§ &

33 () e —

3200

3100 0

0 1 2
Secret

Figure 7.6: Cross-domain notification backflow channel. .#Z = 0.0009. .#y = 0.0011.

7.1.3 Readiness channels

Another potential source of leakage from B — A arises from B’s readiness to receive a
signal, as is the case with traditional notifications. In the case of traditional notifications,
if a thread in B is blocked on the notification, then the signal operation must perform
additional work to unblock the blocked thread. This difference results in variations in sig-
nal latency and in the set of L1-I and L1-D cache lines accessed during the operation, both
of which can serve as timing channels. As such, we must construct channel benchmarks
to demonstrate that these channels are not possible with cross-domain notifications.

The first channel consists of a Trojan (B) and Spy (A) with a cross-domain notification
A ~ B between them. To send a binary secret, the Trojan will perform a wait on the
notification to send a secret value of 1, or do nothing to send a secret value of 0. The
Spy will receive said secret by timing how long a signal takes. We expect the latency of
signal to be independent of whether the Trojan is blocked on the notification or not, as
delivery is deferred to the domain switch. When performing this benchmark with regular
notifications, we attain the results in However, when we repeat the experiment
with cross-domain notifications, we attain the results in It is clear from these
results that the cross-domain notification maintains no timing channel via the latency of
the signal operation and the impact B’s readiness may have on it.

63

A Usable System Model for Time Protection Varun Sethu

7000
1072
6500
6000
5500
5000
4500
0
0 1 2

Secret

Time (cycles)
Probability

Figure 7.7: Signal latency for a traditional notification. .#Z = 1.0. .#y = 0.0002.

1072
4600
4200
4000
3800
0
0 1 2

Secret

I
N
o
o

Time (cycles)
Probability

Figure 7.8: Signal latency for a cross-domain notification. .# = 0.0001. .#y = 0.0002.

We will benchmark the L1-I and L1-D channels using a similar set of techniques to what

64

Varun Sethu A Usable System Model for Time Protection

Ge et al.| [2019] employed to benchmark timing channels through a shared kernel image.
The benchmark consists of a Trojan (B) and a Spy (A), connected by a cross-domain
notification A ~ B. It proceeds in three phases: in the first two, the Spy and Trojan
cooperate to help the Spy identify which cache lines are accessed by the kernel during
a signal operation for differing values of the notification state. The final phase then
performs the actual benchmark.

During the first two phases, the Spy attempts to infer what L1-1/D cache lines are accessed
during a signal by using the Prime + Probe technique. The Spy will prime some L1-1/D
priming buffer, perform a signal, and then compare probing costs to infer what cache lines
were accessed. This process is repeated a few times until the Spy eventually constructs a
complete picture of which cache lines are accessed by the kernel. In the first phase, the
Trojan will repeatedly block on the notification to force it into the waiting state. This
means that the Spy can be assured that all cache lines accessed during the first phase are
used when performing a signal on a waiting notification. In the second phase, the Trojan
will do nothing and will simply clear the notification word by performing a poll. This
means that the Spy can be assured that all the cache lines accessed during this second
phase are used when performing a signal on an idle notification. Upon the conclusion
of these phases, the Spy has two sets of cache lines, one set represents the set used when
performing a signal on an idle notification, and the other represents the set used when
performing a signal on a waiting notification.

During the actual benchmarking phase, i.ethe final phase, the Trojan will attempt to leak
a binary secret to the Spy by waiting on the notification, with a secret value of 0 indicating
no wait and a secret value of 1 indicating a wait. The Spy will then attempt to infer this
secret by priming the cache lines derived earlier, performing a signal and then timing how
long it takes to probe those same cache lines again. For ease of analysis, we will conduct
this benchmark in two separate runs. During the first run, the Spy will only Prime+Probe
the cache lines associated with a notification in the waiting, doing this will reveal if the
Spy can infer the secret via the cache lines accessed on a waiting notification. The second
run is identical to the first, except we use the idle cache lines instead. If both these runs
reveal no channel, then we can conclude that the design for cross-domain notifications
contains no channel through the L1-I/D cache.

The results for the L1-I benchmark when conducted with a regular notification are pre-
sented in [Figure 7.9|and [Figure 7.10|with [Figure 7.9|illustrating the results from conducting
the benchmark with the idle sets and being the results from conducting the
benchmarks with the waiting sets. When repeating this experiment using a cross-domain
notification, we attain the result illustrated in for the idle sets and
for the waiting sets. These results demonstrate that unlike the traditional notifications,
cross-domain notifications do not maintain a channel through the impact the signal op-
eration has on the L1-I cache.

In a similar vein to the L1-I results, the results for the L1-D benchmark when performed

with a regular notification are provided in when using the idle sets and
[ure 7.14] when using the waiting sets. When repeating this experiment with a cross-domain
notification, we attain the result illustrated in when using the idle sets and

65

A Usable System Model for Time Protection Varun Sethu

when using the waiting sets. It is clear from the presented results that unlike
traditional notifications, cross-domain notifications do not maintain a channel through the
impact the signal operation has on the L.1-D cache. From all these results, it is clear that
cross-domain notifications do not maintain a timing channel via B’s readiness to receive
a signal.

7.1.4 Summary

The timing channel benchmarks that we have conducted demonstrate that cross-domain
notifications maintain the information flow constraints that we sought to satisfy initially.
The design does not allow information that is not related to a signal to flow from A — B.
Additionally, it disallows flow from B — A, whether that be through the impact B might
have on the notification’s presence within the LLC, or B’s readiness to receive a signal.

5400
1072

5200

5000

Time (cycles)
Probability

4800

4600

0 1 2
Secret

Figure 7.9: L1-I benchmark for a traditional notification using idle sets. .# = 0.1442.
Ay = 0.0011.

66

Varun Sethu A Usable System Model for Time Protection

5400
1072
5200
5000
4800
4600
0
0 1 2

Secret

Time (cycles)
Probability

Figure 7.10: L1-I benchmark for a traditional notification using waiting sets. .# = 0.5849.

u%% = 0.001.
2 z
_g =
S 2
o <)
£ ;

1072
5200
5000
4800
4600
4400
0
0 1 2

Secret

Figure 7.11: L1-I benchmark for a cross-domain notification using idle sets. .Z = 0.0003.
Mo = 0.0011.

67

A Usable System Model for Time Protection Varun Sethu

5000
1072
4800
4600
4400
4200
0
0 1 2

Secret

Time (cycles)
Probability

Figure 7.12: L1-T benchmark for a cross-notification using waiting sets. .# = 0.0006.

Mo = 0.0011.
v >
] =
b 2
(]
E £

9100
9000
8900
1072
8800
8700
8600
0
0 1 2

Secret

Figure 7.13: L1-D benchmark for a traditional notification using idle sets. .# = 0.991.
Mo = 0.0002.

68

Varun Sethu A Usable System Model for Time Protection

10600
10500
1072
10400
10300
10200
10100
10000 0
0 1 2

Secret

Time (cycles)
Probability

Figure 7.14: L1-D benchmark for a traditional notification using waiting sets. .# = 0.8677.
Aoy = 0.0002.

8850

-1
8800 10
8750

8700

1072

Probability

8550

8500

8450

Time (cycles)
o] o]
)] [o)]
o w
o o

o

=

N

o

Secret

Figure 7.15: L1-D benchmark for a cross-domain notification using idle sets. .# = 0.0003.
Mo = 0.0007.

69

A Usable System Model for Time Protection Varun Sethu

8900

8800

8700

Time (cycles)
Probability

8600

8500

0 1 2
Secret

Figure 7.16: L1-D benchmark for a cross-domain notification using waiting sets. .# = 0.0.
Aoy = 0.0003.

7.2 Performance

All the benchmarks presented in this section are micro-benchmarks, benchmarking only
key details associated with cross-domain notifications. These key details provide some
insight on the performance implications of using cross-domain notifications, but further
work must be done to conduct more holistic benchmarks that use cross-domain notifi-
cations under practical and realistic use cases. All results presented in this section are
presented as warm/cold pairs. The cold results are the latency of the operation of interest
when none of the cache lines for the notification or kernel are present in the cache hier-
archy. The warm results correspond to the latency of the operation of interest when the
cache lines associated with the notification and kernel are present in the cache hierarchy.
We evict the cache lines associated with the notification and kernel by using Cheshire’s
LLC flush operation, which performs a complete flush of the last level cache. The L1 cache
is cleared by using the fence instruction (note that this is not fence.t).

7.2.1 Signal latency

We first study the latency of signals on cross-domain notifications and compare them to the
baseline of signals performed on regular notifications in the idle state. All measurements
are attained directly from user-level by measuring the latency of the signal operation.

70

Varun Sethu A Usable System Model for Time Protection

Benchmark Mean (Cycles) | Standard Deviation
Regular Notifications (Cold) 3591 10 (0.28%)
Regular Notifications (Warm) 1211 6 (0.50%)
Cross-Domain Notifications (Cold) 3147 7 (0.22%)
Cross-Domain Notifications (Warm) 1347 11 (0.82%)

In the cold-case, cross-domain notifications maintain comparable performance to tradi-
tional notifications. In the warm case, however, there is a slight degradation in perfor-
mance, this is attributed to the need to pad the signal handling function for cross-domain
notifications to a WCET.

7.2.2 Poll latency

We will now study the latency of the poll operation and present two sets of results. All
measurements are made directly from user-level by measuring the latency of the poll
operation.

Benchmark Mean (Cycles) | Standard Deviation
Regular Notifications (Cold) 2961 8 (0.27%)
Regular Notifications (Warm) 1020 2 (0.21%)
Cross-Domain Notifications (Cold) 2913 9 (0.31%)
Cross-Domain Notifications (Warm) 988 2 (0.20%)

Evidently, cross-domain notifications does not maintain a degradation in the latency of
the poll operation, with both the cold and warm results being similar to that of regular
notifications.

7.2.3 Domain switch overhead

The final metric we are concerned with is the domain switch overhead. Cross-domain
notifications shift the cost of delivery out of the signal operation and into the domain
switch, and charges the receiver of the notification for this latency. As such, to establish
baseline results for the domain switch overhead, we require two sets of measurements.
First, the latency of the domain switch without cross-domain notifications, and second,
the latency of the signal operation with traditional notifications in the waiting state, i.e.
when they are delivering a notification. We observe the domain switch latency by probing
the cycle count immediately after fence.t within the kernel, and then again once we have
entered the first thread. By taking the difference between these two values, we in-effect
measure how long it takes to schedule the first thread immediately after the fence.t.
Since cross-domain notifications are delivered after fence.t this will measurement will
also incorporate the latency of the delivery operation. We do not include the operations

71

A Usable System Model for Time Protection Varun Sethu

before fence.t because they are padded to a WCET and will merely present as a constant
overhead on all our measurements.

The first result we look at is the latency of the domain switch operation without cross-
domain notifications. This will serve as a baseline. We only study the cold benchmark
result here because the warm criteria will be difficult to replicate in the domain switch path.
This difficulty stems from the challenge in guaranteeing that all cache lines associated with
the notification and next domain’s kernel image are present within the cache hierarchy.

Benchmark Mean (Cycles) | Standard Deviation
Domain Switch (Cold) 4806 17 (0.35%)

The next measurement we look at is the latency of a signal with a traditional notifi-
cation in the waiting state. The results of this benchmark suggest that the latency of
the actual delivery part of this operation, that is, the part of the operation associated
with unblocking the blocked thread and writing to its badge register, is approximately
2,219 cycles. This latency was derived by subtracting the (cold) signal latency on an idle
traditional notification from the (cold) signal latency of a traditional notification in the
waiting state. In an efficient implementation of cross-domain notifications, the overhead
the design introduces to the domain switch should be inline with this result.

Benchmark Mean (Cycles) | Standard Deviation
Signal on Waiting Notification (Cold) 5810 15 (0.26%)

We now look at the domain switch latency overhead imposed by cross-domain notifications
in more detail. We are interested in three distinct cases:

1. When there is no notification to deliver at the domain switch;

2. When there is a notification to deliver, and the target thread is the highest priority
thread in the domain; and

3. When there is a delivery to be made, but not to the highest priority thread.

Looking at these three cases will provide a relatively complete picture of the domain switch
overhead imposed by this design.

Benchmark Mean (Cycles) | Standard Deviation
No Delivery (Cold) 5016 18 (0.36%)
Delivery Max Priority (Cold) 7392 16 (0.22%)
Delivery Not Max Priority (Cold) 7619 20 (0.26%)

72

Varun Sethu A Usable System Model for Time Protection

We are particularly interested in the “not-max priority” case as in the “max-priority”
case, notification delivery serves to bring the cache lines associated with the next thread’s
TCB into the cache hierarchy, resulting in a lower overhead. In the not-max priority
case, notification delivery imposes an overhead of 2,813 cycles on the domain switch,
representing a 27% overhead compared to the cost of unblocking a thread with traditional
notifications (2,219 cycles), which is quite substantial. The overhead was calculated by
subtracting the cold domain switch latency from the not-max priority delivery latency.

Much of the overhead introduced by our design is attributable to the overhead imposed
by reading from the notification object and checking if there is a notification to deliver
(i.e. the no delivery case). The remainder of the overhead is likely attributable to the
implicit cost associated with performing this operation after a fence.t, which would have
completely flushed all microarchitectural resources such as the TLB.

7.3 Discussion

The results of this chapter demonstrate that our presented design for cross-domain noti-
fications satisfies the information flow constraints that we had sought to satisfy initially.
Our design achieves this with minimal latency overhead except on the domain switch path,
where it imposes a 27% overhead above what would be naively expected when one moves
signal delivery to the domain switch path.

7.4 Further Work

There is still some further work to be done. The channel highlighted in Appendix
Section B.3 needs to be properly mitigated and the benchmarks for the unrelated flow
channel need to be re-conducted after doing so. The results we have attained with the
temporary work-around suggest no timing channel, but our work-around is fragile and not
a principled solution to the initial channel.

Additionally, we need to conduct macro-benchmarks where cross-domain notifications are
used under a more realistic workload, this allows for a deeper understanding of their
performance implications.

Furthermore, the implementation we studied placed the queue of notifications associated
with a domain in scratchpad memory. In principle, we could easily move this out of SPM
and place it within the data segment associated with the receiver domain’s kernel image.
This is rather simple to do, but unfortunately was not done during this thesis.

Finally, we presented the N-signals-awaken-N-threads model in whereby N
signals made by threads in A will awaken N threads in B blocked on a notification. We
argued against this design and chose our present design due to the simpler implementation
story. However, we could have very reasonably chose the N signals awakes N threads

73

A Usable System Model for Time Protection Varun Sethu

model too. This presents a potential avenue for further work on cross-domain notifications,
implementing this alternative model and benchmarking its implications.

74

Varun Sethu A Usable System Model for Time Protection

Chapter 8

Shared Memory Design

This chapter and its corresponding implementation chapter explores the introduction of
cross-domain shared memory. We will begin by first looking at the information flow
constraints that our cross-domain shared memory design must satisfy. To motivate the
information flow constraints, consider a cross-domain memory buffer shared between two
domains, A and B. Let A be the writer domain and B the reader domain. We require
that only information explicitly written by A to the buffer may flow to B, and that no
information may flow from B — A. We can specify this more concretely with the following
constraints:

R1. Information can only flow from A — B by A writing into the buffer. Additionally,
the impact that reads and writes performed by A have on the microarchitectural
state of the buffer should not introduce a usable timing channel.

R2. Any influence that threads in A have on the buffer’s microarchitectural state must
not form a usable timing channel. This means that if the execution of threads within
A incidentally evicts cache lines associated with the buffer, then the impact left by
this eviction must not allow for information leakage.

R3. Information flow from B — A is prohibited. The execution of threads in B must
not affect the buffer’s microarchitectural state in a way that forms a timing channel.
For example, the side effects of B reading from the shared buffer must not become
a usable timing channel.

To implement a practical shared-memory model, the kernel should avoid arbitrating buffer
access through system calls, as this would introduce unnecessary overhead and a cumber-
some API. As a result, the operating system has no mechanism for controlling how each
domain interacts with the buffer or how they impact the microarchitectural state asso-
ciated with the buffer. It then follows that any implementation of cross-domain shared-
memory must either: partition the microarchitecture associated with the buffer, or reset
it to a defined state. This observation suggests two possible designs for shared memory:
either the kernel determinises the buffer’s microarchitectural state on a domain switch, or

75

A Usable System Model for Time Protection Varun Sethu

the buffer is split in two, with each domain maintaining its own copy of the buffer, and
the kernel synchronising them after the writer’s time slice. We will attempt to address
both these possible designs in this thesis.

8.1 Determinisation on Domain Switch

The first shared-memory design involves determinising the buffer’s microarchitectural state
on a domain switch. This can be achieved in two ways, either by pre-fetching the cache
lines for the buffer in software, or by employing hardware support. Presently, Cheshire
supports creating arbitrary cache partitions and associating physical memory ranges with
them, as well as selectively flushing these partitions from the LLC. However, this conflicts
with the present, static, colour-based LLC partitioning used in time protection. As such,
using this dynamic partitioning mechanism would require reworking the existing RISC-V
implementation of time protection, something which is quite infeasible over the course of
a thesis. There is no other mechanism for flushing ranges of memory from the LLC within
Cheshire outside DPLLC.

The next possible option for determinisation is pre-fetching. In we saw that
Buckley et al.| [2023] argued that pre-fetching cannot fully close timing channels through
shared kernel data, as without a formal model of the LLC it is difficult to make any claims
regarding the presence of SKD cache lines or cache lines that overlap with SKD within
the LLC. It is important to note that this limitation mainly stems from the fact that SKD
cache lines can overlap with cache lines accessible to arbitrary domains. As such, there is
a possibility that pre-fetching may still be effective if the shared buffer is allocated from a
unique colour. This would prevent domains from influencing the buffer’s state within the
LLC without directly accessing the buffer. In such a scenario, we may find that a Trojan
is unable to exert any influence over the probability that a cache line be present in the
LLC after determinisation, effectively closing any timing channel, even with a randomised
LLC eviction policy.

The remainder of this section will explore pre-fetching and ultimately demonstrate that
even allocating a buffer from a unique colour fails to close all timing channels, leaving
temporary channels that decay in strength. This leads to the eventual conclusion that
determinisation on Cheshire can only be achieved with hardware support, motivating a
direction of future work for this thesis.

8.1.1 Cache inclusivity

Before conducting any experiments or analysis, it is important to note that pre-fetching
relies on the cache hierarchy being either inclusive or exclusive. Cheshire guarantees
inclusivity only on the initial read; i.e. if a cache line is absent from the L1-D, accessing it
brings the line into both the L1-D and LLC. Afterwards, inclusivity is not maintained, and
a line may reside in the L1-D without being present in the LLC. The implication of this

76

Varun Sethu A Usable System Model for Time Protection

is that we must flush the L1-D cache before pre-fetching. Fortunately, Cheshire supports
this via a simple fence invocation, which flushes the entire L1-D before continuing with
the next instruction. This instruction is distinct from fence.t.

8.1.2 Pre-fetching and a common colour

Buckley et al. [2023] presents the conclusion that pre-fetching is a flawed approach to
determinisation, but were unfortunately unable to provide any experimental evidence. As
such, we will first attempt to recreate their conclusion in the context of a shared buffer
allocated from either A’s or B’s colour.

We will recreate their conclusion by benchmarking a Prime + Probe attack on a bare-
metal Cheshire environment with no operating system or firmware. This setup allows us
to observe the behaviour of pre-fetching without interference from OS-induced noise. Our
benchmark will consist of a Trojan T', a Spy S, with a shared buffer allocated from the
Trojan’s colour between them. We will simulate a kernel domain switch by pre-fetching all
cache lines associated with the buffer and then performing a fence.t invocation. During
a round of the benchmark, the Trojan will encode some secret n by priming n cache lines.
The Spy will observe said secret by timing how long it takes to probe the entire shared
buffer. Each benchmark we conduct will consist of 20,000 rounds, after which we will
plot the channel matrix from the experiment samples. Pseudocode for the benchmark is
provided in We will first conduct this benchmark with both the Trojan and
Spy allocated a single colour each, and a two-page-long shared buffer between them. In
this benchmark, the Trojan can only encode a secret from 0 to 64 as being allocated a
single colour implies that it only has access to 64 unique cache lines. The channel matrix
for this experiment is provided in demonstrating a clear timing channel.

4750
4700
4650
107!
4600
4550
£ 4500
1072
4450
4400
4350
0

0 8 16 24 32 40 48 56 64
Secret

Time (cycles)
Probability

Figure 8.1: Benchmark result for a two-page buffer.

77

A Usable System Model for Time Protection Varun Sethu

void domain_switch(shared_buffer) {
fence();
for (int line = 0; line < NUM_LINES(shared_buffer); line++) {
touch_cache_line(shared_buffer, line);
}
fence.t();

void benchmark(shared_buffer) {
domain_switch(shared_buffer);
priming_buffer

allocate_priming_buffer(trojan_colour);

for (int round = 0; round < NUM_ROUNDS; round++) {
// TROJAN
int secret = random() % 65;
prime(priming_buffer, secret);

// DOMAIN SWITCH
domain_swtich(shared_buffer);

// SPY
int latency = probe(shared_buffer) ;
record(secret, latency);

// DOMAIN SWITCH
domain_swtich(shared_buffer);

Listing 10: Prime+Probe benchmark pseudocode.

To understand why a timing channel arises, it is useful to first recall that Cheshire’s LL.C
maintains a randomised eviction policy [Ottaviano et al., [2023]. Additionally, recall that
on Cheshire, a single cache colour spans 64 cache lines. Thus, the first cache lines from
both pages in a two-page-long buffer will map to the same cache set within the LLC. With
this in mind, we focus on the first cache line within the buffer, and examine its presence
in the LLC during a round of the benchmark.

For ease of notation, let pg, p1, - -- , p7 denote the cache lines from the priming buffer that
map to the same cache set as the cache line under consideration. During a prime, the
Trojan touches all of these lines in order to saturate the corresponding set in the LL.C and
evict everything within it. Next, let sp and s; denote the first cache line from the first
and second page in the shared buffer respectively. All of pg,p1,- - ,p7, 80 and s; map to

78

Varun Sethu A Usable System Model for Time Protection

the same cache set within the LLC.

We will first consider the scenario where the Trojan had not primed pg, p1, p2,--- ,pr. We
can conclude that in this scenario, the cache set associated with these cache lines within
the LLC will be empty. As such, after the kernel performs the pre-fetching routine on
a domain switch, the set associated with the line of interest will only contain sy and s1.

This scenario is depicted in

After Determinisation.
Y

22 22
100000000000000077
500000000000000007
Ay
186808107
R e
A e
50050000000000007
A A

Figure 8.2: Unprimed scenario.

Now consider the second situation, where the Trojan had indeed primed pg,p1,...,p7.
Before determinisation, the cache set we have been studying is completely saturated with
these priming cache lines. When the kernel pre-fetches the buffer, it first touches sg. With
no free space in the set, the LLC must evict a line at random to accommodate the request
for sg. Next, when s; is pre-fetched, the same situation occurs: the lack of space forces
a random line eviction. Since the cache set is saturated with priming lines, sg now has
a 1/8 chance of being evicted. As such, after determinisation there is a 1/8 chance of s
not being present within the LLC. A diagram of this situation is presented in
This variation in the probability of so’s presence in the LLC depending on whether the
Trojan primed or not is what gives rise to the timing channel in

77777777777777777§777777777§7777777727777777778777777774777777774777777777
L, I i, i W sy, v v
A s A A s s, s v
77 Y A A Y Y Y I o T, i, o v
sz 7z 1 2 e sz z 3// 4 srrks 4 % 2 6/// 77
Ay G 2 A O a2 8 Ay 2 s v 24
A A A s i s, s e
A A G, s, v Gy, s v
AANIIXY, AN TN, AN sy vy, vnvrrys oy
A, A A A A A, A, vy
A A Y A i Gy, s s
A A s U A A A A s s
L A 5 3 VAR 2 Y AL s T e 70307 700
7 2 2 s Y) s v e 2) Lk
R A A Y R A e i A e s
A A Y s s iy, s vy
A A A A s Gy, s v
20222207 42222222208222200000022222224222220207k 0222000040 202222228002222277
IS TS Iy sy i sy syl wayry
A A Y A A i, s
T Y s Y Y s Y i Yy, Y
//;31/// s 77 22 ey //pg// A A A A A Ll VA 777
X Iy) <3 0 VY £ aa i aay % 20 A Y
R A A A i i s
I Y Y R A Ay s
A A A A A A, s s

Figure 8.3: Primed scenario.

79

A Usable System Model for Time Protection Varun Sethu

This situation, in which the Trojan can influence the probability that pre-fetching evicts
earlier buffer cache lines during determinisation, is difficult to mitigate because it stems
from a fundamental property of the LLC’s eviction policy. This experiment confirms
the conclusion of Buckley et al.|[2023] when applied to Cheshire, specifically validating it
within the context of cross-domain shared memory. We will now turn our attention towards
the scenario where the buffer is allocated from a dedicated colour and demonstrate why
pre-fetching fails in this scenario too.

8.1.3 Pre-fetching and a distinct colour

To motivate why pre-fetching fails with a distinct colour too, we will consider the same
Prime + Probe attack that we were previously studying, except this time with a 9-page-
long shared buffer. Additionally, we will “partition” this 9-page-long buffer in two. The
first page will act as the probing page used by the Spy, and the last 8 pages will act as
the priming pages used by the Trojan. The key detail here is that since this buffer is
shared between both the Trojan and the Spy, all pages in the buffer, i.e. the probe and
prime pages will be pre-fetched on a domain switch. Additionally, as a brief reminder, it
is important to remember that this buffer lies in a distinct colour from the Trojan and

Spy.

Probe Buffer Prime Buffer

All Determinised on Domain Switch

Figure 8.4: Decomposition of the shared buffer.

When we re-run the benchmark outlined in |Listing 10| we attain the channel matrix de-

picted in

80

Varun Sethu A Usable System Model for Time Protection

2300

2200

2100

2000

Time (cycles)
Probability

1900

1800

1700

0 8 16 24 32 40 48 56 64
Secret

Figure 8.5: Benchmark result for a nine-page buffer.

At first glance, the Prime + Probe attack in this configuration does not appear to produce
a timing channel, as there is effectively no correlation between the number of primed cache
lines and the observed probing cost. This conclusion, however, may be premature. There is
a very real possibility that a timing channel could exist, but pre-fetching and the repeated
use of the channel may cause its strength to decay over time. As a result, the channel may
only be detectable during the first few initial transitions from the Trojan to Spy; however,
when benchmarking several thousand rounds, this initial channel may be drowned out by
the subsequent absence of a channel in the remaining rounds.

To benchmark this situation more concretely, we will modify the bare-metal benchmark
to flush the entire LLC between benchmarking rounds. This new benchmark will, in
effect, measure the strength of any timing channel that may exist the first time the Trojan
attempts to use it. Flushing the entire LLC will introduce some noise to benchmarking
results, so where possible, we will have to pre-fetch code and data related to the benchmark
before conducting the next round of the benchmark. When we conduct this modified
benchmark on bare-metal, we attain the channel matrix depicted in This
result depicts a relatively weak timing channel. It is, however, still a timing channel and
a method for sending information from the Trojan to the Spy in a manner that would
violate the information flow constraints that we had previously outlined.

81

A Usable System Model for Time Protection Varun Sethu

2600

2400

2200

Time (cycles)
Probability

,_.
o
N

2000

1800

0 8 16 24 32 40 48 56 64
Secret

Figure 8.6: First-time use benchmark result for the nine-page buffer.

To understand what is causing this channel, we study a specific cache line sy in the probe
buffer. This line maps to the same cache set as the lines pg, p1, - . . , p7 in the priming buffer.
First, consider the case where the Trojan had not primed pg, p1,...,p7. In this situation,
the corresponding cache set is empty, and determinisation touches the lines sg, pg, ..., pr
sequentially. After touching sg through pg, all these lines are expected to reside in the LLC.
When pr is finally touched, there is a 1/8 probability of evicting s¢ from the LLC. This 1/8
probability represents the baseline likelihood that s is not present after determinisation
when the Trojan has not primed py, ..., p7. This scenario is illustrated in

Touch sg, p1,p2,- -, Ps-
Y

AN, A A B I iy, s vy
R R A A i iy, i vy
A A A D A A g vy, e vy
”29{;” ///peux 1// /p 77 71 77 //p 7 ///p 2 777
77 ey YN O A 2 Ly v A v 7 ey 777
PR, R e e vd VA AR, R Al e
R A A I g o, s vy
A R A A i iy, s vy

Y

I Y s v vy vy vy
A A A Y A s vy, s vy
77 ey I L Ly i vy s ey
77 24 Poy 77 A 224 O 2% A AAA R4/ 77 % A AR A L
77 L A0 A" 0 O 2 T T e i < e Y 20 2 777
77 P A A A i i, e vy
A A I I o vy, g vy

A Y A s s ey ey

Figure 8.7: Unprimed scenario for 9-page buffer.

82

Varun Sethu A Usable System Model for Time Protection

Now consider the scenario where the Trojan had primed pg, p1,...,p7. In this case, the
corresponding set within LLC is fully saturated with these cache lines. When determinisa-
tion first touches sg, it randomly evicts one of these priming lines. Suppose p; is evicted.
When the routine then touches p;, it must bring it back into the LLC, and this touch has
a 1/8 chance of evicting sg. In this example, assume that touching p; evicts ps instead.
When the pre-fetching routine touches ps, there is again a 1/8 chance of evicting sg, and in
this case, sg is evicted. This possible eviction scenario is depicted in The key
insight is that pre-fetching in the primed case can create eviction chains, where each step
carries a small but cumulative probability of evicting sg. This results in a slightly higher
chance that sg is not present in the LLC after determinisation compared to the unprimed
case. In the example provided in the eviction chain is sg — p1 — p3 — So.
The net result is that this variation in eviction probabilities for sy results in the timing
channel depicted in It is worth noting that the concept of an eviction-chain is
something that doesn’t appear within the literature and, as far as I can tell, is a new idea.

I, 0 A 000 i Yii, s iy
A A R A i o s vy
A Y Yy s (Y iy o ey
Y T R L R A o A s
O LT 0 3 A O Y T 2 0 P o oA A L i S o e
A L A T B A S A, s o YAy
A A Y e i oy s oy
A A I A s i s vy
AT s sy s s sy s Wy
A A I A s i, s vy
A o ey e A, s vy
e 280 B 1% 0 L % o L oA) 2 s 0 %’”
; A A L T Y AT I 0 Ao v A
A A o i i i i Yoy
A s I s s oy s vy
I A O s o ooy, s vy
77777777 17777777787 7777777777777 77077777770 787777777 77777774777 777777
00000000 0000000000800000000080000000000000000008000000004000000004000000077
A A I A s i s s
A Y O T Y T iy v Wy,
0 AR -4 00 A L2 8 L O P L A s o AR L aa o i
Y 2 I AV A T Y 08 2 e O e A T 4 A v Y Ay
A A R s oA s o oy
A A I A i s s vy
2000000000000000008000000000800000000920000000040000000082020222704000000077
R, AR G 00 RAAA 0000, Raaa s
A A Y R i oy s oy
R A A A s i s s
R A A R A T L Y,
PGNP N PR PY P PR R P R
A B A TG M2 s ey
A o A T o s, s s
A A I A s i s s
00000000 80222000008000020000800000000020200000080000005 0 800000000042002220000

Figure 8.8: Primed scenario for 9-page buffer.

So, we observe that even with a distinct colour, it is possible to construct a timing channel,
it is just that the channel can only be used once, and after the first use, pre-fetching works
to diminish the strength of the channel. One may then imagine that a potential way to
then mitigate this issue is to enforce the constraint that the initial thread setting up the
system must perform an initial determinisation of the shared buffer. This would enforce
the constraint that at least some part of the shared buffer is present in the LLC before
the Trojan and the Spy begin executing. When we make this modification and re-run the
benchmark, we end up with the channel matrix depicted in While not evident
from the channel-matrix directly, LeakiEst still reports a minimal timing channel, so it
appears as if this strategy does not entirely work.

83

A Usable System Model for Time Protection Varun Sethu

1071

2400

2300

2200

N
=
o
o

Time (cycles)
Probability

N
o
o
o

1900

1800

1700

0 8 16 24 32 40 48 56 64
Secret

Figure 8.9: First-time use with initial determinisation. .Z = 0.0422. .#, = 0.008.

Instead of focusing on the mechanics of the residual timing channel shown in [Figure 8.9
we will shift our attention to an alternative buffer configuration designed to produce an
even stronger channel. The timing channel illustrated in arises from the eviction
chains formed during determinisation. It then stands to reason that if we can construct
longer or more numerous eviction chains, then we could potentially construct an even
stronger channel. One way to encourage this is to introduce pages between the priming
and probing buffers that neither the Trojan nor the Spy access. These intermediate pages
exist solely to promote the formation of longer eviction chains during pre-fetching. With
this in mind, we design a 14-page-long buffer for the next Prime + Probe benchmark. The
first page serves as the probe buffer, the final eight pages serve as priming buffers, and the
five intermediate pages exist to promote the construction of longer eviction chains.

T2 A A A, A A, AR A A
70777777 I I I A i, I e vy
17777777 A R Y A A A A A A
77070 77 v 2 1IN v oA 2 i 77
77 77 77 2 O 2 % Lok Ay oA 2y Ry
R R v W R A i i, A B e .y
2777777 A Y A A A, A e ey
77777777 R Y I A i, i, e vy
27727277 WAV ITVY) VTV TIVY YV VVYYY W ryyYyY, Yiyyvvyy Yryyyyvyy Vwyyyyyvy Yyyyyvy

All Determinised on Domain Switch

When we re-run the bare-metal benchmark with this new configuration and initial thread
determinisation we obtain the channel matrix depicted in Which illustrates
a much stronger and significantly more obvious timing channel.

84

Varun Sethu A Usable System Model for Time Protection

3000
- 10—1
2900
2800
g 2700 >
2 :
O
5 2600 3
o
£ g
-

2500

2400

2300

Secret

Figure 8.10: First-time use with longer eviction chains. .# = 0.1179. .#; = 0.0023.

Thus, it is clear that even with initial thread determinisation, it is possible to construct
a reasonably strong timing channel that allows for the transmission of information in a
manner that violates the information flow constraints for shared memory. We can, in fact,
use this new buffer to measure how the strength of the timing channel decays with time
and use. To measure this, we will construct a simple binary channel where the Trojan will
prime all the cache lines in the priming buffer to send a secret of 1, and do nothing to send
a secret of 0. The Spy, like before, will simply measure how long it takes to access the
entire probing buffer. We will also modify the benchmark so that we take our measurement
after the nth round, this will give us a picture of what the strength of the channel looks
like after the channel has been used n times. The pseudocode for the modified benchmark
is provided in [Listing 11

85

A Usable System Model for Time Protection Varun Sethu

void benchmark(shared_buffer) {
domain_switch(shared_buffer);

for (int i = 0; i < NUM_SAMPLES; i++) {
clear_11c();
determinise(shared_buffer);

int secret = 0;
int latency = 0;

for (int round = 0; round < NUM_ROUNDS; round++) {
// TROJAN
secret = random() % 2;
if (secret) {
prime(shared_buffer_priming_part);

// DOMAIN SWITCH
domain_swtich(shared_buffer);

// SPY
latency = probe(shared_buffer_probe_part);

// DOMAIN SWITCH
domain_swtich(shared_buffer);

record(secret, latency);

Listing 11: Alternative Prime+Probe benchmark pseudocode.

86

Varun Sethu A Usable System Model for Time Protection

To measure how the strength of the channel decays, we will vary NUM_ROUNDS from 1 to 10
and record how many standard deviations the mutual information of the resulting channel
matrix is from the zero-information leakage threshold. The standard deviation used is
that of the zero-information leakage distribution computed by LeakiEst to determine the
zero-leakage threshold. When we conduct this experiment and plot the z-scores, we obtain
the plot in This result demonstrates how the channel strength decays with
time and use, initially starting off strong and slowly decaying towards zero.

Num Standard Deviations of Observed Value From Threshold

400

300

200

Z score Relative to Threshold

100 -

Round

Figure 8.11: Illustration of how channel strength decays with time.

Thus, in the case of the 14-page buffer, we observe that there exists an obvious timing
channel, and the strength of said timing channel decays with use and time. This timing
channel, decaying or not, is a clear violation of the information flow constraints that we
set out for shared memory. It allows for information to flow between the domains via the
micro-architectural state associated with the buffer.

It is worth noting that a potential criticism of our benchmarking methodology is the
assumption that the cache sets in the LLC to which the shared buffer’s cache lines map
are initially empty. In practice, this assumption may not hold, as the kernel and boot
thread can access arbitrary addresses during boot and initialisation. To partially address
this issue, we re-run the experiment outlined in with a minor modification.
The modification involves touching a number of random cache lines that reside in the
same colour as the shared buffer immediately after flushing the LLC. This simulates the
potential impact the boot process and boot thread may have on the timing channel we
have been observing.

Unfortunately, in this modified experiment, LeakiEst fails to report the standard deviation
of the zero-information leakage distribution because it is effectively zero. As a result, to
report the results of this experiment, we must compute the difference between the mutual

87

A Usable System Model for Time Protection Varun Sethu

information and the zero-information leakage threshold as computed by LeakiEst. Doing
so yields the graph shown in The results demonstrate a similar decaying
pattern, it is just that the channel decays more dramatically initially and maintains a more
gentle degradation after the first round. This result is consistent regardless of however
many unrelated cache lines are accessed initially.

Distance of Observed Value From Threshold

0.06 -

0.05 A

0.04 -

0.03 A

0.02 -

Distance from Threshold

0.01 A

k

0.00

Round

Figure 8.12: Illustration of how channel strength decays with time.

8.1.4 Summary

The results of this discussion highlight that pre-fetching as a method for determinisation
is flawed. This was initially argued by Buckley et al. [2023] in the context of shared
kernel data, where pre-fetching failed due to the lack of guarantees it gave regarding the
state of overlapping cache lines within the LLC after pre-fetching. However, the situation
clearly generalises to shared memory between domains too, even when using a dedicated
colour. The issues with pre-fetching fundamentally stem from the randomised eviction
policy maintained by Cheshire’s LLC. The lack of guarantees as to what cache lines are
evicted during pre-fetching allows for an adversary to construct timing channels that decay
in strength with time and use.

The results of this discussion imply that for determinism to be a viable method for im-
plementing shared memory, we must either have a deterministic LLC eviction policy or
mechanisms to completely flush the cache lines associated with a shared buffer from the
LLC. While such mechanisms exist on architectures like x86 and ARM, Cheshire provides
no support outside DPLLC. Unfortunately, without completely reworking the present im-
plementation of time-protection to utilise DPLLC, or without further guarantees from the
hardware, it appears as if determinisation is a dead end.

88

Varun Sethu A Usable System Model for Time Protection
8.2 Copy-on-Domain-Switch

Since determinisation using pre-fetching is ineffective, we now turn our attention to the
idea of copying on a domain switch. This approach requires each domain to maintain
a copy of the shared buffer, allocated from its unique cache colour. The kernel or a
trusted third-party process then synchronises these copies whenever a domain switch oc-
curs, specifically when leaving the writer domain.

8.2.1 Copy performed by the kernel

This approach involves both A (the writer domain) and B (the reader domain) maintaining
a local copy of the buffer allocated from their respective colours. On a domain switch from
A — B, the kernel copies the contents of A’s buffer into B’s copy. Since the buffers are
isolated in the LLC, the only way for information to leak between A and B in a manner
that violates the information flow constraints is through the latency of the copy operation,
which depends on the microarchitectural state of the buffer. In the current implementation
of time protection on RISC-V, the time taken to perform the domain switch from A — B
is deducted from B and affects when the first thread in B is scheduled. As a result, the
first thread in B can observe the latency of the copy operation by observing the time at
which it is scheduled. The timing channel introduced through the copy operation can be
mitigated relatively easily by padding the operation to its WCET. This requirement to
pad the copy also dictates when the kernel should perform the operation. Since fence.t
already provides a hardware mechanism to pad all prior operations to a WCET), it is
logical to perform the copy before fence.t, so as to include the copy latency in fence.t’s
padding time. It is worth pointing out that this design assumes that the time between
timer interrupts is sufficiently long enough to allow for the full buffer to be copied.

Since this design requires modifications to the kernel, it will necessitate the introduction
of new kernel APIs and objects; specifically, an object for associating the writer copy of a
frame with the reader copy, and an API for linking this object to the writer domain. As
with notifications, domain association will be achieved by extending the domain capability
and introducing a new SetTimeProtectedFrames invocation. This invocation will take a
capability pointer to the newly introduced TimeProtectedFrames object, which associates
the writer and reader frames, and attach it to a per-domain linked list of frames that require
copying on a domain switch. Because the kernel must be able to access the reader and
writer frames, the frames used in this design cannot be device memory. This requirement
limits the design, as not all memory available for frames is accessible to the kernel.

8.2.2 Copy performed by a trusted thread

The synchronisation of the buffer copies between A and B could, in principle, be performed
by an external thread C;. However, to maintain correctness, this thread must always satisfy
one of two constraints: it must be the last thread in domain A to run before the domain

89

A Usable System Model for Time Protection Varun Sethu

time-slice elapses, or it must run before any other thread in B is scheduled. Ensuring that
Cy is always the last thread to run in A is difficult, since the regular thread-level scheduler
does not maintain a static schedule like the domain-level scheduler. A simpler alternative
is to attach C} to domain B and attempt to make it the first thread in B that runs, this
can be achieved by assigning C; the maximum priority in that domain.

This approach, however, raises the concern that C; could starve other threads in B. To
avoid this, we introduce a pair of cross-domain notifications. The first notification, Ny,
connects A to B with B as the receiver, while the second, Ns, connects B to A with A as
the receiver. In addition, we introduce a new thread D; in domain A with the maximum
priority in A, thereby ensuring it is always the first thread to run when A is scheduled.
The coordination between C; and D; forms a simple handshake. When B is scheduled,
C; runs first, performs the buffer copy, signals Ns, and then blocks on Ny, allowing other
threads in B to execute. When A next becomes active, D; runs first, signals N7 to unblock
Ct, and then blocks on Ny to wait until the next domain switch. It is worth noting that
this scheme requires an initial invocation of poll on each of the notifications to clear
their state before entering the copy loops. The alternating signal-wait sequence that this
design utilises ensures that buffer synchronisation occurs at each switch without causing
starvation. Some pseudocode for these routines is provided in Like with the
kernel approach, the copy operation with this approach must be padded to a WCET. This
is because the latency of the copy operation affects when the next thread in B is scheduled,
as such it is potentially a usable timing channel.

void c_t() {
poll(N_1);

while (true) {
copy_buffers_with_wcet();

signal(N_2);
wait(N_1);

void d_t() {
poll(N_2);

while (true) {
signal(N_1);
wait(N_2);

Listing 12: Ilustration of the D; and C; threads.

90

Varun Sethu A Usable System Model for Time Protection

The key limitation with this design is the requirement for both the D; and C} threads to
be the maximum priority threads in their respective domains. However, since there are
256 distinct priorities that a thread can have, this is largely a non-issue. Additionally, it
is worth pointing out that implicit in this design is the assumption that the domain tick
interval is long enough so that a full copy of the buffer can occur without switching to
the next domain. For a sufficiently long buffer this will imply the need for B’s domain
time-slice to support copying the full buffer.

8.2.3 Which to implement?

There is value in implementing and benchmarking both designs for copy-on-domain-switch.
The in-kernel approach adds some complexity to the kernel; however, the constraint that
cache lines unrelated to the current domain’s colour are only accessed on a domain switch
may simplify the eventual possible verification story of this design. In contrast, the user-
level approach represents a more principled design, as it does not introduce new kernel
features and can be implemented relatively simply.

91

A Usable System Model for Time Protection Varun Sethu

Chapter 9

Shared Memory Implementation

focused on providing a rough illustration of the chosen designs for shared
memory, namely, the copy-on-domain-switch approach at both user level and with ker-
nel support. This chapter will focus on inspecting some implementation concerns with the
respective designs.

9.1 Kernel Approach

Implementing shared memory with the assistance of the kernel requires introducing a new
structure known as the time_protected_frame for tracking information regarding the
reader and writer frames that require synchronisation. The time_protected_frame ob-
ject maintains pointers in the kernel’s address space to the reader/writer frames and a
next pointer associated with a linked list of frames attached to a domain. When attached
to a domain, frames are placed in a per-domain linked list of frames that require syn-
chronisation when leaving the associated domain. The head of the linked list is placed in
scratchpad memory, although could very reasonably be placed in kernel-specific memory
while still maintaining correctness.

9.1.1 Domain and frame association

The time_protected_frame object exposes a SetFrames invocation, which takes CPtrs
to the reader and writer frames and attaches them to the time_protected_frame. Since
frames also need to be associated with a domain, the implementation will extend the
Domain capability with a TimeProtectFrame invocation, which takes the CPtr of the
time_protected_frame along with the writer domain, and attaches the frame to the
writer domain’s linked list of frames to synchronise.

92

Varun Sethu A Usable System Model for Time Protection

9.1.2 Domain switch operations

On a domain switch leaving some domain A, the kernel traverses A’s linked list of frames
that require copying and, for each frame, copies the contents of the writer frame into the
reader frame. Because the latency of this operation depends on the microarchitectural
state of the reader and writer frames, it must be padded to a WCET. Fortunately, since
this copy occurs in the domain switch path, we can use fence.t’s PAD CSR to pad the
operation.

As a reminder, on the CVA-6 core on Cheshire, when a timer interrupt arrives, the core
will read the present value for the PAD CSR and use this when performing the subsequent
fence.t pad. It follows, then, that in order to incorporate the copy latency into fence.t
pad, we must configure the CSR once we enter the new domain and know how many
frames will be copied when leaving this new domain. This ensures that the domain switch
and copy operation that occurs when leqving this new domain is appropriately padded to
the correct WCET. Some pseudocode illustrating the effect on the domain switch path is
provided in |Listing 13

/7.

// ... 0ld domain
switch_to_new_domain();
VA

// ... New domain

uint32_t num_frames = count_shared_frames_in_current_dom();
uint32_t total_pad_time = domain_switch_wcet + num_frames * frame_wcet;
configure_pad(total_pad_time);

// This fence.t does not use the new configured padding, it uses the
// old padding. The next fence.t that occurs when leaving this new domain
// will use this updated pad time.
fence.t();

Listing 13: Fence.t padding configuration.

Bounding the WCET

We will bound the WCET of the copy operation in a similar manner to what we performed
for notifications. We will saturate the LLC and L1-D with dirty cache lines and saturate
the L1-I with unrelated instructions, then on a domain switch we will directly sample how
long the copy operation takes. After collecting 20,000 samples and taking the maximum,
we arrive at a WCET bound of 55,000 cycles for to copy a single frame of memory.

93

A Usable System Model for Time Protection Varun Sethu
9.2 User-Level Approach

The implementation of this approach closely follows the design that was outlined in
specifically [Section 8.2.2l The implementation is a direct mapping of the discussed

design, so there are not that many details to elaborate on here.

9.2.1 Constant time-padding and bounding the WCET

The latency of the copy operation affects the scheduling of the next thread in B as the
longer the copy operation takes, the further in time non-copy threads in B attain a time
slice. We can prevent this from forming a timing channel by padding the copy operation
to a worst-case execution time. However, unlike the in-kernel approach, where there exists
hardware support for WCET padding, no such support exists for this approach. We can,
however, employ the software-based time-padding approach of error correction discussed in
We will bound the WCET with an identical method to what was described for
the kernel-based approach. After collecting 20,000 samples and taking the maximum, we
attain a WCET of 30,000 cycles to copy a single frame of memory. It is worth pointing out
that the WCET of the user-level copy operation is significantly smaller than the WCET
of the in-kernel approach, this is not intuitively obvious at all and further work needs to
be done in order to figure out why. It may very well be that this is a quirk of Cheshire,
and this story may not be true on other RISC-V based platforms.

94

Varun Sethu A Usable System Model for Time Protection

Chapter 10

Shared Memory Evaluation &
Discussion

We will now turn our attention towards evaluating the presented design and implementa-
tion for cross-domain shared memory. The design will be evaluated by conducting various
channel and performance benchmarks.

10.1 Timing Channel Benchmarks

Recall the information flow constraints that a cross-domain memory buffer between a
writer domain A and a reader domain B must satisfy:

R1. Information can only flow from A — B by A writing into the buffer. Additionally,
the impact that reads and writes performed by A have on the microarchitectural
state of the buffer should not introduce a usable timing channel.

R2. Any influence that threads in A have on the buffer’s microarchitectural state must
not form a usable timing channel. This means that if the execution of threads within
A incidentally evicts cache lines associated with the buffer, then the impact left by
this eviction must not allow for information leakage.

R3. Information flow from B — A is prohibited. The execution of threads in B must
not affect the buffer’s microarchitectural state in a way that forms a timing channel.
For example, the side effects of B reading from the shared buffer must not become
a usable timing channel.

We will now benchmark whether the presented designs for cross-domain shared memory
satisfy these constraints. All benchmarks will consist of a Trojan and a Spy, the bench-
marks may differ in whether the Trojan or the Spy is the designated writer or reader

95

A Usable System Model for Time Protection Varun Sethu

for the shared buffer, this will be indicated with parentheses, with (A) indicating that a
thread is the writer and (B) indicating that a thread is the reader. Where appropriate,
each benchmark result will be accompanied by a corresponding result obtained using a
normal shared buffer that does not respect time protection. This allows us to demonstrate
that the benchmarks are sensitive to the feature under evaluation. The benchmarking en-
vironment is identical to that presented in and all channels are quantified using
LeakiEst.

10.1.1 Direct reads/writes benchmark

The information flow requirements and mandate that the impact reading and
writing has on the microarchitectural state of the buffer must not form a usable timing
channel. As such, our first benchmark will benchmark whether the presented designs for
cross-domain shared memory enable this kind of information flow. This benchmark will
consist of a Trojan and a Spy domain connected by a cross-domain buffer. The Trojan
encodes a secret by reading or writing to n cache lines in the buffer. The Spy observes said
secret by timing how long it takes to probe the entire buffer. A correlation between the
encoded secret and the Spy’s observed probing latency would indicate a timing channel.
We will conduct three separate variants of this benchmark. In the first two, the Trojan
(A) is the writer domain, and we test whether the Spy (B) can infer how many cache
lines the Trojan had read from or written to. In the third, the Trojan (B) is the reader
domain, and we test whether the Spy (A) can infer how many cache lines the Trojan had
read from. All benchmarks will use a two-page buffer. This buffer is sufficiently long to
span all cache lines allocated to a domain, as two pages map to 128 distinct cache sets
(i.e. two colours).

We will first look at the results in the situation where the Trojan is the writer domain A.
To demonstrate the sensitivity of this benchmark, we will first conduct the benchmark with
a regular non-time-protected buffer, giving us the result in when the Trojan
reads from the buffer to transmit a secret. When conducting the read variant of this
benchmark with a protected cross-domain shared buffer we arrive at the channel matrix
in for the in-kernel approach and for the user-level approach.
For the write variant, we arrive at the result in for the in-kernel approach
and for the user-level approach. In the second scenario, where the Trojan is
the reader domain B, we arrive at results in for the in-kernel approach and
for the user-level approach. All of these results indicate a clear lack of a timing
channel. This is to be expected as the buffer copies lie in distinct colours. Regardless,
the benchmark results demonstrate that the presented designs clearly satisfy the first
information flow constraint. They prevent information leakage through the impact reads
and writes have on the microarchitecture of the buffer.

96

Varun Sethu A Usable System Model for Time Protection

15500

15000

14500

Probability

i= 14000

Time (cycles)

13500

13000

0 16 32 48 64 80 96 112 128
Secret

Figure 10.1: Unmitigated A read channel.

12800
12700
12600

12500 &

Time (cycles)
Probability

12400

12300

12200

0 16 32 48 64 80 96 112 128
Secret

Figure 10.2: Mitigated A read channel (Kernel). .# = 0.0162. .#y = 0.0182.

97

A Usable System Model for Time Protection Varun Sethu

12900

12800

12700

g >

£ 12600 =

9 ®
Qo

(0]

£ £

=

12500

12400 8

12300

0 16 32 48 64 80 96 112 128
Secret

Figure 10.3: Mitigated A read channel (User-Level). .# = 0.0102. .#, = 0.0120.

12800

12700

12600
3 >
s B 5
£ 12500 ©
o e
€ S
=

12400

12300

12200

0 16 32 48 64 80 96 112 128
Secret

Figure 10.4: Mitigated A write channel (Kernel). .# = 0.0173. .#, = 0.0184.

98

Varun Sethu A Usable System Model for Time Protection

12700

12600 &
1072
n
2 12500 z
9 2
o S
E 12400 =
12300 §
12200

0 16 32 48 64 80 96 112 128
Secret

Figure 10.5: Mitigated A write channel (User-Level). .#Z = 0.0207. .#, = 0.0238.

13400

13200
g >
S 13000 £ ®
o e
£ &
[

12800

12600

0 16 32 48 64 80 96 112 128
Secret

Figure 10.6: Mitigated B read channel (Kernel). .# = 0.0204. .#, = 0.0213.

99

A Usable System Model for Time Protection Varun Sethu

15000

14500

14000

13500

Time (cycles)
Probability

13000

12500

0 16 32 48 64 80 96 112 128
Secret

Figure 10.7: Mitigated B read channel (User-Level). .#Z = 0.0102. .#, = 0.0120.

10.1.2 Copy latency benchmark

Another way for information to flow from A — B in a manner that would violate the
information flow constraints and is via the latency of the copy operation performed
when leaving domain A. To benchmark this potential timing channel, we will construct
a two-variant test involving a Trojan (A) and a Spy (B). In the first variant, the Trojan
encodes a secret by reading from n cache lines in the shared buffer. The Spy then attempts
to infer said secret by measuring the time elapsed since it last had a time-slice. The differ-
ence in when the Spy last had a time-slice and the present time captures the copy latency
for both the kernel and user-level approaches. The Spy can determine this difference using
a small modification of the system tick detection logic described by (Ge [2019], in a manner
similar to what we used to conduct the notification benchmark outlined in

In the second variant of the benchmark, the Trojan primes n cache lines using a priming
buffer allocated from its own colour. This will evict n cache lines associated with the
Trojan’s copy of the shared buffer from the LLC. We expect both the user-level and
in-kernel designs to mitigate these channels, as the copy operations are padded to their
WCET. In both benchmarks, the Trojan is the writer domain for the shared buffer. It is
sufficient to test only this configuration, as the copy operation only occurs after leaving
the writer domain, and as such, the latency will only be observable by the reader domain.

All copy latency benchmarks will be conducted with a two-page-long shared buffer, a base
domain switch WCET bound of 150,000 cycles, and a kernel timer tick of 40 ms. We will

100

Varun Sethu A Usable System Model for Time Protection

first examine two baseline results of the benchmark. Both results are from the priming
variant of this benchmark, but are executed on a system where the copy operation is not
padded to a WCET. The result of this benchmark for the in-kernel approach is presented in
[Figure 10.8| and |[Figure 10.9|for the user-level approach. The strange shape of the channel
matrix for the in-kernel case is explained by the fact that for most secrets, the copy latency
is largely absorbed by the existing WCET for the domain switch operation. Regardless,
these baseline results demonstrate that our benchmark is sensitive to variations in the
copy-latency.

When we conduct the first variant of this benchmark that involves reading from the shared
buffer, we attain the channel matrix in for the in-kernel approach and the
channel matrix in for the user-level approach. For the priming variant,
we attain the channel matrix in for the in-kernel approach and the channel
matrix in[Figure 10.13]for the user-level approach. It is worth pointing out that the priming
variant of this benchmark is susceptible to interference from the scheduler data channel
discussed in and Appendix To mitigate the impact that this channel has
on our measurements, we will apply the temporary work-around of pre-fetching scheduler
data on a domain switch. It should be noted that pre-fetching is rather fragile and does
not fix this initial channel. Additionally, scheduler data is supposedly partitioned between
domains, so it is surprising that there is even a channel through it in the first case. It
may well be possible that the cause of the channel is much more nefarious, and during
this thesis it materialised as a channel through scheduling data. Further work needs to
be done to resolve this pre-existing channel and re-run this channel benchmark once a
more principled fix has been found. Regardless, the collected results with the applied
work-around demonstrate that there is no timing channel through the copy latency, as no
channel matrix indicates a timing channel. The broader implication of this benchmark
result is that there is no way for information to flow from A — B via the copy latency.

101

A Usable System Model for Time Protection Varun Sethu

1le6

1071

4.1670

4.1665

4.1660 10-2

Time (cycles)
Probability

4.1655

4.1650

4.1645

0
0 16 32 48 64 80 96 112 128

Secret

Figure 10.8: Unmitigated domain-switch priming channel (Kernel).

1le6

4.2250
4.2245
4.2240

4.2235

(cycles)
Probability

4.2230

ime

T

4.2225
4.2220 &

4.2215

0 16 32 48 64 80 96 112 128
Secret

Figure 10.9: Unmitigated domain-switch priming channel (User-Level).

102

Varun Sethu A Usable System Model for Time Protection

1le6

4.2744

4.2742
] >
o £
: B 5
o 4.2740 & 2
e = s
= o

4.2738

4.2736

0 16 32 48 64 80 96 112 128
Secret

Figure 10.10: Mitigated domain-switch reads channel (Kernel). .# = 0.0166. .#, =
0.0184.

1le6
4.2348

4.2346

4.2344

Probability

i 4.2342

Time (cycles)

4.2340

4.2338

0 16 32 48 64 80 96 112 128
Secret

Figure 10.11: Mitigated domain-switch reads channel (User-Level). .# = 0.0175. .#, =
0.0193.

103

A Usable System Model for Time Protection Varun Sethu

1le6

4.2746

4.2744

4.2742

Time (cycles)
Probability

4.2740

4.2738

0 16 32 48 64 80 96 112 128
Secret

Figure 10.12: Mitigated domain-switch priming channel (Kernel). .# = 0.0159. .#, =
0.0183.

1le6

4.2350

4.2348

4.2346

Time (cycles)
Probability

4.2344

4.2342

0 16 32 48 64 80 96 112 128
Secret

Figure 10.13: Mitigated domain-switch priming channel (User-Level). .# = 0.0193. .#, =
0.0193.

104

Varun Sethu A Usable System Model for Time Protection

10.1.3 Unrelated activity benchmark

The final way information not written to the buffer can flow from A — B and B — A
is through the impact that the execution of threads in each domain may have on the
microarchitecture associated with the shared buffer, this is outlined in Requirements
and The execution of threads may result in the eviction of cache lines associated with
the shared buffer, which in the naive case, where a shared buffer is simply mapped between
two domains with no time protection, would result in a timing channel. As such, the final
set of benchmarks will test whether activities that each domain performs unrelated to
reading/writing from the buffer can leak through the microarchitecture associated with
the buffer. We expect this to be mitigated by the fact that the copies are allocated from
distinct colours, but it is worth confirming this fact experimentally. We will benchmark
this with a channel benchmark consisting of a Trojan domain and a Spy domain. The
Trojan allocates a priming buffer within its own colour and, to send a secret n, primes
n cache lines in that buffer. The Spy then probes the entire shared buffer and measures
the total access time. This benchmark is conducted twice: once where the Trojan is the
writer domain, and once where the Trojan is the reader domain of the shared buffer.
Conducting both variants allows us to determine whether information unrelated to the
buffer’s contents can flow from A — B or from B — A.

To demonstrate the sensitivity of this benchmark, the results obtained when conducting
this benchmark with a shared buffer allocated from the Trojan’s colour with no mitigation
is provided in demonstrating a clear timing channel. When we conduct this
benchmark with the writer domain A being the Trojan domain, we obtain the channel

matrix in [Figure 10.15| for the in-kernel approach and [Figure 10.16| for the user-level ap-

proach. When repeating this experiment but with the reader domain B being the Trojan,
we obtain the channel matrix in for the kernel approach and
for the user-level approach. All these results demonstrate a clear lack of a timing channel,
highlighting that there is no timing channel through the impact unrelated activity might
have on the microarchitectural state on the buffer. Either from A — B or from B — A.

10.1.4 Summary

All the conducted benchmarks and their corresponding results demonstrate that the pre-
sented designs successfully satisfy the information flow constraints for shared memory. The
benchmarks demonstrate that information flow from A — B or from B — A is impossible
through the microarchitectural state associated with the shared buffer. As such, the only
way information can flow through the buffer is by A explicitly writing to it.

105

A Usable System Model for Time Protection Varun Sethu

16500

16000

15500

1072
15000

Probability

14500

Time (cycles)

14000 &
13500 £&=

13000

0
0 16 32 48 64 80 96 112 128

Secret

Figure 10.14: Unmitigated unrelated flow channel.

13300
13200
13100
13000

12900

Probability

Time (cycles)

12800 ===
12700 €
12600

12500

16 32 48 64 80 96
Secret

Figure 10.15: Mitigated unrelated flow channel from A (Kernel). .# = 0.0424. .#p =
0.0442.

106

Varun Sethu A Usable System Model for Time Protection

12900

12800

12700

12600

Probability

12500

Time (cycles)

12400 2
12300

12200

16 32 48 64
Secret

Figure 10.16: Mitigated unrelated flow channel from A (User-Level). .# = 0.0357. .#, =
0.0427.

13200

13000

& 12800 Z

9 =

9 2
Q

Q

£ £

~ 12600

12400 1

0 16 32 48 64 80 96 112 128
Secret

Figure 10.17: Mitigated unrelated flow channel from B (Kernel). .# = 0.0269. .#, =
0.0287.

107

A Usable System Model for Time Protection Varun Sethu

13200

13000

m

< 12800 Z

g 2
Ke)

Q

£ £

=

12600 o=

12400 £

16 32 48 64 80 96
Secret

Figure 10.18: Mitigated unrelated flow channel from B (User-Level). .# = 0.0258. .#, =
0.0280.

10.2 Performance

The primary cost associated with the presented cross-domain shared memory designs is
the overhead imposed at the domain switch. As such, this will be our primary benchmark
focus. It is worth pointing out that this section only performs micro-benchmarks and, as
such, is a poor representation of the true costs of cross-domain shared memory. There
exists an indirect cost associated with our design of cross-domain shared memory that
is difficult to capture without appropriate macro-benchmarks: the act of copying can
saturate the portion of the LLC associated with the reader domain (B) with dirty cache
lines. For a sufficiently large buffer, this evicts all the reader domain’s cache lines from
the LLC and saturates the corresponding cache sets, significantly increasing the cost of
subsequent cache misses. The current domain switch latency micro-benchmark does not
capture this cost; as such, future work must conduct a more holistic macro-benchmark of
this approach.

To benchmark the domain switch overhead we will adapt the copy latency benchmark
and have it flush the entire LLC and L1 cache between runs, this will in effect measure
the overhead imposed by the designs in the cold case, i.e. when none of the cache lines
associated with the kernel or shared buffer are present in the LLC. We will conduct the
benchmark with various buffer sizes, specifically buffers of size 1 page, 2 pages, 4 pages,
6 pages, 8 pages, ---, 18 pages, and 20 pages. Our benchmark environment is identical
to that of the timing channel benchmarks, the domain switch WCET is configured to be

108

Varun Sethu

150,000 cycles and the WCET of copying a single frame is configured as 55,000 cycles for

A Usable System Model for Time Protection

the in-kernel approach and 30,000 cycles for the user level approach.

To serve as a baseline, we first measure the cost associated with a domain switch and
selecting + scheduling the first thread when there are no frames to copy. When doing so,
we arrive at the result below. It is important to note that this measurement includes the
part of the domain switch that fence.t pads to a WCET. Additionally, due to errors in
the clock reset logic mentioned briefly in Appendix [B] this benchmark will also include the

amount of time it takes to trap into the kernel upon a CLINT.

Benchmark

Mean (Cycles)

Standard Deviation

Domain Switch Latency

161965

54 (0.03%)

The latency results for variable buffer sizes with the in-kernel approach is provided below.

Benchmark | Mean (Cycles) | Standard Deviation | Overhead
1 Page 216937 55 (0.03%) 34%
2 Pages 272007 63 (0.02%) 68%
4 Pages 382109 76 (0.02%) 136%
6 Pages 492300 83 (0.02%) 204%
8 Pages 602384 92 (0.02%) 272%
10 Pages 712659 101 (0.01%) 340%
12 Pages 822918 113 (0.01%) 408%
14 Pages 932930 121 (0.01%) 476%
16 Pages 1043054 123 (0.01%) 544%
18 Pages 1153043 125 (0.01%) 612%
20 Pages 1263082 122 (0.01%) 680%
And the results of the user-level approach are provided below.
Benchmark | Mean (Cycles) | Standard Deviation | Overhead

1 Page 203423 73 (0.04%) 26%
2 Pages 233835 87 (0.04%) 44%
4 Pages 295159 105 (0.04%) 82%
6 Pages 356057 118 (0.03%) 120%
8 Pages 417190 139 (0.03%) 158%
10 Pages 477877 151 (0.03%) 195%
12 Pages 539024 163 (0.03%) 232%
14 Pages 599834 181 (0.03%) 270%
16 Pages 660675 181 (0.03%) 308%
18 Pages 721304 191 (0.03%) 345%
20 Pages 781821 188 (0.02%) 383%

109

A Usable System Model for Time Protection Varun Sethu

These results demonstrate that cross-domain shared memory imposes a substantial over-
head on the domain switch latency, an overhead that scales linearly with the buffer size.
This is unsurprising though given how expensive the worst-case latency of copying a sin-
gle frame of memory appeared to be. It should be noted that this overhead is largely a
function of the memory hierarchy’s performance. By minimising the latency cost of L1
and LLC cache misses on Cheshire, we can lower the WCET bound for copying a single
memory frame.

10.3 Discussion

In this chapter, we evaluated the copy on domain switch approach and demonstrated that
it successfully mitigated all studied timing channels. We also demonstrated that this ap-
proach can be implemented at user-level without the assistance of the kernel, and doing
so only required a working implementation of cross-domain notifications. Unfortunately,
however, the studied design is costly, imposing a significant overhead on the domain switch
path. Specifically, in the kernel case, where a two-page buffer alone imposes a 68% over-
head on the domain switch, primarily due to the need to pad the copy operation to its
WCET. There is also an indirect cost to the copy on domain switch approach: a suffi-
ciently long buffer will cause the copying operation to saturate the LLC with dirty cache
lines. Assessing the resulting performance implications of the indirect cost requires macro-
benchmarks under realistic conditions, a study that was unfortunately not conducted in
this thesis.

Despite the limitations discussed, suggests that copy-on-domain-switch is the
only viable software-only approach to cross-domain shared memory when using colour-
based partitioning on Cheshire. As such, if we wish to improve the performance story for
cross-domain shared memory then we will require hardware mechanisms to flush specific
addresses from the LLC, enabling a determinisation-based approach that does not rely on
software pre-fetching.

10.4 Further Work

There are still some threads that have been left unresolved and need to be completed
as further work. The primary one being the need to conduct a more thorough holistic
benchmark of how copy-on-domain-switch performs under real-world circumstances. Ad-
ditionally, it was surprising that the WCET for the in-kernel approach was so much worse
than that of the user-level approach. This could be a quirk of Cheshire, but is very much
something that needs to be investigated a bit more.

The next piece of further work concerns the scheduling data channel outlined in Appendix
In our channel benchmarks, we applied a temporary workaround to demonstrate that
our approaches were effective. However, further work is needed to fully resolve this channel

110

Varun Sethu A Usable System Model for Time Protection

and re-run the domain switch latency benchmarks once the underlying cause has been
identified and addressed.

Finally, the results of this thesis demonstrate that copy-on-domain-switch is the only
viable software-only approach to cross-domain shared memory. This approach, however,
introduces substantial overhead. As a result, further work should focus on reworking
the current implementation of time-protection on Cheshire to leverage its dynamically
partitionable last-level cache. Julia Vassiliki is already exploring this approach, but the
results of this thesis highlight that it is necessary to achieve a more efficient implementation
of cross-domain shared memory. Moving to DPLLC would enable for a determinisation-
based approach that does not involve software pre-fetching, significantly reducing the
overhead imposed at the domain-switch. A DPLLC based approach to shared memory
may involve the introduction of new kernel APIs that allow for frames to be associated
with arbitrary LLC partitions. We may also have to extend the Domain capability to
indicate to the kernel that a partition requires flushing upon a domain switch.

111

A Usable System Model for Time Protection Varun Sethu

Chapter 11

Conclusion

This thesis explored extending the present system model for time-protection to incorporate
cross-domain notifications and shared memory. It achieved this successfully by introducing
and benchmarking a design for each communication primitive, demonstrating that no
information beyond what is explicitly sent could flow through the primitive. Additionally,
this thesis identified a few issues with the existing implementation of time-protection on
Cheshire, as outlined in Appendix [B] This was not discussed in much detail however due
to not being relevant to the overall aim of the thesis. Two of these channels interfered with
the results of this thesis, and as such, work was done to try to resolve those channels. One
of the identified channels was resolved properly, while a temporary workaround designed
to produce clean data for the sake of this thesis was suggested for the other.

11.1 Notifications

The design for notifications that we explored involved introducing a new notification con-
struct similar to the traditional notification. This construct defers the actual delivery of
the notification to the domain switch, and, to yield a simpler implementation, coalesces
multiple signals on a notification together to only awake one thread in the receiver domain.
The benchmarks we conducted demonstrated that this new design disallows information
backflow from the receiver domain B to the sender domain A and also prevents information
unrelated to a signal from flowing from A — B.

The design is not without its drawbacks. It imposes some overhead above what one would
naively expect from moving notification delivery to the domain switch. Furthermore, the
design can be generalised a bit further to allow for multiple signals to awake multiple
threads in the receiver domain.

112

Varun Sethu A Usable System Model for Time Protection

11.2 Shared Memory

This thesis also explored the problem of cross-domain shared memory. It demonstrated
that pre-fetching as a means of determinising microarchitectural state associated with
a shared buffer fails on Cheshire. It also introduced the concept of an eviction-chain
to explain how this failure occurs. While not explicitly studied, the conclusions of this
section should also generalise to any other architecture that maintains a randomised LLC
eviction policy, and lacks a mechanism for hardware-assisted determinisation. To the best
of my knowledge, the analysis methodology used to explain why pre-fetching fails is not a
methodology that has been previously discussed in the literature. The broader implication
of this result was that the only remaining feasible mechanism for shared memory that
allowed us to retain a colour-based LLC partitioning scheme was copy-on-domain-switch.

We implemented the copy-on-domain-switch approach and demonstrated how the ap-
proach could be moved to user-level, requiring no support from the kernel outside of a
working implementation of cross-domain notifications. Our benchmark results highlighted
that the approach disallows information backflow from the reader domain B to the sender
domain A, and prevents information that is not explicitly written to the shared buffer
from flowing from A — B. Copy-on-domain-switch is not without its drawbacks though.

The design introduced a significantly large overhead to the domain switch. The design is
also likely to degrade the performance of a system using shared memory because the copy
operation evicts cache lines associated with both the sender and receiver from the LLC.
However, this last claim requires thorough benchmarking and evidence for verification.
Regardless, the results of this thesis demonstrate that this is unfortunately the best that
can be achieved without utilising DPLLC.

The results of this thesis also motivate a direction of future work, namely moving the
present implementation of time-protection on Cheshire to make use of Cheshire’s dynami-
cally partitionable last level cache. DPLLC allows for specific partitions to be flushed from
the LLC, opening up a mechanism for determinisation that does not rely on pre-fetching,
enabling a more efficient implementation of cross-domain shared memory.

113

A Usable System Model for Time Protection Varun Sethu

Appendix A — Proof of Noise
Uniformity

This chapter provides a more concrete proof of the random-noise technique presented in
Assume that the input value X is some random variable with an unknown
distribution. Additionally, we denote U to be a random variable with distribution ¢/(0,n—
1). Let F be the random variable attained by applying the transformation

f@)=te+ ((z—=U—t.) modn)

to the random variable X. We will prove that F' is uniformly distributed. Substituting
everything and performing some algebra, we find that

F=f(X)=t.+({(X—-U-—t) modn)
=t.+ (X —-U) modn—t. modn) modn).

Since t. and t. mod n are constants, the only impact they have on the distribution of F'
is to make F' a shift of the distribution of (X — U) mod n. Thus, for the sake of analysis
we will focus on the distribution of (X — U) mod n, as if it is uniform, then F' will also
be uniform. For ease of notation, we denote Y = (X — U) mod n. It then follows that

Y=(X-U) modn
=(X modn—-U modn) modn
=(X modn-—U) modn.

The important detail here is that the distribution of X mod n is unknown, what is known,
however, is that it is a distribution over {0,1,---n — 1}. And as such, if X,, denotes the
random variable X mod n then

n—1
Y P(Xp=x)=1.
x=0

114

Varun Sethu A Usable System Model for Time Protection

Now consider P(Y = y).

n—1
P(Y:y):ZP(U:z’)-P(Y:y|U:z’)

P(Y:y)zzl-P(X:(y—i—i) mod n)

3|

Since we are summing over i € {0,1,---n — 1}, we will encounter every possible value of
X, exactly once, regardless of what y is. Thus,

i P(X,, =x)

1

n
x=0

1

n

Therefore, the probability of encountering a specific y is %, this result holds regardless of
what gy is. Thus, Y is uniformly distributed and by extension, so is F.

115

A Usable System Model for Time Protection Varun Sethu

Appendix B — Existing Timing
Channels

This appendix illustrates some timing channels that were found on the RISC-V port of time
protection to Cheshire, and where applicable their mitigation. I would like to acknowledge
Julia Vassiliki, Nils Wistoff, Dr Rob Sison and Prof Gernot Heiser, all of whom provided
a great deal of help and support when working towards investigating some of these timing
channels, particularly Julia, who spent a great deal of time and effort investigating the
VGA controller channel with me.

B.1 VGA Controller Contention

Cheshire’s VGA controller is a special piece of off-core hardware that sits in a tight loop
and repeatedly reads from a frame buffer stored in memory. As such, it becomes possible
for an attacker to use the contention caused by this controller to leak secrets between
domains, even with the mitigation of cache colouring. This is most evident when we
benchmark a user-level LLC channel. In this benchmark, the Trojan domain will allocate
a priming buffer in its own colour and the Spy domain will allocate a probing buffer in
its own colour. The Trojan will then prime cache lines in the priming buffer to encode a
secret, and the Spy will observe said secret by timing how long it takes to probe its entire
probing buffer. We expect cache colouring to mitigate this issue as the prime and probe
buffers should never overlap within the LLC, however when running this experiment on

Cheshire we observe the channel matrix in

This channel is caused by contention induced by the VGA controller. Since the VGA con-
troller is spinning in a tight loop and constantly reading from memory, the more memory
requests issued by a Trojan, the more VGA controller requests that are queued and backed
up. This directly affects the latency of the Spy’s subsequent reads. We can observe that
if we change the frequency at which the VGA controller scans the frame buffer, then the
strength of the channel reduces. Disabling the VGA controller via OpenSBI is the only
true fix for this issue, and doing so results in the timing channel in

116

Varun Sethu A Usable System Model for Time Protection

242000 - 107!

240000

238000

236000

(cycles)
Probability

ime

234000

T

232000

230000

0 64 128 192 256 320 384 448 512
Secret

Figure B.1: Unmitigated VGA channel.

L 10-1
216000 10

215500

215000

214500

(cycles)
Probability

214000

ime

T

213500

213000

212500

0 64 128 192 256 320 384 448 512
Secret

Figure B.2: Mitigated VGA channel.

117

A Usable System Model for Time Protection Varun Sethu

B.2 Timer Drift Channel

Presently, there does not appear to be hardware support on Cheshire for a core-local
timer interrupt that is raised on a periodic basis. As such, the present implementation
of time-protection on RISC-V will reset the timer interrupt by taking the current time
within the interrupt routine and then scheduling a new interrupt to be raised at time
now() + reset_cycles. This approach is problematic, as the time it takes the hardware
to trap into the kernel and run the interrupt routine is directly affected by the activities
of the domain that was running before the CLINT was raised. As a consequence, the
timestamp that is read by now() is controllable by an attacking process. This can be used
as a timing channel.

To demonstrate this channel, we will construct a benchmark similar to what was employed
to benchmark the latency of the recv function in The Trojan will allocate
a priming buffer within its own colour. To send a secret value of 1 the Trojan will prime
the entire priming buffer. To send a secret value of 0 it will do nothing. The Spy will
attempt to infer this secret by measuring the domain switch latency. It should be noted
that the effects of the drift in now() are not directly observable in the Spy’s next time-slice,
but actually in the time-slice that follows that. This is because the drift in now() affects
when the Spy’s time-slice elapses, not when it is scheduled. As such, to demonstrate this
channel, we will construct a channel matrix using the secret the Trojan had intended on
sending in its last time-slice. The broader implication of this is that the secrets that the
Trojan sends through this timer-drift channel are “delayed” by one time-slice. The timing

channel for this experiment is provided in

1e6 8.58586 x 1073
4.3142

4.3140

4.3138

Probability

4.3136

4.3134

0 1 2
Secret

Figure B.3: Timer drift channel.

118

Varun Sethu A Usable System Model for Time Protection
B.3 Scheduler Data Channel

On Cheshire, there appears to be another timing channel through the domain switch
latency. To replicate this channel, we will conduct a benchmark consisting of a Trojan
and a Spy. The Trojan will maintain a priming buffer allocated from its own colour. It
will send a secret of 1 by priming all the cache lines within that priming buffer, and send
a secret of 0 by doing nothing. The Spy will attempt to infer this secret by measuring
the domain switch latency. Note that this channel is distinct from the previous channel,
the previous channel was about drawing a correlation between the secret the Trojan sends
and the drift in the timer. This channel is about observing the correlation between the
Trojan’s secret and the immediate domain switch latency associated with switching from
the Trojan to the Spy. It is worth pointing out that in this benchmark, fence.t pad is
appropriately configured to pad everything up to the kernel image switch to a WCET.
When running the described benchmark, we acquire the channel matrix in

4.3142 — 5.8435 % 1073
4.3140
4.3138
4.3136
4.3134
4.3132 0
0 1 2

Secret

Probability

Figure B.4: Domain switch channel. .# = 0.0019. .#y = 0.0007.

By timing the latency of individual functions in the domain switch path the source of this
channel was traced back to accesses made to scheduler data, specifically

ksReadyQueuesL1Bitmap, ksReadyQueues and ksReadyQueuesL2Bitmap. These struc-
tures are accessed when determining the first thread in the new domain to scheduled.
Surprisingly, this data is supposed to be correctly partitioned. Each kernel image is sup-
posed to maintain its own copy of these structures that lie within its allocated colour.
Another interesting observation is that the strength of the timing channel is correlated
with the priority of the Spy thread, the channel matrix we see in [Figure B.4 was generated

119

A Usable System Model for Time Protection Varun Sethu

with a Spy of priority 200.

We will employ a rather hacky work-around to reduce the impact this pre-existing channel
has on measurements made in this thesis. The workaround involves pre-fetching appropri-
ate scheduler data on a domain switch. This is to be done before the fence.t invocation,
so the latency of the operation can be incorporated within the WCET padding. As stated
before, scheduler data is supposed to be correctly partitioned between domains. So, the
activities of one domain should not influence the state of another domain’s scheduler data
within the LLC. As such, it is highly likely that the cause of the channel is much deeper
and more nefarious, and it has simply just materialised as impacts on scheduler data for
now. Much more work needs to be done to identify the true cause of this channel and
mitigate it. Unfortunately, due to finding this channel rather late in my thesis, I was
unable to properly resolve this existing channel.

120

Varun Sethu A Usable System Model for Time Protection

Bibliography

James P. Anderson. Computer security technology planning study. Technical Report
ESD-TR-73-51, Vol. II, United States Air Force Electronic Systems Division, October
1972. URL https://apps.dtic.mil/sti/pdfs/AD0772806.pdf.

Arm Limited. Arm Architecture Reference Manual for A-profile architecture. Arm Lim-
ited, November 2024a. URL https://developer.arm.com/documentation/ddi0487/
latest.

Arm Limited. Arm Memory System Resource Partitioning and Monitoring (MPAM) Ar-
chitecture Specification. Arm Limited, November 2024b. URL https://developer.
arm.com/documentation/ihi0099/latest.

Daniel J. Bernstein. Cache-timing attacks on AES, April 2005. URL https://cr.yp.to/
papers.html#cachetiming,.

Benjamin A. Braun, Suman Jana, and Dan Boneh. Robust and efficient elimination of
cache and timing side channels. arXiv preprint arXiw:1506.00189, May 2015. URL
http://arxiv.org/pdf/1506.00189v1.pdf.

Ernie Brickell, Gary Graunke, Michael Neve, and Jean-Pierre Seifert. Software mitiga-
tions to hedge AES against cache-based software side channel vulnerabilities. TACR
Cryptology ePrint Archive, 2006:52, February 2006. URL https://eprint.iacr.org/
2006/052 . pdf|

Scott Buckley, Robert Sison, Nils Wistoff, Curtis Millar, Toby Murray, Gerwin Klein,
and Gernot Heiser. Proving the absence of microarchitectural timing channels. arXiv
preprint arXiv:2310.17046, October 2023. URL https://trustworthy.systems/
publications/papers/Buckley_SWMMKH_23.pdf.

Tom Chothia, Yusuke Kawamoto, and Chris Novakovic. A tool for estimating information
leakage. In International Conference on Computer Aided Verification, pages 690—-695,
Saint Petersburg, RU, July 2013. ACM.

David Cock, Qian Ge, Toby Murray, and Gernot Heiser. The last mile: An empirical
study of some timing channels on sel.4. In ACM Conference on Computer and Com-
munications Security, pages 570-581, Scottsdale, AZ, USA, November 2014. ACM.

Jack B. Dennis and Earl C. Van Horn. Programming semantics for multiprogrammed
computations. Communications of the ACM, 9:143-155, 1966. doi: 10.1145/365230.
365252,

121

https://apps.dtic.mil/sti/pdfs/AD0772806.pdf
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ihi0099/latest
https://developer.arm.com/documentation/ihi0099/latest
https://cr.yp.to/papers.html#cachetiming
https://cr.yp.to/papers.html#cachetiming
http://arxiv.org/pdf/1506.00189v1.pdf
https://eprint.iacr.org/2006/052.pdf
https://eprint.iacr.org/2006/052.pdf
https://trustworthy.systems/publications/papers/Buckley_SWMMKH_23.pdf
https://trustworthy.systems/publications/papers/Buckley_SWMMKH_23.pdf

[17]

[18]

[22]

A Usable System Model for Time Protection Varun Sethu

Digilent, Inc. Genesys 2 Reference Manual. Digilent, Inc. URL https://digilent.com/
reference/programmable-logic/genesys-2/start. Visited 2025-24-11.

Qian Ge. Principled Elimination of Microarchitectural Timing Channels through
Operating-System Enforced Time Protection. PhD thesis, UNSW, Sydney, Aus-
tralia, October 2019. URL https://trustworthy.systems/publications/papers/
Ge’,3Aphd . pdf.

Qian Ge and Curtis Millar. seL.4 Project channel-bench. https://github.com/SEL4PROJ/
channel-bench, 2019. Visited 2025-24-11.

Qian Ge, Yuval Yarom, Frank Li, and Gernot Heiser. Your processor leaks information —
and there’s nothing you can do about it. arXiv preprint arXiv:1612.04474, September
2017. URL https://trustworthy.systems/publications/papers/Ge_YLH_17.pdf.

Qian Ge, Yuval Yarom, and Gernot Heiser. No security without time protection: We need
a new hardware-software contract. In Asia-Pacific Workshop on Systems (APSys),
Korea, August 2018. ACM SIGOPS. doi: https://doi.org/10.1145/3265723.3265724.

Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time protection: the missing
OS abstraction. In EuroSys Conference, Dresden, Germany, March 2019. ACM. URL
https://trustworthy.systems/publications/csiro_full_text/Ge_YCH_19.pdfl

Gernot Heiser. Hardware Considerations: What Every OS Designer Must Know. https:
//cgi.cse.unsw.edu.au/~cs9242/24/lectures/02a-hw.pdf, September 2024.

Intel Corporation. Intel 64 and IA-82 Architectures Software Developer’s Manual, Volume
2A: Instruction Set Reference, A—L, December 2024. URL https://cdrdv2-public.
intel.com/843847/253666-sdm-vol-2a-dec-24.pdf.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. seli4: Formal verification of an OS kernel.
In ACM Symposium on Operating Systems Principles, pages 207-220, Big Sky, MT,
USA, October 2009. ACM.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal
Kolanski, and Gernot Heiser. Comprehensive formal verification of an OS microkernel.
ACM Transactions on Computer Systems, 32(1):2:1-2:70, February 2014. doi: 10.1145/
2560537.

Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre Attacks: Exploiting Speculative Execution. In IEEE Symposium on
Security and Privacy, June 2019.

Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In 16th Annual International Cryptology Conference on Advances in
Cryptology, pages 104-113. Springer, 1996.

122

https://digilent.com/reference/programmable-logic/genesys-2/start
https://digilent.com/reference/programmable-logic/genesys-2/start
https://trustworthy.systems/publications/papers/Ge%3Aphd.pdf
https://trustworthy.systems/publications/papers/Ge%3Aphd.pdf
https://github.com/SEL4PROJ/channel-bench
https://github.com/SEL4PROJ/channel-bench
https://trustworthy.systems/publications/papers/Ge_YLH_17.pdf
https://trustworthy.systems/publications/csiro_full_text/Ge_YCH_19.pdf
https://cgi.cse.unsw.edu.au/~cs9242/24/lectures/02a-hw.pdf
https://cgi.cse.unsw.edu.au/~cs9242/24/lectures/02a-hw.pdf
https://cdrdv2-public.intel.com/843847/253666-sdm-vol-2a-dec-24.pdf
https://cdrdv2-public.intel.com/843847/253666-sdm-vol-2a-dec-24.pdf

[27]

28]

Varun Sethu A Usable System Model for Time Protection

Butler W. Lampson. A note on the confinement problem. Communications of the ACM,
16:613-615, 1973. doi: 10.1145/362375.362389.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown: Reading Kernel Memory from User Space. In USENIX
Security Symposium, May 2018.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-level cache
side-channel attacks are practical. In IEEFE Symposium on Security and Privacy, pages
605-622, San Jose, CA, US, May 2015. IEEE.

Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser, and
Ruby B Lee. CATalyst: Defeating last-level cache side channel attacks in cloud comput-
ing. In IEEE Symposium on High-Performance Computer Architecture, pages 406—418,
Barcelona, Spain, March 2016. IEEE.

Licéas Criostoir Meier, Simone Colombo, Marin Thiercelin, and Bryan Ford. Constant-
Time Arithmetic for Safer Cryptography. Cryptology ePrint Archive, Paper 2021 /1121,
September 2021. URL https://eprint.iacr.org/2021/1121|

Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke, Sean
Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. sel.4: from general purpose to a
proof of information flow enforcement. In IEFEE Symposium on Security and Privacy,
pages 415-429, San Francisco, CA, May 2013. IEEE. doi: 10.1109/SP.2013.35.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: The
case of AES. In Proceedings of the 2006 Crytographers’ track at the RSA Conference on
Topics in Cryptology, pages 1-20, San Jose, CA, US, 2006. Springer.

Alessandro Ottaviano, Thomas Benz, Paul Scheffler, and Luca Benini. Cheshire: A
Lightweight, Linux-Capable RISC-V Host Platform for Domain-Specific Accelerator
Plug-In. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(10):3777—
3781, June 2023. doi: 10.1109/TCSII.2023.3289186.

Daniel Page. Defending against cache-based side-channel attacks. Information Security
Technical Report, 8(1):30-44, 2003.

Colin Percival. Cache missing for fun and profit. In BSDCan 2005, Ottawa, CA, 2005.
URL http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf.

PULP Platform. PULP-Platform’s transaction-tagger, 2023. URL https://github.com/
pulp-platform/transaction-tagger. Visited 2025-24-11.

PULP Platform. PULP-Platform’s AXI LLC flamingo, 2025a. URL https://github.
com/pulp-platform/axi_llc/tree/flamingol Visited 2025-24-11.

PULP Platform. OpenSBI for Cheshire, 2025b. URL https://github.com/
pulp-platform/opensbi/tree/cheshire. Fork of OpenSBI with Cheshire platform
support. Visited 2025-24-11.

123

https://eprint.iacr.org/2021/1121
http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf
https://github.com/pulp-platform/transaction-tagger
https://github.com/pulp-platform/transaction-tagger
https://github.com/pulp-platform/axi_llc/tree/flamingo
https://github.com/pulp-platform/axi_llc/tree/flamingo
https://github.com/pulp-platform/opensbi/tree/cheshire
https://github.com/pulp-platform/opensbi/tree/cheshire

[41]

[42]

[43]

[44]

[45]

[46]

A Usable System Model for Time Protection Varun Sethu

RISC-V International. OpenSBI: RISC-V Open-Source Supervisor Binary Interface, 2025.
URL https://github.com/riscv-software-src/opensbi. Visited 2025-24-11.

RISC-V International Security Horizontal Committee. Speculation Barriers —
Proposal of Work. Technical report, RISC-V International, February 2025.
URL https://riscv.atlassian.net/wiki/spaces/SXXX/pages/272629762/
Speculationy2BBarriers’2B-72BProposal’,2Bof2BWork.

Moritz Schneider, Daniele Lain, Ivan Puddu, Nicolas Dutly, and Srdjan Capkun. Break-
ing Bad: How Compilers Break Constant-Time Implementations, October 2024. URL
https://arxiv.org/abs/2410.134809.

seL4 Foundation. selL4 manual v13.0.0, Jul 2024. URL https://seld.systems/Info/
Docs/selL4-manual-latest.pdf.

Thomas Sewell, Simon Winwood, Peter Gammie, Toby Murray, June Andronick, and
Gerwin Klein. sel.4 enforces integrity. In Marko van Eekelen, Herman Geuvers, Julien
Schmaltz, and Freek Wiedijk, editor, International Conference on Interactive Theorem
Proving, pages 325-340, Nijmegen, The Netherlands, August 2011. Springer. doi: 10.
1007/978-3-642-22863-6_24.

Claude E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27:379-423, 1948. doi: 10.1145/584091.584093. Reprinted in SIGMOBILE
Mobile Computing and Communications Review, 5(1):3-55, 2001.

Bhanu C. Vattikonda, Sambit Das, and Hovav Shacham. Eliminating fine grained timers
in Xen. In ACM Workshop on Cloud Computing Security, pages 41-46, Chicago, IL,
October 2011. ACM.

Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C. Myers, and G. Edward Suh.
SecDCP: Secure dynamic cache partitioning for efficient timing channel protection. In
2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1-6, 2016.
doi: 10.1145/2897937.2898086.

Nils Wistoff, Moritz Schneider, Frank Gilirkaynak, Luca Benini, and Gernot Heiser.
Microarchitectural timing channels and their prevention on an open-source 64-bit
RISC-V core. In Design, Automation and Test in Europe (DATE), virtual, February
2021. IEEE. URL https://trustworthy.systems/publications/csiro_full_text/
Wistoff SGBH_21.pdf.

Nils Wistoff, Moritz Schneider, Frank Giirkaynak, Gernot Heiser, and Luca Benini. Sys-
tematic prevention of on-core timing channels by full temporal partitioning. IFEFE
Transactions on Computers, 72(5):1420-1430, 2023. doi: 10.1109/TC.2022.3212636.

Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: a high resolution, low noise, L3
cache side-channel attack. In Proceedings of the 23rd USENIX Security Symposium,
pages 719-732, San Diego, California, USA, August 2014.

124

https://github.com/riscv-software-src/opensbi
https://riscv.atlassian.net/wiki/spaces/SXXX/pages/272629762/Speculation%2BBarriers%2B-%2BProposal%2Bof%2BWork
https://riscv.atlassian.net/wiki/spaces/SXXX/pages/272629762/Speculation%2BBarriers%2B-%2BProposal%2Bof%2BWork
https://arxiv.org/abs/2410.13489
https://sel4.systems/Info/Docs/seL4-manual-latest.pdf
https://sel4.systems/Info/Docs/seL4-manual-latest.pdf
https://trustworthy.systems/publications/csiro_full_text/Wistoff_SGBH_21.pdf
https://trustworthy.systems/publications/csiro_full_text/Wistoff_SGBH_21.pdf

	Introduction
	Covert Channels and Side Channels
	seL4 and Time Protection
	Extending the Model of Time Protection
	Shared memory
	Notifications

	Thesis Problem Statement and Outline

	Background
	Caches and Their Architecture
	Address decomposition
	Cache architectures
	Cache colouring
	Cache hierarchy

	Timing Channels
	Flush + Reload
	Prime + Probe

	seL4 Background
	Capabilities
	Threads
	Virtual memory management
	Notifications
	Endpoints and IPC
	IRQs
	Domains

	Cheshire
	LLC
	Microarchitectural flush
	OpenSBI

	Time Protection in seL4
	Requirement 1 for Time Protection
	Requirements 2 & 3 for Time Protection
	Requirement 4 for Time Protection
	Requirement 5 for Time Protection
	Time Protection on RISC-V
	The domain switch on RISC-V

	Time Protection in seL4 — Taking It Further

	Related Work
	Constant Time Programming
	Pre-fetching and Forced Determinism
	Noise Injection
	Time-Padding
	Cache Partitioning
	CATalyst
	SecDCP
	Cheshire's dynamically partitioned LLC
	ARM MPAM

	Speculation Barriers
	Cross-Domain Notifications
	Channel Benchmarking
	Summary

	Benchmarking Methodology
	Quantifying Leakage
	Channel Matrices
	Benchmarking Environment

	Notification Design
	The Problem of Multiple Signals
	N signals awakens N threads
	N signals awakens 1 thread

	Notification Design and API
	Signalling
	Waiting
	Polling
	Domain association
	API as a state machine

	Information Flow Requirements
	Summary

	Notification Implementation
	General Implementation Details
	Signal Implementation
	Time-Padding
	Solution 1 — Hardware support
	Solution 2 — Noise injection
	Solution 3 — Error correction
	Bounding the WCET
	Evaluation and discussion

	Wait Implementation
	Domain Switch Delivery

	Notification Evaluation & Discussion
	Timing Channel Benchmarks
	Unrelated information flow
	Backflow channel
	Readiness channels
	Summary

	Performance
	Signal latency
	Poll latency
	Domain switch overhead

	Discussion
	Further Work

	Shared Memory Design
	Determinisation on Domain Switch
	Cache inclusivity
	Pre-fetching and a common colour
	Pre-fetching and a distinct colour
	Summary

	Copy-on-Domain-Switch
	Copy performed by the kernel
	Copy performed by a trusted thread
	Which to implement?

	Shared Memory Implementation
	Kernel Approach
	Domain and frame association
	Domain switch operations

	User-Level Approach
	Constant time-padding and bounding the WCET

	Shared Memory Evaluation & Discussion
	Timing Channel Benchmarks
	Direct reads/writes benchmark
	Copy latency benchmark
	Unrelated activity benchmark
	Summary

	Performance
	Discussion
	Further Work

	Conclusion
	Notifications
	Shared Memory

	Appendix A — Proof of Noise Uniformity
	Appendix B — Existing Timing Channels
	VGA Controller Contention
	Timer Drift Channel
	Scheduler Data Channel
	Bibliography

