
School of Computer Science and Engineering

Faculty of Engineering

The University of New South Wales

Improving the Safety of the Pancake

Language

by

Halogen Truong

Thesis submitted as a requirement for the degree of

Bachelor of Engineering in Software Engineering

Submitted: November 2025

Supervisor: Thomas Sewell Student ID: z5362371

Halogen Truong Improving the Safety of the Pancake Language

Abstract

Pancake is a research programming language with the goal of achieving low-level programming
that is formal verification friendly. However, the compiler’s lack of any kind of type safety, though
originally intentional, has revealed to be a major usability issue as the language sees more
rigorous use. The syntax for its simple type system compounds the issue, making code brittle
to changes and prone to subtle mistakes. This project addresses this problem by extending the
language and the compiler to shift burdens of identifying type errors away from the programmer.
The solution focuses on reporting type errors when they occur, minimising the syntax burden
associated with type checking and preventing type errors through new syntax that preserves
programmer intent. Evaluating this solution against Pancake’s key design goals reveals strong
improvements in the usability of the language, and a number of further avenues of improvement.

i

Halogen Truong Improving the Safety of the Pancake Language

Acknowledgements

I would like to thank Thomas Sewell for his guidance and patience as my supervisor throughout
the year amidst my unending distractions.

I am also grateful to Craig McLaughlin, Liam O’Connor and Johannes Åman Pohjola for their
literature recommendations, with extra thanks to Johannes who was always awake for advice
and feedback when Australians were asleep.

Special thanks goes to the current Pancake user-base, especially Junming Zhao and Richard
Shen, for providing thoughts and opinions on my changes.

Finally, I would like to thank my thesis peers for support during the project, with particular
thanks to Thomas Liang as author of the original Pancake scope checker, which established the
foundations for the conception of this project.

ii

Halogen Truong Improving the Safety of the Pancake Language

Contents

1 Introduction 1

2 Motivation 3

2.1 The Pancake Language and Its Design . 3

2.2 Pancake and Safety . 5

2.2.1 Memory Safety . 5

2.2.2 Type Safety . 5

2.3 Issues with Shapes in Pancake . 6

2.3.1 The Causes . 6

2.3.2 The Effects . 7

3 Literature Review 9

3.1 Safety and Usability in Other Languages . 9

3.2 Type Safety Techniques . 10

3.2.1 Checking vs Inference . 11

3.2.2 Bidirectional Typing . 11

4 Aim 13

5 Methodology 15

5.1 Shape Checking and Default Shape Declaration 15

iii

Halogen Truong Improving the Safety of the Pancake Language

5.1.1 Checking Inference Rules . 15

5.1.2 Syntax Extension . 18

5.1.3 Checking Implementation . 19

5.1.4 Compatibility and Pull Request . 20

5.2 Named Structs and Fields . 20

5.2.1 Syntax Extension . 20

5.2.2 Semantics Extension . 23

5.2.3 Checking Extension . 25

5.2.4 Compilation Pass . 26

5.2.5 Compatibility . 27

6 Results 28

6.1 Solution Output . 28

6.1.1 Checking/Default Demonstration . 29

6.1.2 Named Struct Demonstration . 32

6.2 Language Goals . 35

6.3 User Feedback . 36

6.4 Limitations and Future Work . 39

7 Conclusion 41

Appendix A: Shape Checking Rules 42

Appendix B: Existing Static Checks 46

Appendix C: Shape Checking Rules with Named Structs 47

Bibliography 52

iv

Halogen Truong Improving the Safety of the Pancake Language

Chapter 1

Introduction

Pancake is an in-development programming language that is designed as an alternative to C
for verifiable low-level programming. Its key design goals are ease of formal verification, a
minimal trusted computing base and usability by C-familiar systems programmers. As part of
this, it features a simplified, flexible memory model and a bare-bones, machine-word-based type
system, with no safety enforcements for either.

However, unlike with memory safety, the lack of type safety compromises these core design
goals, appearing to stem from neglect of the language’s features relating to types (referred to as
shapes). It most significantly threatens usability, as the lack of compiler checks for shapes forces
the programmer to manually find and fix any type errors, and such errors may be subtle and
unpredictable during run-time. This issue is exacerbated by inconvenient, error-prone and non-
descriptive syntax for its tuple-like structs, compounding the programmer burden of manually
inspecting their program’s shapes. As such, the addition of shape safety to Pancake is an obvious
target for improving system programmer usability.

The approach for adding shape safety is informed by other low-level languages and approaches
to type safety in literature. Examining languages such as C and Rust reveals that it possible for
safety to interfere with usability, especially with the language’s usefulness and practicality, so the
chosen approach must take care to minimise the introduction of new usability issues. Between
the standard type safety enforcement strategies of type checking and type inference, checking
offers understandability and practicality benefits in its familiarity to C programmers, and avoids
the need for complicated inference around struct shapes. However, it also introduces a greater
shape declaration burden than inference, which also compromises backwards compatibility. A
bidirectional typing approach aims to provide a middle-ground with the advantages of both,
but has limited precedent in imperative languages and should not be relied on as the primary
approach.

Based on this motivation and examination of the literature, the project aims to improve the
shape safety of Pancake as an avenue of improving language usability, especially by progressing
and conversing the key design goals. In particular, the proposed solution consists of three parts:
reacting to bad input using static shape checking; preserving existing syntax in the presence of

1

Halogen Truong Improving the Safety of the Pancake Language

the shape information required for shape checking by adding a default shape; and preventing
trivial shape errors by introducing C-like named structs to improve readability, robustness and
practicality. This solution designates most verification work that is consequently prompted as
out of the project scope.

These tasks are grouped into two phases, and this report details the design decisions and
methodology that comprise their implementation. The first phase includes shape checking and
the default shape feature, producing a pen-and-paper description of the checking algorithm us-
ing inference rules, extensions to the language to support the user providing additional shape
information, implementations and tests of both features, and a successful pull request into the
main Pancake compiler. The second phase consists of only the named structs feature, produc-
ing extensions to the language as well as its formal semantics, extensions to the description,
implementation and testing of the shape checking to include named structs, a simple compila-
tion pass that leverages the existing struct compilation strategy and a locally built, unverified
compiler binary for testing and evaluation.

The solution is evaluated with respect to the Pancake design goals, comparing this evaluation
with feedback from the target user-base, and limitations and future work are identified accord-
ingly. These evaluations show that the solution strongly addresses the design goals, and usability
in particular, but further improvements still remain to achieve the ideal levels of usability for
Pancake’s shape features.

2

Halogen Truong Improving the Safety of the Pancake Language

Chapter 2

Motivation

2.1 The Pancake Language and Its Design

Pancake is a research programming language in development as a verification-friendly alterna-
tive to C for low-level systems programming [Pohjola et al., 2023]. It is being developed by
the Trustworthy Systems (TS) research group at UNSW, in partnership with the University of
Gothenburg, The Australian National University, and Chalmers University of Technology.

Within systems programming, Pancake is aimed at device driver implementation, particularly
for TS projects such as Microkit [seL4 Foundation, 2023] and sDDF [Heiser et al., 2024], with
more rigorous use beginning over the past year. To this end, its key design focuses are ease of
formal verification, a minimal trusted computing base, and usability by systems programmers.

Ease of Verification. Formal verification of a given program, particularly the task of proving
functional correctness, is closely reliant on the semantics of the language the program is written
in — the specification for how each aspect of the language behaves. A key motivation behind the
Pancake language is the cost and complexity of verifying C code, as its semantics feature pain
points such as a complex memory model, ambiguous evaluation order and copious undefined
behaviour. Instead, Pancake’s formal semantics are designed to be simple, sidestepping these
pitfalls so the language is easier to reason about and functional correctness proofs are simpler.

Minimal Trusted Computing Base. The trusted computing base is what is assumed correct for
a program’s proof to apply to its run-time behaviour. For proofs at the source code level, this
connection is typically assumed correct in its entirety; that is, it is trusted. Pancake addresses this
by verifying its compiler’s end-to-end correctness, such that the machine code outputted is proven
to preserve the semantic behaviour of the input program, provided said behaviour is error free.
This correctness allows proofs at the Pancake level to apply to the compiler output, reducing the
trusted gap to between the machine code and hardware behaviour. It consists of proofs for the
individual compiler passes composed in sequence, and leverages the existing verified compiler
of the functional CakeML language [Kumar et al., 2014] as shown in Figure 2.1, implemented
in the HOL4 interactive theorem prover to directly integrate its proofs.

3

Halogen Truong Improving the Safety of the Pancake Language

Systems Programmer Usability. In order to reap the verification benefits of Pancake, systems
programmers must be willing and able to adopt and use it. As such, Pancake aims to be under-
standable, useful and practical to systems programmers, especially those well-versed in C. As
part of this, the language puts great emphasis on programmer flexibility and freedom, since a
key feature of C that makes it favoured by systems programmers is the easy low-level control
that higher-level languages abstract away or prevent.

Remove deadcode

Simplify program

Select target instructions

Perform SSA-like renaming

Force two-reg code (if req.)

Allocate register names

Concretise stack

Implement GC primitive

Turn stack accesses into
memory acceses

Rename registers to match
arch registers/conventions

Flatten code

Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

Parse concrete
syntax

Silver ISA

Introduce (raw) calls past
function preambles

Pancake passes

Transformations

Languages

CakeML syntax

CakeML AST

ClosLang:
last language
with closures
(has multi-arg

closures)

BVL:
functional
language

without
closures

DataLang:
imperative
language

BVI:
one global

variable

FlatLang:
language

without
high-level
features

Parse concrete syntax

Infer types, exit if fail

Introduce globals vars,
eliminate modules, etc.

Switch to de Bruijn
indexed local variables

Track closure values &
inline small funct

Fuse function calls
into multi-arg calls

Introduce C-style fast
calls where possible

Remove deadcode

Annotate closure creations

Perform closure conv.

Inline small functions

Fold constants /shrink
Lets

Split over-sized functions

Compile global vars into a
dynamically resized array

Optimise Let-expressions

Switch to imperative style

Combine adjacent
memory allocations

Remove data abstraction

Reduce caller-saved vars

Turn pattern matches into
if-then-else decision trees

Make some functions
tail-recursive

Global dead code elim.

CakeML passes

Transformations

Languages

Flatten structs

Normalise program

Call optimisation

Pancake AST

Pancake syntax

CrepLang:
imperative
language

without structs

LoopLang:
expressions

occur only on
RHS of

assignment
statementsReplace loops

with tail calls

Shrink cutsets and
delete unused
assignments

Figure 2.1: The shared compiler stack of Pancake and CakeML.

4

Halogen Truong Improving the Safety of the Pancake Language

2.2 Pancake and Safety

The safety of a programming language is the extent to which it prevents certain classes of bugs
and issues through compile-time and run-time features. Let us examine Pancake’s treatment of
safety through two popular language safety features: memory safety and type safety.

2.2.1 Memory Safety

A language that is memory safe prevents operations that may cause issues associated with mem-
ory, such as null pointer dereferences or out-of-bounds array accesses. Systems programmers
often rely on C’s lack of such safety; for example, being able to access seemingly arbitrary mem-
ory addresses is required when those addresses map to device memory.

Pancake does not enforce memory safety, and instead provides a simple and flexible memory
model wherein the programmer may freely access statically-allocated user memory, and an in-
terface for accessing memory shared with other programs. It takes the stance that memory
safety unnecessarily limits programmer freedom, complicates the language semantics and does
not provide any helpful information for creating functional correctness proofs. In other words, it
compromises the language’s design goals of ease of verification and systems programmer usabil-
ity, while providing no benefit to the language’s core purpose of facilitating formal verification.

To demonstrate Pancake’s lack of memory safety, consider the following Pancake program:

1 fun main () {
2 var x = 0;
3 st 0, x;
4 return 1;
5 }

Listing 2.1: Minimal example of invalid memory access

This program attempts to store the value of variable x to the local memory address 0, which is
equivalent to accessing NULL in C. Since Pancake has no memory safety features, there are no
checks to detect or prevent this during compilation nor run-time. When the program is run, it
attempts to access the 0 address and, depending on the specific platform being run on, triggers a
segmentation fault which crashes the program. Since this is considered an error in the Pancake
semantics, the program cannot be proven correct and the compiler correctness is not applicable.

2.2.2 Type Safety

A language that is type safe describes its data according to a type system and prevents operations
that violate this system, such as using a boolean where a character is expected or invoking
subtraction on a string. While C does have and enforce a type system, it also provides the ability
to cast data to other types. Systems programmers often use type casting to void * as a way to
circumvent C’s type system when moving and storing data that does not fit neatly within it.

5

Halogen Truong Improving the Safety of the Pancake Language

In place of a traditional type system, Pancake has what it calls its shape system, which describes
data only in terms of its memory representation. Namely, the possible shapes of data are ma-
chine words and structs, which are possibly-nested collections of machine words akin to tuples.
Similarly to the memory model, this simplified type system allows for simpler semantics and
greater programmer freedom, and Pancake has no safety features to enforce this type system.
However, unlike with memory safety, it is not clear that this lack of safety is necessary or help-
ful; in fact, it appears to be an undesirable artefact from shapes’ lack of development attention,
which is further explored in Section 2.3.1.

To demonstrate Pancake’s lack of shape safety, consider the following Pancake program:

1 fun main () {
2 var x = <0, 1, 3>;
3 return x.5;
4 }

Listing 2.2: Minimal example of invalid struct access

This program first declares a variable x, whose shape is a struct of 3 machine words. It then
attempts to access the element at index 5—structs are zero-indexed—which does not exist. Like
memory safety, there are no checks at compile- nor run-time to prevent this, and the compiler
produces machine code as if the element existed. When the program runs, the value obtained
will likely be 0, but in more complex programs this may result in garbage values that remain
as artefacts of other structs in the program. The program then continues with this value, which
can result in very subtle and possibly unpredictable bugs when the value is used elsewhere. Like
NULL accesses, invalid field access is considered an error in the Pancake semantics, so functional
correctness again cannot be proven nor does the compiler correctness guarantee apply.

2.3 Issues with Shapes in Pancake

2.3.1 The Causes

As alluded to in Section 2.2.2, though the initial decision against shape safety support in Pancake
stems from the design stance on safety, Pancake’s development being largely request-driven has
been a notable factor in the continued neglect of more complex shape features. The bulk of
Pancake programs thus far rely solely on machine words, revealing a self-perpetuating loop —
Pancake users choose to avoid struct features since they are unpolished, and Pancake developers
prioritise tasks other than struct features since they hear few requests to improve it.

Another contributing reason is the relationship between safety and compiler correctness. As
mentioned in Section 2.2, safety issues such as memory or type errors lead to error states in the
semantics. Since the compiler correctness proofs hinge on the input program being free from
such errors, inputting programs containing such errors cause the correctness to be vacuously
true. That is, since the condition that guards the proof guarantee is false, the compiler is free to
output whatever it pleases without violating the proof, but the behaviour of the output machine
code is not guaranteed. So, in the eyes of verification, the compiler is working correctly.

6

Halogen Truong Improving the Safety of the Pancake Language

2.3.2 The Effects

Let us explore the effects of this neglect through the following Pancake program, containing a
simple linked list representation and partial interface:

1 fun main () {
2 // {1,1}: head ptr, size
3 var llist = <@base, 0>;
4 // ...
5 llist = inc sz (llist);
6 // ...
7 return 1;
8 }
9

10 // increase linked list size by 1
11 fun inc sz ({1,1} ll) {
12 var size = ll.1 + 1;
13 return <ll.0, size>;
14 }

Listing 2.3: Sample linked list representation

Here, we represent the linked list as a struct containing a pointer to the list’s head node and
its size. They are initialised on line 3 with the @base keyword, which holds the address of the
bottom or base of the allocated user memory, and 0, respectively. Being two machine words,
we write the resulting shape as {1,1}. We also define a function, inc sz, which takes in such
a linked list and returns an updated value for the struct with the size field incremented. This is
done by accessing the size field at index 1 at line 12 and placing the new value of size in that
position when returning (leaving the head pointer unchanged). We then, at some point, call this
function on our linked list, as in line 5.

We then decide to extend our linked list representation by including a pointer to the list’s tail
node, slotting it between the existing fields to keep the pointers grouped. This gives the linked
list the new shape {1,1,1}, but we do not update inc sz:

1 fun main () {
2 // {1,1,1}: head ptr, tail ptr, size
3 /∗ previously var llist = <@base, 0>; ∗/
4 var llist = <@base, @base, 0>;
5 // ...
6 llist = inc sz (llist);
7 // ...
8 return 1;
9 }

10
11 // increase linked list size by 1
12 /∗ unchanged ∗/
13 fun inc sz ({1,1} ll) {
14 var size = ll.1 + 1;
15 return <ll.0, size>;
16 }

Listing 2.4: Extended linked list representation

7

Halogen Truong Improving the Safety of the Pancake Language

Since the inc sz function has not been updated, it no longer works as intended, still expecting
the old representation and using the index 1 for the size field. Calling this function with the
new representation does not make sense since the argument and return value shapes do not
mismatch, and the intention behind its field accesses has become misaligned from the code.
Despite this, the compiler accepts it without complaint, producing output that increments the
tail pointer and overrides the size field with a default value.

Although this is permitted for compiler correctness, the fact that the compiler does not identify
and communicate these issues even though static type analysis is possible is an issue for usability
and debugging. These errors are not being caught at compile-time and, in the worst case sce-
nario, may not be reliably replicable during run-time. This puts extra burden on the programmer
to detect, identify and fix such issues on their own, even though the compiler should be able
to detect the shape mismatches present if given enough information. The lack of debugging
support also becomes increasingly concerning as programs get larger and more realistic.

These usability issues are compounded by the struct syntax, which makes the code harder to
read and debug when issues are present. For instance, it takes a careful eye and a good memory
to notice that the size index used by inc sz should be 2 instead of 1, and since the field shapes
are identical, even static analysis cannot be of help since it has no awareness of the intention
behind each field. It also makes the code quite brittle, as every function using the linked list
representation must now be updated to account for the tail pointer, which becomes an even
bigger issue as structs get larger, requiring every mention of it to be replicated exactly. While
there is shorthand available for shapes—the new representation’s shape can be simplified as
3, for instance—the issue still stands that the syntax for defining struct shapes scales poorly.
Additionally, there is no syntax available to update individual struct fields; to return the updated
list value from inc sz, we must reconstruct the entire struct, which must also be updated in
tandem with the representation and has similar scalability issues.

From this example, we can see that the usability of Pancake suffers from a compiler that does
not detect and report shape issues in incoming programs, and from error-prone struct syntax
that poorly supports programmer intent and scalability, if at all. As such, unlike the treatment
of memory which is simple and unsafe by design, Pancake’s shapes are simple by design but
unsafe by neglect. Shapes’ lack of safety, along with the other side effects of their neglect, is a
usability issue that threatens the core design goal of the Pancake language of being accessible to
the systems programmers who will use it. Extending the compiler to address these issues, then,
is a key target for improvement.

8

Halogen Truong Improving the Safety of the Pancake Language

Chapter 3

Literature Review

3.1 Safety and Usability in Other Languages

Establishing how other low-level languages approach safety and how this interacts with usability
at a high level can inform the concerns and goals in determining how to approach improving
shape safety in Pancake.

C. C is considered the default language for low-level and systems programming, with origins
tied to the implementation of the Unix operating system. The key reason for this is its relatively
thin abstractions and high control over machine instructions and behaviours. Among these, as
described in Section 2.2, is that it lacks memory safety and provides a method of subverting
its type system (referred to as type punning) in the type casting feature. Systems programmers
regularly rely on this divergence from safety to enable the seemingly unsafe operations that
low-level code often demands.

Cyclone. Cyclone is a research language that extends C to address elements of type and
memory safety [Grossman et al., 2005]. This dialect of C introduces a number of features to
avoid errors such as out-of-bounds array accesses and NULL access without compromising the
performance and memory control of C by, for example, introducing a full run-time environment
as higher level languages do. It does so by adding information such as array bounds and union
tags which come with compile- and run-time checks on top of C, with the latter implemented
as safety checks inserted into the equivalent C code. This approach alleviates the programmer
burden of writing those checks manually, making it easier to engage in safer memory and type
usage in C-reliant situations.

Rust. Rust is a low-level language that applies stricter compile-time safety to systems pro-
gramming to provide safety without the performance overhead of a run-time environment. This
most notably includes tracking and limiting the access permissions of data, to address a variety
of memory errors. While this is intended to be the primary state of Rust code, known as safe
Rust, they also provide the unsafe keyword, allowing the programmer to deliberately mark code
as exempt from these safety checks, known as unsafe Rust. Unsafe Rust is intended to be used

9

Halogen Truong Improving the Safety of the Pancake Language

in situations where the safety features prevent the intended functionality under the following
conditions: sparingly, with clear intention and behind safe abstractions. Notably, this includes
supporting lower-level operations for which the compiler cannot guarantee safety, such as inter-
facing with devices or other programming languages. In practice, unsafe Rust finds usage both
in and out of this intention [Astrauskas et al., 2020], and demonstrates the need for low-level
code to step outside of safety features in order to be useful.

These examples support the stance that Pancake takes with memory safety, namely that the pres-
ence of safety can also be a threat to usability, particularly in terms of practicality and usefulness.
As such, considered approaches must take care not to introduce new usability issues in the pur-
suit of addressing existing ones, such as by compromising control or degrading performance.

3.2 Type Safety Techniques

The natural starting point to determine an implementation for shape safety is examining the
standard approaches for enforcing type safety at compile-time: type checking and type inference.

Type Checking. Type checking compares the pre-defined types of variables, functions and
values with how they are used, and throws errors when they do not match. It requires types to
be declared when creating new variables and functions—known as manifest typing—using these
declarations as the sole source of type information, and is recognisable in languages such as C.
As the algorithm walks through the input program’s internal representation, it collects the types
at each declaration and uses this with the types of literals and constants to determine whether
the arguments to function calls and operations, including initialisation and assignment, have
the correct types. As such, when type errors are reported, they often refer to mismatched types,
quoting the expected and actual types found, and occur where the mismatch between usage and
declared type was found.

Type Inference. Type inference looks only at the usage of variables and functions to determine
their type, and throws errors from uses that contradict prior inferences [Hindley, 1969; Milner,
1978]. It requires code to be annotated with types only where usage alone is insufficient to
determine the type, referred to as implicit typing, so type information comes from both usage
and annotations. In this case, the algorithm initially regards variables and functions as hav-
ing unknown types and incrementally builds up a collection of facts as it encounters usages of
them. As it does so, it attempts to unify the new information with the existing facts, including
to instantiate them with a type that is completely known. Hence, type errors reported from
inference typically refer to failed unification (conflicting information) and undecidability (insuf-
ficient information), and may occur either at the point of misuse or when a later intended usage
contradicts with that misuse.

10

Halogen Truong Improving the Safety of the Pancake Language

3.2.1 Checking vs Inference

From inspection, a checking-based approach comes with the usability advantage of familiarity,
since C programmers will be used to the manifest typing and error reporting style associated
with it. Debugging is also clearer, as the compiler has all the information it needs to report
issues, and similarly, the programmer can clearly track the compiler’s understanding of the
program’s types in the syntax. This contrasts with type inference, where scouring the file for the
missing or contradictory information, most of which is implicit, is necessary for fixing instances
of undecidability or failed unification.

Checking also has the added benefit of avoiding inference about structs, also known as record
or row types. Such inference would introduce the need to consider row-polymorphism since, for
instance, accessing the first field of a struct is possible for any struct with more than one element.
This is a deceptively complex endeavour [Simon, 2014], which risks unnecessary complexity and
exceeding the scope of the project.

There is also some support in the literature for the usability benefits of checking. Though empir-
ical studies in programming language design are scarce, one experiment found that static type
checking was favourable over dynamic typing—where types are determined and checked at run-
time—for debugging type errors [Hanenberg et al., 2014]. This result was attributed to error
information being more informative and having better locality—that is, being reported closer to
the source of the issue—which is also a benefit that checking, anecdotally, holds over inference.

However, a checking-based approach introduces a shape declaration burden that did not exist
in the language previously, namely for variables and function return values. This impacts the
practicality of the language, where inference would reduce the annotations required. It also
introduces a backwards compatibility issue for existing Pancake code.

3.2.2 Bidirectional Typing

One less common technique that exists is bidirectional typing, which combines both checking and
inference [Pierce and Turner, 2000]. This technique aims to avoid both the increased annotation
burden of checking and the risk of undecidability from inference. As such, it is a promising
alternative to purely checking or inference approaches.

Work has been done to develop a recipe and criteria for creating bidirectional typing rules from
a non-bidirectional system [Dunfield and Krishnaswami, 2021]. This recipe describes a process
of identifying and handling the following components:

• Variable lookups
• Explicit annotations
• Directional changes
• Syntax that introduces or eliminates a type connective (such as a function arrow)

The categorisation of introductions and eliminations, which makes up the bulk of the recipe, is
closely related to functional language features. A likely candidate for such a type connective in

11

Halogen Truong Improving the Safety of the Pancake Language

Pancake is structs, so one avenue of investigating bidirectional shapes is to ensure expressions
with a struct shape are checked and not inferred, then apply the recipe around that. That being
said, the authors note that there is difficulty in applying the recipe to imperative systems that
do not align well with this introduction-elimination categorisation, and limited precedent was
found for other work applying this recipe to imperative languages. This implies that, while a
promising technique, it may not turn out to be a viable one for Pancake after looking at the
entire type system, and so the chosen shape safety approach should not rely heavily on this
possibility.

12

Halogen Truong Improving the Safety of the Pancake Language

Chapter 4

Aim

The high-level aim of the project is to improve shape safety in Pancake from the perspective of
a usability feature. It should do so without compromising the language’s key design goals of
verification ease, a minimal trusted computing base and usability for systems programmers.

To this end, the solution should progress the language’s usability goals of understandability,
usefulness and practicality. It should address known issues such as insufficient compiler support
for diagnosing shape issues; and a syntax that increases the likelihood of errors and is blind to
programmer intention. It should also conserve existing strengths, avoiding major degradations
in, for instance, complexity, backwards compatibility or performance.

Following the focus on usability and the Pancake project’s claim that static safety does not aid
in program correctness, achieving formal type safety is not a priority for the project nor are
any verification aspects that may arise from the solution. The solution should focus on the lan-
guage design decisions and implementation, so substantial proof obligations may be delegated
to future work but should still be considered against the Pancake design goals.

The project hypothesises that the aim is achievable with the following three step strategy.

React to bad input. The compiler should be extended with a shape safety enforcement step
in the style of traditional static type checking. This step should detect input programs containing
shape issues, prevent the program from reaching the main compilation sequence and report the
issue to the programmer appropriately. The Pancake syntax should be extended such that users
are able to declare sufficient shape information for the compiler to carry out the analysis.

Preserve existing good input. The additional declaration burden required for shape checking
threatens both language practicality and backwards compatibility. To address this, noticing that
the bulk of existing Pancake code features largely machine words, the syntax for shape decla-
rations should allow omitted shapes, with a machine word shape assumed in its place for the
purposes of shape checking. This simplified default shape approach is chosen over a bidirectional
typing approach since the latter has limited precedent in being applied to imperative languages,
while the former has more predictable benefits and feasible required effort.

13

Halogen Truong Improving the Safety of the Pancake Language

Prevent future bad input. The current struct syntax is inconvenient, brittle, easy to misread
and is not well-representative of programmer intent. Before even reaching shape checking, there
is a high likelihood of shape errors in a program using structs, prompting additional debugging
overhead. The language should be extended with an additional struct shape akin to C structs,
where names may be declared for the overall shape and its fields. Referring to the existing struct
shape as raw structs for disambiguation, this named struct feature can then encode programmer
intent within the declared names and incorporate this information into shape checking, while
also abstracting away the underlying shape to be more convenient and less brittle.

Other features, such as bidirectional typing, can then be addressed as stretch goals. Another
stretch goal is addressing the lack of support for direct struct field assignment, a notable point
of friction in struct usability but not directly related to the usability of shape safety.

The solution should be developed with the expectation of being integrated into the mainline
compiler repository, bar any tasks delegated to future work.

The evaluation of the solution, and its composite design decisions, should consist of a number
of qualitative judgements:

• Does the solution advance the usability design goal?
• Does the solution avoid degrading the language design goals?
• Do the target users agree with the previous two assessments?

These questions should then inform the limitations and future work of the project.

14

Halogen Truong Improving the Safety of the Pancake Language

Chapter 5

Methodology

Implementation for the solution had two phases: the shape checking and default shape decla-
rations as one phase, and the named struct feature as the second. This immediately offsets the
declaration burden of checking through the default shape feature. Each phase was intended to
be merged into the main repository upon completion. The stretch goals were not reached during
the duration of the project.

5.1 Shape Checking and Default Shape Declaration

5.1.1 Checking Inference Rules

Work on the shape checker began with laying out the inference rules that dictate the condi-
tions that make up a shape correct program, and therefore the component steps of the checking
algorithm to derive this status. This largely served as a planning phase for the checking imple-
mentation — the rules exist only in pen-and-paper form, without a formal HOL4 definition, and
were not used for any manual derivations.

The checks introduced at this phase of the project can be summarised as follows:

1. Values provided to variable initialisation and assignments must match their declared shape
2. Arguments provided to operators must match their expected shape
3. Arguments provided to functions must match their declared shape
4. Return values within functions must match their declared shape
5. Field accesses for structs must use an index that exists within the struct’s shape
6. The declared return shape for functions must not exceed 32 words total
7. Functions declared for exporting using the multiple entry points feature must use single

words for their arguments and return value

The first five of these conditions are self-explanatory, aligning with the established goals of type
checking. The size limit on returned shapes comes from the language semantics and is tied to the

15

Halogen Truong Improving the Safety of the Pancake Language

current implementation of function returns. The word limit on exported functions—functions
that are exposed for calling from outside Pancake—is due to the limits of the platform calling
conventions upon which the export feature is based.

The shape checking rules use the judgements summarised in Table 5.1, with the full rules for this
phase listed in Appendix A. The syntax components used in these judgements—sh, exp, stmt ,
decl and program—use the abstract syntax representation of Pancake used within the compiler.
For instance, the shapes 1 and {1,1} are written as One and Comb [One,One]. Since some of
these components may form part of another, judgements may reference other judgements in the
rule set and/or be recursive.

Table 5.1: The shape checking judgements and their readings.

Judgement Reading
ΓV ; ΓG ⊢ exp : sh exp has shape sh in variable context ΓV ; ΓG

scope; ΓV ; ΓG; ΓF ⊢ stmt ok stmt shape checks in scope, variable and function
context ΓV ; ΓG; ΓF

ΓG; ΓF ⊢ decl ⇝ Γ′
G; Γ

′
F decl updates global variable and function context ΓG; ΓF

to produce Γ′
G; Γ

′
F

ΓG; ΓF ⊢ decl ok decl shape checks in global variable and function
context ΓG; ΓF

program ok program shape checks

As an example, consider the following stmt rule, DEC:

ΓV ; ΓG ⊢ exp : sh
scope; ΓV , v : sh; ΓG; ΓF ⊢ stmt ok

scope; ΓV ; ΓG; ΓF ⊢ Dec v sh exp stmt ok
DEC

This rule can be read as:

The local variable declaration Dec v sh exp stmt is shape correct in a given context
if, first, the initialising expression exp matches the declared shape sh in that context
and, second, the statement with this declaration in scope stmt is shape correct when
the variable v is added to the context with the shape sh.

While most of the rules follow naturally from the aforementioned checks, the following details
reflect specific existing features of Pancake:

• Expressions used as addresses in load and store operations are simply checked to have the
shape One, as opposed to C pointers which identify the type of the data being pointed to.

ΓV ; ΓG ⊢ addr : One

ΓV ; ΓG ⊢ Load sh addr : sh
LDS

ΓV ; ΓG ⊢ addr : One
ΓV ; ΓG ⊢ exp : sh

scope; ΓV ; ΓG; ΓF ⊢ Store addr exp ok
ST

16

Halogen Truong Improving the Safety of the Pancake Language

• All variables must be initialised at declaration. This is to prevent both the possibility of
use before initialisation and the need to check for this possibility.

ΓV ; ΓG ⊢ exp : sh
scope; ΓV , v : sh; ΓG; ΓF ⊢ stmt ok

scope; ΓV ; ΓG; ΓF ⊢ Dec v sh exp stmt ok
DEC

empty; ΓG ⊢ exp : sh

ΓG; ΓF ⊢ Decl sh v exp ⇝ ΓG, v : sh; ΓF
GLOB

• Function calls are specific statements and may not appear in expressions. This is to ensure
Pancake’s expressions are effect-free for verification simplicity, such that evaluating them
does not have side effects such as changing variable values.

f : sh, [sh1 .. shn] ∈ ΓF

ΓV ; ΓG ⊢ exp1 : sh1 .. ΓV ; ΓG ⊢ expn : shn
scope; ΓV , v : sh; ΓG; ΓF ⊢ stmt ok

scope; ΓV ; ΓG; ΓF ⊢ DecCall v sh f [exp1 .. expn]stmt ok
DECCALL

f : sh0, [sh1 .. shn] ∈ ΓF

v : sh0 ∈ ΓV

ΓV ; ΓG ⊢ exp1 : sh1 .. ΓV ; ΓG ⊢ expn : shn

scope; ΓV ; ΓG; ΓF ⊢ AssignCall v handle f [exp1 .. expn]ok
ASSIGNCALL

• All global variables and functions are added to the context before all function bodies are
checked, so all global variables and functions are in scope for all function bodies regardless
of declaration order, but the relative scope of global variables between each other does
depend on declaration order.

empty; empty ⊢ decl1 ⇝ ΓG2; ΓF2 .. ΓGn ; ΓFn ⊢ decln ⇝ ΓG; ΓF

ΓG; ΓF ⊢ decl1 ok .. ΓG; ΓF ⊢ decln ok

[decl1 .. decln]ok
PROG

On the other hand, these details betray design decisions of the checking algorithm:

• Shape declarations are treated as the true source of programmer intent. For instance, the
size limit for function return shapes is checked at the function declaration and the shapes
of return expressions are expected to match the declared return shape.

f ̸= “main ”
size (sh0) ≤ 32

Γ ⊢ Func sh0 f false [(v1, sh1) .. (vn , shn)] stmt ⇝ Γ, Fn f : sh0, [sh1 .. shn]
FUNCSTATIC

ΓV ; ΓG ⊢ exp : sh

Body sh; ΓV ; ΓG; ΓF ⊢ Return exp ok
RETURN

17

Halogen Truong Improving the Safety of the Pancake Language

• The return shape of the current function is stored within the scope while checking func-
tion bodies. This allows the checks for return statements and tail calls—function calls
whose return value are immediately returned by the function calling them—to reference
the current scope and match the two return shapes.

ΓV ; ΓG ⊢ exp : sh

Body sh; ΓV ; ΓG; ΓF ⊢ Return exp ok
RETURN

f : sh, [sh1 .. shn] ∈ ΓF

ΓV ; ΓG ⊢ exp1 : sh1 .. ΓV ; ΓG ⊢ expn : shn

Body sh; ΓV ; ΓG; ΓF ⊢ TailCall f [exp1 .. expn]ok
TAILCALL

5.1.2 Syntax Extension

Shape checking requires that users explicitly declare the shapes of all variables, function argu-
ments and returns. While such shape declarations were already present for global variables,
function arguments and certain local variables prior to the project, the declarations of function
returns and the general case for local variables had to be extended to take in a shape at the
concrete syntax level and store it at the abstract syntax level. Since this phase also included
the default shape feature, each shape declaration site had to be made optional, with an omitted
shape being filled in with a machine word.

The changes to the concrete syntax were isolated to the parsing stage, which consists of the
following steps:

1. Lexing the input program into tokens
2. Parsing the tokens into an initial tree structure, with tokens grouped into nodes according

to the expected sequence for each language component
3. Converting the parse tree into the actual abstract syntax structure, which is then passed

into the rest of the compiler

The lexer was extended with a token with no concrete syntax equivalent that represents the
default shape. The parser was then extended to add shape declarations to local variables and
function returns, and make all shape declarations save the new default shape token to the parse
tree when omitted. This inserted-token approach sees its benefit in the conversion step, where
it can be detected as any other shape would be and mapped to One. The alternative approach,
to save nothing to the parse tree when the shape declaration is omitted, clashes with existing
structures in the parser that do the same — if two elements in a tree node may be omitted but
only one of them is, the conversion requires extra steps to distinguish which one was provided.

The abstract syntax updates, consisting solely of additional shape arguments in the structures for
local variable and function declarations, were comparatively very simple. However, due to the
prevalence of their use throughout the compiler, many definitions referencing the abstract syntax
had to be updated. Since the change itself was small and had no impact on the compilation steps
or verification, it was fairly simple to update all usage sites, including in proofs.

18

Halogen Truong Improving the Safety of the Pancake Language

5.1.3 Checking Implementation

The shape checking and its associated tests were implemented as a direct extension of the prior
static checker for Pancake, which was in turn built off the scope checker previously implemented
by Thomas Liang. It is invoked after parsing and before the main compilation passes. Any errors
that are found at this point halt compilation after being reported, while warnings are reported
but do not prevent compilation. There are currently no warnings invoked in the shape checking
portion of the checker.

Static Checker. The static checker was implemented as prior work to the project,
and integrated into the mainline compiler as preliminary work1. It added a number
of miscellaneous checks to the scope checking of functions and variables, targeting
general cases where the compiler may produce output that does not make sense.
A notable example is rejecting functions with missing return statements, which can
cause execution to run off the end of a function and into the one following if allowed
to compile. The full list of cases covered is listed in Appendix B. The work also
included streamlining the error and warning reporting machinery, as well as setting
up a simple testing environment for the checking step.

The checking algorithm2 closely follows the steps laid out in the inference rules. The existing
context in the static checker was extended to track the shapes of variables and function signa-
tures, which are populated at each declaration point. One notable decision was to combine the
tracking of shapes with the existing mechanism for estimating local or shared addresses into
one datatype, as this added struct field granularity to the estimation mechanism, which was
previously brushed over. This combined datatype then received a number of helper functions to
compare them against other shapes, both in this representation and the abstract syntax repre-
sentation. Several helper functions were also written to standardise error messages associated
with shape issues, as well as to handle error reporting within a sequence of checks to report the
specific element prompting the error, such as the arguments of a function.

The testing for the checking algorithm was similarly an extension of the existing test suite
for the static checker3. These tests have a unit-test style; for instance, the shape mismatch
checks are tested with different passing or failing combinations of shapes in each location where
they may occur. The testing is necessary since the static checker is orthogonal to the compiler
correctness—it merely bars certain programs from entering the main compiler sequence and
makes no transformations—and contributes to the overall regression testing suite.

1The pull request for the static checker work can be found at https://github.com/CakeML/cakeml/pull/1138.
2The implementation is located in the pancake/panStaticScript.sml file.
3These tests are located in the pancake/static checker/panStaticExamplesScript.sml file.

19

https://github.com/CakeML/cakeml/pull/1138

Halogen Truong Improving the Safety of the Pancake Language

5.1.4 Compatibility and Pull Request

With the checking, default feature and requisite language extensions implemented, only miscel-
laneous compatibility steps remained before being able to open a pull request for the first phase
of work.

First, various pieces of documentation in the repository were to be updated, such as the NEWS.md

file that records user-facing changes to the language, and the list of checks recorded at the top
of the static checker file.

The second requirement deals with how the compiler goes through a translation step into
CakeML while being built. This allows the compiler to compile itself and aso benefit from
the correctness proofs on the CakeML side. This means that the translation steps must be made
aware of any new functions added to the implementation of the compiler, and only supports
features of HOL4 that can be expressed in CakeML. Unfortunately, because these updates are
typically only addressed at the end of any given body of work updating the compiler, implemen-
tations that rely on HOL4 library functions that aren’t supported by the translator typically are
not identified until this stage, and with some obfuscation by error messages that are specific
to the translator’s inner workings. This was true for the shape checker, which used the EVERY2

function to walk through the constituent list of shapes for two structs to check if every pair
matches. After the issue was finally identified, the implementation was updated to use mutually
recursive functions to do this check instead, which the translator could easily handle.

The pull request itself was unfortunately delayed due to having the global variables work as
a dependency, which overlapped with this first stage. The work existed as part of the private
version of the repository, which meant that the shape checking work also could not be made
public until the global variables work was approved for public release into the main repository.
This dependency also created logistical issues with collaboration during the implementation of
this stage. Thankfully, the work was approved not long after the phase was completed, allowing
the pull request to be made, checked against the regression tests and successfully merged in4.

5.2 Named Structs and Fields

5.2.1 Syntax Extension

Where the syntax updates required for the first stage were largely minimal, the updates for the
named struct feature were more invasive. Both the concrete and abstract syntax required an
additional top-level declaration structure for declaring the struct name and fields, a new kind of
shape distinguished from the existing raw structs, and new kinds of expressions for the named
versions of struct constants and field accesses.

4The pull request for the first phase of the project can be found at https://github.com/CakeML/cakeml/pull/1221.

20

Halogen Truong Improving the Safety of the Pancake Language

Concrete Syntax

The chosen concrete syntax for these constructs is as follows:

1 struct my struct {
2 1 single,
3 2 double,
4 3 triple
5 }
6 var my struct s = my struct <
7 single = 4,
8 double = <5, 6>,
9 triple = <1, 2, 3>

10 >;
11 var 2 d = s. double ;

Listing 5.1: Minimal example of named struct syntax.

Here, a struct with fields of varying size is given the name my struct, with field names single,
double and triple. The shapes greater than 1 are existing syntax shorthand for raw structs
containing that many words. The global variable s is initialised with a struct constant, while the
other, d, is initialised with only the double field of this struct, which is accessed by name.

Notice that the struct constant syntax includes the names of both the struct and the fields. This
was done so that the eventual shape checking extension for named structs can easily tell what
the intended struct name is, and what fields are expected for that name. Otherwise, it has to
determine the struct name based on the fields present before it can be checked to match the
declared shape. In this scenario, the checker would have to guess at the intended named struct,
since the shape isn’t determined by the length of the struct as it is with raw structs — the process
becomes akin to inference! Taking inspiration from Rust’s syntax for structs, we instead bake the
name of the struct into the expression. This also avoids the need for field names to be unique
across the entire program.

Parsing Stage

Parsing this new syntax came with a couple of puzzles.

Distinguishing named shapes and defaulted identifiers. When faced with an identifier at
a shape declaration location, the existing parsing style could not distinguish between the case
where that identifier referred to a struct name and the case where it referred to the function or
variable being declared where the shape has been omitted. Mixing up these cases could result
in parsing failure despite a perfectly acceptable input program.

To combat this, the parser was refactored to pair together shape declarations with the identifier
it describes. It then attempts to parse the entire pair during appropriate declaration points and,
if tokens for both are not found, reattempts parsing just the identifier and saves the default
shape token. This clearly establishes the order in which the cases are considered and preserves
the existing method for converting parsed shapes.

21

Halogen Truong Improving the Safety of the Pancake Language

Nested field access by index and name. The parser included field index accesses among
the expressions with highest precedence — the “order of operations” prioritisation of a given
structure within a language, where only higher precedence operations may be considered sub-
expressions of lower-precedence ones. This set of expressions, which included things such as
identifier names and numeric literals, was already rather unwieldy in the number of options
it included. As such, it was desirable for the named field access to not be added to these
expressions. However, doing so would result in the parser not allowing name access as a sub-
expression of index access; the expression x.a.0 would not be accepted without additional
parentheses as (x.a).0 while x.0.a would be parsed without issue.

So, this set of highest precedence expressions was refactored to remove index accesses, which
was given its own precedence level below the highest that it shares only with named field access.
This refactoring was somewhat complex to propagate into the conversion step of the parsing,
since the parsed groupings are much more complicated to reason about than the abstract syntax.
Once it was done, however, the refactor also addressed the premature rejection of indexing into
numeric literals — 1.0 was previously considered a parsing error as opposed to a shape error.

Abstract Syntax

On the abstract syntax side, the new declarations and expressions were straightforwardly mod-
elled from existing structures. However, the question remained of how to represent the named
struct shape.

The two possible options were for the field information to be stored within every instance of the
shape, or instead to be stored in a central context and looked up when needed, with the shape
only carrying the name. The former allows named struct shapes to be more self-contained, but
may result storing in redundant information in multiple places. It also requires the shapes to
be populated during the conversion step in the parsing stage, which, as mentioned, is rather
difficult to work with and would involve creating a context of all the declared structs anyway.
This made the latter option a tentatively more viable choice, and ended up being carried through
to the final implementation version.

There were also number of candidate HOL4 data structures to use for this context, from high
level mappings akin to dictionaries to less abstracted but simpler structures such as lists of pairs.
This list of pairs representation, known as an association list, was chosen for the flexibility in
being able to use the simple abstractions available from the HOL4 library and the underlying
list-of-pairs structure without abstractions. The order of struct declarations is then baked into
the ordering of the list.

That being said, the choice to use this central context did not come without difficulties. One of
the requirements for functions in HOL4 is proven termination for recursive functions — that is,
a recursive function should be guaranteed to eventually terminate when called with arbitrary
arguments. This typically involves identifying an argument that maps to some number such
that the number decreases with every recursive call, standing in for the number of calls remain-
ing. In most cases, HOL4 is able to identify this argument on its own and prove termination

22

Halogen Truong Improving the Safety of the Pancake Language

automatically.

However, with the introduction of named struct shapes, functions that recurse over a shape
structure can no longer use the remaining sub-shapes as this measurement, as the field shapes
are pulled from the struct context and not the named struct shape argument itself. In fact, such
functions are no longer guaranteed to terminate — if the field of a named struct has the struct
itself as its shape, the function will recurse infinitely. This meant there were two tasks at hand:
ensure such functions do terminate, and manually prove their termination.

In order to combat this issue, a new requirement is established for shape safety under named
structs: named structs can only use other structs for their fields if those structs have already
been declared. This mirrors the scoping treatment of global variables, and all global variables
and functions should still be allowed to see all named structs. This requirement meant that
recursive calls could truncate the current context, such that it only contained the structs that
existed at the time of declarations.

With this, the measurement for termination could consider both the size of remaining shape
structure and the length of the struct context — eventually we will run out of shapes to recurse
on, whether from the input shape structure or the context. Since the issue of termination proofs
lay squarely within the realm of verification, plenty of assistance was solicited from supervisors
and similar in order to complete the actual manual proof.

5.2.2 Semantics Extension

As part of propagating the abstract syntax changes, the HOL4 formalisation of Pancake’s lan-
guage semantics is also updated to include the named structs feature5.

The semantics describes the evaluation of expressions down to either word or raw struct values,
while the top-level declarations and function body statements are evaluated as changes in the
program state. Each of the abstract syntax additions was fully integrated into this description,
with a new kind of value for named structs. It now also describes the process of building up
a struct context as struct name declarations are encountered, feeding this context to the global
variable and function declarations for use, and finally to the function bodies, which pull from this
context as needed to ensure struct name constants and field accesses adhere to their declared
shapes and names.

This integration reflects the decision to have named structs be unrelated to their raw counter-
parts from the perspective of the user. Namely, struct names are not an alias like C’s typedef

feature, as this does not enforce the programmer intent that has been provided. Preserving this
intent into the abstract syntax and semantics allows the shape checking to do more powerful
analysis. It also means there are no subtyping relationships between the two shapes, or indeed
any polymorphism of any kind. In this way, whenever a raw struct is expected in a program, a
named struct with the same underlying structure will never be accepted by the shape checking,
and vice versa.

5The semantics is located in the pancake/semantics/panSemScript.sml file.

23

Halogen Truong Improving the Safety of the Pancake Language

The Case Against Type Aliasing and Polymorphism

The importance of this decision is clearer not in the comparison between a named struct and
its raw counterpart, but in comparing two name structs that share the same raw equivalent.
Consider the following named structs, which both have {1,1,1} or 3 as their raw equivalent,
and an example operation on 3:

1 struct my point 3d {
2 1 x,
3 1 y,
4 1 z
5 }
6 struct my vector 3d {
7 1 x,
8 1 y,
9 1 z

10 }
11 fun 3 incr 3 (3 a) {
12 return <a.0 + 1, a.1 + 1, a.2 + 1>;
13 }

Listing 5.2: Example of equivalently structured but distinct named structs.

We now examine different relationships these three shapes can have other than being entirely
unrelated.

Type Aliasing. The simplest approach is to declare both my point 3d and my vector 3d as
being equivalent shapes to 3, just under different names. This means that these two named
structs are also equal to each other, so the incr 3 function can receive and be used with any of
the three, as can any function or variable expecting one of these shapes.

This approach leaves the feature as no more than a convenient but thin abstraction over the raw
struct. It completely abandons the goal of imbuing more programmer intention in the struct
syntax since different names may be used interchangeably, and was deemed not suitable for the
project.

Subtype Polymorphism. A natural approach that distinguishes between the two named structs
is to think of them as specific subsets of the raw struct; that is, my point 3d and my vector 3d

are subtypes of 3, so they may be used in place of it. However, a programmer is likely to look
at incr 3, expect to be able to pass it, say, a my point 3d, and then expect to be able to assign
the result to a my point 3d variable. In subtype polymorphism, this is not permitted, as the
assignment is attempting to coerce the more general 3 result into the more specific my point 3d,
even though it originated as one.

Ad-hoc Polymorphism. Considering this, the next approach may be to treat my point 3d and
my vector 3d as instances of 3, similar to a type class. This means the 3 shape acts like an
interface, which may be instantiated with any named struct that fulfils this interface; note that
the raw 3 shape is then also an instance. In other words, if a my point 3d is given to incr 3,
the function is now about my point 3d rather than 3 for that usage, allowing the expected
return value assignment behaviour. However, it also raises the question of whether the two

24

Halogen Truong Improving the Safety of the Pancake Language

instantiations of 3 are required to be the same, and if not, how the programmer may signal that
they intend them to be the same.

Explicit Coercion. For either of the above forms of polymorphism, there is the possibility
of supporting explicit coercion from raw structs to named ones, such that a programmer can
specify that a 3 should be converted to, for example, a my point 3d. This would mirror the
implicit coercion from my point 3d to 3 provided by the polymorphism and likely use the struct
name as an operator.

These polymorphism approaches add complexity for both the programmer and the compiler
implementation. Not only do they go against Pancake’s simple semantics design, they are not
obviously useful in the systems-level code Pancake is intended for. As such, the named struct
feature did not incorporate any of these features.

Propagating Semantics Extensions

Pancake’s language semantics is only used in the compiler proofs and related verification tool-
ing, not the implementation. Although it was updated with the named structs feature, the
propagation of these changes in existing proofs was declared out of the project scope.

5.2.3 Checking Extension

Each of the components of the shape checking feature were updated to account for the named
struct feature. This included the inference rules, implementation and testing.

The additional shape checks introduced are:

• Shape names must be defined and in-scope
• Field accesses for named structs must use a name that exists within the struct’s shape
• Concrete struct values must include every field exactly once
• Values provided to struct fields within concrete struct values must match their declared

shape

The first condition stems from the scoping requirement from Section 5.2.2. Note that the check
for accessing named fields and that for raw index fields in Section 5.1.1 prevent using one access
method for the other, maintaining their lack of relationship established in Section 5.2.2.

In other to fulfil these, the judgements are updated as in Table 5.2. The separated contexts have
been combined for conciseness. Note the additional context entries for struct names and the
new judgement for well-scoped shapes. The full rules for the updated checking algorithm in the
second phase are listed in Appendix C.

25

Halogen Truong Improving the Safety of the Pancake Language

Table 5.2: The updated shape checking judgements for named structs.

Judgement Reading
Γ ⊢ sh ok sh is wellformed in context Γ
Γ ⊢ exp : sh exp has shape sh in context Γ
scope; Γ ⊢ stmt ok stmt shape checks in scope, context Γ
Γ ⊢ decl

name
⇝ Γ′ decl adds a struct name to context Γ to produce the updated

context Γ′

Γ ⊢ decl ⇝ Γ′ decl adds a global variable or function to context Γ produce the
updated context Γ′

Γ ⊢ decl ok decl shape checks in context Γ
program ok program shape checks

The checking implementation is extended accordingly. The struct context for this implementa-
tion also uses association lists to take advantage of the flexibility described in Section 5.2.2, as
well as existing functions for the abstract syntax, such as the word-size calculation for shapes.
Using the higher level mapping structures present in the rest of the context would require un-
necessarily converting between the two representations. Error messages are also improved.

Upon updating the test suite, the limits of the unit-testing style began to show. The testing
file reached approximately 5500 lines by the end of these updates, with the tests being largely
simple but very tedious. For instance, looking at shape mismatches alone, there were 7 sites
targeted for possible shape mismatches and 8 permutations of incorrect pairings at each site.
This already elides some varieties of function call and, with success cases, produces upwards of
45 test cases for mismatches alone. There is currently no tooling support for test maintenance.

5.2.4 Compilation Pass

The named struct feature introduces new syntax constructs with new behaviour, and these need
to be compiled. Recall from Figure 2.1 that the main compilation sequence consists of a number
of passes which transform an input program along the compiler’s intermediate representation
languages. The passes that apply to the Pancake abstract syntax are a simplifier that performs
some syntax-shuffling, a pass that compiles global variables into user memory accesses and one
that transitions the program to CrepLang, a flattened version of Pancake without any structs.

In order to leverage the existing handling of raw structs in the translation to CrepLang, a sepa-
rate compilation pass was added to compile named structs into their raw equivalents. This was
placed between the simplification and global variable passes to minimise the changes propa-
gated into the global variable pass. This means that all named struct features are not expected
to be present within either of the passes that follow it. Noticing that nonsense cases, such as vari-
ables being out of scope or features that should have already been compiled away, are handled
silently in these later passes, their treatment of named struct features are implemented simi-
larly similarly. The soundness of these silent failures is guarded in verification by the relevant
components in the compiler correctness verification, and in practice by the static checking.

26

Halogen Truong Improving the Safety of the Pancake Language

Note that the shape checking extension for named structs does not impose an order on the fields
in a named struct constant. This means the compilation should appropriately handle any field
order within constants without causing the fields to become misaligned from other usages of
that same named struct. In order to achieve this, the compilation pass references the declaration
order of the fields, which is preserved in the context via a nested association list between the
fields and their shapes. It then reconstructs the struct using the field order, with the expressions
safely rearranged thanks to Pancake’s effect-free expressions mentioned in Section 5.1.1.

Since this new pass extends the main compiler sequence, the compiler correctness proofs must
be updated, which was also declared out of the project scope. Unfortunately, this limited con-
fidence in the correctness of the pass implementation to manually tested sample input. To this
end, a local version of the compiler with named struct support that side-steps the verification
was built. This binary was used in manual testing and demonstrations.

5.2.5 Compatibility

As with the previous project phase, the documentation and translation steps needed to be up-
dated with the new changes. The more invasive changes and now-broken compiler correctness
meant that several proofs contained within the translation had to be side-stepped and delegated
to future work. There was also some difficulty with the 32-bit specific translation updates, where
slight differences from the 64-bit version required explicitly making the translator aware of a
HOL4 library function, OPT MMAP. This takes in a function that takes a single argument and op-
tionally returns a value, and applies it on a provided list of arguments, optionally returning a list
of outputs. Since this is a fairly common operation in functional programming and the compiler,
it was expected to have already been translated elsewhere.

Due to the outstanding proof obligations, no pull request has yet been made for this phase6.
However, the simplicity of the passes and data structures involved suggests it is feasible.

6The progress is visible at https://github.com/halogentlepersuasion/cakeml/tree/pan_shape_structs.

27

https://github.com/halogentlepersuasion/cakeml/tree/pan_shape_structs

Halogen Truong Improving the Safety of the Pancake Language

Chapter 6

Results

6.1 Solution Output

The three steps of the proposed solution strategy were implemented, summarised in Table 6.1.

Table 6.1: The outputs of the implementation phases.

Checking/Default Shape Phase Named Struct Phase
Inference rules Syntax extensions

Syntax extensions Semantics extensions
Implementation Inference rule extensions

Test suite Checking & test suite extensions
Translation extension Compilation pass
Merged pull request Translation extension

To demonstrate the user-facing effect of the solution, we revisit the partially updated linked list
program from Section 2.3.2:

1 fun main () {
2 // {1,1,1}: head ptr, tail ptr, size
3 var llist = <@base, @base, 0>;
4 // ...
5 llist = inc sz (llist);
6 // ...
7 return 1;
8 }
9

10 // increase linked list size by 1
11 fun inc sz ({1,1} ll) {
12 var size = ll.1 + 1;
13 return <ll.0, size>;
14 }

Listing 6.1: Extended linked list representation with errors.

28

Halogen Truong Improving the Safety of the Pancake Language

6.1.1 Checking/Default Demonstration

We begin with the code as it appears in Listing 6.1. Recall that the inc sz function is currently
being called with an incorrect argument shape and its return value is being used as an incorrect
assignment, on line 5. It also accesses the wrong field on line 12 and returns a new list value
with one field missing in line 13.

Let us use the shape checker to guide the repair of this program. Placing this program into a
file llist.pk and attempting to compile it as-is by specifying the Pancake flags and input and
output files, we receive the following error message:

$ cake --pancake < llist.pk > llist.S

ERROR: shape error

AT (UNKNOWN 7:12): expression to initialise local variable llist

has shape {1,1,1} instead of declared shape 1 in function main

From this message, we can see that the compiler was not able to shape check the initialisation
of the variable llist because we did not add a shape annotation for it. This led the compiler
to assume our intended shape was 1, even though we know that we did intend to be a {1,1,1}.
We can rectify this by adding such an annotation:

1 fun main () {
2 // {1,1,1}: head ptr, tail ptr, size
3 /∗ previously var llist = <@base, @base, 0>; ∗/
4 var {1,1,1} llist = <@base, @base, 0>;
5 // ...
6 llist = inc sz (llist);
7 // ...
8 return 1;
9 }

10
11 // increase linked list size by 1
12 fun inc sz ({1,1} ll) {
13 var size = ll.1 + 1;
14 return <ll.0, size>;
15 }

Listing 6.2: Linked list program with variable shape declaration.

After which the shape checker provides the new error:

$ cake --pancake < llist.pk > llist.S

ERROR: shape error

AT (6:4 6:22): value for argument ll given to function inc_sz has

shape {1,1,1} instead of declared shape {1,1} in function main

29

Halogen Truong Improving the Safety of the Pancake Language

Now we notice that this mismatch highlights the out-of-date argument shape of the inc sz

function, and amend it to the new representation, {1,1,1}:

1 fun main () {
2 // {1,1,1}: head ptr, tail ptr, size
3 var {1,1,1} llist = <@base, @base, 0>;
4 // ...
5 llist = inc sz (llist);
6 // ...
7 return 1;
8 }
9

10 // increase linked list size by 1
11 /∗ previously fun inc sz ({1,1} ll) { ∗/
12 fun inc sz ({1,1,1} ll) {
13 var size = ll.1 + 1;
14 return <ll.0, size>;
15 }

Listing 6.3: Linked list program with updated argument shape.

The next error points out the lack of shape declaration for the inc sz return value as it did for
llist, causing the assumed shape to cause a mismatch when assigning:

$ cake --pancake < llist.pk > llist.S

ERROR: shape error

AT (5:4 5:22): result of function call inc_sz assigned to local

variable llist has shape 1 instead of declared shape {1,1,1} in

function main

We can again update the signature for inc sz, this time to include the missing shape:

1 fun main () {
2 // {1,1,1}: head ptr, tail ptr, size
3 var {1,1,1} llist = <@base, @base, 0>;
4 // ...
5 llist = inc sz (llist);
6 // ...
7 return 1;
8 }
9

10 // increase linked list size by 1
11 /∗ previously fun inc sz ({1,1,1} ll) { ∗/
12 fun {1,1,1} inc sz ({1,1,1} ll) {
13 var size = ll.1 + 1;
14 return <ll.0, size>;
15 }

Listing 6.4: Linked list program with updated return shape.

30

Halogen Truong Improving the Safety of the Pancake Language

With all mismatches between the signature and usage of inc sz fixed, the shape checker turns
our attention to the function body, where the original return value does not match the updated
return shape:

$ cake --pancake < llist.pk > llist.S

ERROR: shape error

AT (14:11 14:19): expression to return has shape {1,1} instead

of declared shape {1,1,1} in function inc_sz

Here, we recall that the new field in the list representation holds the tail pointer, which the
function should not change, at the index 1, and add this to our return value:

1 fun main () {
2 // {1,1,1}: head ptr, tail ptr, size
3 var {1,1,1} llist = <@base, @base, 0>;
4 // ...
5 llist = inc sz (llist);
6 // ...
7 return 1;
8 }
9

10 // increase linked list size by 1
11 fun {1,1,1} inc sz ({1,1,1} ll) {
12 var size = ll.1 + 1;
13 /∗ previously return <ll.0, size>; ∗/
14 return <ll.0, ll.1, size>;
15 }

Listing 6.5: Linked list program with updated return value.

With this, the shape checker is finally happy and the program compiles:

$ cake --pancake < llist.pk > llist.S

$

Note that we did not need to provide a shape declaration for the size local variable in inc sz,
since the default shape matched its intended shape. Also note, however, that the value of the
new size is still incorrect despite successfully shape checking. It is still calculated via accessing
the 1 index, but the shape checker cannot distinguish the intention between different raw struct
fields that have the same shape.

31

Halogen Truong Improving the Safety of the Pancake Language

6.1.2 Named Struct Demonstration

While we could just fix the size variable with a change of its index, this is not a scalable fix,
and would require further updates in the future with any changes to the list representation.
Instead, we define a named struct representation llist t for the linked list, with the intention
of replacing the raw version, such that we can signal our intent for each of the fields:

1 /∗ new declaration ∗/
2 struct llist t {
3 1 head,
4 1 tail,
5 1 size
6 }
7
8 fun main () {
9 // {1,1,1}: head ptr, tail ptr, size

10 var {1,1,1} llist = <@base, @base, 0>;
11 // ...
12 llist = inc sz (llist);
13 // ...
14 return 1;
15 }
16
17 // increase linked list size by 1
18 fun {1,1,1} inc sz ({1,1,1} ll) {
19 var size = ll.1 + 1;
20 return <ll.0, ll.1, size>;
21 }

Listing 6.6: Linked list program with new named struct declaration.

Since we have only added this new declaration and left the prior lines unchanged, there is no
need to run the shape checker immediately, though doing so as a sanity-check indeed raises no
errors.

We now want to propagate this new shape in the main and inc sz functions. We begin by
replacing each instance of the {1,1,1} shape declaration with llist t:

1 struct llist t {
2 1 head,
3 1 tail,
4 1 size
5 }
6
7 fun main () {
8 /∗ previously var {1,1,1} llist = <@base, @base, 0>; ∗/
9 var llist t llist = <@base, @base, 0>;

10 // ...
11 llist = inc sz (llist);
12 // ...
13 return 1;
14 }

32

Halogen Truong Improving the Safety of the Pancake Language

15
16 // increase linked list size by 1
17 /∗ previously fun {1,1,1} inc sz ({1,1,1} ll) { ∗/
18 fun llist t inc sz (llist t ll) {
19 var size = ll.1 + 1;
20 return <ll.0, ll.1, size>;
21 }

Listing 6.7: Linked list program with named structs in shape declarations.

In this partial state, the shape checker points out that the llist variable now needs to be
initialised with an llist t, not the existing {1,1,1}:

$ cake --pancake < llist.pk > llist.S

ERROR: shape error

AT (9:8 13:12): expression to initialise local variable llist has

shape {1,1,1} instead of declared shape llist_t in function main

We update this constant to specify the named struct we wish to use, and to map each provided
value to its field name:

1 struct llist t {
2 1 head,
3 1 tail,
4 1 size
5 }
6
7 fun main () {
8 /∗ previously var llist t llist = <@base, @base, 0>; ∗/
9 var llist t llist = llist t <

10 head = @base, tail = @base, size = 0
11 >;
12 // ...
13 llist = inc sz (llist);
14 // ...
15 return 1;
16 }
17
18 // increase linked list size by 1
19 fun llist t inc sz (llist t ll) {
20 var size = ll.1 + 1;
21 return <ll.0, ll.1, size>;
22 }

Listing 6.8: Linked list program with named struct constant initialisation.

The next issue is within inc sz, where the attempted size access into the argument still uses
index 1. Not only does the 1 index no longer hold the size field, with the named struct repre-
sentation, it now no longer exists:

$ cake --pancake < llist.pk > llist.S

ERROR: shape error

AT (UNKNOWN 21:23): expression shape llist_t has no field

at index 1 in function inc_sz

33

Halogen Truong Improving the Safety of the Pancake Language

This error would also apply to the 0 and 1 index accesses in line 21, so we update all field
accesses in inc sz to use the matching field name:

1 struct llist t {
2 1 head,
3 1 tail,
4 1 size
5 }
6
7 fun main () {
8 var llist t llist = llist t <
9 head = @base, tail = @base, size = 0

10 >;
11 // ...
12 llist = inc sz (llist);
13 // ...
14 return 1;
15 }
16
17 // increase linked list size by 1
18 fun llist t inc sz (llist t ll) {
19 /∗ previously var size = ll.1 + 1; ∗/
20 var size = ll.size + 1;
21 /∗ previously return <ll.0, ll.1, size>; ∗/
22 return <ll.head, ll.tail, size>;
23 }

Listing 6.9: Linked list program with struct field access by name.

Our final issue is similar to that in Listing 6.7, namely that our return value in inv sz is of the
old {1,1,1} shape and not llist t:

$ cake --pancake < llist.pk > llist.S

ERROR: shape error

AT (22:11 22:29): expression to return has shape {1,1,1}

instead of declared shape llist_t in function inc_sz

As such, we update the returned constant in a similar manner:

1 struct llist t {
2 1 head,
3 1 tail,
4 1 size
5 }
6
7 fun main () {
8 var llist t llist = llist t <
9 head = @base, tail = @base, size = 0

10 >;
11 // ...
12 llist = inc sz (llist);
13 // ...
14 return 1;

34

Halogen Truong Improving the Safety of the Pancake Language

15 }
16
17 // increase linked list size by 1
18 fun llist t inc sz (llist t ll) {
19 var size = ll.size + 1;
20 /∗ previously return <ll.head, ll.tail, size>; ∗/
21 return llist t <
22 head = ll.head, tail = ll.tail, size = size
23 >;
24 }

Listing 6.10: Linked list program with named struct constant return.

With this, the shape checker is happy once again, the inc sz function code matches the intention
and the representation is more robust to future updates:

$ cake --pancake < llist.pk > llist.S

$

6.2 Language Goals

Recall Pancake’s language design goals of ease of formal verification, a minimal trusted comput-
ing base, and usability by systems programmers; as well as the established usability sub-qualities
of understandability, usefulness and practicality. We examine how well the implemented solu-
tion progresses and conserves these goals.

The shape checking feature:

• allows the compiler to support the user in detecting and diagnosing shape errors. It does
so by notifying the user of the presence and location of these errors at compile time instead
of leaving the issue to be discovered at run-time. This improves practicality.

• requires increased explicit shape declarations where there was previously none to provide
enough information for the checking algorithm. This can serve as implicit documenta-
tion for the shapes of identifiers in a program for the programmer and others who read
the code. The compiler then reports any shape errors by explaining the details of the
mismatched shapes that it found. This improves understandability.

The default shape declaration feature:

• reduces the required shape declarations necessary for shape checking by allowing omitted
shapes to be assumed as machine words. This was informed by the observation that the
majority of existing Pancake program use only words, and any that use raw structs are
expected to explore moving to named structs. As such, it also maximises the backwards
compatibility of the new features. This preserves practicality.

35

Halogen Truong Improving the Safety of the Pancake Language

The named struct feature:

• abstracts the underlying shape details of a struct behind custom names. This better com-
municates programmer intent, provides robustness to changes and avoids replicating the
raw struct syntax at every use site. This improves understandability and practicality.

• integrates the named structs behaviour into the language semantics, treating the feature
as more than just type aliases. This strengthens the shape checker’s ability to utilise pro-
grammer intent to distinguish named structs, which is carried into verification efforts that
interface with the language semantics. This reduces the need to remember and reason
about raw struct indexes. This improves practicality and ease of formal verification.

• avoids using polymorphism relationships such as subtyping in the treatment of named
structs during shape checking. It instead opts for requiring shapes to be exact matches.
This allows the relationship between named and raw structs with equivalent underlying
structures to remain simple. This preserves understandability and ease of formal verification.

• expresses named struct expressions one-to-one with raw structs and compiles them ac-
cording to this relationship. This means there is no performance overhead at run-time of
named structs compared to raw structs. This preserves usefulness.

• delegated outstanding proof obligations to after the project. This is particularly notable
for integrating the new compiler pass into the end-to-end correctness proofs. Due to the
nature of the feature, it is expected that these proof obligations are feasible to fulfil. Once
this is complete, this will preserve the minimal trusted computing base.

Overall, we see that, based on the design decisions behind it, the solution exhibits strong im-
provements and preservations of Pancake’s design goals. In situations where preservation has
not yet been maintained, doing so has been identified as future work and deemed feasible.

6.3 User Feedback

Evaluation of the solution is not complete without input from the target user-base that will
make use of the new features. For this, we examine feedback provided by a volunteer within
Trustworthy Systems with substantial Pancake development history in actual device drivers (rel-
ative to the language’s age). The volunteer was given the local unverified build of the compiler
containing named struct support. They chose a few existing device drivers and updated them
with named structs as they saw fit. The shape checking and named struct features were then
discussed within the context of use in realistic Pancake programs.

Many Pancake device drivers exist as translations of drivers implemented in C. Within those C
drivers, interactions with structs exists in two major forms: directly via global variables (to track
state or implement data structure) or indirectly via pointers (to provide interfaces). The two
historic translation methods for the former usage exist:

1. Direct user memory access, where raw structs are saved at predefined addresses and ac-
cessing specific fields involves loading from those addresses with an offset matching the
field position. This method made ample use of the C preprocessor to provide macros
for operations such as field access or assignment. This method was common before the

36

Halogen Truong Improving the Safety of the Pancake Language

introduction of the global variables feature.
2. Separated global variables for struct fields, where the individual fields of a C struct are

saved as separate global variables which can then be used by name. These field variables
were often single words due to the nature of the C structs. Multiple instances of a struct
all require such variables to be defined for each instance. This method came after the
introduction of the global variables feature.

The pointer-based usage, by necessity, only uses the first user memory technique.

For example, the following C struct represents the buffer queues used for transporting data
between, for instance, device drivers and other components, and has two global instances:

1 typedef struct net queue handle {
2 /∗ available buffers ∗/
3 net queue t ∗free;
4 /∗ filled buffers ∗/
5 net queue t ∗ active ;
6 /∗ capacity of the queues ∗/
7 uint64 t capacity ;
8 } net queue handle t ;
9

10 net queue handle t rx queue ;
11 net queue handle t tx queue ;

Listing 6.11: C struct variables for network queues.

The direct memory access representation involves defining many preprocessor macros to pro-
vide a more C-like interface to struct interactions and avoid manually transcribing address cal-
culations. Such a translation of net queue handle t may look like so (where the @biw literal
represents the number of bytes in a machine word):

1 # define NETFREE OFFSET 0
2 # define NETACTIVE OFFSET @biw
3 # define NETCAPAC OFFSET @biw ∗ 2
4
5 # define RXQUEUE ADDR @base
6 # define TXQUEUE ADDR @base + @biw ∗ 3
7
8 # define get rxfree (free) \
9 var free = lds 1 (RXQUEUE ADDR + NETFREE OFFSET); \

10
11 # define set rxfree (free) \
12 st RXQUEUE ADDR + NETFREE OFFSET , free; \
13
14 # define get txfree (free) \
15 var free = lds 1 (TXQUEUE ADDR + NETFREE OFFSET); \
16
17 # define set txfree (free) \
18 st TXQUEUE ADDR + NETFREE OFFSET , free; \
19
20 // ...

Listing 6.12: Pancake memory access for network queues.

37

Halogen Truong Improving the Safety of the Pancake Language

On the other hand, the more “modern” approach that takes advantage of the global variables
feature and separates the fields would look like so:

1 var 1 rx queue free = 0;
2 var 1 rx queue active = 0;
3 var 1 rx queue capacity = 0;
4
5 var 1 tx queue free = 0;
6 var 1 tx queue active = 0;
7 var 1 tx queue capacity = 0;

Listing 6.13: Pancake global words for network queues.

The named struct feature enables a third possible translation technique for global C structs:
global variables with named struct shapes. The net queue handle translation would then look
like so:

1 struct net queue handle t {
2 1 free,
3 1 active,
4 1 capacityt
5 }
6
7 var net queue handle t rx queue = net queue handle t <
8 free = 0, active = 0, capacity = 0
9 >;

10 var net queue handle t tx queue = net queue handle t <
11 free = 0, active = 0, capacity = 0
12 >;

Listing 6.14: Pancake global named structs for network queues.

Examining it under the Pancake designs goals as in Section 6.2, the technique of combining
global variables and named struct shapes:

• is a closer translation of the C source, is more concise and better captures the intent behind
the original structs. The link between the different fields of a given instance are maintained
outside of variable names, and a C-familiar reader is more likely to understand what the
struct is for. This improves understandability.

• removes the need for recalling small details, such as addresses, offsets or long yet subtly
distinct variable names. For instance, the length of the names rx queue capacity and
tx queue capacity in Listing 6.13 may obfuscate accidental uses of the opposite instance.
Being able to avoid such issues improves practicality.

• revives the demand for struct field assignments. The prior techniques have in-built strate-
gies for getting around this by taking advantage of offsets and disconnected variables. To
get around this, the global named struct technique can define functions reminiscent of the
macros of Listing 6.12 or the inc sz function of Section 6.1. However, this requires work
on the part of the programmer to set up for their specific structs. So, this practicality issue
cannot be considered improved upon until field assignment is supported.

• revives the interest in field accesses using addreses, akin to the C -> operator. With an
increase in struct syntax usage, the pattern of loading an entire struct by address just to
access one field becomes more common. Since this is so common within C code, there is

38

Halogen Truong Improving the Safety of the Pancake Language

some demand for syntax that skips this step to avoid loading the entire struct. In practice,
the compiler optimises away this load, which means this operator may be implemented as
syntax sugar. So, there is still more improvement possible for practicality.

• maps well to verification tools that also support structs. In particular, one avenue of
Pancake verification currently undergoing research is automatic translation of Pancake
into the Viper automated theorem prover. This involves annotating a given Pancake pro-
gram with pre- and post-conditions for each of its functions. Using the global named
struct technique, as opposed to the memory access technique previously used in this
work, allows those conditions to be expressed in more readable and simpler to verify
ways. For example, a function that sets the capacity of the receive queue to 0 may
have the post-condition ensures memory[RXQUEUE ADDR + NETCAPAC OFFSET] == 0 be-
fore named structs, and ensures rx queue.capacity == 0 afterwards. This progresses
ease of formal verification.

Overall, we see that the named struct feature indeed improves upon and conserves several of
the language design goals in the context of real device drivers, but the lack of features such as
field assignment holds it back from an ideal usability scenario for structs.

Outside of the judgements on the named struct feature, the volunteer responded positively to
the shape checking and its error reporting. In particular, there was some initial trouble with
compiler build versions prompted some confusion about the nature of the default shape feature
while looking at the shape checker output. However, after moving to the named structs version
of the compiler, where shape error messages were updated to be more specific, the confusion
was instantly quelled. The volunteer, unprompted, also went through the thought process of
considering possible uses of polymorphism or type aliasing, and agreed there were no currently
obvious uses for those features in device drivers.

6.4 Limitations and Future Work

Based on the established evaluation, the limitations of the project largely lie in features yet
unimplemented that would round out the usability of structs in Pancake in general. In particular,
support for struct field assignment and struct field access via addresses. Since these directly
reflect user demand, it would be ideal for these features to be added to the language, if not part
of this project’s body of work, then soon after. The outstanding verification work associated with
the named struct feature is similarly a required piece of work before it can be merged into the
main compiler. This verification work has already been started by collaborators at the University
of Gothenburg and Chalmers University of Technology.

Outside of these identified limitations, a number of possible improvements exist:

• Moving from a checking algorithm to a bidirectional strategy, to replace the default shape
feature and possibly allow omission of struct shape declarations where permissible

• Improved location tracking for declarations. This necessitated particularly verbose errors
messages in order to provide enough information for the user to find the error within their
file.

39

Halogen Truong Improving the Safety of the Pancake Language

• Syntactic shorthands that allow fields to be omitted in a named struct constant and ini-
tialised with 0 instead of throwing an error about missing fields. This avoids needing to
specify a 0 value for every field when initialising named struct variables. However, forget-
ting to provide a value for a given field is still a possible mistake to make, so such a change
would likely be accompanied by a warning that this is occurring.

• Dependency analysis for struct name declarations (and by extension, possibly global vari-
ables). The compiler could then use these dependencies to rearrange declarations so that
users need not worry about the scoping declaration order. However, this would require
cycle detection, and C-familiar programmers are already used to considering declaration
order in C programs. As such, whether the benefit of such a feature is worth the effort is
questionable.

40

Halogen Truong Improving the Safety of the Pancake Language

Chapter 7

Conclusion

This project aimed to address the usability issues associated with the neglect of the Pancake
language’s shape features, with particular focus on the lack of compiler-checked shape safety
and poor error-prone syntax. The implemented solution did so by implementing static shape
checking to react to shape errors in incoming programs, a default shape feature to minimise
the additional syntax requirements of shape checking and a named struct feature that deviates
from the existing raw structs by assigning names to struct shapes and their fields. Even though
there is further work to be done, the solution was found to strongly improve the usability issue
in reference to the language’s key design goals. All in all, the project highlighted that language
features should be added because they are useful, not just because they can be added, and
features that have been added should be made useful, or else they are useless.

41

Halogen Truong Improving the Safety of the Pancake Language

Appendix A: Shape Checking Rules

ΓV ; ΓG ⊢ exp : sh exp has shape sh in variable context ΓV ; ΓG

ΓV ; ΓG ⊢ Constnum : One
CONST

v : sh ∈ ΓV

ΓV ; ΓG ⊢ VarLocal v : sh
LOCALVAR

v : sh ∈ ΓG

ΓV ; ΓG ⊢ VarGlobal v : sh
GLOBALVAR

ΓV ; ΓG ⊢ exp1 : sh1 .. ΓV ; ΓG ⊢ expn : shn

ΓV ; ΓG ⊢ Struct [exp1 .. expn] : Comb [sh1 .. shn]
STRUCT

ΓV ; ΓG ⊢ exp : Comb [sh1 .. shindex .. shn]

ΓV ; ΓG ⊢ Field index exp : shindex
FIELD

ΓV ; ΓG ⊢ addr : One

ΓV ; ΓG ⊢ Load sh addr : sh
LDS

ΓV ; ΓG ⊢ addr : One

ΓV ; ΓG ⊢ LoadHalf addr : One
LDH

ΓV ; ΓG ⊢ addr : One

ΓV ; ΓG ⊢ LoadByte addr : One
LDB

ΓV ; ΓG ⊢ exp1 : One .. ΓV ; ΓG ⊢ expn : One

ΓV ; ΓG ⊢ Op binop[exp1 .. expn] : One
EXP

ΓV ; ΓG ⊢ exp1 : One .. ΓV ; ΓG ⊢ expn : One

ΓV ; ΓG ⊢ Panop panop[exp1 .. expn] : One
PANOP

ΓV ; ΓG ⊢ exp1 : sh
ΓV ; ΓG ⊢ exp2 : sh

ΓV ; ΓG ⊢ Cmp cmp exp1 exp2 : One
CMP

ΓV ; ΓG ⊢ exp : One

ΓV ; ΓG ⊢ Shift shift exp num : One
SHIFT

ΓV ; ΓG ⊢ BaseAddr : One
BASE

42

Halogen Truong Improving the Safety of the Pancake Language

ΓV ; ΓG ⊢ TopAddr : One
TOP

ΓV ; ΓG ⊢ BytesInWord : One
BIW

scope; ΓV ; ΓG; ΓF ⊢ stmt ok stmt shape checks in scope, variable and function context ΓV ; ΓG; ΓF

scope; ΓV ; ΓG; ΓF ⊢ Skipok
SKIP

ΓV ; ΓG ⊢ exp : sh
scope; ΓV , v : sh; ΓG; ΓF ⊢ stmt ok

scope; ΓV ; ΓG; ΓF ⊢ Dec v sh exp stmt ok
DEC

f : sh, [sh1 .. shn] ∈ ΓF

ΓV ; ΓG ⊢ exp1 : sh1 .. ΓV ; ΓG ⊢ expn : shn
scope; ΓV , v : sh; ΓG; ΓF ⊢ stmt ok

scope; ΓV ; ΓG; ΓF ⊢ DecCall v sh f [exp1 .. expn]stmt ok
DECCALL

v : sh ∈ ΓV

ΓV ; ΓG ⊢ exp : sh

scope; ΓV ; ΓG; ΓF ⊢ AssignLocal v exp ok
ASSIGNLOCAL

v : sh ∈ ΓG

ΓV ; ΓG ⊢ exp : sh

scope; ΓV ; ΓG; ΓF ⊢ AssignGlobal v exp ok
ASSIGNGLOBAL

f : sh0, [sh1 .. shn] ∈ ΓF

v : sh0 ∈ ΓV

ΓV ; ΓG ⊢ exp1 : sh1 .. ΓV ; ΓG ⊢ expn : shn

scope; ΓV ; ΓG; ΓF ⊢ AssignCall v handle f [exp1 .. expn]ok
ASSIGNCALL

ΓV ; ΓG ⊢ exp : sh

Body sh; ΓV ; ΓG; ΓF ⊢ Return exp ok
RETURN

f : sh, [sh1 .. shn] ∈ ΓF

ΓV ; ΓG ⊢ exp1 : sh1 .. ΓV ; ΓG ⊢ expn : shn

Body sh; ΓV ; ΓG; ΓF ⊢ TailCall f [exp1 .. expn]ok
TAILCALL

f : sh0, [sh1 .. shn] ∈ ΓF

ΓV ; ΓG ⊢ exp1 : sh1 .. ΓV ; ΓG ⊢ expn : shn

scope; ΓV ; ΓG; ΓF ⊢ StandAloneCall handle f [exp1 .. expn]ok
STANDALONECALL

ΓV ; ΓG ⊢ exp1 : One .. ΓV ; ΓG ⊢ exp4 : One

scope; ΓV ; ΓG; ΓF ⊢ ExtCall f exp1 exp2 exp3 exp4 ok
EXTCALL

scope; ΓV ; ΓG; ΓF ⊢ stmt1 ok
scope; ΓV ; ΓG; ΓF ⊢ stmt2 ok

scope; ΓV ; ΓG; ΓF ⊢ Seq stmt1 stmt2 ok
SEQ

43

Halogen Truong Improving the Safety of the Pancake Language

ΓV ; ΓG ⊢ exp : One
scope; ΓV ; ΓG; ΓF ⊢ stmt1 ok
scope; ΓV ; ΓG; ΓF ⊢ stmt2 ok

scope; ΓV ; ΓG; ΓF ⊢ If exp stmt1 stmt2 ok
IF

ΓV ; ΓG ⊢ exp : One
scope; ΓV ; ΓG; ΓF ⊢ stmt ok

scope; ΓV ; ΓG; ΓF ⊢ While exp stmt ok
WHILE

scope; ΓV ; ΓG; ΓF ⊢ Breakok
BREAK

scope; ΓV ; ΓG; ΓF ⊢ Continueok
CONTINUE

ΓV ; ΓG ⊢ exp : sh

scope; ΓV ; ΓG; ΓF ⊢ Raise eid exp ok
RAISE

ΓV ; ΓG ⊢ addr : One
ΓV ; ΓG ⊢ exp : sh

scope; ΓV ; ΓG; ΓF ⊢ Store addr exp ok
ST

ΓV ; ΓG ⊢ addr : One
ΓV ; ΓG ⊢ exp : One

scope; ΓV ; ΓG; ΓF ⊢ StoreHalf addr exp ok
STH

ΓV ; ΓG ⊢ addr : One
ΓV ; ΓG ⊢ exp : One

scope; ΓV ; ΓG; ΓF ⊢ StoreByte addr exp ok
STB

v : One ∈ ΓV

ΓV ; ΓG ⊢ addr : One

scope; ΓV ; ΓG; ΓF ⊢ ShMemLoad opsize Local v addr ok
SHLDLOCAL

v : One ∈ ΓG

ΓV ; ΓG ⊢ addr : One

scope; ΓV ; ΓG; ΓF ⊢ ShMemLoad opsizeGlobal v addr ok
SHLDGLOBAL

ΓV ; ΓG ⊢ addr : One
ΓV ; ΓG ⊢ exp : One

scope; ΓV ; ΓG; ΓF ⊢ ShMemStore opsize addr exp ok
SHST

scope; ΓV ; ΓG; ΓF ⊢ Tickok
TICK

scope; ΓV ; ΓG; ΓF ⊢ Annot string1 string2 ok
ANNOT

44

Halogen Truong Improving the Safety of the Pancake Language

ΓG; ΓF ⊢ decl ⇝ Γ′
G; Γ

′
F decl updates global variable and function context ΓG; ΓF to produce Γ′

G; Γ
′
F

sh = One

Γ ⊢ Func sh “main ” false [] stmt ⇝ Γ, Fn “main ” : sh, []
FUNCMAIN

sh0 = One .. shn = One

Γ ⊢ Func sh0 f true [(v1, sh1) .. (vn , shn)] stmt ⇝ Γ, Fn f : sh0, [sh1 .. shn]
FUNCEXPORT

f ̸= “main ”
size (sh0) ≤ 32

Γ ⊢ Func sh0 f false [(v1, sh1) .. (vn , shn)] stmt ⇝ Γ, Fn f : sh0, [sh1 .. shn]
FUNCSTATIC

empty; ΓG ⊢ exp : sh

ΓG; ΓF ⊢ Decl sh v exp ⇝ ΓG, v : sh; ΓF
GLOB

ΓG; ΓF ⊢ decl ok decl shape checks in global variable and function context ΓG; ΓF

Body sh; empty; ΓG; ΓF ⊢ stmt ok

ΓG; ΓF ⊢ Func sh f bool [param1 .. paramn]stmt ok
FUNCTION

ΓG; ΓF ⊢ Decl sh v exp ok
GLOBAL

program ok program shape checks

empty; empty ⊢ decl1 ⇝ ΓG2; ΓF2 .. ΓGn ; ΓFn ⊢ decln ⇝ ΓG; ΓF

ΓG; ΓF ⊢ decl1 ok .. ΓG; ΓF ⊢ decln ok

[decl1 .. decln]ok
PROG

45

Halogen Truong Improving the Safety of the Pancake Language

Appendix B: Existing Static Checks

The following is a list of each error and warning covered by the Pancake static checker prior to
this project.

Scope checks:

• Errors:
– Using a function that is undefined or out-of-scope
– Using a variable that is undefined or out-of-scope
– Declaring a function with a name that has already been declared in the scope

• Warnings:
– Declaring a variable with a name that has already been declared in the scope

General checks:

• Errors:
– Declaring the main function to take in arguments
– Exporting the main function using the multiple entry points feature
– Exporting a function with greater than 4 arguments
– Missing a function exit (return, tail call, etc) in some execution branches of a function
– Using a loop exit (break, continue) outside of a loop
– Declaring a function with argument names that are not distinct
– Giving operator structures an incorrect number of arguments (impossible through

parsing, but possible if generated separately)

• Warnings:
– Placing statements in unreachable locations, namely after a function or loop exit
– Giving an address to a local memory operation that is not calculated using the user

memory base address (since it may not be a local address)
– Giving an address to a shared memory operation that is calculated using the user

memory base address (since it may not be a shared address)

46

Halogen Truong Improving the Safety of the Pancake Language

Appendix C: Shape Checking Rules
with Named Structs

Γ ⊢ sh ok shape sh is wellformed in context Γ

Γ ⊢ Oneok
WORD

Γ ⊢ sh1 ok .. Γ ⊢ shn ok

Γ ⊢ Comb [sh1 .. shn]ok
COMB

Nm sname : [nfldsh1 ..nfldshn] ∈ Γ

Γ ⊢ Named sname ok
NAMED

Γ ⊢ exp : sh exp has shape sh in context Γ

Γ ⊢ Constnum : One
CONST

Lc v : sh ∈ Γ

Γ ⊢ VarLocal v : sh
LOCALVAR

Gb v : sh ∈ Γ

Γ ⊢ VarGlobal v : sh
GLOBALVAR

Γ ⊢ exp1 : sh1 .. Γ ⊢ expn : shn

Γ ⊢ RStruct [exp1 .. expn] : Comb [sh1 .. shn]
RSTRUCT

Γ ⊢ exp : Comb [sh1 .. shindex .. shn]

Γ ⊢ RField index exp : shindex
RFIELD

Nm sname : [(fld1, sh1) .. (fldn , shn)] ∈ Γ
Γ ⊢ exp1 : sh1 .. Γ ⊢ expn : shn

Γ ⊢ NStruct sname [(fld1, exp1) .. (fldn , expn)] : Named sname
NSTRUCT

Γ ⊢ exp : Named sname
Nm sname : [(fld1, sh1) .. (field , sh) .. (fldn , shn)] ∈ Γ

Γ ⊢ NFieldfield exp : sh
NFIELD

47

Halogen Truong Improving the Safety of the Pancake Language

Γ ⊢ sh ok
Γ ⊢ addr : One

Γ ⊢ Load sh addr : sh
LDS

Γ ⊢ addr : One

Γ ⊢ LoadHalf addr : One
LDH

Γ ⊢ addr : One

Γ ⊢ LoadByte addr : One
LDB

Γ ⊢ exp1 : One .. Γ ⊢ expn : One

Γ ⊢ Op binop [exp1 .. expn] : One
EXP

Γ ⊢ exp1 : One .. Γ ⊢ expn : One

Γ ⊢ Panop panop [exp1 .. expn] : One
PANOP

Γ ⊢ exp1 : sh
Γ ⊢ exp2 : sh

Γ ⊢ Cmp cmp exp1 exp2 : One
CMP

Γ ⊢ exp : One

Γ ⊢ Shift shift exp num : One
SHIFT

Γ ⊢ BaseAddr : One
BASE

Γ ⊢ TopAddr : One
TOP

Γ ⊢ BytesInWord : One
BIW

scope; Γ ⊢ stmt ok stmt shape checks in scope, context Γ

scope; Γ ⊢ Skipok
SKIP

Γ ⊢ sh ok
Γ ⊢ exp : sh
scope; Γ, Lc v : sh ⊢ stmt ok

scope; Γ ⊢ Dec v sh exp stmt ok
DEC

Γ ⊢ sh ok
Fn f : sh, [sh1 .. shn] ∈ Γ
Γ ⊢ exp1 : sh1 .. Γ ⊢ expn : shn
scope; Γ, Lc v : sh ⊢ stmt ok

scope; Γ ⊢ DecCall v sh f [exp1 .. expn] stmt ok
DECCALL

Lc v : sh ∈ Γ
Γ ⊢ exp : sh

scope; Γ ⊢ AssignLocal v exp ok
ASSIGNLOCAL

48

Halogen Truong Improving the Safety of the Pancake Language

Gb v : sh ∈ Γ
Γ ⊢ exp : sh

scope; Γ ⊢ AssignGlobal v exp ok
ASSIGNGLOBAL

Fn f : sh0, [sh1 .. shn] ∈ Γ
Lc v : sh0 ∈ Γ
Γ ⊢ exp1 : sh1 .. Γ ⊢ expn : shn

scope; Γ ⊢ AssignCall v handle f [exp1 .. expn]ok
ASSIGNCALL

Γ ⊢ exp : sh

Body sh; Γ ⊢ Return exp ok
RETURN

Fn f : sh, [sh1 .. shn] ∈ Γ
Γ ⊢ exp1 : sh1 .. Γ ⊢ expn : shn

Body sh; Γ ⊢ TailCall f [exp1 .. expn]ok
TAILCALL

Fn f : sh0, [sh1 .. shn] ∈ Γ
Γ ⊢ exp1 : sh1 .. Γ ⊢ expn : shn

scope; Γ ⊢ StandAloneCall handle f [exp1 .. expn]ok
STANDALONECALL

Γ ⊢ exp1 : One .. Γ ⊢ exp4 : One

scope; Γ ⊢ ExtCall f exp1 exp2 exp3 exp4 ok
EXTCALL

scope; Γ ⊢ stmt1 ok
scope; Γ ⊢ stmt2 ok

scope; Γ ⊢ Seq stmt1 stmt2 ok
SEQ

Γ ⊢ exp : One
scope; Γ ⊢ stmt1 ok
scope; Γ ⊢ stmt2 ok

scope; Γ ⊢ If exp stmt1 stmt2 ok
IF

Γ ⊢ exp : One
scope; Γ ⊢ stmt ok

scope; Γ ⊢ While exp stmt ok
WHILE

scope; Γ ⊢ Breakok
BREAK

scope; Γ ⊢ Continueok
CONTINUE

Γ ⊢ exp : sh

scope; Γ ⊢ Raise eid exp ok
RAISE

Γ ⊢ addr : One
Γ ⊢ exp : sh

scope; Γ ⊢ Store addr exp ok
ST

Γ ⊢ addr : One
Γ ⊢ exp : One

scope; Γ ⊢ StoreHalf addr exp ok
STH

49

Halogen Truong Improving the Safety of the Pancake Language

Γ ⊢ addr : One
Γ ⊢ exp : One

scope; Γ ⊢ StoreByte addr exp ok
STB

Lc v : One ∈ Γ
Γ ⊢ addr : One

scope; Γ ⊢ ShMemLoad opsize Local v addr ok
SHLDLOCAL

Gb v : One ∈ Γ
Γ ⊢ addr : One

scope; Γ ⊢ ShMemLoad opsizeGlobal v addr ok
SHLDGLOBAL

Γ ⊢ addr : One
Γ ⊢ exp : One

scope; Γ ⊢ ShMemStore opsize addr exp ok
SHST

scope; Γ ⊢ Tickok
TICK

scope; Γ ⊢ Annot string1 string2 ok
ANNOT

Γ ⊢ decl
name
⇝ Γ′ decl adds a struct name to context Γ to produce the updated context Γ′

Γ ⊢ Func sh f bool [param1 .. paramn] stmt
name
⇝ Γ

FUNCTION

Γ ⊢ Decl sh v exp
name
⇝ Γ

GLOBAL

fld1 ..fldn all distinct
Γ ⊢ sh1 ok .. Γ ⊢ shn ok

Γ ⊢ Name sname [(fld1, sh1) .. (fldn , shn)]
name
⇝ Γ, Nm sname : [(fld1, sh1) .. (fldn , shn)]

STRUCTNAME

Γ ⊢ decl ⇝ Γ′ decl adds a global variable or function to context Γ to produce the updated context Γ′

sh = One

Γ ⊢ Func sh “main ” false [] stmt ⇝ Γ, Fn “main ” : sh, []
FUNCMAIN

sh0 = One .. shn = One

Γ ⊢ Func sh0 f true [(v1, sh1) .. (vn , shn)] stmt ⇝ Γ, Fn f : sh0, [sh1 .. shn]
FUNCEXPORT

f ̸= “main ”
Γ ⊢ sh0 ok .. Γ ⊢ shn ok
size (sh0) ≤ 32

Γ ⊢ Func sh0 f false [(v1, sh1) .. (vn , shn)] stmt ⇝ Γ, Fn f : sh0, [sh1 .. shn]
FUNCSTATIC

Γ ⊢ sh ok
Γ ⊢ exp : sh

Γ ⊢ Decl sh v exp ⇝ Γ, Gb v : sh
GLOBAL

50

Halogen Truong Improving the Safety of the Pancake Language

Γ ⊢ Name sname [nfldsh1 ..nfldshn]⇝ Γ
STRUCTNAME

Γ ⊢ decl ok decl shape checks in context Γ

Body sh; Γ ⊢ stmt ok

Γ ⊢ Func sh f bool [param1 .. paramn] stmt ok
FUNCTION

Γ ⊢ Decl sh v exp ok
GLOBAL

Γ ⊢ Name sname [nfldsh1 ..nfldshn]ok
STRUCTNAME

program ok program shape checks

empty ⊢ decl1
name
⇝ Γ2 .. Γn ⊢ decln

name
⇝ Γn+1

Γn+1 ⊢ decl1 ⇝ Γn+2 .. Γ2n ⊢ decln ⇝ Γ
Γ ⊢ decl1 ok .. Γ ⊢ decln ok

[decl1 .. decln]ok
PROG

51

Halogen Truong Improving the Safety of the Pancake Language

Bibliography

Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Müller, and Alexander J. Summers.
How do programmers use unsafe rust? Proceedings of the ACM on Programming Languages, 4
(OOPSLA), 2020. ISSN 24751421. doi: 10.1145/3428204.

Jana Dunfield and Neel Krishnaswami. Bidirectional Typing. ACM Computing Surveys, 54(5),
2021. doi: 10.1145/3450952.

Dan Grossman, M. Hicks, T. Jim, and G. Morrisett. Cyclone: A type-safe dialect of C. C/C++
Users Journal, 23(1), 2005.

Stefan Hanenberg, Sebastian Kleinschmager, Romain Robbes, Éric Tanter, and Andreas Stefik. An
empirical study on the impact of static typing on software maintainability. Empirical Software
Engineering, 19(5), 2014. doi: 10.1007/s10664-013-9289-1.

Gernot Heiser, Peter Chubb, Alex Brown, Courtney Darville, and Lucy Parker. sDDF Design:
Design, Implementation and Evaluation of the seL4 Device Driver Framework, 3 2024. URL
https://trustworthy.systems/publications/papers/Heiser_CBDP_24.pdf.

R. Hindley. The Principal Type-Scheme of an Object in Combinatory Logic. Transactions of the
American Mathematical Society, 146, 1969. doi: 10.2307/1995158.

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML: A verified
implementation of ML. In Conference Record of the Annual ACM Symposium on Principles of
Programming Languages, 2014. doi: 10.1145/2535838.2535841.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17(3), 1978. doi: 10.1016/0022-0000(78)90014-4.

Benjamin C. Pierce and David N. Turner. Local type inference. ACM Transactions on Programming
Languages and Systems, 22(1), 2000. ISSN 01640925. doi: 10.1145/345099.345100.

Johannes Åman Pohjola, Hira Taqdees Syeda, Miki Tanaka, Krishnan Winter, Tsun Wang Sau,
Benjamin Nott, Tiana Tsang Ung, Craig McLaughlin, Remy Seassau, Magnus O. Myreen,
Michael Norrish, and Gernot Heiser. Pancake: Verified Systems Programming Made Sweeter.
In PLOS 2023 - Proceedings of the 12th Workshop on Programming Languages and Operating
Systems, Part of: SOSP 2023, 2023. doi: 10.1145/3623759.3624544.

seL4 Foundation. seL4 Microkit GitHub, 2023. URL https://github.com/seL4/microkit.

Axel Simon. Optimal inference of fields in row-polymorphic records. In ACM SIGPLAN Notices,
volume 49, 2014. doi: 10.1145/2594291.2594313.

52

https://trustworthy.systems/publications/papers/Heiser_CBDP_24.pdf
https://github.com/seL4/microkit

	Introduction
	Motivation
	The Pancake Language and Its Design
	Pancake and Safety
	Memory Safety
	Type Safety

	Issues with Shapes in Pancake
	The Causes
	The Effects

	Literature Review
	Safety and Usability in Other Languages
	Type Safety Techniques
	Checking vs Inference
	Bidirectional Typing

	Aim
	Methodology
	Shape Checking and Default Shape Declaration
	Checking Inference Rules
	Syntax Extension
	Checking Implementation
	Compatibility and Pull Request

	Named Structs and Fields
	Syntax Extension
	Semantics Extension
	Checking Extension
	Compilation Pass
	Compatibility

	Results
	Solution Output
	Checking/Default Demonstration
	Named Struct Demonstration

	Language Goals
	User Feedback
	Limitations and Future Work

	Conclusion
	Appendix A: Shape Checking Rules
	Appendix B: Existing Static Checks
	Appendix C: Shape Checking Rules with Named Structs
	Bibliography

